JP5925362B1 - Temperature compensation circuit - Google Patents
Temperature compensation circuit Download PDFInfo
- Publication number
- JP5925362B1 JP5925362B1 JP2015085880A JP2015085880A JP5925362B1 JP 5925362 B1 JP5925362 B1 JP 5925362B1 JP 2015085880 A JP2015085880 A JP 2015085880A JP 2015085880 A JP2015085880 A JP 2015085880A JP 5925362 B1 JP5925362 B1 JP 5925362B1
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- circuit
- collector
- emitter
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
【課題】シンプルな回路構成で高精度の電流源、電圧源を可能とすること。【解決手段】第1のトランジスタペア回路と、前記第1のトランジスタペア回路の後段に接続されている、一定の電流を生成するように動作する第2のトランジスタペア回路とを有し、前記第1のトランジスタペア回路の一方のトランジスタのコレクタにベースが接続され、前記第1のトランジスタペア回路のベースにコレクタが接続され、前記第2のトランジスタペア回路の一方のエミッタにそのエミッタが接続されている、ゲインを制御するトランジスタを備え、前記第2のトランジスタペア回路のトランジスタペアのうち、前記ゲインを制御するトランジスタのエミッタが接続されているトランジスタはダイオード接続とされており、当該第2のトランジスタペア回路のトランジスタのコレクタ−エミッタ間と、当該エミッタと出力端子との間に抵抗要素が接続されている温度補償回路である。【選択図】図13A highly accurate current source and voltage source are made possible with a simple circuit configuration. A first transistor pair circuit; and a second transistor pair circuit connected to a subsequent stage of the first transistor pair circuit and operating to generate a constant current. A base is connected to a collector of one transistor of one transistor pair circuit, a collector is connected to a base of the first transistor pair circuit, and an emitter is connected to one emitter of the second transistor pair circuit. A transistor that includes a transistor that controls gain, and of the transistor pair of the second transistor pair circuit, to which the emitter of the transistor that controls gain is connected is diode-connected, and the second transistor Between the collector and emitter of the transistor in the pair circuit, and the emitter and output terminal A temperature compensating circuit resistance element is connected between the. [Selection] Figure 13
Description
本発明は、温度補償回路に関する。 The present invention relates to a temperature compensation circuit.
温度が変化した場合でも一定の電流を出力することができる電流源には多くの需要がある。このような電流源の出力を温度係数ゼロとみなすことができる抵抗に接続した場合には、温度が変化した場合でも一定の電圧が得られる電圧源として利用することができる。これらの電流源、電圧源は、アナログデジタル(AD)変換器、デジタルアナログ(DA)変換器の基準源としてしばしば利用される。高精度のAD変換処理、DA変換処理を行おうとした場合、温度変化に対して基準源の出力が変動すると、所望の精度が得られなくなる。そのため、このような電流源(もしくは、電流源を利用した電圧源)に関しては、その安定度(出力精度)が重要となる。 There is a great demand for a current source that can output a constant current even when the temperature changes. When the output of such a current source is connected to a resistor that can be regarded as having a temperature coefficient of zero, it can be used as a voltage source that can obtain a constant voltage even when the temperature changes. These current sources and voltage sources are often used as reference sources for analog-to-digital (AD) converters and digital-to-analog (DA) converters. When high precision AD conversion processing and DA conversion processing are to be performed, if the output of the reference source fluctuates with respect to temperature changes, the desired accuracy cannot be obtained. Therefore, regarding such a current source (or a voltage source using the current source), the stability (output accuracy) is important.
特許文献1は安定化電流源回路に関し、例えばその図2を参照すると、温度が上昇するとトランジスタQ3のコレクタ−エミッタ電流が減少するため、回路としては負の温度係数を持っていることとなり、温度が上昇すると出力電流が減少する。特許文献2は二端子温度補償付き定電流源回路を開示しており、例えばその図3を参照すると、負の温度係数を有する電流INの回路と正の温度係数を有する電流IPの回路とを合成することで、大きな負と正の温度係数を打ち消し、低い温度係数を実現している。この図3の回路では、電源電圧に依存して出力電流が大きく変化する。特許文献3は定電流発生回路に関する。図示されている回路は正の温度特性を持ち、温度が上昇するにしたがって出力電流が増加する。
出力電流の変動を確認するため、特許文献3の図面に例示されている回路に類似の試験回路(図11)を想定した。図11の試験回路は、Q4のエミッタへ接続した抵抗器RPTCの両端電位V_R(バンドギャップ電圧:BGV)を、Q3のベース−エミッタ電圧(VBE)の10%程度で動作させる、100μAの電流源の設計例としている。
In order to confirm the fluctuation of the output current, a test circuit (FIG. 11) similar to the circuit illustrated in the drawing of
図11の回路において、Q3のVBE=Q4のVBE+V_Rである。Q3のエミッタ電流とQ4のエミッタ電流は、Q1とQ2のPNP型バイポーラトランジスタのペアによりほぼ均等に分配され、それぞれがおよそ50μAとなる。この場合、Q3のエミッタ電流が50μAのときのQ3のベース−エミッタ電位(Q3_VBE)は0.6V前後であった。 In the circuit of FIG. 11, VBE of Q3 = VBE + V_R of Q4. The emitter current of Q3 and the emitter current of Q4 are almost evenly distributed by the pair of PNP bipolar transistors of Q1 and Q2, and each becomes about 50 μA. In this case, the base-emitter potential (Q3_VBE) of Q3 when the emitter current of Q3 was 50 μA was around 0.6V.
この0.6Vの10%をRPTCの端子間電圧であるBGVとすれば、その値は0.06V(60mV)となり、その結果Q4のベース−エミッタ電位(Q4_VBE)は0.54Vと算出される。これからトランジスタQ4のベース−エミッタ電位(Q4_VBE)が0.54Vのときのエミッタ電流が求められる。 If 10% of 0.6V is BGV, which is the voltage between terminals of RPTC, the value is 0.06V (60 mV), and as a result, the base-emitter potential (Q4_VBE) of Q4 is calculated as 0.54V. . From this, the emitter current when the base-emitter potential (Q4_VBE) of the transistor Q4 is 0.54V is obtained.
