[go: up one dir, main page]

JP5928120B2 - ポリカーボネートの製造方法 - Google Patents

ポリカーボネートの製造方法 Download PDF

Info

Publication number
JP5928120B2
JP5928120B2 JP2012095683A JP2012095683A JP5928120B2 JP 5928120 B2 JP5928120 B2 JP 5928120B2 JP 2012095683 A JP2012095683 A JP 2012095683A JP 2012095683 A JP2012095683 A JP 2012095683A JP 5928120 B2 JP5928120 B2 JP 5928120B2
Authority
JP
Japan
Prior art keywords
polycarbonate
reactor
reaction
temperature
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012095683A
Other languages
English (en)
Other versions
JP2013221146A (ja
Inventor
慎悟 並木
慎悟 並木
剛一 永尾
剛一 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012095683A priority Critical patent/JP5928120B2/ja
Publication of JP2013221146A publication Critical patent/JP2013221146A/ja
Application granted granted Critical
Publication of JP5928120B2 publication Critical patent/JP5928120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、透明性、色相、耐熱性、熱安定性、耐光性、機械的強度などに優れ、かつ異物の少ないポリカーボネートを、効率的かつ安定的に製造する方法及び該製造方法によって得られるポリカーボネートペレットを提供するものである。
ポリカーボネートは一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性、機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体、レンズ等の光学分野等でいわゆるエンジニアリングプラスチックとして広く利用されている。
従来のポリカーボネートは、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネートの提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動などをもたらすことが危惧されていることからも、使用後に廃棄処分をしてもカーボンニュートラルな植物由来モノマーを原料としたポリカーボネートの開発が求められている。
かかる状況下、バイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(ISB)をモノマー成分とし、炭酸ジエステルとのエステル交換により、副生するモノヒドロキシ化合物を減圧下で留去しながら、ポリカーボネートを得る方法が提案されている(例えば特許文献1〜6参照)。また、ISBから得られるポリカーボネートは優れた光学特性を有しており、光学材料として有用に用いることができることが知られている。
ところが、ISBのようなジヒドロキシ化合物は、ビスフェノール類に比べると熱安定性が低く、高温下で行う重縮合反応中の熱分解により樹脂が着色する問題があった。
この問題を解決するために、連続式の重合プロセスを用いて、より少ない熱履歴で重合反応を行い、得られるポリマーの色調を改善する方法が提案されている(特許文献7参照)。
国際公開第04/111106号パンフレット 特開2006−232897号公報 特開2006−28441号公報 特開2008−24919号公報 特開2009−91404号公報 特開2009−91417号公報 特開2009−161745号公報
連続式の重合プロセスでは、複数の反応器を連結する配管が必要となるが、本発明者らの検討により、反応液の配管内での熱履歴が、得られるポリカーボネートの色調に大きく影響することが見出された。さらに、最終反応器以降に溶融したポリカーボネートが配管で滞留することにより、重合反応や熱分解が進行し、樹脂中の残存低分子成分が増加する課題も見出された。
さらに、連続重合プロセスでは、反応器から出てくる溶融状態のポリカーボネートを、
そのまま押出機に通して、酸化防止剤などの熱安定剤や、離型剤、着色剤などを添加したり、あるいは、フィルターに通して、樹脂中に含有される異物を濾過により除去することができる利点があるが、押出機では剪断発熱により樹脂の温度が上昇してしまい、また、高粘度の溶融樹脂をフィルターで濾過するには、重合温度以上の温度が必要となり、樹脂の着色の要因となることが明らかになった。
そこで本発明は、従来のビスフェノール類に比べて熱安定性が低い−CH2−O−構造
を有する特定のジヒドロキシ化合物を用いたポリカーボネートの製造にあたり、以上のような複数の問題を解決し、色相や機械物性、熱安定性などの優れた特性を持つポリカーボネートを製造する方法を提供することを目的とする。
本発明者らが上記課題を解決するために鋭意検討を重ねた結果、ジヒドロキシ化合物と炭酸ジエステルを重縮合してポリカーボネートを製造する方法において、反応液又は溶融ポリカーボネートを移送する配管の内温と滞留時間により表される熱履歴に関するパラメータを所定範囲内とすることにより、透明性、色相、耐熱性、熱安定性、機械的強度などに優れたポリカーボネートを、効率的かつ安定に製造することが可能であることを見出し、本発明を完成するに至った。即ち、本発明の要旨は、下記[1]〜[1]に存する。[1]下記構造式(12)で表される化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、
前記反応器は少なくとも直列に複数器接続されるものであり、
前記複数器接続された反応器のうちの最初の反応器とポリカーボネートを取り出す工程との間にある各配管における反応液又は溶融ポリカーボネートの滞留時間と各配管におけるTiで定義される温度が下記式(2)を満たし、
前記重縮合により得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のまま押出機に供給する工程、及び
前記重縮合により得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のままフィルターに供給して濾過する工程を含むポリカーボネートの製造方法
Figure 0005928120
Figure 0005928120
i:配管iの入口における反応液又は溶融ポリカーボネートの温度と、出口における反
応液又は溶融ポリカーボネートの温度のいずれか高い方の温度[K]
θi:配管iにおける滞留時間[min]
[2]最終反応器の出口からポリカーボネートが常温下に取り出すまでの滞留時間が30分以内である[1]に記載のポリカーボネートの製造方法。
[3]前記反応器には、反応副生物であるモノヒドロキシ化合物を脱揮除去する配管が接
続され、炭酸ジエステルより生成するモノヒドロキシ化合物が6wt%以上含有される反応液を移送する場合は配管の内温を210℃以下とし、3wt%以上6wt%未満含有される反応液を移送する場合は配管の内温を220℃以下とし、1wt%以上3wt%未満含有される反応液を移送する場合は配管の内温を230℃以下とする[1]又は[2]に記載のポリカーボネートの製造方法。
[4]得られるポリカーボネートが、温度240℃、剪断速度91.2sec-1における溶融粘度が700Pa・s以上、3500Pa・s以下である[1]乃至[3]のいずれか1項に記載のポリカーボネートの製造方法。
[5]前記最終反応器の出口における溶融ポリカーボネート樹脂中の全ヒドロキシ末端基の量が5mol/ton以上60mol/ton以下である[1]乃至[4]のいずれか1項に記載のポリカーボネートの製造方法。
[6]前記最終反応器出口における溶融ポリカーボネート樹脂中のモノヒドロキシ化合物の量をA[ppm]、得られるポリカーボネート中のモノヒドロキシ化合物の含有量をB[ppm]とした場合に、下記式(5)を満たす[1]乃至[5]のいずれか1項に記載のポリカーボネートの製造方法。
A−B ≧ 100 (5)
[7]前記最終反応器の出口のポリカーボネート中における二重結合末端構造の量をP(mol/ton)、最終的に得られるポリカーボネート中の二重結合末端構造の量をQ(mol/ton)とした場合に、下記式(6)を満たす[1]乃至[6]のいずれか1項に記載のポリカーボネートの製造方法。
Q−P ≦ 10 (6)
[8]前記重合触媒が、長周期型周期表第2族の金属からなる群及びリチウムより選ばれる少なくとも1種の金属化合物である[1]乃至[7]のいずれか1項に記載のポリカーボネートの製造方法。
[9]前記ジヒドロキシ化合物が、前記構造式(12)で表される化合物以外の、分子構造内に芳香環構造を有さないジヒドロキシ化合物を含む[1]乃至[8]のいずれか1項に記載のポリカーボネートの製造方法。
[10]前記押出機に供給する工程及び前記濾過する工程を経た前記ポリカーボネート樹脂を、ダイスヘッドからストランドの形態で吐出し、冷却後、カッターを用いてペレット化する工程を含む[1]乃至[]のいずれか1項に記載のポリカーボネートの製造方法
本発明のポリカーボネートの製造方法に係る製造装置の一例を示す図である。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。なお、本明細書において、「〜」という表現を用いた場合、その前後の数値または物理値を含む意味で用いることとする。
本発明のポリカーボネートの製造方法は、構造の一部に下記式(1)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、前記反応器は少なくとも直列に複数器接続されるものであり、前記複数器接続された反応器のうちの最初の反応器とポリカーボネートを取り出す工程との間にある各配管における反応液又は溶融ポリカーボネートの滞留時間と各配管におけるTiで定義される温度が下記
式(2)を満たすポリカーボネートの製造方法である。
Figure 0005928120
(但し、上記式(1)で表される部位が−CH2−OHの一部を構成する部位である場合
を除く。)すなわち、特定ジヒドロキシ化合物には−CH2−OH以外に式(1)で表さ
れる部位を有さない化合物は含まれないが、−CH2−OH以外に−CH2−O−CH2
等の式(1)で表される部位を有する化合物は含まれる。
Figure 0005928120
i:配管iの入口における反応液又は溶融ポリカーボネートの温度と、出口における反
応液又は溶融ポリカーボネートの温度のいずれか高い方の温度[K]
θi:配管iにおける滞留時間[min]
本発明の方法においては、少なくとも2器の反応器を用いる2段階以上の多段工程で、上記特定ジヒドロキシ化合物を含むジヒドロキシ化合物と、炭酸ジエステルとを、重合触媒の存在下で反応させる(溶融重縮合)ことによりポリカーボネートが製造される。なお、以下において、1器目の反応器を第1反応器、2器目の反応器を第2反応器、3器目の反応器を第3反応器、……と称する。また、本明細書において「反応器」とは、ジヒドロキシ化合物と炭酸ジエステルを混合した後の工程で、後述する反応温度まで加熱する加熱装置を有し、意図的なエステル交換反応を起こすための装置をいい、原料を事前に混合したり溶解させたりすることを主な目的とする溶解槽や、原料混合液を移送するための配管は、たとえそこでわずかながら反応が進行していたとしても、前記の反応器に含まれない。
この発明にかかる製造方法の反応方式は、連続式でなければならない。反応器に原料の溶融混合液が連続的に供給され、重縮合反応を行い、ポリカーボネートを得る。重縮合工程後、真空ベントを具備した押出機などにより、ポリカーボネート中の未反応原料や反応副生物であるモノヒドロキシ化合物を脱揮除去する工程や、熱安定剤、離型剤、色剤等を添加する工程、フィルターにより樹脂中の異物を除去する工程、得られたポリカーボネートを所定の粒径のペレットに形成する工程等を適宜追加してもよい。