回路シミュレータと実際に試作した回路とによる図11の回路についての2種類の実験から、Q4_VBEが0.54Vのときのエミッタ電流は約8μAであった。この結果、Q4に50μAのエミッタ電流を流すためには、Q4のエミッタ面積は、Q3のエミッタ面積の6倍(またはQ3と同一の特性をもつ素子をQ4として6素子並列に接続して用いる)である。 From two types of experiments on the circuit of FIG. 11 using a circuit simulator and an actually manufactured circuit, the emitter current was about 8 μA when Q4_VBE was 0.54V. As a result, in order to flow an emitter current of 50 μA through Q4, the emitter area of Q4 is six times the emitter area of Q3 (or an element having the same characteristics as Q3 is used by connecting six elements in parallel as Q4). It is.
この実験から図11の回路の温度係数は正であり、その値はおおよそ3000ppm/度と求められた。これは、温度変化1度につき出力電流が0.3%変動することを意味している。つまり、回路の動作範囲である温度では、100度の変化に対し電流源の電流は30%程度変動することになる。このレベルで出力電流が変動することは、前記したような高精度が要求される定電流源としては使用できない問題がある。 From this experiment, the temperature coefficient of the circuit of FIG. 11 was positive, and the value was determined to be approximately 3000 ppm / degree. This means that the output current varies by 0.3% per one degree of temperature change. That is, at the temperature that is the operation range of the circuit, the current of the current source fluctuates by about 30% with respect to a change of 100 degrees. The fluctuation of the output current at this level has a problem that it cannot be used as a constant current source requiring high accuracy as described above.
本発明は、シンプルな回路構成で高精度の電流源、電圧源を提供することを可能とする温度補償回路を提供することを一つの目的としている。 An object of the present invention is to provide a temperature compensation circuit capable of providing a highly accurate current source and voltage source with a simple circuit configuration.
上記の目的等を達成するための本発明の一態様に係る温度補償回路は、第1〜第6のトランジスタと、第1及び第2の抵抗要素とを備え、第1のトランジスタから第3のトランジスタまではベース同士が接続されており、第4及び第5のトランジスタはベース同士が接続されており、第1のトランジスタのコレクタと第4のトランジスタのコレクタとが接続されており、第2のトランジスタのコレクタと第5のトランジスタのコレクタとが接続されており、第2のトランジスタのベースとコレクタとが接続されており、第6のトランジスタのコレクタが第1から第3までのトランジスタのベースに接続されており、第6のトランジスタのベースが第1のトランジスタのコレクタと第4のトランジスタのコレクタとに接続されており、第6のトランジスタのエミッタが第5のトランジスタのエミッタに接続されており、第1から第3までのトランジスタのエミッタは入力端子に接続されており、第4及び第5のトランジスタのエミッタは出力端子に接続されており、第5のトランジスタのベースとコレクタとが接続されており、第5のトランジスタのコレクタとエミッタとの間に第1の抵抗要素が接続されており、第5のトランジスタのエミッタと出力端子との間に第2の抵抗要素が接続されている。
本発明の他の態様に係る温度補償回路は、第1〜第9のトランジスタと、第1及び第2の抵抗要素とを備え、第1のトランジスタから第3のトランジスタまではベース同士が接続されており、第4のトランジスタから第6のトランジスタまではベース同士が接続されており、第7及び第8のトランジスタはベース同士が接続されており、第1〜第3のトランジスタのコレクタと第4〜第6のトランジスタのエミッタとがそれぞれ接続され、第2及び第5のトランジスタのベースとコレクタとがそれぞれ接続され、第1のトランジスタのコレクタと第4のトランジスタのコレクタとが接続されており、第6のトランジスタのコレクタと第8のトランジスタのコレクタとが接続されており、第9のトランジスタのコレクタが第4〜第6のトランジスタのベース、及び第5のトランジスタのコレクタに接続されており、第9のトランジスタのベースが第4のトランジスタのコレクタと第7のトランジスタのコレクタとに接続されており、第9のトランジスタのエミッタが第8のトランジスタのエミッタに接続されており、第1〜第3のトランジスタのエミッタは入力端子に接続されており、第7及び第8のトランジスタのエミッタは出力端子に接続されており、第8のトランジスタのベースとコレクタとが接続されており、第8のトランジスタのコレクタとエミッタとの間に第1の抵抗要素が接続されており、第8のトランジスタのエミッタと出力端子との間に第2の抵抗要素が接続されている。
In order to achieve the above object and the like, a temperature compensation circuit according to one embodiment of the present invention includes first to sixth transistors, first and second resistance elements, and includes first to third transistors. The bases are connected to the transistors, the bases of the fourth and fifth transistors are connected, the collector of the first transistor and the collector of the fourth transistor are connected, and the second transistor The collector of the transistor and the collector of the fifth transistor are connected, the base and collector of the second transistor are connected, and the collector of the sixth transistor is the base of the first to third transistors. The base of the sixth transistor is connected to the collector of the first transistor and the collector of the fourth transistor, and the sixth transistor The emitter of the transistor is connected to the emitter of the fifth transistor, the emitters of the first to third transistors are connected to the input terminal, and the emitters of the fourth and fifth transistors are connected to the output terminal. The base and collector of the fifth transistor are connected, the first resistance element is connected between the collector and emitter of the fifth transistor, and the emitter and output terminal of the fifth transistor The 2nd resistance element is connected between these.
A temperature compensation circuit according to another aspect of the present invention includes first to ninth transistors, first and second resistance elements, and bases are connected from the first transistor to the third transistor. The bases of the fourth transistor to the sixth transistor are connected to each other, the bases of the seventh and eighth transistors are connected to each other, and the collectors of the first to third transistors are connected to the fourth transistor. To the emitters of the sixth transistor, the bases and collectors of the second and fifth transistors, respectively, and the collectors of the first transistor and the fourth transistor, respectively. The collector of the sixth transistor is connected to the collector of the eighth transistor, and the collector of the ninth transistor is connected to the fourth to sixth transistors. The base of the ninth transistor is connected to the collector of the fifth transistor, the base of the ninth transistor is connected to the collector of the fourth transistor and the collector of the seventh transistor, and the emitter of the ninth transistor Is connected to the emitter of the eighth transistor, the emitters of the first to third transistors are connected to the input terminal, the emitters of the seventh and eighth transistors are connected to the output terminal, The base and collector of the eighth transistor are connected, the first resistance element is connected between the collector and emitter of the eighth transistor, and between the emitter and output terminal of the eighth transistor. A second resistance element is connected.
本発明の一態様によれば、シンプルな回路構成で高精度の出力電流を得ることができる温度補償回路が提供される。 According to one embodiment of the present invention, a temperature compensation circuit capable of obtaining a highly accurate output current with a simple circuit configuration is provided.
本発明の温度補償機能を有する温度補償回路について、添付図面を参照しながらその一実施形態に即して説明する。図1に本実施形態の温度補償回路1の構成例を示している。温度補償回路1は二端子回路であり、バイポーラトランジスタQ1〜Q5、抵抗器RN、RPを備えるシンプルな構成を有する。
A temperature compensation circuit having a temperature compensation function according to the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a configuration example of the
Q1とQ2とは、それぞれのベースを共有しているPNP型ペアトランジスタである。このQ1とQ2のPNPペア回路は、ベース−エミッタ電圧が等しければ、カレントミラー回路と同様に動作する。
Q3とQ4とは、それぞれのベースを共有しているNPN型ペアトランジスタである。
Q1とQ2のそれぞれのエミッタは、正電圧側端子(VH)に接続されている。Q1とQ3のそれぞれのコレクタは接続されている。Q2とQ4のそれぞれのコレクタもまた接続されている。Q4はベース−コレクタ間が接続されている、ダイオードの様な接続をしたトランジスタである。
Q3のエミッタは負電圧側端子(VL)に接続されている。また、Q4のエミッタは抵抗器RPを通じてVLに接続されている。
Q4のベース−エミッタ間(すなわちコレクタ−エミッタ間)には抵抗器RNが接続されている。
Q5のベースはQ1とQ3のそれぞれのコレクタへ接続されている。Q5のコレクタはQ1とQ2のそれぞれのベースへ接続されている。Q5のエミッタはQ4のエミッタへ接続されている。トランジスタQ1〜Q5は共にエミッタ接地動作である。
Q5のコレクタはQ1のベースへ接続され、Q1のコレクタはQ5のベースへ接続されることで、正帰還経路を形成している。また、Q5のコレクタはQ2のベースへ接続され、Q2のコレクタはQ3のベースへ接続され、Q3のコレクタはQ5のベースへ接続されていることで、負帰還経路を形成している。
Q3とQ4のペアは、ワイドラーカレントソース回路として知られている回路を反転した回路構成(インバースワイドラーカレントソース回路)である。ワイドラーカレントソース回路は、例えば米国特許第3320439号明細書に記載されている。
Q1 and Q2 are PNP pair transistors that share their respective bases. The P1 and Q2 PNP pair circuits operate in the same manner as the current mirror circuit if the base-emitter voltages are equal.
Q3 and Q4 are NPN-type pair transistors that share their respective bases.
Each emitter of Q1 and Q2 is connected to a positive voltage side terminal (V H ). The collectors of Q1 and Q3 are connected. The respective collectors of Q2 and Q4 are also connected. Q4 is a transistor having a diode-like connection in which the base and the collector are connected.
The emitter of Q3 is connected to the negative voltage side terminal (V L ). The emitter of Q4 is connected to a V L through a resistor R P.
A resistor RN is connected between the base and emitter of Q4 (that is, between the collector and emitter).
The base of Q5 is connected to the respective collectors of Q1 and Q3. The collector of Q5 is connected to the respective bases of Q1 and Q2. The emitter of Q5 is connected to the emitter of Q4. Transistors Q1 to Q5 are all in a grounded emitter operation.
The collector of Q5 is connected to the base of Q1, and the collector of Q1 is connected to the base of Q5, thereby forming a positive feedback path. The collector of Q5 is connected to the base of Q2, the collector of Q2 is connected to the base of Q3, and the collector of Q3 is connected to the base of Q5, thereby forming a negative feedback path.
The pair of Q3 and Q4 has a circuit configuration (inverse wideler current source circuit) obtained by inverting a circuit known as a wideler current source circuit. A wideler current source circuit is described, for example, in US Pat. No. 3,320,439.
定電流回路1では、Q5によってQ3の出力を反転増幅することにより、ワイドラーカレントソース回路に対応したQ3とQ4の動作関係が入れ替わる。Q5は、正帰還と負帰還とを同時に行う多重帰還回路を構成し、回路全体の制御ゲインを大幅に増加させる効果を奏する。
RPは正の温度対電流を決定する抵抗器、RNは負の温度対電流を決定する抵抗器である。RPとRNの抵抗値を精密に調整することで、良好な対温度電流特性(温度係数TCがほぼ0)を得ることができる。この場合、Q3とQ4のエミッタ面積比はおよそ1:2〜3に設定されると特に良好な回路特性が得られるが、この構成は本発明に必須ではない。
In the constant
The R P resistor for determining a positive temperature versus current, is R N is a resistor for determining the negative temperature versus current. By precisely adjusting the resistance value of R P and R N, it is possible to obtain a good versus temperature current characteristic (temperature coefficient TC approximately 0). In this case, when the emitter area ratio between Q3 and Q4 is set to about 1: 2 to 3, particularly good circuit characteristics can be obtained, but this configuration is not essential to the present invention.