反応器と反応器の連結や、反応器と押出機やポリマーフィルターの連結は、直接配管のみで連結してもよいし、必要に応じて、予熱器等を介して行ってもよい。配管は二重管式等で反応液又は溶融ポリカーボネートを冷却固化させることなく移送ができ、ポリマー側に気相がなく、かつデッドスペースを生じないものが好ましい。
上記式(2)で熱履歴パラメータを規定した配管とは、第1反応器とポリカーボネートを取り出す工程との間にある、反応器や押出機、フィルターなどを連結する配管のことを表す。この配管は、反応液又は溶融ポリカーボネートが流入する入口と排出される出口しか持たない。樹脂中の異物を濾過するためのフィルターも配管と見なす。本発明で用いる竪型反応器や横型反応器、押出機は真空ポンプと連結されるラインを具備するため、配管とは見なさない。
上記式(2)で用いられる配管内の反応液又は溶融ポリカーボネートの温度とは、配管中の最も高温となる温度である。配管内に加熱装置や冷却装置を付加しない限り、配管iの入口における反応液又は溶融ポリカーボネートの温度と、出口における反応液又は溶融ポリカーボネートの温度を比較して、いずれか高い方の温度を配管温度Tiとすればよい
。また、滞留時間は配管の容積[L]から配管内を流通する反応液又は溶融ポリカーボネートの時間当たりの流量[L/hr]を除した値[min]である。
上記式(2)において、配管要素iにおける熱履歴パラメータxiは下記式(4)のよ
うに定義される。
Figure 0005928120
i:配管iの入口における反応液又は溶融ポリカーボネートの温度と、出口における反
応液又は溶融ポリカーボネートの温度のいずれか高い方の温度[K]
θi:配管iにおける滞留時間[min]
式(4)はポリカーボネート主鎖の熱分解反応速度を規定したアレニウスの式より導出された。即ち、式(4)は、一般のアレニウスの式(4')
Figure 0005928120
A:温度に無関係な因子(頻度因子)
E:該熱分解反応の生成エネルギー(活性化エネルギー)[kJ/mol]
R:気体定数[J/Kmol]の形をとる。さらに、E/Rを12000[K]とみなし、配管iの入口における反応液又は溶融ポリカーボネートの温度と出口における反応液又は溶融ポリカーボネートの温度のいずれか高い方の温度[K]と、配管iにおける滞留時間[min]からxiを算出することにより、配管要素iにおけるポリカーボネートの熱
履歴を評価する。発明者らは、ポリカーボネート主鎖の熱分解反応によって生じる異種末端構造の生成量と、得られるポリカーボネートの色調が相関することを見出し、ポリカーボネートの色調を熱履歴パラメータxiにより評価するに至った。本発明の重縮合工程に
おける熱分解反応は、ポリカーボネート主鎖の脱炭酸反応のみならず、異種末端構造の生成を伴う複雑な反応の集合体であるが、上記の通り、前記式(4')における熱分解反応
の生成エネルギーEは、前記異種末端構造の生成反応における活性化エネルギーとして経験的に求まる。
このようにして計算される配管要素iにおける熱履歴パラメータの総和が、重縮合工程における熱履歴パラメータとなる。該熱履歴パラメータを上記式(2)の範囲にすることによって、得られるポリカーボネートの色相の改善や、ポリカーボネート中の残存低分子化合物や異物の低減など、複数の品質課題を満足するポリカーボネートを得ることができる。
上記式(2)の範囲を超える場合は、ポリカーボネートに過度な熱履歴がかかっていることになり、ポリカーボネートの色相が悪化し、熱分解によって生じる残存低分子成分が増加する。一方、反応器などの装置を連結するために、ある一定以上の配管のスペースは必要であるため、上記式(2)の範囲を下回る領域の実現は困難である。
さらに本発明では、最終反応器から出てくる溶融状態のポリカーボネートは製造プロセス中、最も高粘度の状態であるため、配管内を移送するには大きな圧力損失が起こるため、少なくとも最終反応器の内温以上の温度に配管を保温しておくのが好ましい。そのため
、最終反応器以降の配管の滞留時間が、ポリカーボネートの品質を低下させる要因として最も大きい。
したがって、最終反応器からポリカーボネートを常温下に取り出すまでの滞留時間は30分以内であることが好ましく、さらには25分以下が好ましく、特には20分以下であることが好ましい。最終反応器以降に押出機やフィルターを設置する場合であっても、前記の滞留時間以下に抑えられるように装置の設置を工夫することが重要である。
また、配管では熱劣化によって生じた分解物や着色物が反応液及び溶融ポリカーボネート中に滞留するおそれがある。特に炭酸ジエステルから生成するモノヒドロキシ化合物を多く含有する場合に、配管中の滞留により反応液及び溶融ポリカーボネートの着色が生じやすい。
本発明においては、モノヒドロキシ化合物が6wt%以上含有される反応液及び溶融ポリカーボネートを移送する場合の配管の内温は210℃以下とし、3wt%以上6wt%未満含有される反応液及び溶融ポリカーボネートを移送する場合の配管の内温は220℃以下とし、1wt%以上3wt%未満含有される反応液及び溶融ポリカーボネートを移送する場合の配管の内温は230℃以下とすることが好ましい。
<重合工程>
重合工程は前段反応と後段反応の2段階に分けられる。前段反応は130〜230℃、好ましくは150〜220℃の温度で0.1〜10時間、好ましくは0.5〜3時間実施され、副生するモノヒドロキシ化合物を留出させ、オリゴマーを生成させる。後段反応は、反応系の圧力を前段反応から徐々に下げ、反応温度も徐々に上げていき、同時に発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力が2kPa以下で、200〜260℃、好ましくは210〜250℃の温度範囲のもとで重縮合反応を行い、ポリカーボネートを生成させる。なお、本明細書における圧力とは、真空を基準に表した、いわゆる絶対圧力を指す。
この重合工程で用いる反応器は、上記のとおり、少なくとも2器が直列に連結されたものであり、第1反応器の出口から出た反応物は第2反応器に入るものが用いられる。連結する反応器の数は特に限定されないが、2〜7器が好ましく、3〜5器がより好ましく、3〜4器が更に好ましい。反応器の種類も特に限定されないが、前段反応の反応器は竪型攪拌反応器が1器以上、後段反応の反応器は高粘度の反応液に対応可能である、横型攪拌反応器が1器以上であることが好ましい。また、前段と後段との関係だけでなく、前段の反応器同士、後段の反応器同士の間でも、後の反応器になるほど、段階的に温度を上昇させ、段階的に圧力を減少させた設定とすることが好ましい。
本発明で製造するポリカーボネートも、通常のポリカーボネートと同様に、反応の進行とともに反応液の粘度が上昇してくるため、多槽方式の各反応器においては、重縮合反応の進行とともに副生するモノヒドロキシ化合物(DPCを用いた場合はフェノールとなる。)をより効果的に系外に除去し、また、反応液の流動性を確保するために、上記の反応条件内で、段階的により高温、より高真空に設定する必要がある。
前記のそれぞれの反応器を加熱する加熱媒体の上限温度は、通常270℃、好ましくは250℃、中でも240℃が好適である。加熱媒体の温度が高すぎると、反応器壁面での熱劣化が促進され、異種構造や分解生成物の増加、色調の悪化等の不具合を招くことがある。特に未反応のジヒドロキシ化合物が熱分解によって着色物を生成しやすいため、最終反応器より前の反応器の加熱媒体の温度は240℃未満であることが好ましい。加熱媒体の下限温度は、上記反応温度が維持可能な温度であれば特に制限されない。
本発明で使用する反応器は公知のいかなるものでもよい。例えば、熱油あるいはスチームを加熱媒体とした、ジャケット形式の反応器あるいは内部にコイル状の伝熱管を有する反応器等が挙げられる。
次に、本発明の方法について、さらに具体的に説明する。本発明の方法は、原料モノマーとして、イソソルビド(ISB)等の上記式(1)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物と、ジフェニルカーボネート(DPC)等の炭酸ジエステルをそれぞれ溶融状態にて、原料混合溶融液を調製し(原料調製工程)、これらの化合物を、重合触媒の存在下、溶融状態で複数の反応器を用いて多段階で重縮合反応をさせる(重縮合工程)ことによって行われる。この反応ではモノヒドロキシ化合物が副生するため、このモノヒドロキシ化合物を反応系から除去することにより、反応を進行させ、ポリカーボネートを生成させる。炭酸ジエステルとしてDPCを用いた場合、前記モノヒドロキシ化合物はフェノールとなり、減圧下でこのフェノールを除去して反応を進行させる。
前記の反応器で発生するフェノール等のモノヒドロキシ化合物は、タンクに収集しておき、資源有効活用の観点から、必要に応じ精製を行って回収した後、DPCやビスフェノールA等の原料として再利用することが好ましい。本発明の製造方法において、副生モノヒドロキシ化合物の精製方法に特に制限はないが、蒸留法を用いることが好ましい。
次に、製造方法の各工程について説明する。
<原料調製工程>
ポリカーボネートの原料として使用する前記式(1)で表される部位を有する特定ジヒドロキシ化合物を含むジヒドロキシ化合物、及び炭酸ジエステルは、窒素、アルゴン等の不活性ガスの雰囲気下、バッチ式、半回分式または連続式の攪拌槽型の装置を用いて、原料混合溶融液として調製するか、又は、反応槽にこれらを独立に投下する。溶融混合の温度は、例えば、前記特定ジヒドロキシ化合物としてISBを用いると共に、後記するような脂環式炭化水素のジヒドロキシ化合物を用い、炭酸ジエステルとしてDPCを用いる場合は、80℃〜180℃がよく、好ましくは90℃〜120℃の範囲から選択される。また、この原料混合溶融液に酸化防止剤を添加してもよい。通常知られるヒンダードフェノール系酸化防止剤やリン系酸化防止剤を添加することで、原料調製工程での原料の保存安定性の向上や、重合中での着色を抑制することにより、得られる樹脂の色相を改善することができる。
使用する重合触媒は、通常、予め水溶液として準備される。触媒水溶液の濃度は特に限定されず、触媒の水に対する溶解度に応じて任意の濃度に調整される。また、水に代えて、アセトン、アルコール、トルエン、フェノール等の他の溶媒を選択することもできる。なお、重合触媒の具体例については後記する。この重合触媒の溶解に使用する水の性状は、含有される不純物の種類ならびに濃度が一定であれば特に限定されないが、通常、蒸留水や脱イオン水等が好ましく用いられる。
本発明の方法においては、異物をより低減させるために、原料モノマーを、重縮合前にフィルターで濾過するのも有効である。以下、このフィルターを原料フィルターとする。
尚、その際の前記原料フィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタイプ、チューブタイプ、フラット型円筒タイプ、プリーツ型円筒タイプ等のいずれの型式であってもよいが、中でもコンパクトで濾過面積が大きく取れるプリーツタイプのものが好ましい。また、前記原料フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布、多孔質金属板等のいずれでもよいが、濾過精度の観点から積層金属メッシュまたは金属不織布が好ましく、中でも金属不織布を焼結して固定したタイプのものが好ましい。
前記原料フィルターの材質についての制限は特になく、金属製、樹脂製、セラミック製等を使用することができるが、耐熱性や着色低減の観点からは、鉄含有量80%以下であ
る金属製フィルターが好ましく、中でもSUS304、SUS316、SUS316L、SUS310S等のステンレス鋼製が好ましい。
前記原料モノマーの濾過の際には、濾過性能を確保しながら前記原料フィルターの寿命を延ばすために、複数のフィルターユニットを用いることが好ましく、中でも上流側のユニット中のフィルターの目開きをC[μm]、下流側のユニット中のフィルターの目開きをD[μm]とした場合に、少なくとも1つの組み合わせにおいて、CはDより大きい(C>D)ことが好ましい。この条件を満たした場合は、フィルターがより閉塞しにくくなり、前記原料フィルターの交換頻度の低減を図ることができる。