図1の定電流回路1は、既知の正の温度直線特性(PTAT:Proportional-To-Absolute-Temperature)を示す回路(例えば米国特許4563632号明細書参照)に、抵抗器RNを追加することで実現することができる。以下、定電流回路1を、出力電流が100μAの電流源として設計した場合の動作について説明する。VHからの電流は、Q1とQ2のPNP型トランジスタペアによりほぼ均等に分配され、それぞれがおよそ50μAとなる。Q1のエミッタ電流は50μAであるから、Q3のエミッタ電流も同様に50μAとなる(回路左辺)。Q2のエミッタ電流は50μAであるから、Q2のコレクタ電流もほぼ50μAとなり、Q1とQ2のベース電流を加えた電流が小さいとき、Q4のコレクタ電流と抵抗器RNへの電流として分配される。その後Q4のエミッタ電流、抵抗器RNへ分配された電流とわずかなQ5のエミッタ電流とが加算合成された電流もほぼ50μAで、そのすべてが抵抗器RPへ流入する(回路右辺)。ここでバンドギャップ電圧(BGV=RPの端子間電圧)を60mVと仮定すれば、図11の従来例に関して説明したように、Q3のベース−エミッタ電位(Q3_VBE)を0.6Vとすると、Q4のベース−エミッタ電位(Q4_VBE)は0.54Vと求まる。
The constant
Q2のコレクタ電流は50μAで、Q4のコレクタ電流と抵抗器RNへの電流として分配されるため、Q4のコレクタ電流は当然50μAよりも小さい。Q4のコレクタ電流を1/2の25μAと仮定すると、Q4のベース−エミッタ間電位(Q4_VBE)が0.54Vのときのエミッタ(飽和)電流は約8μAとなる。この結果から、Q4にエミッタ(飽和)電流として25μAを満たす条件は、Q4のエミッタ面積をQ3の約3倍の面積とすることであるとわかる。なお、Q3と同一の特性をもつ素子をQ4として3素子並列に接続する構成としてもよい。 The collector current of Q2 is 50 .mu.A, to be distributed as a current to the collector current and the resistor R N of Q4, the collector current of Q4 is naturally smaller than 50 .mu.A. Assuming that the collector current of Q4 is ½ of 25 μA, the emitter (saturation) current when the base-emitter potential (Q4_VBE) of Q4 is 0.54 V is about 8 μA. From this result, it can be seen that the condition for satisfying 25 μA as the emitter (saturation) current in Q4 is that the emitter area of Q4 is about three times that of Q3. Note that an element having the same characteristics as Q3 may be connected in parallel as three elements as Q4.
なお、トランジスタQ1〜Q5としては、所要の出力電流に応じた特性を有する好適なものを選定することができる。また、抵抗器RP,RNの定数は、所要の出力電流特性、トランジスタQ1〜Q5の特性に基づいて決定することができる。さらにトランジスタQ1とQ2ならびにトランジスタQ3とQ4は、熱的に緊密に結合した時に最高の温度対電流特性を得ることができる。
以上説明したように、本発明の実施形態に係る温度補償回路1の回路構成は非常にシンプルで、バンドギャップ電位理論に基づいて、電流モードにより動作する定電流回路である。本実施形態の温度補償回路では、温度補償された定電流特性を得ることができる。
また、本回路によれば大きな出力インピーダンスが得られ、動作電圧の変化に対し電流変化が非常に小さく、定電流精度を大きく向上させることができる。これは多量の正帰還と適度な負帰還とを両立させた回路構成により実現している。
また、本発明では二端子動作が可能であり、電子回路内の任意箇所へ自由に配置設計が可能で応用範囲が広い。
また、本回路は低い電位差で動作可能であり、シリコンバイポーラトランジスタを使った場合には、0.6〜0.7V程度(100μA/300Kのときの実施例)の低電圧から飽和動作を開始できる。そのため、電力損失を低減可能で効率が向上する。
As the transistors Q1 to Q5, suitable transistors having characteristics corresponding to a required output current can be selected. Also, the constant of the resistor R P, R N is required output current characteristics can be determined based on the characteristics of the transistor Q1 to Q5. Furthermore, the transistors Q1 and Q2 and the transistors Q3 and Q4 can obtain the best temperature-to-current characteristics when thermally coupled closely.
As described above, the circuit configuration of the
Further, according to this circuit, a large output impedance can be obtained, the current change is very small with respect to the change of the operating voltage, and the constant current accuracy can be greatly improved. This is realized by a circuit configuration in which a large amount of positive feedback and moderate negative feedback are compatible.
Further, in the present invention, a two-terminal operation is possible, and an arrangement design can be freely made at an arbitrary position in an electronic circuit, and the application range is wide.
Further, this circuit can operate with a low potential difference, and when a silicon bipolar transistor is used, a saturation operation can be started from a low voltage of about 0.6 to 0.7 V (an example at 100 μA / 300 K). . Therefore, power loss can be reduced and efficiency is improved.
なお、本実施形態では、プラス電極側(回路図の上部)にPNP型素子を、マイナス、或いはグランド電極側にNPN型素子を用いたが、+側PNP回路動作と−側NPN回路動作を対称に入れ替えた回路構成でも動作可能である。
また、電流性雑音が小さく、1/fコーナー周波数が低いため、低電圧、低雑音の電流源として利用可能である。
In this embodiment, a PNP type element is used on the positive electrode side (upper part of the circuit diagram) and an NPN type element is used on the negative or ground electrode side, but the + side PNP circuit operation and the − side NPN circuit operation are symmetrical. It is possible to operate even with a circuit configuration replaced with.
Further, since the current noise is small and the 1 / f corner frequency is low, it can be used as a low voltage, low noise current source.
実施例
次に、上記実施形態の温度補償回路1に関する実施例について説明する。まず、温度補償回路1を起動させるための起動回路を設けた構成について説明する。図2に起動回路10を備えた温度補償回路1の構成例を示している。図2の温度補償回路1は、図1の構成例において、Q1のエミッタ−コレクタ間に電流源I1を有する起動回路10を接続した構成となっている。
Examples Next, examples relating to the
本実施形態の温度補償回路1にかぎらず、正電圧側端子(VH)にエミッタを接続したPNP型トランジスタ(図1,2ではQ1とQ2)を使用した回路のベース電流は流出方向の電流である。したがって、電源投入後電位(VH−VL)が与えられても、Q1とQ2のベース電流はQ5がカットオフしているため流出できない。これを解決するために、電源投入時速やかにQ5を立ち上げるようにする。Q5はNPN型トランジスタであり、そのベース電流は流入方向の電流である。図2に例示する回路では、起動回路10として電流源I1を追加してQ5へベース電流を供給することにより回路1を起動(スタートアップ)させている。この電流源I1は、回路電流(出力電流IOUT)の1/1000程度の小さな電流源で充分であり、例えば飽和電流(IDSS)の小さいジャンクションFET(JFET)などがあげられる。なお、電流源I1は本発明の構成要素ではない。
The base current of the circuit using the PNP transistor (Q1 and Q2 in FIGS. 1 and 2) in which the emitter is connected to the positive voltage side terminal (V H ) is not limited to the
次に、温度補償回路1の特性を改善するために、位相補償回路を設けた構成例について説明する。図1に例示した温度補償回路1では、実動作上、位相補償回路が必要とされる場合もある。これは、正帰還と負帰還とを同時に行う多重帰還回路を担っているQ5により、回路全体の制御ゲインが大きいことから交流帯域で位相遷移が大きくなり、発振条件が生じる場合である。図3に例示している温度補償回路1では、図1の回路に対して、Q3のコレクタ−エミッタ間に、容量要素C1と抵抗器R1とを含む位相補償回路20を接続している。この位相補償回路20により、温度補償回路1の交流ゲインを調整し、必要な位相余裕を確保することができる。なお、容量要素C1、抵抗器R1は、本発明に必須の要素ではない。
Next, a configuration example in which a phase compensation circuit is provided in order to improve the characteristics of the
次に、本実施形態の温度補償回路1(図1)により得られる出力電流特性について説明する。本回路の動作特性を回路シミュレータにより検証した。本回路による温度補償は二次関数補償で、補償後その軌跡は三次関数の曲線を描く。図4A,図4Bに、温度補償回路1において回路周辺温度を−55〜125℃の範囲で変化させた場合の出力電流の変化を示している。いずれのグラフも電源電圧(VH−VL)を1Vから10Vまで変化させた場合の出力電流値の範囲を薄墨で示している。図4Aに示すように、出力電流値はほぼ99.88〜100.15μAの範囲となっており、出力電流変動の範囲はほぼ0.3%、温度係数ΔTCは20ppm/度が得られた。図4Bでは出力電流値(グラフの縦軸)を10μA単位で示しているが、出力電流値の変化は全温度範囲にわたって無視しうる程度であることがわかる。
Next, output current characteristics obtained by the temperature compensation circuit 1 (FIG. 1) of the present embodiment will be described. The operation characteristics of this circuit were verified by a circuit simulator. Temperature compensation by this circuit is quadratic function compensation, and after the compensation, the locus draws a cubic function curve. 4A and 4B show changes in the output current when the circuit ambient temperature is changed in the range of −55 to 125 ° C. in the
次に、前出の特許文献1の図1に例示されている回路、特許文献2の図3に例示されている回路、及び特許文献3に例示されているものと類似構成の定電流回路(本願の図11)について同様の条件で動作シミュレーションを実施した結果について説明する。図5〜7に、特許文献1〜3の各回路(比較例1〜3)によるシミュレーション結果の対温度出力電流特性のグラフを示している。これらのグラフで、出力電流値を示す縦軸の単位は図4Bと同じである。まず比較例1の場合には、図5に示すように、回路は負の温度係数を示しており、−55〜125℃の温度範囲で約130〜63μAの出力電流変化が見られた。また比較例2の場合には、正負の温度係数に関係(を決定)する抵抗器R1,R2(特許文献2の図3参照)を設けていることにより比較例1の場合よりは出力電流値の変化が抑制されているものの、図6を見ると、電源電圧を1〜10Vの間で変化させたとき、出力電流値は約5〜8μAの幅で変動することがわかる。また比較例3の場合には、図7に示すように、回路は正の温度係数を示しており、−55〜125℃の温度範囲で約72〜132μAの出力電流変化が見られた。図8は図4B〜図7のグラフを重ねて表示したもので、本実施形態の温度補償回路1によれば、上記比較例に対する出力電流精度の飛躍的向上が明らかである。
Next, the circuit illustrated in FIG. 1 of
次に、本実施形態の温度補償回路1について、他の動作特性を説明する。図9に、温度補償回路1の対電源電圧出力電流特性を示している。図9に示すように、本実施形態の温度補償回路1では、電源電圧が0.5Vに近づいたときに出力電流が急峻に立ち上がり、約0.7Vでほぼ定格出力電流値(100μA)に達することがわかる。図10には、温度補償回路1の対周波数出力抵抗値特性の例を示している。図10に示すように、本実施形態の温度補償回路1は、直流(DC)〜1Hzの範囲で出力抵抗値(ダイナミックインピーダンス)として約1GΩ(−180dB)という極めて高い数値が得られる。
Next, other operating characteristics of the
以上の構成を有する本実施形態の温度補償回路1によれば、温度に対する電流直線性を高精度化することができ、温度変化による出力電流の変化を小さくすることができる。また、信号周波数に対する出力インピーダンスを増大させることができる。また、電源電圧(動作電圧)の変化に対する出力電流精度を大きく向上させることができる。また、動作開始電圧(VK:V_Knee)の低減が可能となり、肩特性を向上させることができる。例えば、出力電流Io=100μA、温度300Kの条件で、シリコンバイポーラトランジスタの場合、0.6〜0.7V程度の低電圧から本回路を動作させることが可能である。
According to the
第2実施形態
次に、前記実施形態の温度補償回路1の応用例である第2実施形態について説明する。図12に、第1実施形態の温度補償回路1を応用して構成された温度補償回路30の例を示している。図12に例示する温度補償回路30では、図1の温度補償回路1に対して、トランジスタQ6が追加されている。Q6のベースはQ1、Q2のベース及び自身のコレクタと接続され、さらにQ5のコレクタにも接続されている。Q6のエミッタは、Q1、Q2のエミッタとともに入力端子VHに接続されている。本実施形態の温度補償回路30には、第1実施形態の起動回路10に相当する電流源I1と、位相補償回路20に相当する容量要素C1、抵抗要素R1が設けられている。