前記原料フィルターの目開きは特に制限はないが、少なくとも1つのフィルターにおいては、99%の濾過精度として10μm以下であることが好ましく、フィルターが複数配置されている場合には、最上流側において好ましくは8以上、更に好ましくは10以上であり、その最下流側において好ましくは2以下、更に好ましくは1以下である。尚、前記99%の濾過精度として定義される目開きとは、ISO16889に準拠して決定された下記式(11)で表されるβχ値が1000の場合のχの値を言う。
βχ=(χμmより大きい1次側の粒子数)/(χμmより大きい2次側の粒子数) (11)
(ここで1次側とはフィルターでの濾過前、2次側とは濾過後を示す。)
また、本発明において、原料を前記原料フィルターに通過させる際の原料流体の温度に制限はないが、低すぎると原料が固化し、高すぎると熱分解等の不具合があるため、通常100℃〜200℃、好ましくは100℃〜150℃である。
さらに、本発明においては、複数種用いる原料のうち、いずれの原料を濾過してもよいし、全てを濾過してもよく、その方法は、限定されるものではなく、ジヒドロキシ化合物と炭酸ジエステルの原料混合物を濾過してもよいし、別々に濾過した後に混合してもよい。また、本発明の製造法においては、重縮合反応の途中の反応液をフィルターで濾過することもできる。
前記反応器での反応の好ましい態様について説明する。
<前段反応工程>
先ず、上記ジヒドロキシ化合物と炭酸ジエステルとの混合物を、溶融下に、竪型反応器に供給して、温度130℃〜230℃で重縮合反応を行う。
この反応は、1槽以上、好ましくは2槽〜6槽の多槽方式で連続的に行われ、副生するモノヒドロキシ化合物の理論量の40%から95%を留出させることが好ましい。反応温度は、130℃〜230℃がよく、好ましくは150℃〜220℃であり、圧力は40kPa〜1kPaであるとよい。多槽方式の連続反応の場合、各槽の温度を、上記範囲内で順次上げ、各槽の圧力を、上記範囲内で順次下げることが好ましい。平均滞留時間は、0.1〜10時間がよく、好ましくは0.5〜5時間、より好ましくは0.5〜3時間である。温度が高すぎると熱分解が促進され、異種構造や着色成分の生成が増加し、樹脂の品質の悪化を招くことがある。一方、温度が低すぎると反応速度が低下するために生産性が低下するおそれがある。
この発明で用いる溶融重縮合反応は平衡反応であるため、副生するモノヒドロキシ化合物を反応系外に除去することで反応が促進されるので、減圧状態にすることが好ましい。圧力は1kPa以上40kPa以下であることが好ましく、より好ましくは5kPa以上、30kPa以下である。圧力が高すぎるとモノヒドロキシ化合物が留出しないために反応性が低下し、低すぎると未反応のジヒドロキシ化合物や炭酸ジエステルなどの原料が留
出するため、原料モル比がずれて所望の分子量まで到達しないなど、反応の制御が難しくなり、また、原料原単位が悪化してしまうおそれがある。
<後段反応工程>
次に、前段の重縮合工程で得られたオリゴマーを横型攪拌反応器に供給して、反応器の内温の温度200℃〜260℃で重縮合反応を行い、ポリカーボネートを得る。この反応は1器以上、好ましくは1〜3器の横型攪拌反応器で連続的に行われる。
反応温度は、好ましくは200〜260℃、より好ましくは220〜250℃である。圧力は、13.3kPa〜10Paがよく、好ましくは1kPa〜10Paである。特に最終反応器においては、圧力は1kPa〜10Paがよく、好ましくは0.7kPa〜10Paである。平均滞留時間は、0.1〜10時間がよく、好ましくは0.5〜5時間、より好ましくは0.5〜2時間である。
<反応器>
少なくとも2器の反応器により重縮合工程を多槽方式で行うこの発明では、竪型攪拌反応器を含む複数器の反応器を設けて、ポリカーボネートの平均分子量(還元粘度)を増大させる。
ここで、反応器としては、竪型攪拌反応器や横型撹拌反応器があげられ、具体例としては、攪拌槽型反応器、薄膜反応器、遠心式薄膜蒸発反応器、表面更新型二軸混練反応器、二軸横型攪拌反応器、濡れ壁式反応器、自由落下させながら重合する多孔板型反応器、ワイヤーに沿わせて落下させながら重合するワイヤー付き多孔板型反応器等が挙げられる。上記の通り、前段反応工程では竪型攪拌反応器を用いるのが好ましく、後段反応工程では横型攪拌反応器を用いるのが好ましい。
本発明で使用される反応器においては前段と後段とに関わらず、ポリカーボネートの色調の観点から、反応装置を構成する機器、配管などの構成部品の原料モノマーまたは重合液に接する部分(以下「接液部」と称する)の表面材料は、接液部の全表面積の少なくとも90%以上を占める割合で、ニッケル含有量10重量%以上のステンレス、ガラス、ニッケル、タンタル、クロム、テフロン(登録商標)のうち1種または2種以上から構成されていることが好ましい。本発明においては、接液部の表面材料が上記物質から構成されていればよく、上記物質と他の物質とからなる張り合わせ材料、あるいは上記物質を他の物質にメッキした材料などを表面材料として用いることができる。
前記の竪型攪拌反応器とは、垂直回転軸と、この垂直回転軸に取り付けられた攪拌翼とを具備した反応器である。攪拌翼の形式としては、例えば、タービン翼、パドル翼、ファウドラー翼、アンカー翼、フルゾーン翼(神鋼パンテック(株)製)、サンメラー翼(三菱重工業(株)製)、マックスブレンド翼(住友重機械工業(株)製)、ヘリカルリボン翼、ねじり格子翼((株)日立製作所製)等が挙げられる。
また、前記の横型攪拌反応器とは、内部に複数本設けられた攪拌翼の回転軸が横型(水平方向)で、この水平回転軸に対してほぼ垂直に延びる複数枚の攪拌翼を有しており、それぞれの水平回転軸に設けられた攪拌翼は、互いに水平方向の位置をずらして、衝突しないように配されたものである。攪拌翼の形式としては、例えば、円板型、パドル型等の一軸タイプの攪拌翼や、HVR、SCR、N−SCR(上記3種は三菱重工業(株)製)、バイボラック(住友重機械工業(株)製)、あるいはメガネ翼、格子翼((株)日立製作所製)等の二軸タイプの攪拌翼が挙げられる他、車輪型、櫂型、棒型、窓枠型などの攪拌翼が挙げられる。このような攪拌翼が、回転軸あたり少なくとも2段以上設置されており、この攪拌翼により反応溶液をかき上げ、又は押し広げて反応溶液の表面更新を行う。ま
た、横型反応器の水平回転軸の長さをLとし、攪拌翼の回転直径をDとしたときにL/Dが1〜15、好ましくは2〜14である。
ところで、前記炭酸ジエステルとして、ジフェニルカーボネート、ジトリルカーボネート等の置換ジフェニルカーボネートを用い、本発明の方法でポリカーボネートを製造する場合は、モノヒドロキシ化合物であるフェノールや置換フェノールが副生し、ポリカーボネート中に残存することは避けられない。しかし、これらのフェノール、置換フェノールといったモノヒドロキシ化合物は成形加工時の臭気の原因となる場合がある。本発明のような連続式ではなく、通常のバッチ反応で得られるポリカーボネート中には、1000ppm以上の副生フェノール等の芳香環を有するモノヒドロキシ化合物が含まれている。なお、これらモノヒドロキシ化合物は、用いる原料により、置換基を有していてもよく、例えば、炭素数が5以下であるアルキル基などを有していてもよい。
このようなモノヒドロキシ化合物をはじめとする、樹脂中の残存低分子成分を低減するには、前記最終反応器の圧力を極力低くして、留去することが効果的である。しかし、ISBに代表される、前記式(1)の構造部位を有するジヒドロキシ化合物をモノマーに用いたポリカーボネートは、従来のビスフェノールAをモノマーに用いた芳香族ポリカーボネートと比べて、反応の平衡定数が大きいために、後段反応における分子量上昇速度が速い。そのため、圧力を低下させると反応が促進されすぎるために反応の制御が難しくなる。本発明の前記式(1)の構造部位を有するジヒドロキシ化合物と炭酸ジエステルとしてジフェニルカーボネートを用いる方法においては、通常、ヒドロキシ末端の量と、下記構造式(11)で表されるフェニルカーボネート末端の量とが等量の時に反応速度は最大となるが、あえてヒドロキシ末端の量を減らし、フェニルカーボネート末端の量を増やすことで、粘度上昇速度を緩やかにして、最終反応器の圧力を低下させることが可能となる。さらに、ヒドロキシ末端が少ないほど、樹脂を溶融滞留させた時の着色が低減するなど、得られるポリカーボネートの熱安定性が向上する効果もある。
Figure 0005928120
このような末端基のバランスは、反応に用いられる全ジヒドロキシ化合物と炭酸ジエステルとの、最初の第1反応器へ投下する際の仕込みのモル比により制御することが可能であり、全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比が0.990以上1.030以下であることが好ましい。全ジヒドロキシ化合物に対する炭酸ジエステルの仕込みのモル比は、より好ましくは0.995以上1.25以下である。モル比が大きすぎると、後段反応においてヒドロキシ末端が消失して、所望の分子量まで到達できなくなる。また、小さすぎるとヒドロキシ末端が増加して、得られる樹脂の熱安定性が悪化する。このように末端バランスを制御することで、前記最終反応器における粘度上昇速度を制御することが可能となり、前記最終反応器の圧力を低下できる。前記最終反応器の圧力は1kPa以下が好ましく、さらに好ましくは0.7kPa以下、特に好ましくは0.5kPa以下である。なお、圧力は低いほど好ましいが、10Paで減圧の限界となることが多い。
このようにして、この発明で重縮合して得られるポリカーボネート樹脂中のヒドロキシ末端基の量は、前記最終反応器の出口において60mol/ton以下であることが好ましい。さらに好ましくは50mol/ton以下、特に好ましくは40mol/ton以下である。得られるポリカーボネート樹脂が有するヒドロキシ末端基の量は少ないほど熱
安定性の観点からは好ましいが、ヒドロキシ末端が完全に消失すると、反応が頭打ちとなって所望の分子量に到達しないおそれもあるため、ヒドロキシ末端は5mol/ton以上含むことが好ましく、10mol/ton以上含むことがより好ましい。ヒドロキシ末端基は、前述の全ジヒドロキシ化合物に対する炭酸ジエステルの仕込みのモル比により制御することができる。炭酸ジエステルの仕込み量を増やすことで、ヒドロキシ末端基の量は低下する。
また、この発明で重縮合して得られるポリカーボネート樹脂中に含まれるモノヒドロキシ化合物の量は、前記最終反応器の出口において、700ppm以下が好ましく、さらに好ましくは500ppm以下、特に好ましくは200ppm以下である。ただし、工業的に完全に除去することは困難であり、モノヒドロキシ化合物の含有量の下限は通常1ppmである。
<重縮合反応以降の工程>
本発明で重縮合して得られるポリカーボネートは、上述の重縮合反応を行った後、固化させることなく、溶融状態のまま、フィルターに通して異物を濾過するとよい。特に、樹脂中に含まれる低分子量成分の除去や、熱安定剤等の添加混練を実施するため、重縮合で得られた樹脂を押出機に導入し、次いで押出機から排出された樹脂を、フィルターを用いて濾過することが好ましい。
本発明の方法において、重縮合して得られるポリカーボネート樹脂を、フィルターを用いて濾過する方法としては、例えば次のような方法が挙げられる。濾過に必要な圧力を発生させるために、前記最終反応器からギヤポンプやスクリュー等を用いて溶融状態で抜き出し、フィルターで濾過する方法、前記最終反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出した後、フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法、又は、前記最終反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、一旦ストランドの形態で冷却固化させてペレット化し、該ペレットを再度押出機に導入してフィルターで濾過し、ストランドの形態で冷却固化させて、ペレット化する方法、最終反応器から溶融状態で抜き出し、押出機を通さずにストランドの形態で冷却固化させて一旦ペレット化させた後に、一軸または二軸の押出機にペレットを供給し、溶融押出しした後、フィルターで濾過し、ストランドの形態で冷却固化させてペレット化させる方法等である。中でも熱履歴を最小限に抑え、色相の悪化や分子量の低下等、熱劣化を抑制するためには、前記最終反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、直接フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法が好ましい。以下、具体的に説明する。
本発明の方法において使用される押出機の形態は限定されるものではないが、通常一軸または二軸の押出機が用いられる。中でも後述の脱揮性能の向上や添加剤の均一な混練のためには二軸の押出機が好ましい。この場合、軸の回転方向は異方向であっても同方向であってもよい。混練性能の観点からは異方向が好ましいが、剪断発熱により樹脂の温度が上昇し、色相が悪化することを抑制する観点からは同方向が好ましい。押出機の使用によりフィルターへのポリカーボネート樹脂の供給を安定させることができる。
また、上記の通り重縮合させて得られたポリカーボネート中には、通常、色相や熱安定性、さらにはブリードアウト等により製品に悪影響を与える可能性のある原料モノマー、エステル交換反応で副生するモノヒドロキシ化合物、ポリカーボネートオリゴマー等の低分子量化合物が残存しているが、ベント口を有する押出機を用い、好ましくはベント口から真空ポンプ等を用いて減圧にすることにより、これらを脱揮除去することも可能である。また、押出機内に水等の揮発性液体を導入して、脱揮を促進することもできる。ベント口は1つであっても複数であってもよいが、好ましくは2つ以上である。
通常、押出機では剪断発熱により、樹脂の温度が上昇する。色相の改善のためには、押出機での温度上昇を極力抑えることが肝要である。剪断発熱は特にスクリューの回転数の影響が大きいため、回転数を低めに調整することによる効果が高い。しかし、回転数を低くしすぎると、モーターの負荷が上がったり、ベント口に樹脂が巻き上がって、ベントラインを閉塞させてしまう懸念があるため、限度はある。また、押出機のシリンダー温度も、モーターの負荷の許す限り低くすることが好ましい。
さらに、前記の押出機中で、通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練することも出来る。
本発明においては、重縮合して得られたポリカーボネート樹脂中のヤケやゲル等の異物を除去するためフィルターで濾過するとよい。中でも、残存モノマーや副生フェノール等を減圧脱揮により除去し、熱安定剤や離型剤等の添加剤を混合するために、ポリカーボネート樹脂を前記の押出機で押出した後、フィルターで濾過することが好ましい。
このフィルターの形態としては、キャンドル型、プリーツ型、リーフディスク型等公知のものが使用できるが、中でもフィルターの格納容器に対する濾過面積が大きく取れるリーフディスク型が好ましく、また、濾過面積が大きく取れるように複数組み合わせて用いるのが好ましい。
本発明において用いるフィルターは、保持部材(リテイナーとも言う)に、濾過部材(以下、メディアと言うことがある)を組合せて構成されており、それらフィルターが(場合によっては複数枚・複数個)格納容器に格納されたユニット(フィルターユニットと言うこともある)の形式で用いられる。
本発明においては、前記フィルターの差圧(圧力損失)が小さくなるように、複数の目開きのメディアを重ね合わせ、樹脂の侵入方向から順に目開きが細かくなっているタイプが好ましく、フィルター表面にゲルを破砕する目的で金属製のパウダーを焼結したタイプのものを使用することもできる。
前記のフィルターのメディアの材質としては、得られるポリカーボネート樹脂の濾過に必要な強度と耐熱性を有している限り制限はないが、中でも鉄の含有量が少ないSUS316、SUS316L等のステンレス系が好ましく、織りの種類としては、平織、綾織、平畳織、綾畳織等、異物の捕集部分が規則正しい織り状になっているものの他、不織布タイプも用いることができる。本発明においては、ゲルの捕集能力の高い不織布タイプ、中でも不織布を構成する鋼線どうしを焼結させて固定したタイプが好ましい。
本発明において前記のフィルターの目開きは、99%の濾過精度として、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは20μm以下、異物を特に低減させたい場合には10μm以下が好ましいが、目開きが小さくなるとフィルターでの圧力損失が増大して、フィルターの破損を招いたり、剪断発熱によりポリカーボネート樹脂が劣化したりする可能性があるため、99%の濾過精度として、1μm以上であることが好ましい。尚、ここで言う前記フィルターの目開きも、上述した、ISO16889に準拠して決定されるものである。
なお、前記したフィルターのうち、ステンレス等の鉄製分を含むフィルターは、200℃を超える高温での濾過の際に樹脂を劣化させる傾向があるため、使用前に不動態化処理しておくことが好ましい。不動態化処理はフィルターを硝酸等の酸に浸漬させたり、フィルターに酸を通液させたりして表面に不動態を形成させる方法、水蒸気または酸素存在下
で焙焼(加熱)処理する方法、これらを併用する方法等が挙げられるが、中でも硝酸処理と焙焼の両方を実施することが好ましい。
この焙焼の温度は350℃〜500℃がよく、好ましくは350℃〜450℃であり、焙焼時間は3時間〜200時間がよく、好ましくは5時間〜100時間である。焙焼の温度が低すぎたり、時間が短すぎたりすると不動態の形成が不充分になり、濾過時にポリカーボネート樹脂を劣化させる傾向がある。一方、焙焼の温度が高すぎたり、時間が長すぎたりすると、フィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。
また、前記の硝酸で処理する際の硝酸の濃度は、5重量%〜50重量%がよく、好ましくは10重量%〜30重量%、処理時の温度は、5℃〜100℃がよく、好ましくは50℃〜90℃、処理時間は、5分〜120分がよく、好ましくは10分〜60分である。硝酸の濃度が低すぎたり、処理温度が低すぎたり、処理時間が短すぎたりすると不動態の形成が不充分になり、硝酸の濃度が高すぎたり、処理温度が高すぎたり、処理時間が長すぎたりするとフィルターメディアの損傷が激しくなり、必要な濾過精度が出なくなる可能性がある。
尚、本発明の方法で使用される前記フィルターの格納容器の材質は、樹脂の濾過に耐えられる強度と耐熱性を有している限り制限はないが、好ましくは鉄の含有量が少ないSUS316、SUS316L等のステンレス系である。
また、前記のフィルターの格納容器は、ポリカーボネート樹脂の供給口と排出口が実質的に水平に配置されていても、実質的に垂直に配置されていても、斜めに配置されていてもよいが、フィルター格納容器内でのガスおよびポリカーボネートの滞留を抑制し、ポリカーボネートの劣化を防ぐためには、ポリカーボネートの供給口がフィルター格納容器の下部、排出口が上部に配置されていることが好ましい。
更には、本発明の方法においては、前記フィルターへのポリカーボネート樹脂の供給量を安定化させるために、前記押出機と前記フィルターの間にギヤポンプを配置するのが好ましい。ギヤポンプの種類についての制限はないが、中でもシール部にグランドパッキンを用いない自己循環型が異物低減の観点から好ましい。
本発明において、ポリカーボネート樹脂が直接外気と触れるストランド化、ペレット化の際には、外気からの異物混入を防止するために、好ましくはJISB 9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが望ましい。
前記フィルターで濾過されたポリカーボネート樹脂は、ダイスヘッドからストランドの形態で吐出し、冷却固化させ、回転式カッター等でペレット化されるが、そのペレット化の際、空冷、水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気は、へパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが望ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらに水用フィルターにて、水中の異物を取り除いた水を使用することが望ましい。用いる水用フィルターの目開きは、99%除去の濾過精度として10〜0.45μmであることが好ましい。
本発明の方法により、上記式(1)の構造を有するポリカーボネートでありながら、着色が少なく、異物の少ない樹脂が得られる。具体的には、本発明の方法によって製造されるポリカーボネート樹脂を厚さ35μm±5μmのフィルムに成形した時、該フィルムに
含まれる最大長が25μm以上の異物が、好ましくは1000個/m2以下、より好まし
くは、500個/m2以下、最も好ましくは200個/m2以下とすることができる。
本発明では、上記のように最終反応器以降の溶融樹脂の熱分解を抑制することにより、最終反応器出口における溶融ポリカーボネート中のモノヒドロキシ化合物の量をA[ppm]、最終的に得られるポリカーボネート中のモノヒドロキシ化合物の含有量をB[ppm]、とした場合に下記式(5)を満たすことが好ましい。
A−B ≧ 100 (5)
また、前記式(1)の構造部位を有するジヒドロキシ化合物や脂肪族ジヒドロキシ化合物をモノマーに用いたポリカーボネートは、熱分解により二重結合末端を生成する。この末端基の量は溶融ポリカーボネートの熱履歴を示す指標となり、より高温、長時間反応を行うほど、二重結合末端の量が増加する。前記最終反応器の出口における溶融ポリカーボネート中の二重結合末端基の量をP[mol/ton]と、最終的に得られるポリカーボネート中の二重結合末端基の量をQ[mol/ton]とした場合に、下記式(6)を満たす範囲であることが好ましい。
Q−P ≦ 10 (6)
二重結合末端の具体的な例としては、例えば、ISBからは下記構造式(7)あるいは(7´)の末端基が生成する。また、1,4−シクロヘキサンジメタノール(CHDM)からは下記構造式(8)あるいは(8´)の末端基が生成する。一般構造式で示すと、下記構造式(9)で表されるヒドロキシ基を有するジヒドロキシ化合物からは、下記構造式(10)で表される二重結合末端が生成する。ISBとCHDMを用いた場合における二重結合末端構造の量とは、樹脂中に含有される下記構造式(7)(7´)(8)(8´)でそれぞれ表される末端構造の合計量を表す。二重結合末端の生成量はポリカーボネートの1H NMR測定によって求められる。
Figure 0005928120
Figure 0005928120
Figure 0005928120
Figure 0005928120
Figure 0005928120
Figure 0005928120
(なお、R1,R2,R3はそれぞれ水素原子又は置換基を有していてもいアルキル基で
ある。)
<製造装置の一例>
次に、図1を用いて、本実施の形態が適用される本発明の方法の一例を具体的に説明する。以下に説明する製造装置や原料、触媒は本発明の実施態様の一例であり、本発明は以下に説明する例に限定されるものではない。
図1は、本発明の方法で用いる製造装置の一例を示す図である。図1に示す製造装置において、ポリカーボネートは、原料の前記ジヒドロキシ化合物及び炭酸ジエステルを調製する原料調製工程と、これらの原料を溶融状態で複数の反応器を用いて重縮合反応させる重縮合工程を経て製造される。重縮合工程で生成した留出液は凝縮器12a、12b、12c、12dにて液化して留出液回収タンク14aに回収される。
重縮合工程後、溶融ポリカーボネート中の未反応原料や反応副生物を脱揮除去する工程や、熱安定剤、離型剤、色剤等を添加する工程、ポリカーボネートを所定の粒径のペレットに形成する工程を経て、ポリカーボネートのペレットが成形される。
尚、以下は、原料のジヒドロキシ化合物としてイソソルビド(ISB)と1,4−シクロヘキサンジメタノール(CHDM)を、原料の炭酸ジエステルとしてジフェニルカーボネート(DPC)をそれぞれ用い、また、触媒として酢酸カルシウムを用いた場合を例示して説明する。ISBは前記の特定ジヒドロキシ化合物に該当する。
まず、原料調製工程において、窒素ガス雰囲気下、所定の温度で調製されたDPCの溶融液が、原料供給口1aから原料混合槽2aに連続的に供給される。また、窒素ガス雰囲気下で計量されたISBの溶融液、CHDMの溶融液が、それぞれ原料供給口1b、1cから、原料混合槽2aに連続的に供給される。そして、原料混合槽2a内でこれらは混合され、原料混合溶融液が得られる。
次に、得られた原料混合溶融液は、原料供給ポンプ4a、原料フィルター5aを経由して第1竪型攪拌反応器6aに連続的に供給される。また、原料触媒として、酢酸カルシウム水溶液が、原料混合溶融液の移送配管途中の触媒供給口1dから連続的に供給される。
図1の製造装置の重縮合工程においては、第1竪型攪拌反応器6a、第2竪型攪拌反応