Second Embodiment Next, a second embodiment that is an application example of the
図12の構成では、PNP型バイポーラトランジスタで構成したカレントミラー回路により、VHからの電流はQ1、Q2、Q6のコレクタ電流として三等分される。Q3のエミッタ電流はQ1のコレクタ電流に対応するのに対し、Rpの電流はQ2及びQ6のコレクタ電流の和に対応する。したがって、Q3のコレクタ電流と、Rpの電流比はほぼ1対2となる。図12に例示する回路構成では、図1の場合に対して、Q5のコレクタ負荷抵抗値がダイオード接続とされているQ6の追加により減少する。これにより、回路としての制御ゲインも減少して回路動作が安定化し、位相補正用容量要素C1の容量を低減すること、あるいは容量要素の省略が可能となる。図12の温度補償回路30は、特にモリシックICとして実現するのに好適である。なお、トランジスタQ1、Q3、Q6は、それぞれMOS−FETに置き換えてもよい。この場合、バイポーラトランジスタのベース、エミッタ、コレクタを、MOS−FETのゲート、ソース、ドレインと対応させて接続すればよい。
In the configuration of FIG. 12, the current from VH is divided into three equal parts as collector currents of Q1, Q2, and Q6 by a current mirror circuit formed of PNP-type bipolar transistors. The emitter current of Q3 corresponds to the collector current of Q1, while the current of Rp corresponds to the sum of the collector currents of Q2 and Q6. Therefore, the collector current of Q3 and the current ratio of Rp are approximately 1: 2. In the circuit configuration illustrated in FIG. 12, the collector load resistance value of Q5 is reduced by adding Q6, which is diode-connected, in the case of FIG. As a result, the control gain as the circuit is also reduced, the circuit operation is stabilized, and the capacity of the phase correcting capacitive element C1 can be reduced, or the capacitive element can be omitted. The
次に、図12の第2実施形態による温度補償回路30の動作特性を、回路シミュレータにより検証した結果について説明する。図13に、本実施形態の温度補償回路30により得られる出力電流特性の一例を示している。本回路による温度補償は二次関数補償で、補償後その軌跡は三次関数の曲線を描く。図13では、温度補償回路30において回路周辺温度を−55〜125℃の範囲で変化させた場合の出力電流の変化を示している。電源電圧(VH−VL)は1Vとした。この場合の出力電流値の範囲は概略99.86〜100.18μAで、出力電流変動の範囲はほぼ0.3%、温度係数ΔTCは20ppm/度が得られた。次に、図14には、温度補償回路30において、電源電圧を1〜10Vの範囲で変化させた場合の、温度に対する出力電流特性を示している。電源電圧を10Vに設定した場合に出力電流変動範囲が最も大きくなるが、それでも99.3〜100.6μAと、ほぼ1.3%にとどまっている。
Next, the result of verifying the operating characteristics of the
図15には、温度補償回路30の対周波数出力抵抗特性の例を示している。図15に示すように、本実施形態の温度補償回路30は、電源電圧を1〜10Vで変化させたとき、直流(DC)〜1Hzの範囲で出力抵抗値(ダイナミックインピーダンス)として−167〜−155dBという極めて高い数値が得られる。
FIG. 15 shows an example of the frequency output resistance characteristic of the
また、図16には、温度補償回路30の起動時における対周波数出力電流特性の例を示している。図16に示すように、本実施形態の温度補償回路30では、電源電圧が1Vのとき、出力電流が定常状態となるまでに約150μsを要しているが、電源電圧が2〜10Vに対しては、概ね20μs程度に抑えられている。このように、本実施形態の温度補償回路30は、起動時の出力電流の立ち上がりに優れていることがわかる。
FIG. 16 shows an example of the frequency output current characteristic when the
次に、第1実施形態の温度補償回路1(図1)を応用した他の例を第3実施形態として説明する。図17に他の応用例による温度補償回路30Aを示している。第3実施形態の温度補償回路30Aは、図12の温度補償回路30を基本として、図12のQ1、Q2、Q6によるカレントミラー回路の前段(入力端子VH側)に、同一構成のカレントミラー回路(トランジスタQ7〜Q9)をカスケード接続して構成されている。図17の構成により、図12の温度補償回路30における制御ゲインの減少及び位相補正用容量要素C1の容量低減に加えて、出力抵抗値を図12の第1実施形態の場合の約10倍に増加させることができる。ただし回路の動作電圧は追加したカレントミラー回路のベース−エミッタ電圧(VBE(約0.6V))分増加するため、適用回路の仕様に留意する必要がある。図17の温度補償回路30Aにおいても、図12の場合と同様に、バイポーラトランジスタQ1、Q2、Q6〜Q9に代えて、MOS−FETを用いることができる。
Next, another example in which the temperature compensation circuit 1 (FIG. 1) of the first embodiment is applied will be described as a third embodiment. FIG. 17 shows a
次に、図17の第3実施形態による温度補償回路30の動作特性を、回路シミュレータにより検証した結果について説明する。図18に、本実施形態の温度補償回路30Aにより得られる出力電流特性の一例を示している。図18では、温度補償回路30Aにおいて回路周辺温度を−55〜125℃の範囲で変化させた場合の出力電流の変化を示している。電源電圧(VH−VL)は2〜10Vの範囲で変化させた。この場合の出力電流値の範囲は概略99.86〜100.15μAで、第2実施形態と同様に、出力電流変動の範囲はほぼ0.3%、温度係数ΔTCは20ppm/度が得られた。
Next, the results of verifying the operating characteristics of the
図19には、温度補償回路30Aの対周波数出力抵抗特性の例を示している。図19に示すように、本実施形態の温度補償回路30Aは、電源電圧を1〜10Vで変化させたとき、直流(DC)〜1Hzの範囲で出力抵抗値(ダイナミックインピーダンス)として−230〜−190dBという極めて高い数値が得られる。