器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6dが直列に設けられる。各反応器では液面レベルを一定に保ち、重縮合反応が行われ、第1竪型攪拌反応器6aの槽底より排出された重合反応液は第2竪型攪拌反応器6bへ、続いて、第3竪型攪拌反応器6cへ、第4横型攪拌反応器6dへと順次連続供給され、重縮合反応が進行する。各反応器における反応条件は、重縮合反応の進行とともに高温、高真空、低攪拌速度となるようにそれぞれ設定することが好ましい。図1の装置を用いた場合、第4横型攪拌反応器6dが本発明における最終反応器に相当し、第3竪型攪拌反応器6cが最終反応器の一つ前の反応器に相当する。
第1竪型攪拌反応器6a、第2竪型攪拌反応器6b及び第3竪型攪拌反応器6cには、マックスブレンド翼7a、7b、7cがそれぞれ設けられる。また、第4横型攪拌反応器6dには、2軸メガネ型攪拌翼7dが設けられる。第3竪型攪拌反応槽6cの後には移送する反応液が高粘度になるため、ギアポンプ4bが設けられる。
第1竪型攪拌反応器6aと第2竪型攪拌反応器6bは、供給熱量が特に大きくなることがあるため、熱媒温度が過剰に高温にならないように、それぞれ内部熱交換器8a、8bが設けられる。
なお、これらの4器の反応器には、それぞれ、重縮合反応により生成する副生物等を排出するための留出管11a、11b、11c、11dが取り付けられる。第1竪型攪拌反応器6aと第2竪型攪拌反応器6bについては留出液の一部を反応系に戻すために、還流冷却器9a、9bと還流管10a、10bがそれぞれ設けられる。還流比は反応器の圧力と、還流冷却器の熱媒温度とをそれぞれ適宜調整することにより制御可能である。
前記の留出管11a、11b、11c、11dは、それぞれ凝縮器12a、12b、12c、12dに接続し、また、各反応器は、減圧装置13a、13b、13c、13dにより、所定の減圧状態に保たれる。
尚、本実施の形態においては、各反応器にそれぞれ取り付けられた凝縮器12a、12b、12c、12dから、フェノール(モノヒドロキシ化合物)等の副生物が連続的に液化回収される。また、第3竪型攪拌反応器6cと第4横型竪型攪拌反応器6dにそれぞれ取り付けられた凝縮器12c、12dの下流側にはコールドトラップ(図示せず)が設けられ、副生物が連続的に固化回収される。
所定の分子量まで上昇させた反応液は第4横型攪拌反応器6dから溶融ポリカーボネートとして抜き出され、ギヤポンプ4cにより二軸押出機15aに移送される。二軸押出機には真空ベントが具備されており、ポリカーボネート中の残存低分子成分を除去する。また、必要に応じて酸化防止剤や光安定剤や着色剤、離型剤などが添加される。
二軸押出機15aからギヤポンプ4dによりポリマーフィルター15bに樹脂が供給され、異物が濾過される。フィルターを通った樹脂はダイスヘッドからストランド状に抜き出され、ストランド冷却槽16aで水により樹脂を冷却した後、ストランドカッター16bでペレットにされる。ペレットは空送ブロワー16cにより、気力輸送されて、製品ホッパー16dに送られる。計量器16eで所定量の製品が製品袋16fに梱包される。
<連続製造装置における溶融重縮合の開始>
本実施の形態では、ジヒドロキシ化合物と炭酸ジエステルとのエステル交換反応に基づく重縮合は、以下の手順に従い開始される。
先ず、図1に示す連続製造装置において、直列に接続された4器の反応器(第1竪型攪
拌反応器6a、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d)を、予め、所定の内温と圧力とにそれぞれ設定する。ここで、各反応器の内温、熱媒温度と圧力とは、特に限定されないが、以下のように設定することが好ましい。
(第1竪型攪拌反応器6a)
内温:130℃〜230℃、圧力:40kPa〜10kPa、加熱媒体の温度140℃〜240℃ 、還流比0.01〜10
(第2竪型攪拌反応器6b)
内温:150℃〜230℃、圧力:40kPa〜8kPa、加熱媒体の温度160℃〜240℃、還流比0.01〜5
(第3竪型攪拌反応器6c)
内温:170℃〜230℃、圧力:10kPa〜1kPa、加熱媒体の温度180℃〜240℃
(第4横型攪拌反応器6d)
内温:200℃〜260℃、圧力:1kPa〜10Pa、加熱媒体の温度210〜270℃
次に、別途、原料混合槽2aにて窒素ガス雰囲気下、前記ジヒドロキシ化合物と炭酸ジエステルとを、所定のモル比で混合し、原料混合溶融液を得る。
続いて、前述した4器の反応器の内温と圧力が、それぞれの設定値の±5%の範囲内に達した後に、別途、原料混合槽2aで調製した原料混合溶融液を、第1竪型攪拌反応器6a内に連続供給する。また、原料混合溶融液の供給開始と同時に、第1竪型攪拌反応器6a内に触媒供給口1dから触媒を連続供給し、エステル交換反応を開始する。
エステル交換反応が行われる第1竪型攪拌反応器6aでは、重合反応液の液面レベルは、所定の平均滞留時間になるように一定に保たれる。第1竪型攪拌反応器6a内の液面レベルを一定に保つ方法としては、通常、液面計等で液レベルを検知しながら槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御する方法が挙げられる。
続いて、重合反応液は、第1竪型攪拌反応器6aの槽底から排出され、第2竪型攪拌反応器6bへ、続いて第2竪型攪拌反応器6bの槽底から排出され、第3竪型攪拌反応器6cへ逐次連続供給される。この前段反応工程において、副生するフェノールの理論量に対して50%から95%が留出され、オリゴマーが生成する。
次に、上記前段反応工程で得られたオリゴマーをギアポンプ4bにより移送し、横型攪拌反応器6dに供給して、後述するような後段反応を行なうのに適した温度・圧力条件下で、副生するフェノールおよび一部未反応モノマーを、留出管11dを介して系外に除去してポリカーボネートを生成させる。
この横型攪拌反応器6dは、1本または2本以上の水平な回転軸を有し、この水平回転軸から垂直方向に延びる円板型、車輪型、櫂型、棒型、窓枠型などの攪拌翼を1種または2種以上組み合わせて、回転軸あたり少なくとも水平方向に2段以上設置されている。水平回転軸が2本以上ある場合、それぞれの水平回転軸に設けられた攪拌翼は、互いに衝突しないように、水平位置をずらして配してある。このような攪拌翼により反応溶液をかき上げ、または押し広げて反応溶液の表面更新を行なう。その形状は、それら水平回転軸の長さをLとし、攪拌翼の回転直径をDとしたときにL/Dが1〜15である。なお、本明細書中、上記「反応溶液の表面更新」という語は、液表面の反応溶液が液表面下部の反応溶液と入れ替わることを意味する。
上記後段反応工程における反応温度は、通常200〜260℃、好ましくは220〜2
50℃の範囲であり、反応圧力は、通常13.3kPa〜10Pa、好ましくは1kPa〜10Paである。
本発明の方法において、横型攪拌反応器6dを、装置構造上、2軸ベント式押出機と比較してホールドアップが大きいものを用いることにより、反応液の滞留時間を適切に設定でき、かつ剪断発熱を抑制されることによって温度を下げることができ、より色調の改良された、機械的性質の優れたポリカーボネートを得ることが可能となる。なお、横型攪拌反応器は、水平軸と、この水平軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有する装置であり、押出機と異なりスクリュー部分を有していない。本発明の方法においては、このような横型攪拌反応器を少なくとも1器用いることが好ましい。
本実施の形態では、図1に示す連続製造装置において、4器の反応器の内温と圧力が所定の数値に達した後に、原料混合溶融液と触媒とが予熱器を介して連続供給され、エステル交換反応に基づく溶融重縮合が開始される。これにより、各反応器における重合反応液の平均滞留時間は、溶融重縮合の開始直後から定常運転時と同等となる。その結果、重合反応液は必要以上の熱履歴を受けることがなく、得られるポリカーボネート中に生じるゲルまたはヤケ等の異物が低減する。また色調も良好となる。
<原料と触媒>
以下、本発明のポリカーボネートの製造方法において使用可能な原料、触媒について説明する。
(ジヒドロキシ化合物)
本発明のポリカーボネートの製造方法に用いられるジヒドロキシ化合物は、前記式(1)で表される部位を有する特定ジヒドロキシ化合物を含む。構造の一部に前記式(1)で表される部位を有する特定ジヒドロキシ化合物としては、具体的には、オキシアルキレングリコール類、主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物、環状エーテル構造を有するジヒドロキシ化合物等が挙げられる。
前記のオキシアルキレングリコール類としては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
前記の主鎖に芳香族基に結合したエーテル基を有するジヒドロキシ化合物としては、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシプロポキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシプロポキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル)フルオレン、9,9−ビス(4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル)フルオレン、2,2−ビス(4−(2−ヒドロキシエトキシ)フェニル)プロパン、2,2−ビス(4−(2−ヒドロキシプロポキシ)フェニル)プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4'−ビス(2−ヒドロキシエトキシ)ビ
フェニル、ビス(4−(2−ヒドロキシエトキシ)フェニル)スルホン等が挙げられる。
前記の環状エーテル構造を有するジヒドロキシ化合物としては、下記式(12)で表されるジヒドロキシ化合物、下記式(13)や下記式(14)で表されるスピログリコール等が挙げられる。なお、上記の「環状エーテル構造を有するジヒドロキシ化合物」の「環状エーテル構造」とは、環状構造中にエーテル基を有し、環状鎖を構成する炭素が脂肪族炭素である構造からなるものを意味する。
Figure 0005928120
Figure 0005928120
Figure 0005928120
ただし、上記式(12)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニド、イソイデットが挙げられ、これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの特定ジヒドロキシ化合物の中でも、入手のし易さ、ハンドリング、重合時の反応性、得られるポリカーボネートの色相の観点から、式(12)、(13)、(14)で表されるジヒドロキシ化合物に代表される、環状エーテル構造を有するジヒドロキシ化合物が好ましく、上記式(12)で表されるジヒドロキシ化合物等の糖由来の環状エーテル構造を2つ有するジヒドロキシ化合物である無水糖アルコールや下記式(13)で表されるスピログリコール等の環状エーテル構造を2つ有するジヒドロキシ化合物がさらに好ましく、上記式(12)で表されるジヒドロキシ化合物等の、糖由来の環状エーテル構造を2つ有するジヒドロキシ化合物である無水糖アルコールが特に好ましい。
これらの特定ジヒドロキシ化合物のうち、芳香環構造を有しない特定ジヒドロキシ化合物を用いることがポリカーボネートの耐光性の観点から好ましく、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる上記式(12)で表されるジヒドロキシ化合物等の無水糖アルコールが、入手及び製造のし易さ、耐光性、光学特性、成形性、耐熱性、カーボンニュートラル
の面から最も好ましい。
これらの特定ジヒドロキシ化合物は、得られるポリカーボネートの要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明の方法で製造されるポリカーボネートは、上記の特定ジヒドロキシ化合物以外のジヒドロキシ化合物(以下「その他のジヒドロキシ化合物」と称す場合がある。)に由来する構造単位を含んでいてもよく、前記その他のジヒドロキシ化合物としては、直鎖脂肪族炭化水素のジヒドロキシ化合物、直鎖分岐脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物、芳香族ビスフェノール類等が挙げられる。
前記の直鎖脂肪族炭化水素のジヒドロキシ化合物としては、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,10−デカンジオール、1,12−ドデカンジオール等が挙げられる。
前記の直鎖分岐脂肪族炭化水素のジヒドロキシ化合物としては、ネオペンチルグリコール、ヘキシレングリコール等が挙げられる。
前記の脂環式炭化水素のジヒドロキシ化合物としては、1,2−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、リモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
前記の芳香族ビスフェノール類としては、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3−フェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、2,4'−ジヒドロキシ−ジフェ
ニルメタン、ビス(4−ヒドロキシ−3−ニトロフェニル)メタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,3−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン、1,4−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4'−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)ス
ルフィド、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、ビス(4−ヒドロキシフェニル)ジスルフィド、4,4'−ジヒドロキシジフェニルエーテル、4,4'−ジヒドロキシ−3,3'−ジクロロジフェニルエーテル、9,9−ビス(4−(2−ヒドロ
キシエトキシ−2−メチル)フェニル)フルオレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−2−メチルフェニル)フルオレン等が挙げられる。
これらの前記その他のジヒドロキシ化合物も、得られるポリカーボネートの要求性能に応じて、単独で前記特定ジヒドロキシ化合物と併用してもよく、2種以上を組み合わせた上で前記特定ジヒドロキシ化合物と併用してもよい。中でも、ポリカーボネートの耐光性の観点からは、分子構造内に芳香環構造を有しないジヒドロキシ化合物、即ち脂肪族炭化水素のジヒドロキシ化合物や、脂環式炭化水素のジヒドロキシ化合物が好ましく、これらを併用してもよい。
前記したうち、このように耐光性に適した脂肪族炭化水素のジヒドロキシ化合物としては、特に1,3−プロパンジオール、1,4−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール等の炭素数3〜6で両末端にヒドロキシ基を有する直鎖脂肪族炭化水素のジヒドロキシ化合物が好ましく、脂環式炭化水素のジヒドロキシ化合物としては、特に1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノールが好ましく、より好ましいのは、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールなどのシクロヘキサン構造を有するジヒドロキシ化合物であり、最も好ましいのは1,4−シクロヘキサンジメタノールである。
これら前記その他のジヒドロキシ化合物を、前記特定ジヒドロキシ化合物と併用することにより、ポリカーボネートの柔軟性の改善、耐熱性の向上、成形性の改善などの効果を得ることも可能である。ただし、前記その他のジヒドロキシ化合物に由来する構造単位の含有割合が多過ぎると、機械的物性の低下や、耐熱性の低下を招くことがあるため、全てのジヒドロキシ化合物に由来する構造単位のモル数に対する、前記その他のジヒドロキシ化合物に由来する構造単位の割合は、好ましくは80mol%以下、更に好ましくは70mol%以下、特に好ましくは60mol%以下である。一方、好ましくは10mol%以上、更に好ましくは15mol%以上、特に好ましくは20mol%以上である。
本発明の方法で使用される全てのジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤、熱安定剤等の安定剤を含んでいてもよい。特に酸性下で本発明で用いる特定ジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。塩基性安定剤としては、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩、脂肪酸塩や、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、N,N,N−トリメチルエタノールアミンヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−メチルジエタノールアミン、ジエチルエタノールアミン、ジエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等のアミン系化合物、ジ−(tert−ブチル)アミン、2,2,6,6−テトラメチルピペリジン等のヒン
ダードアミン系化合物が挙げられる。
これら塩基性安定剤の、本発明で用いる全てのジヒドロキシ化合物中の含有量に特に制限はないが、本発明で用いる前記の特定ジヒドロキシ化合物は酸性状態では不安定であるので、上記の安定剤を含む特定ジヒドロキシ化合物の水溶液のpHが7以上となるように安定剤を添加することが好ましい。少なすぎると本発明で用いる特定ジヒドロキシ化合物の変質を防止する効果が得られない可能性があり、多すぎると本発明で用いる特定ジヒドロキシ化合物の変性を招く場合があるので、通常、本発明で用いるそれぞれのジヒドロキシ化合物に対して、0.0001重量%〜1重量%、好ましくは0.001重量%〜0.1重量%である。
これら塩基性安定剤を本発明で用いるジヒドロキシ化合物に含めたままポリカーボネートの製造原料として用いると、塩基性安定剤自体が重合触媒となり、重合速度や品質の制御が困難になるだけでなく、樹脂色相の悪化を招いてしまう。このため、特定ジヒドロキシ化合物や、前記その他のジヒドロキシ化合物のうち塩基性安定剤を有するものについては、ポリカーボネートの製造原料として使用する前に塩基性安定剤をイオン交換樹脂や蒸留等で除去することが好ましい。
また、本発明で用いられる特定ジヒドロキシ化合物は、酸素によって徐々に酸化されやすいので、保管や製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが肝要である。イソソルビドが酸化されると、蟻酸をはじめとする分解物が発生する。例えば、これら分解物を含むイソソルビドを用いてポリカーボネートを製造すると、得られるポリカーボネートの着色を招いたり、物性を著しく劣化させたりするだけでなく、重合反応に影響を与え、高分子量の重合体が得られないこともあり、好ましくない。
上記の酸化による分解物を含まない特定ジヒドロキシ化合物を得るために、また、前述の塩基性安定剤を除去するためには、蒸留精製を行うことが好ましい。この場合の蒸留とは単蒸留であっても、連続蒸留であってもよく、特に限定されない。蒸留の条件としてはアルゴンや窒素などの不活性ガス雰囲気において、減圧下で蒸留を実施することが好ましく、熱による変性を抑制するためには、250℃以下、好ましくは200℃以下、特には180℃以下の条件で行うことが好ましい。このような蒸留精製で、前記特定ジヒドロキシ化合物を含むジヒドロキシ化合物をポリカーボネートの製造原料として使用した際に、重合反応性を損なうことなく色相や熱安定性に優れたポリカーボネートの製造が可能となる。
(炭酸ジエステル)
本発明において、ポリカーボネートは、上述した特定ジヒドロキシ化合物を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、エステル交換反応により重縮合させて得ることができる。
用いられる炭酸ジエステルとしては、通常、下記式(15)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure 0005928120
(A1およびA2は、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基ま
たは置換もしくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。1およびA2の好ましいものは置換もしくは無置換の芳香族炭化水素基であり、より好ましいのは無置換の芳香族炭化水素基である。
前記式(15)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ−t−ブチルカーボネート等が例示されるが、好ましくはジフェニルカーボネート、置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、重合反応を阻害したり、得られるポリカーボネートの色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
(エステル交換反応触媒)
本発明の製造方法において、ポリカーボネートは、上述のように特定ジヒドロキシ化合物を含むジヒドロキシ化合物と前記式(15)で表される炭酸ジエステルをエステル交換反応させて製造する。より詳細には、エステル交換させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。このエステル交換反応の際には、エステル交換反応触媒存在下で重縮合を行うが、本発明のポリカーボネートの製造時に使用し得るエステル交換反応触媒(以下、単に触媒、重合触媒と言うことがある)は、反応速度や重縮合して得られるポリカーボネートの色調に非常に大きな影響を与え得る。
用いられる触媒としては、製造されたポリカーボネートの透明性、色相、耐熱性、熱安定性、及び機械的強度を満足させ得るものであれば限定されないが、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び/又は2族金属化合物が使用される。
前記の1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸カリウム、テトラフェニルホウ酸リチウム、テトラフェニルホウ酸セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩等が挙げられ、中でも重合活性と得られるポリカーボネートの色相の観点から、リチウム化合物が好ましい。
前記の2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられ、中でもマグネシウム化合物、カルシ
ウム化合物、バリウム化合物が好ましく、重合活性と得られるポリカーボネートの色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も好ましくはカルシウム化合物である。
なお、前記の1族金属化合物及び/又は2族金属化合物と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、あるいは四級ホスホニウム塩等が挙げられる。
前記の塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
前記のアミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン、グアニジン等が挙げられる。
上記重合触媒の使用量は、重合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol〜300μmolがよく、好ましくは0.5μmol〜100μmolであり、中でも長周期型周期表における2族からなる群及びリチウムより選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、0.1μmol以上がよく、好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、20μmol以下がよく、好ましくは10μmol以下であり、さらに好ましくは3μmol以下で、特に好ましくは1.5μmol以下が好適である。触媒量が少なすぎると、重合速度が遅くなるため、所望の分子量のポリカーボネートを得ようとするにはその分だけ重合温度を高くせざるを得なくなる。そのために、得られたポリカーボネートの色相が悪化する可能性が高くなり、また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネートの色相の悪化や成形加工時の樹脂の着色を招く可能性がある。
ただし、1族金属の中でもナトリウム、カリウム、セシウムは、ポリカーボネート中に多く含まれると色相に悪影響を及ぼす可能性がある。そして、これらの金属は使用する触媒からのみではなく、原料や反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート中のこれらの金属の化合物の合計量は、金属量として、前記全ジヒドロキシ
化合物1mol当たり、2μmol以下がよく、好ましくは1μmol以下、より好ましくは0.5μmol以下である。
このようにして重縮合して得られるポリカーボネートの分子量は、還元粘度で表すことができ、0.20dL/g以上であるとよく、0.30dL/g以上であることが好ましく、一方、1.20dL/g以下であるとよく、1.00dL/g以下であることが好ましく、0.80dL/g以下であることがより好ましい。ポリカーボネートの還元粘度が低すぎると成形品の機械強度が低くなる可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下する傾向がある。尚、前記の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度計を用いて測定した値である。
同様に本発明の方法で得られるポリカーボネートの溶融粘度は、温度240℃、剪断速度91.2sec-1において700Pa・s以上、3500Pa・s以下であることが好ましい。さらには800Pa・s以上、3200Pa・s以下が好ましく、特には900Pa・s以上3000Pa・s以下が好ましい。なお、本明細書において溶融粘度は、キャピラリーレオメーター(東洋精機(株)製)を用いて測定される。
本発明の方法で得られるポリカーボネートは、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形物にすることができる。ポリカーボネートの成形方法は特に限定されないが、成形品形状に合わせて適切な成形法が選択される。成形品がフィルムやシートの形状である場合は押出成形法が好ましく、射出成形法では成形品の自由度が得られる。
また、本発明の方法で得られるポリカーボネートは、種々の成形を行う前に、必要に応じて、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等の添加剤を、タンブラー、スーパーミキサー、フローター、V型ブレンダー、ナウターミキサー、バンバリーミキサー、押出機などで混合することもできる。
さらに、本発明の方法で得られるポリカーボネートは例えば、芳香族ポリカーボネート、芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、ASなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。なお、以下の実施例の記載の中で用いた化合物の略号は次の通りである。・ISB:イソソルビド (ロケットフルーレ社製、商品名:POLYSORB)・CHDM:1,4−シクロヘキサンジメタノール(新日本理化(株)製、商品名:SKY CHDM)・DPC:ジフェニルカーボネート(三菱化学(株)製)
反応液およびポリカーボネートの組成分析と物性の評価は次の方法により行った。
1)反応液中のモノヒドロキシ化合物(フェノール)含有量
試料約0.5gを精秤し、塩化メチレン5mLに溶解した後、総量が25mLになるようにアセトンを添加した。溶液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにてフェノールの定量を行った後、含有量を算出した。用いた装置や条件は、次のとおりである。
・装置:(株)島津製作所製
システムコントローラ:CBM−20A
ポンプ:LC−10AD
カラムオーブン:CTO−10ASvp
検出器:SPD−M20A
分析カラム:Cadenza CD−18 4.6mmΦ×250mm
オーブン温度:40℃
・検出波長:220nm
・溶離液:A液:0.1%リン酸水溶液、B液:アセトニトリルA/B= 40/60(vol%)からA/B=0/100(vol%)まで10分間 でグラジエント
・流量:1mL/min
・試料注入量:10μL
2)ポリカーボネート中の全ヒドロキシ末端基量と二重結合末端基量の測定
ポリカーボネート30mgを秤取し、重クロロホルム約0.7mLに溶解し、これを内径5mmのNMR用チューブに入れ、1H NMRスペクトルを測定した。ポリカーボネ
ートを構成する各ジヒドロキシ化合物に由来するヒドロキシ末端基と二重結合末端基、および各ジヒドロキシ化合物に由来する構造単位に基づくシグナルの強度比より全ヒドロキシ末端基、および二重結合末端基の量を定量した。用いた装置や条件は、次のとおりである。・装置:日本電子社製JNM−AL400(共鳴周波数400MHz)・測定温度:常温・緩和時間:6秒・積算回数:512回
本発明で例示するISBとCHDMの共重合ポリカーボネートの場合の1H NMRの
解析は以下のとおり行う。次のピークの積分値を算出する。
(a):5.6−4.8ppm:全ISB構造単位由来(プロトン数:3、分子量:172.14)
(b):2.2−0.5ppm:全CHDM構造単位由来(プロトン数:10、分子量:170.21)
(c):4.4ppm:ISBのヒドロキシ末端基由来(プロトン数:1、分子量:173.14)
(d):3.6−3.5ppm:ISBのヒドロキシ末端基由来(プロトン数:1、分子量:173.14)とCHDMのヒドロキシ末端基由来(プロトン数:2、分子量:171.21)
(e):3.5−3.4ppm:CHDMのヒドロキシ末端基由来(プロトン数:2、分子量:171.21)とISB二重結合末端基由来(プロトン数:1、分子量:155.13)
(f):2.6ppm:ISBのヒドロキシ末端基由来(プロトン数:1、分子量:173.14)
(g):6.7−6.5ppm:ISB二重結合末端基由来(プロトン数:1、分子量:155.13)
(h)2.3ppm:CHDM二重結合末端基由来(プロトン数:2、分子量:153.20)
各構造のモル数に相当する値
・全ISB構造単位:(a)積分値/3=(a´)
・全CHDM構造単位:(b)積分値/10=(b´)
・ISBのヒドロキシ末端基:(c)積分値+(f)積分値=(c´)
・CHDMのヒドロキシ末端基:{(d)積分値−(f)積分値}/2+{(e)積分値−(g)積分値}/2=(d´)
・ISB二重結合末端基:(g)積分値=(e´)
・CHDM二重結合末端基:(h)積分値/2=(f´)
各末端基の量(単位:mol/ton)
・ISBのヒドロキシ末端基量:(c´)/(g´)×1000000
・CHDMのヒドロキシ末端基量:(δ´)/(g´)×1000000
・ISB二重結合末端基量:(e´)/(g´)×1000000
・CHDM二重結合末端基量:(f´)/(g´)×1000000
ただし、(g´)=(a´)×172.14+(b´)×170.21とする。
3)還元粘度
溶媒として塩化メチレンを用い、0.6g/dLの濃度のポリカーボネート溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間t0と溶液の通過時間tから次式より相対粘度ηrelを求め、ηrel=t/t0相対粘度から次式より比粘度ηspを求めた。ηsp=(η−η0)/η0=ηrel−1比粘度を濃度C(g/dL)で割って、還元粘度ηsp/Cを求めた。この値が高い
ほど分子量が大きい。
4)ポリカーボネートの溶融粘度
測定に用いたポリカーボネートは測定前に、80℃で5時間以上、真空乾燥を行った。
東洋精機株式会社製キャピログラフを用いて、直径1mm×長さ10mmのダイを使用して温度240℃、剪断速度91.2sec-1における溶融粘度を測定した。
5)ポリカーボネートのペレットYI値
ポリカーボネートの色相は、ASTM D1925に準拠して、ペレットの反射光におけるYI値(イエローインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計CM−5を用い、測定条件は測定径30mm、SCEを選択した。シャーレ測定用校正ガラスCM−A212を測定部にはめ込み、その上からゼロ校正ボックスCM−A124をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。白色校正板CM−A210を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が−0.43±0.01、YIが−0.58±0.01となることを確認した。ペレットの測定は、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。YI値が小さいほど樹脂の黄色味が少なく、色調に優れることを意味する。
6)ポリカーボネート樹脂中の異物の定量
Tダイを具備した20mm径の一軸押出機のバレル設定温度を、ペレットの供給側から210℃、220℃、230℃、230℃、220℃とし、冷却ロールを用いて厚さ35μm±5μmのフィルムを成形し、Optical Control System社製、Film Quality Testing System(型式FSA100)を使用し、1m2当たりの25μm以上の異物数を測定した。
参考例1]
前述した図1に示すように、竪型攪拌反応器3器及び横型攪拌反応器1器を有する連続製造装置により、以下の条件でポリカーボネートを製造した。先ず、各反応器を表1のとおり、予め反応条件に応じた内温・圧力に設定した。次に別途、原料調製工程にて窒素ガス雰囲気下、ISBとCHDMとDPCとを一定のモル比(ISB/CHDM/DPC=0.700/0.300/1.005)で混合し、120℃に加熱して、原料混合溶融液を得た。
Figure 0005928120
続いて、この原料混合溶融液を、140℃に加熱した原料導入管を介して、前述した所定温度・圧力の±5%の範囲内に制御した第1竪型攪拌反応器6a内に連続供給した。流量は理論生成ポリマー量が50kg/hrとなるように設定した。
第1竪型攪拌反応器6aの平均滞留時間が80分になるように、槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御しつつ、液面レベルを一定に保った。また、上記原料混合溶融液の供給開始と同時に、第1竪型攪拌反応器6a内に触媒供給口1dから触媒として酢酸カルシウム水溶液を、全ジヒドロキシ成分1molに対し、1.5μmolの割合で連続供給した。
第1竪型攪拌反応器6aの槽底から排出された重合反応液は、引き続き、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d(2軸メガネ翼、L/D=4)に、逐次、連続供給された。重合反応の間、表−1に示した平均滞留時間となるように各反応器の液面レベルを制御した。
第1反応器から第4反応器の間の反応液は、各反応器を連結する配管中に設けられたバルブよりサンプリングを行った。
第4横型攪拌反応器6dから抜き出された溶融ポリカーボネートは、ギヤポンプ4cにより押出機15aに移送された。該押出機((株)日本製鋼所製:2軸押出機TEX30α:L/D=42)は3つのベント口を有し、真空ポンプを用いてベント口より脱揮を行った。この時のベント部の圧力は絶対圧力で1kPa以下であった。スクリューの回転数はベント口での樹脂の巻き上がりが起こらない程度まで下げていったところ、200rpmが限度であった。その状態でモーター負荷の許容範囲までシリンダー温度を低下させていき、180℃に設定した。
参考例1では押出機15aの排出側のギヤポンプ4dとポリマーフィルター15bは設置せずに、押出機を通過後に樹脂をストランド化するためのダイを装着した。排出される樹脂はストランドの形態で水冷、固化させた後、回転式カッターでペレット化した。ストランド化からペレット化までの工程はクリーンルーム内で実施された。続いて、ペレットは気力移送によって、製品ホッパー16dに送られた。
ポリカーボネートの製造中に、ギヤポンプ4cの後に取り付けられたバルブから最終反応器出口に該当する反応液を、ストランドカッター16bの後でポリカーボネートペレットをそれぞれサンプリングし、前述の分析方法により各種分析を実施した。
配管の滞留時間は各箇所の配管の容積と、反応液又は溶融ポリカーボネートの流量から計算した。第1反応器から押出機の手前までの配管の温度は、それぞれの配管の出口において最高となったので、配管出口の温度を計算に用いた。押出機以降の配管は、配管入口(押出機出口)の温度が最高となったので、配管入口の温度を計算に用いた。
結果をまとめて表2に示した。
参考例2]
押出機を使用しない以外は参考例1と同様に行った。参考例1と比較して、モノヒドロキシ化合物の含有量が増加した。最終反応器の出口からポリカーボネートを取り出すまでの間に、モノヒドロキシ化合物が増加していることが分かる。しかし、滞留時間が短いため、得られたポリカーボネートの品質は良好であった。
参考例3]
第1竪型攪拌反応器6aの内温を200℃、第2竪型攪拌反応器6bの内温を210℃とした以外は参考例1と同様に行った。参考例1と比較して、色調が若干悪化したものの、得られたポリカーボネートの品質は良好であった。
[実施例
押出機15aの樹脂の排出側にギヤポンプ4dを配置し、さらにその下流に、格納容器内部に外径112mm、内径38mm、99%の濾過精度として20μmであるリーフディスクフィルター(日本ポール(株)製)を10枚装着したポリマーフィルター15bを配置した。ポリマーフィルターの排出側には、ストランド化するためのダイを装着した。それ以外は参考例1と同様に行った。
ギヤポンプ4dのトルク限界とポリマーフィルターの耐圧を考慮して、ポリマーフィルターの温度設定を225℃とした。
参考例1と比較して、ポリカーボネート中の異物量が低減した。一方、ポリマーフィルターでの滞留時間が加わったため、色調は若干悪化し、モノヒドロキシ化合物の含有量も増加したが、得られたポリカーボネートの品質は良好であった。
[実施例
第1反応器に供給する原料混合溶融液の流量を、理論ポリマー量が70kg/hrとなるように設定した。押出機のスクリュー回転数とポリマーフィルターの温度設定を上記と同様に調整し、スクリュー回転数は280rpm、ポリマーフィルターの温度は230℃とした。上記以外は実施例と同様に行った。
得られたポリカーボネートの色調は非常に良好で、かつ異物量も少なくなった。色調が改善した要因は、各配管やポリマーフィルターにおける滞留時間が短くなったためと考えられる。
[比較例1]
第1反応器に供給する原料混合溶融液の流量を、理論ポリマー量が30kg/hrとなるように設定した。押出機のスクリュー回転数とポリマーフィルターの温度設定を上記と同様に調整し、スクリュー回転数は120rpm、ポリマーフィルターの温度は220℃とした。上記以外は実施例と同様に行った。
得られたポリカーボネートの色調は悪化し、品質不良となった。また、モノヒドロキシ化合物の含有量も増加した。反応液又は溶融ポリカーボネートの流量が低下したため、各配管やポリマーフィルターにおける滞留時間が長くなり、配管中での熱劣化が生じたことが原因と考えられる。
[比較例2]
押出機のスクリュー回転数を270rpmとした以外は実施例と同様に実施した。
得られたポリカーボネートの色調は大幅に悪化し、品質不良となった。また、モノヒドロキシ化合物の含有量も増加した。一般的には、押出機のスクリュー回転数は高い方が脱揮効率は向上するが、ポリマーフィルターを併用する場合は、スクリュー回転数を上げると剪断発熱により樹脂温度が上昇し、ポリマーフィルター内でより高温で滞留することに
なるため、かえって熱分解によるモノヒドロキシ化合物の発生量が増加してしまった。
[比較例3]
モノマーとしてビスフェノールAを用いた、従来の芳香族ポリカーボネートの製造例を表2に示した。
[まとめ]
表2の結果が示すように、配管内での熱履歴を所定の範囲に設定することで、色調や残存低分子成分などのポリカーボネートの複数の品質を向上できる。さらに熱劣化を抑制した条件で、押出機やフィルターを使用することで、色調を保持したまま異物を低減することも可能となる。
Figure 0005928120
1a 原料(炭酸ジエステル)供給口
1b、1c 原料(ジヒドロキシ化合物)供給口
1d 触媒供給口
2a 原料混合槽
3a アンカー型攪拌翼
4a 原料供給ポンプ
4b、4c、4d ギアポンプ
5a 原料フィルター
6a 第1竪型反応槽
6b 第2竪型反応槽
6c 第3竪型反応槽
6d 第4横型反応器
7a、7b、7c マックスブレンド翼
7d 2軸メガネ型攪拌翼
8a、8b 内部熱交換器
9a、9b 還流冷却器
10a、10b 還流管
11a、11b、11c、11d 留出管
12a、12b、12c、12d 凝縮器
13a、13b、13c、13d 減圧装置
14a 留出液回収タンク
15a 二軸押出機
15b ポリマーフィルター
16a ストランド冷却槽
16b ストランドカッター
16c 空送ブロワー
16d 製品ホッパー
16e 計量器
16f 製品袋(紙袋、フレコンなど)

Claims (10)

  1. 下記構造式(12)で表される化合物を含むジヒドロキシ化合物と炭酸ジエステルと、重合触媒とを連続的に反応器に供給し、重縮合してポリカーボネートを製造する方法であって、
    前記反応器は少なくとも直列に複数器接続されるものであり、
    前記複数器接続された反応器のうちの最初の反応器とポリカーボネートを取り出す工程との間にある各配管における反応液又は溶融ポリカーボネートの滞留時間と各配管におけるTiで定義される温度が下記式(2)を満たし、
    前記重縮合により得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のまま押出機に供給する工程、及び
    前記重縮合により得られた前記ポリカーボネート樹脂を、固化させることなく溶融状態のままフィルターに供給して濾過する工程を含むポリカーボネートの製造方法
    Figure 0005928120
    Figure 0005928120
    i:配管iの入口における反応液又は溶融ポリカーボネートの温度と、出口における反
    応液又は溶融ポリカーボネートの温度のいずれか高い方の温度[K]
    θi:配管iにおける滞留時間[min]
  2. 最終反応器の出口からポリカーボネートが常温下に取り出すまでの滞留時間が30分以内である請求項1に記載のポリカーボネートの製造方法。
  3. 前記反応器には、反応副生物であるモノヒドロキシ化合物を脱揮除去する配管が接続され、炭酸ジエステルより生成するモノヒドロキシ化合物が6wt%以上含有される反応液を移送する場合は配管の内温を210℃以下とし、3wt%以上6wt%未満含有される反応液を移送する場合は配管の内温を220℃以下とし、1wt%以上3wt%未満含有される反応液を移送する場合は配管の内温を230℃以下とする請求項1又は2に記載のポリカーボネートの製造方法。
  4. 得られるポリカーボネートが、温度240℃、剪断速度91.2sec-1における溶融粘度が700Pa・s以上、3500Pa・s以下である請求項1乃至3のいずれか1項に記載のポリカーボネートの製造方法。
  5. 前記最終反応器の出口における溶融ポリカーボネート樹脂中の全ヒドロキシ末端基の量が5mol/ton以上60mol/ton以下である請求項1乃至4のいずれか1項に記載のポリカーボネートの製造方法。
  6. 前記最終反応器出口における溶融ポリカーボネート樹脂中のモノヒドロキシ化合物の量をA[ppm]、得られるポリカーボネート中のモノヒドロキシ化合物の含有量をB[ppm]とした場合に、下記式(5)を満たす請求項1乃至5のいずれか1項に記載のポリカーボネートの製造方法。
    A−B ≧ 100 (5)
  7. 前記最終反応器の出口のポリカーボネート中における二重結合末端構造の量をP(mol/ton)、最終的に得られるポリカーボネート中の二重結合末端構造の量をQ(mol/ton)とした場合に、下記式(6)を満たす請求項1乃至6のいずれか1項に記載のポリカーボネートの製造方法。
    Q−P ≦ 10 (6)
  8. 前記重合触媒が、長周期型周期表第2族の金属からなる群及びリチウムより選ばれる少なくとも1種の金属化合物である請求項1乃至7のいずれか1項に記載のポリカーボネートの製造方法。
  9. 前記ジヒドロキシ化合物が、前記構造式(12)で表される化合物以外の、分子構造内に芳香環構造を有さないジヒドロキシ化合物を含む請求項1乃至8のいずれか1項に記載のポリカーボネートの製造方法。
  10. 前記押出機に供給する工程及び前記濾過する工程を経た前記ポリカーボネート樹脂を、ダイスヘッドからストランドの形態で吐出し、冷却後、カッターを用いてペレット化する工程を含む請求項1乃至のいずれか1項に記載のポリカーボネートの製造方法。
JP2012095683A 2012-04-19 2012-04-19 ポリカーボネートの製造方法 Active JP5928120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095683A JP5928120B2 (ja) 2012-04-19 2012-04-19 ポリカーボネートの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095683A JP5928120B2 (ja) 2012-04-19 2012-04-19 ポリカーボネートの製造方法

Publications (2)

Publication Number Publication Date
JP2013221146A JP2013221146A (ja) 2013-10-28
JP5928120B2 true JP5928120B2 (ja) 2016-06-01

Family

ID=49592361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095683A Active JP5928120B2 (ja) 2012-04-19 2012-04-19 ポリカーボネートの製造方法

Country Status (1)

Country Link
JP (1) JP5928120B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437333B (zh) * 2020-10-31 2024-03-08 中国石油化工股份有限公司 一种生物基聚碳酸酯的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265587A (ja) * 2001-03-08 2002-09-18 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカーボネートの製造方法

Also Published As

Publication number Publication date
JP2013221146A (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5962148B2 (ja) ポリカーボネートの製造方法およびポリカーボネートペレット
KR101380522B1 (ko) 폴리카보네이트 수지의 제조 방법, 폴리카보네이트 수지, 폴리카보네이트 수지 필름, 그리고 폴리카보네이트 수지 펠릿 및 폴리카보네이트 수지 필름의 제조 방법
JP5948878B2 (ja) ポリカーボネートの製造方法
JP5857852B2 (ja) ポリカーボネートの製造方法、ポリカーボネートペレットおよび透明フィルム
JP6019652B2 (ja) ポリカーボネート樹脂の製造方法
US8907048B2 (en) Production method of polycarbonate resin
JP5987406B2 (ja) ポリカーボネート樹脂の製造方法
KR20140009421A (ko) 폴리카보네이트 수지의 제조 방법
JP5974682B2 (ja) ポリカーボネートの製造方法
JP5928120B2 (ja) ポリカーボネートの製造方法
JP5906887B2 (ja) ポリカーボネート樹脂の製造方法
JP5929427B2 (ja) ポリカーボネートの製造方法
JP2014074106A (ja) ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP5939012B2 (ja) ポリカーボネート樹脂の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350