FIG. 19 shows an example of the resistance characteristic against frequency output of the
図20には、温度補償回路30Aの入力電圧に対する出力電流の飽和特性の一例を示している。に対する起動時における対周波数出力電流特性の例を示している。図20に示すように、本実施形態の温度補償回路30Aでは、電源電圧が約1.3V以上の領域で、飽和出力電流100μAが得られることがわかる。
FIG. 20 shows an example of the saturation characteristic of the output current with respect to the input voltage of the
また、図21には、温度補償回路30Aの起動時における出力電流の時間変化特性の例を示している。図21に示すように、本実施形態の温度補償回路30Aでは、電源電圧が1Vのとき、出力電流が定常状態となるまでに約930μsを要しているが、電源電圧が2〜10Vに対しては、概ね20μs程度に抑えられている。このように、本実施形態の温度補償回路30Aは、起動時の出力電流の立ち上がりに優れていることがわかる。
このように、以上の応用例である第2、第3実施形態によれば、温度補償回路1を基本として、より高性能の温度補償回路を提供することができる。
FIG. 21 shows an example of the time change characteristic of the output current when the
As described above, according to the second and third embodiments which are the application examples described above, a temperature compensation circuit with higher performance can be provided on the basis of the
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば,上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、ある実施形態の構成に他の構成を加えることも可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. In addition, a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of a certain embodiment.
Q1〜Q9 トランジスタ
C1 容量要素
RP,RN,R1,RL,RREF1〜RREF7 抵抗要素
Q1 to Q9 Transistor C1 Capacitance elements R P , R N ,
Claims (4)
第1のトランジスタから第3のトランジスタまではベース同士が接続されており、
第4及び第5のトランジスタはベース同士が接続されており、
第1のトランジスタのコレクタと第4のトランジスタのコレクタとが接続されており、
第2のトランジスタのコレクタと第5のトランジスタのコレクタとが接続されており、
第2のトランジスタのベースとコレクタとが接続されており、
第6のトランジスタのコレクタが第1から第3までのトランジスタのベースに接続されており、
第6のトランジスタのベースが第1のトランジスタのコレクタと第4のトランジスタのコレクタとに接続されており、
第6のトランジスタのエミッタが第5のトランジスタのエミッタに接続されており、
第1から第3までのトランジスタのエミッタは入力端子に接続されており、
第4及び第5のトランジスタのエミッタは出力端子に接続されており、
第5のトランジスタのベースとコレクタとが接続されており、
第5のトランジスタのコレクタとエミッタとの間に第1の抵抗要素が接続されており、
第5のトランジスタのエミッタと出力端子との間に第2の抵抗要素が接続されている、
温度補償回路。 Comprising first to sixth transistors, and first and second resistance elements;
The bases are connected from the first transistor to the third transistor,
The bases of the fourth and fifth transistors are connected to each other,
The collector of the first transistor and the collector of the fourth transistor are connected;
The collector of the second transistor and the collector of the fifth transistor are connected;
The base and collector of the second transistor are connected,
The collector of the sixth transistor is connected to the bases of the first to third transistors;
The base of the sixth transistor is connected to the collector of the first transistor and the collector of the fourth transistor;
The emitter of the sixth transistor is connected to the emitter of the fifth transistor;
The emitters of the first to third transistors are connected to the input terminal,
The emitters of the fourth and fifth transistors are connected to the output terminal,
The base and collector of the fifth transistor are connected,
A first resistance element is connected between the collector and emitter of the fifth transistor;
A second resistance element is connected between the emitter of the fifth transistor and the output terminal;
Temperature compensation circuit.
前記第1から第3までのトランジスタとしてMOS−FETを適用し、各トランジスタのベース、エミッタ、コレクタを、各MOS−FETのゲート、ソース、ドレインに対応させて接続されている、
温度補償回路。 The temperature compensation circuit according to claim 1,
A MOS-FET is applied as the first to third transistors, and the base, emitter, and collector of each transistor are connected to correspond to the gate, source, and drain of each MOS-FET.
Temperature compensation circuit.
第1のトランジスタから第3のトランジスタまではベース同士が接続されており、
第4のトランジスタから第6のトランジスタまではベース同士が接続されており、
第7及び第8のトランジスタはベース同士が接続されており、
第1〜第3のトランジスタのコレクタと第4〜第6のトランジスタのエミッタとがそれぞれ接続され、
第2及び第5のトランジスタのベースとコレクタとがそれぞれ接続され、
第1のトランジスタのコレクタと第4のトランジスタのコレクタとが接続されており、
第6のトランジスタのコレクタと第8のトランジスタのコレクタとが接続されており、
第9のトランジスタのコレクタが第4〜第6のトランジスタのベース、及び第5のトランジスタのコレクタに接続されており、
第9のトランジスタのベースが第4のトランジスタのコレクタと第7のトランジスタのコレクタとに接続されており、
第9のトランジスタのエミッタが第8のトランジスタのエミッタに接続されており、
第1〜第3のトランジスタのエミッタは入力端子に接続されており、
第7及び第8のトランジスタのエミッタは出力端子に接続されており、
第8のトランジスタのベースとコレクタとが接続されており、
第8のトランジスタのコレクタとエミッタとの間に第1の抵抗要素が接続されており、
第8のトランジスタのエミッタと出力端子との間に第2の抵抗要素が接続されている、
温度補償回路。 Comprising first to ninth transistors, and first and second resistance elements;
The bases are connected from the first transistor to the third transistor,
The bases are connected from the fourth transistor to the sixth transistor,
The bases of the seventh and eighth transistors are connected to each other,
The collectors of the first to third transistors are connected to the emitters of the fourth to sixth transistors, respectively.
The bases and collectors of the second and fifth transistors are respectively connected;
The collector of the first transistor and the collector of the fourth transistor are connected;
The collector of the sixth transistor and the collector of the eighth transistor are connected,
The collector of the ninth transistor is connected to the bases of the fourth to sixth transistors and the collector of the fifth transistor;
The base of the ninth transistor is connected to the collector of the fourth transistor and the collector of the seventh transistor;
The emitter of the ninth transistor is connected to the emitter of the eighth transistor;
The emitters of the first to third transistors are connected to the input terminal,
The emitters of the seventh and eighth transistors are connected to the output terminal,
The base and collector of the eighth transistor are connected,
A first resistance element is connected between the collector and emitter of the eighth transistor;
A second resistance element is connected between the emitter and output terminal of the eighth transistor;
Temperature compensation circuit.
前記第1〜第6のトランジスタとしてMOS−FETを適用し、各トランジスタのベース、エミッタ、コレクタを、各MOS−FETのゲート、ソース、ドレインに対応させて接続されている、
温度補償回路。
The temperature compensation circuit according to claim 3,
MOS-FET is applied as the first to sixth transistors, and the base, emitter, and collector of each transistor are connected to correspond to the gate, source, and drain of each MOS-FET.
Temperature compensation circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015085880A JP5925362B1 (en) | 2015-04-20 | 2015-04-20 | Temperature compensation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015085880A JP5925362B1 (en) | 2015-04-20 | 2015-04-20 | Temperature compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5925362B1 true JP5925362B1 (en) | 2016-05-25 |
JP2016206829A JP2016206829A (en) | 2016-12-08 |
Family
ID=56069577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015085880A Active JP5925362B1 (en) | 2015-04-20 | 2015-04-20 | Temperature compensation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5925362B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59108122A (en) * | 1982-09-30 | 1984-06-22 | エス・ジ−・エス−アテス・コンポネンチ・エレツトロニシ・ソシエタ・ペル・アチオニ | Constant current generation circuit |
JPS61163426U (en) * | 1985-03-29 | 1986-10-09 | ||
JP2000513853A (en) * | 1997-04-22 | 2000-10-17 | マイクロチップ テクノロジー インコーポレイテッド | Precision bandgap reference circuit |
JP2009080786A (en) * | 2007-09-07 | 2009-04-16 | Nec Electronics Corp | Reference voltage circuit for compensating temperature nonlinearity |
-
2015
- 2015-04-20 JP JP2015085880A patent/JP5925362B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59108122A (en) * | 1982-09-30 | 1984-06-22 | エス・ジ−・エス−アテス・コンポネンチ・エレツトロニシ・ソシエタ・ペル・アチオニ | Constant current generation circuit |
JPS61163426U (en) * | 1985-03-29 | 1986-10-09 | ||
JP2000513853A (en) * | 1997-04-22 | 2000-10-17 | マイクロチップ テクノロジー インコーポレイテッド | Precision bandgap reference circuit |
JP2009080786A (en) * | 2007-09-07 | 2009-04-16 | Nec Electronics Corp | Reference voltage circuit for compensating temperature nonlinearity |
Also Published As
Publication number | Publication date |
---|---|
JP2016206829A (en) | 2016-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4817825B2 (en) | Reference voltage generator | |
US7420359B1 (en) | Bandgap curvature correction and post-package trim implemented therewith | |
TWI459174B (en) | Low noise voltage reference circuit | |
CN108037791B (en) | A Bandgap Reference Circuit Without Operation Amplifier | |
US10671109B2 (en) | Scalable low output impedance bandgap reference with current drive capability and high-order temperature curvature compensation | |
CN103926968A (en) | Band-gap reference voltage generating circuit | |
WO2019150744A1 (en) | Correction current output circuit and reference voltage circuit with correction function | |
TW201931046A (en) | Circuit including bandgap reference circuit | |
CN115562431A (en) | Band gap reference circuit | |
CN211956253U (en) | Temperature compensation band gap reference circuit | |
US9268348B2 (en) | Reference power generating circuit and electronic circuit using the same | |
JP2005122277A (en) | Band gap constant voltage circuit | |
TWI716323B (en) | Voltage generator | |
JPH1124769A (en) | Constant current circuit | |
JP5925357B1 (en) | Temperature compensation circuit | |
JP5925362B1 (en) | Temperature compensation circuit | |
CN117055681A (en) | Band gap reference circuit with high-order temperature compensation | |
US10310539B2 (en) | Proportional to absolute temperature reference circuit and a voltage reference circuit | |
CN112256078B (en) | Positive temperature coefficient current source and zero temperature coefficient current source | |
JP5942175B1 (en) | Current source circuit | |
WO2018146878A1 (en) | Reference voltage generation circuit and reference voltage generation method | |
CN111198588B (en) | Band-gap reference circuit | |
JPH05235661A (en) | Constant current source circuit | |
CN114371758B (en) | Reference voltage circuit and chip | |
Gopal et al. | Trimless, pvt insensitive voltage reference using compensation of beta and thermal voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5925362 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |