[go: up one dir, main page]

JP5896759B2 - 生体の動脈内皮機能測定装置 - Google Patents

生体の動脈内皮機能測定装置 Download PDF

Info

Publication number
JP5896759B2
JP5896759B2 JP2012013571A JP2012013571A JP5896759B2 JP 5896759 B2 JP5896759 B2 JP 5896759B2 JP 2012013571 A JP2012013571 A JP 2012013571A JP 2012013571 A JP2012013571 A JP 2012013571A JP 5896759 B2 JP5896759 B2 JP 5896759B2
Authority
JP
Japan
Prior art keywords
change curve
arterial endothelial
change
blood flow
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012013571A
Other languages
English (en)
Other versions
JP2013150730A (ja
Inventor
益田 博之
博之 益田
鈴木 英範
英範 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNEX CORPORATION
Original Assignee
UNEX CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNEX CORPORATION filed Critical UNEX CORPORATION
Priority to JP2012013571A priority Critical patent/JP5896759B2/ja
Priority to PCT/JP2012/052651 priority patent/WO2013111349A1/ja
Publication of JP2013150730A publication Critical patent/JP2013150730A/ja
Application granted granted Critical
Publication of JP5896759B2 publication Critical patent/JP5896759B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/026Measuring blood flow

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、生体の動脈の内皮機能を評価する指標値を測定する動脈内皮機能測定装置に関し、特にその指標値を客観化するために正規化する技術に関するものである。
血流を再開させることで動脈の内皮を刺激することに基づいて動脈内皮機能を測定する動脈内皮機能測定装置が知られている。しかし、これにより得られた指標値は、個人差が含まれているため評価精度が充分に得られない。これに対して、前記指標値を正規化して出力する生体の動脈内皮機能測定装置が提案されている。この生体の動脈内皮機能測定装置は、例えば特許文献1に示すように、生体の動脈に対する駆血解放時に再開される血流に刺激されて発生するその動脈の拡張によるその動脈の形状変化例えば血管径の変化量を測定し、その変化量に基づいて動脈内皮機能を評価する指標値を算出する一方、前記駆血解放時に急増しその後に減衰する前記動脈内の血流速度から算出されるずり応力を逐次測定し、前記駆血解放後のずり応力の変化を示す変化曲線の前記駆血解放時点からの所定区間の積分値を算出し、その積分値に基づいて前記指標値を正規化するものである。
特許第3785084号公報
ところで、上記のような生体の動脈内皮機能測定装置の測定時において、前記動脈内では、一般に、前記駆血解放後血流が再開され、その血流の血流速度のピークは血流再開後から数秒から十数秒あたりで観測され、その後減速していき、安静時の血流速度あたりまで戻る。そして、上記生体の動脈内皮機能測定装置での前記ずり応力の算出には、前記駆血解放後の血流の血流速度が正しく計測されていることが必要である。
しかしながら、上記のような生体の動脈内皮機能測定装置の測定時において、圧迫帯による駆血により血管の位置が移動し前記駆血解放後もその血管の位置が元に戻る保障がないことから、前記駆血解放直後は前記血管の血流速度を測定できるプローブの計測位置への追従操作が必要となる場合がある。このため、駆血解放直後の血流速度がうまく測定できないことが多く、前記ずり応力を精度良く得ることができず、正規化後の指標値の精度も充分に得られないという問題があった。
本発明は、以上の事情を背景として為されたものであって、その目的とするところは、高精度の正規化後指標値を得ることができる生体の動脈内皮機能測定装置を提供することにある。
本発明者は以上の事情を背景として種々の解析や検討を重ねた結果、以下に示す事実に到達した。すなわち、上記のような生体の動脈内皮機能測定装置において、上記プローブから測定される血流速度を示す変化曲線のうちその頂部の曲線にノイズが多く含まれて精度良く測定できていないことが多く、その変化曲線のうちの基部の曲線に比較的にノイズが少なく精度良く測定されている傾向に気づいた。そして、その変化曲線のうまく測定されている基部の測定値の変化を示す定数を求め、その定数に基づいてその変化曲線の頂部を推定することによって、その変化曲線を理想的に上記プローブから血流速度が測定された場合の変化曲線に近似させ、その曲線から得られた動脈内皮刺激量に基づいて高精度の正規化後評価値を得ることができるという事実を見いだした。本発明はこの知見に基づいて為されたものである。
かかる目的を達成するための本発明の要旨とするところは、(a) 生体の動脈に対する駆血解放時に再開される血流に刺激されて発生するその動脈の拡張によるその動脈の形状変化を測定し、その形状変化に基づいて動脈内皮機能を評価する指標値を算出する一方、前記駆血解放時に急増しその後に減衰する前記動脈内の血流速度を逐次測定し、その血流速度に基づいて動脈内皮刺激量を算出し、その動脈内皮刺激量に基づいて前記指標値を正規化して出力する生体の動脈内皮機能測定装置であって、(b) 前記駆血解放時に急増しその後に減衰する前記血流速度を示す変化曲線またはその血流速度から算出される動脈内皮刺激値を示す変化曲線のうち予め定められた基部の変化を示す定数を求め、その定数に基づいてその変化曲線の頂部を推定し、少なくともその推定された頂部に基づいて前記動脈内皮刺激量を算出することを特徴とする。
本発明の生体の動脈内皮機能測定装置によれば、前記駆血解放時に急増しその後に減衰する前記血流速度を示す変化曲線またはその血流速度から算出される動脈内皮刺激値を示す変化曲線のうち予め定められた基部の変化を示す定数を求め、その定数に基づいてその変化曲線の頂部を推定し、少なくともその推定された頂部に基づいて前記動脈内皮刺激量を算出する。このため、前記定数に基づいて前記変化曲線の頂部が推定されるので、理論値の変化曲線の頂部に近似させられてノイズが除去される。これにより、少なくともその推定されたノイズのない変化曲線の頂部に基づいて前記動脈内皮刺激量が算出されるので、その動脈内皮刺激量を従来に比較して正しく定量化させることができ、高精度の正規化後指標値を得ることができる。
ここで、好適には、(c) 前記変化曲線の基部および頂部は、その変化曲線の下降区間に含まれるものであり、(d) その下降区間の頂部は、その下降区間の基部が示す減衰曲線と同じ減衰定数を有し、前記変化曲線の下降開始点からの減衰曲線として算出される。このため、前記下降区間の基部が示す減衰曲線と同じ減衰定数によって、前記変化曲線の下降区間の頂部を理論値の減衰曲線に近似させることができる。
また、好適には、(e) 前記変化曲線の基部および頂部は、その変化曲線の上昇区間に含まれるものであり、(f) その上昇区間の頂部は、その上昇区間の基部が示す増加率と同じ増加率を有し、前記変化曲線の下降開始時点まで続く上昇線として算出される。このため、前記上昇区間の基部が示す増加率によって、前記変化曲線の上昇区間の頂部を理論値の上昇線に近似させることができる。
また、好適には、(g) 前記動脈内皮刺激値は、前記血流速度に基づいて算出される動脈内壁面のずり速度であり、(h) 前記動脈内皮刺激量は、前記駆血解放後の前記ずり速度の変化を示す変化曲線の前記駆血解放時点から所定区間の積分値である。このため、前記血流速度に基づいて算出された前記ずり速度を示す変化曲線の頂部が推定され、その推定された頂部を有する変化曲線の前記駆血解放時点から所定区間の積分値が前記動脈内皮刺激量として算出されるので、前記動脈内皮刺激量を従来に比較して正しく定量化させることができる。また、ずり応力を用いる場合に比較して、ずり速度は血流の粘性の影響を受けないので一層高い精度が得られる。
また、好適には、前記正規化は、前記動脈内皮刺激量に対する前記指標値の比である。このため、前記動脈内皮刺激量によって前記指標値が正規化された前記動脈内皮刺激量に対する前記指標値の比を用いることができるので、従来に比較して正しく動脈内皮機能を評価することができる。
本発明の生体の動脈内皮機能測定装置の一実施例である血管内皮機能検査装置の全体的な構成を説明する図である。 図1の血管内皮機能検査装置に備えられた制御機能を説明する図である。 図2の電子制御装置に備えられた超音波プローブと血管との位置の関係を説明する図である。 図2の電子制御装置の超音波画像測定対象である右上腕を手首側からみた見た断面図である。 図2の電子制御装置の超音波画像測定対象である血管壁の3層構造を説明する図である。 図2の電子制御装置に測定された情報に基づいて画像表示装置に表示される画像の一例を示す図である。 図1の血管内皮機能検査装置の測定時における上肢保持装置に載置された右上腕を手首側から見た断面図である。 血管内の血流速度分布の式を求めるために、その血管内の状態を仮想的に示す断面図である。 血管内のずり速度分布の式を求めるために、その血管内の状態を仮想的に示す断面図である。 図1の血管内皮機能検査装置の測定時におけるずり速度および血管径の経時変化により形成された実線の変化曲線と、そのずり速度の変化曲線のうち予め定められた基部の変化を示す定数に基づいてその変化曲線の頂部を推定させた破線の変化曲線とを対比して示す図である。 図10で頂部が推定された破線の変化曲線の積分値を説明する図である。 図1の血管内皮機能検査装置における制御作動を説明するフローチャートを示す図である。
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は理解を容易とするために適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明の生体の動脈内皮機能測定装置の一実施例である血管内皮機能検査装置10の全体的な構成を説明する図である。この血管内皮機能検査装置10は、生体の一部の血管に対して出力される超音波の反射信号に基づいて、その血管の径、内膜厚、プラーク、血流速度等を測定するFMD(Flow-Mediated Dilation:血流依存性血管拡張反応)計測を行うものであり、生体である被験者(被測定者)12を横たえるための寝台14と、その寝台14上に仰臥する被験者12から側方へ突き出されるその被験者12の上肢30を載置するための上肢保持装置16と、センサ保持器20に保持された超音波センサ22を用いて被験者12の上肢30の皮膚34の上からその皮膚34直下に位置する血管36の横断面画像(短軸画像)或いは縦断面画像(長軸画像)を測定する電子制御装置18と、測定部位における血管36(図2参照)の血流を阻止するためにその測定部位の上流側又は下流側(図1では下流側)の部位を圧迫する加圧装置24と、上肢保持装置16やセンサ保持器20等の装置を載置するための基台28とを備えて構成されている。
図2は、電子制御装置18の制御機能を説明する機能ブロック線図である。この図2に示す超音波センサ22は、血管36に対して所定の超音波を発生させる超音波発振器及びその超音波に関して血管36から反射される反射波に基づいてその血管36に関連する生体情報すなわち血管状態(血管パラメータ)を検出する互いに平行な2列の第1短軸用超音波アレイ探触子I及び第2短軸用超音波アレイ探触子Jとそれらの長手方向中央部を連結する長軸用超音波アレイ探触子Kとを一平面すなわち平坦な探触面上に有して成るH型の超音波プローブ38と、その超音波プローブ38を位置決めするための多軸駆動装置40とを備えている。図3は、超音波プローブ38と血管36との関係を示す図であり、この図3に示すように、第1短軸用超音波アレイ探触子I、第2短軸用超音波アレイ探触子J、及び長軸用超音波アレイ探触子Kは、例えば圧電セラミックスから構成された多数個の超音波振動子(超音波発振子)a1〜anが直線的に配列されることにより長手状にそれぞれ構成されている。
図4は、上肢30の右の上腕32を手部(手首)側から見た断面図である。この図4に示すように、上腕32は、上腕動脈M1、上腕二頭筋M2、上腕三頭筋M3、上腕骨M4、上腕筋M5、及び上腕三頭筋長頭M6等を備えている。例えば上腕動脈M1である血管36は、図5に示すように、内膜L1、中膜L2、外膜L3から成る3層構造を備えている。ここの血管36に関して超音波を用いて得られる画像では、中膜L2からの反射がきわめて弱いため、内膜L1及び外膜L3が表示される。実際の画像では、血管36内及び中膜L2は黒く表示され、内膜L1及び外膜L3が白く表示され、組織が白黒の斑で表示される。この内膜L1は、外膜L3よりも大幅に厚みが薄く表示され、画像中において相対的に表示され難い一方で、FMDの評価に際してはその内膜の径の変化率を用いることが望まれる。
図2に戻って、血管内皮機能検査装置10は、画像表示装置44と、超音波駆動制御回路46と、駆動モータ制御回路48とを備えている。血管内皮機能検査装置10は、所謂マイクロコンピュータから構成された電子制御装置18によって統括的に制御されるものであり、その電子制御装置18によって超音波駆動制御回路46から駆動信号が供給されて超音波センサ22の超音波プローブ38の第1短軸用超音波アレイ探触子I、第2短軸用超音波アレイ探触子J、及び長軸用超音波アレイ探触子Kから超音波が放射される一方、その第1短軸用超音波アレイ探触子I、第2短軸用超音波アレイ探触子J、及び長軸用超音波アレイ探触子Kにより検知された超音波反射信号を受けてその超音波反射信号の処理が行われることによって、被験者12の皮膚34下の超音波画像が発生させられ画像表示装置44に表示される。
電子制御装置18には、超音波駆動制御回路46を介して超音波センサ22による超音波の発生を制御する超音波駆動制御部50、その超音波センサ22により受信される反射波の検波処理を行う検波処理部52、その検波処理部52により検波された信号に関してドップラー信号処理を行い血管36内の血流速度uすなわち最大血流速度umaxを算出するドップラー信号処理部54、Bモード信号処理を行うBモード信号処理部56、そのBモード信号処理部により処理された信号に基づく画像を画像表示装置44に表示させる表示制御を行う表示制御部58、駆動モータ制御回路48を介して多軸駆動装置40の駆動を制御する駆動モータ制御部60、加圧装置24の作動を制御する加圧制御部62、血管36の画像を測定することにより血管36の内腔径dを算出する血管径測定部64、ドップラー信号処理部54において算出された血流速度uすなわち最大血流速度umaxに基づいてずり速度μ(動脈内皮刺激値)(1/sec)を算出するずり速度算出部66、ずり速度算出部66で算出されたずり速度μにより形成された変化曲線Bすなわちずり速度曲線の頂部B1を補完するずり速度曲線補完部68、及びずり速度曲線補完部68によって補完されたずり速度曲線を積分してその積分値を基にFMD値を正規化するFMD値正規化部70等の制御機能を備えている。
画像表示装置44は、図6に示すように、第1短軸用超音波アレイ探触子Iによる超音波画像を表示する第1短軸画像表示領域T1と、第2短軸用超音波アレイ探触子Jによる超音波画像を表示する第2短軸画像表示領域T2と、長軸用超音波アレイ探触子Kによる超音波画像を表示する長軸画像表示領域T3とを有している。更には、第1短軸画像表示領域T1、第2短軸画像表示領域T2、及び長軸画像表示領域T3は、皮膚34からの深さ寸法を示す共通の縦軸を備えたものである。また、前述したように、血管36の超音波画像が生成されるに際して、超音波プローブ38は対象となる血管36に対して所定の位置となるよう電子制御装置18(駆動モータ制御部60)によって駆動モータ制御回路48から駆動信号を供給された多軸駆動装置40が駆動することにより位置決めさせられる。上記所定の位置とは、第1短軸用超音波アレイ探触子I及び第2短軸用超音波アレイ探触子Jが対象となる血管36に対して直交する位置、且つ長軸用超音波アレイ探触子Kがその血管36に対して平行となる位置である。
センサ保持器20は、図7に示すように、三次元空間内の所望の位置すなわち所定の位置において被験者12の上腕32の皮膚34の上からその皮膚34直下に位置する血管36を変形させない程度に軽く接触させるように超音波センサ22を所望の姿勢で保持する。超音波センサ22の超音波プローブ38の端面と皮膚34との間には、超音波の減衰、境界面における反射や散乱を抑制して超音波画像を明瞭とするためのカップリング剤としてよく知られたゼリー(超音波ゼリー)72等が介在させられる。
加圧装置24は、被験者12の上肢30における血管36の血流を阻止するために、電子制御装置18による測定部位の上流側又は下流側(図1では下流側)の部位を圧迫して駆血するための装置であり、被験者12の上肢30等の肢部に巻回されて用いられるカフ74と、そのカフ74のカフ圧を制御する図示しないカフ圧制御装置とを、備えて構成されている。カフ74は、例えば空気圧等によりそのカフ圧が変更可能とされたものであり、上記カフ圧制御装置は、カフ74に連結された電動加圧ポンプ、電磁開放弁を備えた排気コック、及び圧力計等を備え、電子制御装置18(加圧制御部62)からの指令に従い超音波センサ22の駆動と連動して、上記加圧ポンプ及び排気コック等の作動を介して、カフ74のカフ圧を加圧乃至解放する制御を行う。
血管内皮機能検査装置10による血管状態の測定に際して、超音波駆動制御回路46は、電子制御装置18からの指令に従って、例えば第1短軸用超音波アレイ探触子Iを構成する一列に配列された多数個の超音波振動子a1〜anのうち、その端の超音波振動子a1ら一定数の超音波振動子群例えば15個のa1〜a15毎に所定の位相差を付与しつつ10MHz程度の周波数で同時駆動するビームフォーミング駆動することにより超音波振動子の配列方向において収束性の超音波ビームを対象となる血管36に向かって順次放射させ、超音波振動子を1個ずつずらしながらその超音波ビームをスキャン(走査)させたときの放射毎の反射波を受信して電子制御装置18へ入力させる。また、第1短軸用超音波アレイ探触子Iの放射面には、その超音波振動子a1〜anの配列方向に直交する方向に超音波ビームを収束させるための図示しない音響レンズが設けられている。上述のようなビームフォーミング駆動及び音響レンズによって収束させられた超音波ビームには、超音波振動子a1〜anの配列方向に対して直交する方向に長手状の収束断面が形成される。この収束断面の長手方向は、平面視において超音波振動子a1〜anの配列方向、及びビームの放射方向に対して、それぞれ直交する方向である。電子制御装置18(表示制御部58)は、上記反射波に基づいて画像を合成し、皮膚34下における血管36の横断面画像(短軸画像)、或いは縦断面画像(長軸画像)を生成させて、画像表示装置44に表示させる。
血管径測定部64では、図6に示す血管36の画像から、図5に示す血管36の内皮76の直径である内皮径(内腔径)dが測定される。
ずり速度算出部66では、ドップラー信号処理部54によって算出された血流速度u(最大血流速度umax)に基づいてずり速度μが算出される。ここで、ずり速度μの算出方法を図8および図9を用いて以下に説明する。
始めに、血管36内の血流の流速すなわち血流速度uの速度分布の式を図8を参照して求める。なお、図8は、血管36の形状を円筒形状とし且つ血管36内の血流が層流であると仮定したものであり、血管36の軸心方向をx方向として血管36の径方向をr方向としている。これによって、血管36内のx方向の2箇所の微小区間dxにおける血流速度uの速度分布は、式(1)として表すことができる。なお、式(1)において、Rは、血管半径すなわち血管36の内皮76の内周面の半径d/2である。また、dpは、血管36内の上記x方向の2箇所の微小区間dxにおけるその2箇所の圧力P1、P2の変化量(P1−P2)である。また、μaは粘性係数である。
本実施例では、ドップラー信号処理部54において、超音波センサ22から送信される送信波および超音波センサ22に受信される受信波が良く知られているFFT解析によって周波数解析され最大血流速度umaxが算出される。すなわち、FFT解析によって、縦軸にドップラーシフト周波数を示し、輝度をそのエネルギーとして示し、一定の時間ごとにサンプリング計測した結果を時間軸上で重ねることで最大輝度を結ぶ曲線が血管中心(r=0)最大血流速度の時間分布を示している。次いで、一心拍中にその位置的な最大血流速度が変化する最大血流速度の平均値umaxが求められる。上記最大血流速度の平均値umaxとは、一心拍中に変化する位置的最大血流速度を積分して、その積分の値を一心拍の時間で割算することによって算出された値である。
Figure 0005896759
次に、血管36内のずり速度μの速度分布の式を図9を参照して求める。ずり速度μは、式(2)で表すことができ、式(1)を式(2)に代入して微分すると下記式(3)が算出される。なお、式(3)では、r≧0と仮定している。
Figure 0005896759
Figure 0005896759
最後に、式(3)から血管36の動脈内壁面(r=R)M7のずり速度μが算出される。すなわち、本実施例では、ずり速度μを−2(umax/R)としており、ドップラー信号処理部54から測定された最大血流速度umaxと血管径測定部64から測定された血管36の内皮76内周面の直径dの半分すなわち血管半径Rとの測定値からずり速度μが算出されるようになっている。
図10は、血管内皮機能検査装置10の測定時におけるずり速度μの経時変化を示す変化曲線Bと血管36の内皮76の直径dの経時変化を示す変化曲線Cとを実線で示す図である。この図10に示す変化曲線Bによれば、ずり速度μは、カフ74により測定部位が圧迫された状態では略一定であり、カフ74が急解放されることにより血流が再開されて上昇し、そのピークが血流再開後から数秒から十数秒あたりで観測され、その後減速していき安静時のずり速度μあたりまで戻っている。また、図10には、超音波プローブ38から理想的に測定された測定値すなわち理論値に基づいて形成された変化曲線Dが一点鎖線で示されている。
図10に示すように、血管内皮機能検査装置10の測定時において、超音波プローブ38から測定された変化曲線Bのうちその頂部B1と変化曲線Dの頂部D1との間に比較的大きな差があり、その頂部B1の曲線にノイズが多く含まれている。また、変化曲線Bのうちの基部B2の測定値と変化曲線Dのうちの基部D2の理論値との間には、比較的に大きな差がなく、その基部B2の測定値が比較的にノイズが少なくうまく測定されている。なお、図10の領域Eは、変化曲線Bのずり速度μの計測がうまく出来ていない領域を示すものである。
ずり速度曲線補完部68では、ずり速度算出部66で算出されたずり速度μに基づいて形成された変化曲線Bを、その変化曲線Bのうち予め定められた基部B2すなわちうまく測定された基部B2の変化を示す定数(A、τ)を求め、その定数(A、τ)に基づいて変化曲線Bの頂部B1を補完すなわち推定するものである。ここで、変化曲線Bの頂部B1の補完方法すなわち推定方法を図10を用いて以下に説明する。
始めに、変化曲線Bの立ち上がり部分の基部B2の傾きすなわちずり速度μの上昇区間の基部B2が示す増加率Aを式(4)に基づいて算出する。なお、μ0は、ベースずり速度であり、カフ74による駆血前に測定された安定した値である。また、t0maxはカフ74が急解放された時刻であり、μ1は変化曲線Bの上昇区間における基部B2の予め決められた時刻t1max時のずり速度値である。
Figure 0005896759
次に、算出された増加率Aを用いて変化曲線Fの頂部F1の最大ずり速度μmaxの値を推定する。すなわち、変化曲線Bの頂部B1においてカフ74の急解放後の最大ずり速度μ’maxが測定された時刻tmaxを変化曲線Fの最大ずり速度μmaxが測定された時刻と仮定して、そのtmax時における最大ずり速度μmaxを下記式(5)により算出する。そして、変化曲線Bの上昇区間の頂部B1は、上昇区間の頂部F1が変化曲線Fの下降開始時点まで続く上昇線G1として補完される。すなわち、変化曲線Bの上昇区間の頂部B1は、変化曲線Bの測定値(t1max、μ1)と式(5)に基づいて推定された推定値(tmax、μmax)とが連結された直線として推定される。なお、変化曲線Fの上昇区間における基部F2と変化曲線Bの上昇区間の基部B2とは同じ値である。
Figure 0005896759
次に、変化曲線Bの下降区間の頂部B1を補完する。すなわち、変化曲線Fの下降開始点からの減衰曲線G2を変化曲線Bの下降区間の基部B2の測定値(t1、μ2)を用いて推定する。なお、ずり速度μの経時変化は、式(6)により表現される。なお、これは、計測対称となる生体の循環系が、血管キャパシタンスと血管抵抗にて置き換えが出来る1次遅れ系を構成していることによる。
Figure 0005896759
基部B2の測定値(t1、μ2)を式(6)に代入して時定数(減衰定数)τ(τ<0)を算出する。そして、その算出された時定数τおよび式(6)を用いて変化曲線Fの下降開始時から減衰曲線G2すなわち変化曲線Bの下降区間の頂部B1が推定される。なお、tは、最大ずり速度μmaxが測定された後の経過時間である。また、下降区間の変化曲線Fにおいて、本実施例では、変化曲線Bの下降区間の頂部B1を推定するだけではなく基部B2も推定している。しかしながら、変化曲線Fの下降区間における基部F2と変化曲線Bの下降区間の基部B2とは略同じ値であり、変化曲線Bの下降区間の頂部B1を推定するだけでも良い。
これによって、変化曲線Bの頂部B1が図10に示す破線の変化曲線Fすなわち頂部F1に補完される。この変化曲線Fの頂部F1は、変化曲線Dの頂部D1の理論値と比較的に差がないものである。すなわち、変化曲線Fは、変化曲線Dの理論値と比較的に差がないものである。
FMD値正規化部70では、血管36に関して、先ず、血管径測定部64によって被験者12の安静時における血管径dが測定された後、加圧装置24により測定部位における血管36の血流を阻止するためにその測定部位の上流側又は下流側の部位が圧迫された状態で所定時間維持させられ、その測定部位よりも上流側又は下流側の部位が駆血状態へ移行した段階でカフ74が急解放されて、血管径測定部64により対象となる血管36の駆血状態からの充血後の血管径(阻血解放後の最大血管径)dmaxが測定される。そして、虚血反応性充血後のFMD(血流依存性血管拡張反応)を表す血管径の変化率H(指標値)(%)[=100×(dmax−d)/d]が算出される。そして、図11に示すように、変化曲線Fの駆血解放時点すなわちt0maxからたとえば駆血解放後の最大血管径dmaxが測定される時刻t2までの区間すなわち少なくとも頂部F1を含む区間の積分値(動脈内皮刺激量)AUC(Area Under the Curve)が算出され、その血管径の変化率H(%)が積分値AUCに割算されることより正規化されその正規化された血管径の変化率Hが画像表示装置44に表示される。そして、正規化された血管径の変化率Hの結果に基づいて対象となる血管36の内皮機能が評価される。
なお、式(6)は、時間積分しても下記式(7)のようになり形が変わらないという性質がある。したがって、ずり速度μの積分値AUCがベースに対してどれくらい増えているのかを容易に(A×τ)という計算で推定することができる。なお、図11において、カフ74の解放後t0maxから最大ずり速度が測定される時刻tmaxまでの立ち上がり区間の積分値の増加量は、A×tmax /2であり、最大ずり速度μmaxが測定された後のずり速度μの下降開始時点からずり速度μが安定するまでの下降区間の積分値AUCの増加量は、簡易的にA×τである。
Figure 0005896759
ここで、図12に示すフローチャートを用いて、本実施例の血管内皮機能検査装置10における測定処理について説明する。
血管径測定部64およびずり速度算出部66に対応するステップS10(以下ステップSをSと省略する)では、駆血前の血管36の内皮径dが測定され、ベースずり速度μ0が測定される。
次に、S11では、加圧装置24を用いてカフ74に空気を送り込み、駆血が開始される。S12では、所定の駆血時間が経過するまでS11でのカフ74による駆血が継続される。そして、S13では、S12での所定の駆血時間が経過するとカフ74が急解放される。これ等S11、S12、S13は、加圧制御部62に対応している。
ずり速度算出部66に対応するS14では、S13での駆血解放と同時に算出されたずり速度μを積分する。S15では、所定の積分時間が経過したか否かが判定される。このS15の判断が否定される場合はS14が繰り返されてS14でのずり速度μの積分が継続される。しかし、S15の判断が肯定されると、血管径測定部64に対応するS16では、所定の積分時間が経過すると同時に駆血解放後の血管径が測定される。
次に、ずり速度算出部66に対応するS17では、測定されたずり速度μの経時変化を示す変化曲線Bが例えば画像表示装置44に表示され、その変化曲線Bの上昇区間の予め定められた基部B2の測定値(t1max、μ1)とその下降区間の予め定められた基部B2の測定値(t1、μ2)とにより、増加率Aおよび時定数τが算出される。
次いで、ずり速度曲線補完部68に対応するS18では、S17により算出された増加率Aおよび時定数τと式(6)を用いて変化曲線Bの下降区間の頂部B1が補完されると共に、増加率Aと式(5)を用いて変化曲線Bの上昇区間の頂部B1が補完されて、例えば画像表示装置44に変化曲線Fが表示される。
そして、FMD値正規化部70に対応するS19、S20、S21において、正規化されたFMD値である血管径の変化率H/AUCが算出される。すなわち、S19では、変化曲線Fを駆血解放時t0maxから駆血解放後の最大血管径dmaxが測定される時刻t2までの区間のずり速度の積分値AUCが算出される。そして、S20では、駆血前の血管径dと駆血解放後の最大血管径dmaxとの測定値により血管径の変化率Hが算出される。
S21では、血管径の変化率H(%)がS19で算出されたずり速度の積分値AUCにより割算されることで正規化されて、例えば画像表示装置44にその正規化された血管径の変化率H/AUC(%)が表示される。
本実施例の血管内皮機能検査装置10によれば、駆血解放時に急増しその後に減衰する血流速度uすなわち最大血流速度umaxから算出されるずり速度μ(動脈内皮刺激値)を示す変化曲線Bのうち予め定められた基部B2の変化を示す定数A、τを求め、その定数A、τに基づいて変化曲線Bの頂部B1を推定し、少なくともその推定された頂部F1に基づいてずり速度μの積分値AUC(動脈内皮刺激量)を算出する。このため、定数A、τに基づいて変化曲線Bの頂部B1が推定されるので、理論値の変化曲線Dの頂部D1に近似させられてノイズが除去される。これにより、少なくともその推定されたノイズのない変化曲線Fの頂部F1に基づいてずり速度μの積分値AUCが算出されるので、その積分値AUCを従来に比較して正しく定量化させることができ、高精度の正規化後指標値を得ることができる。
また、本実施例の血管内皮機能検査装置10によれば、変化曲線Bの基部B2および頂部B1は、変化曲線Bの下降区間に含まれるものであり、その下降区間の頂部B1は、その下降区間の基部B2が示す減衰曲線G2と同じ時定数(減衰定数)τを有し、変化曲線Fの下降開始点からの減衰曲線G2として算出される。このため、下降区間の基部B2が示す減衰曲線G2と同じ時定数τによって、変化曲線Bの下降区間の推定された頂部B1を理論値の減衰曲線に近似させることができる。
また、本実施例の血管内皮機能検査装置10によれば、変化曲線Bの基部B2および頂部B1は、変化曲線Bの上昇区間に含まれるものであり、その上昇区間の頂部B1は、その上昇区間の基部B2が示す増加率Aと同じ増加率Aを有し、変化曲線Fの下降開始時点まで続く上昇線G1として算出される。このため、上昇区間の基部B2が示す増加率Aによって、変化曲線Bの上昇区間の頂部B1を理論値の上昇線に近似させることができる。
また、本実施例の血管内皮機能検査装置10によれば、動脈内皮刺激値は、血流速度uすなわち最大血流速度umaxに基づいて算出される動脈内壁面M7のずり速度μであり、動脈内皮刺激量は、駆血解放後のずり速度μの変化を示す変化曲線Fの駆血解放時点t0maxから駆血解放後の最大血管径dmaxが測定される時刻t2までの区間の積分値AUCである。このため、最大血流速度umaxに基づいて算出されたずり速度μを示す変化曲線Bの頂部B1が推定され、その推定された頂部F1を有する変化曲線Fの駆血解放時点t0maxから駆血解放後の最大血管径dmaxが測定される時刻t2までの区間の積分値AUCが動脈内皮刺激量として算出されるので、動脈内皮刺激量を従来に比較して正しく定量化させることができる。また、ずり応力を用いる場合に比較して、ずり速度μは血流の粘性の影響を受けないので一層高い精度が得られる。
また、本実施例の血管内皮機能検査装置10によれば、血管径の変化率H(%)の正規化は、動脈内皮刺激量すなわちずり速度μの積分値AUCに対する血管径の変化率H(%)の比である。このため、ずり速度μの積分値AUCによって血管径の変化率H(%)が正規化されたずり速度μの積分値AUCに対する血管径の変化率H(%)の比を用いることができるので、従来に比較して正しく動脈内皮機能を評価することができる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
本実施例の血管内皮機能検査装置10では、動脈内皮刺激値としてずり速度μが用いられたが、例えば、血流速度uの積算値が直接動脈内皮刺激値として用いられても良い。更には、血管36の血流速度から求められる血流量や、ずり応力の積算値が動脈内皮刺激値として用いられても良い。なお、血管36の血流量、血流速度uの経時変化は、本実施例で示された式(6)と同様に表すことが出来き本実施例と同様に変化曲線の頂部を好適に推定することができる。また、上記血流速度は、脈拍周期に同期して、その周期内の同じタイミングで測定されれば良い。
本実施例の血管内皮機能検査装置10では、ベースずり速度μ0は、駆血前の値が計測されたが、例えば、駆血解放後に時間的に安定して変化しなくなった時の値でも良い。また、本実施例の血管内皮機能検査装置10では、ステップS18、S20が備えられいるが、ステップS28でずり速度曲線すなわち変化曲線Fが積分されるので必ずしも備えられる必要はない。
また、本実施例の血管内皮機能検査装置10では、指標値H(%)は、血管36径の変化率によって算出されたがそれ以外の評価方法でも良く、例えば、血管36の断面積の変化率でも良い。
また、本実施例の血管内皮機能検査装置10では、動脈内皮刺激量は、ずり速度μの積分値AUCとして算出されたが、簡易的に、変化曲線Fの下降開始時における動脈内皮刺激値すなわち最大ずり速度μmaxを動脈内皮刺激量として用いても良い。
また、本実施例の血管内皮機能検査装置10では、上腕動脈の測定を行う例を説明したが、本発明はこれに限定されるものではなく、例えば上肢14の表皮面より測定できる動脈、或いはその他の下肢の血管等の測定においても同様に適用され、効果を奏するものである。
また、本実施例の血管内皮機能検査装置10では、ずり速度曲線補完部68において、変化曲線Fの最大ずり速度μmaxが測定される時刻tmaxを、変化曲線Bの頂部B1における最大ずり速度μ’maxが測定された時刻tmaxとしていたが、例えば、最大ずり速度μmaxが測定される時刻tmaxを統計的或いは実験的に予め定められた一定の時刻が駆血開放後に経過したときの時刻と規定(例えばカフ74の急解放後の10秒後)しても良い。
また、本実施例の血管内皮機能検査装置10では、ドップラー信号処理部54において、超音波センサ22から送信される送信波および超音波センサ22に受信される受信波がFFT解析によって周波数解析され最大血流速度umaxが算出されたが、例えば、上記送信波および上記受信波を良く知られている複素自己相関器によって血管の横断面における各セグメントの血流速度分布を直接求めて、その各セグメントの血流速度の平均値を最大血流速度umaxとしても良い。
その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:血管内皮機能検査装置(生体の動脈内皮機能測定装置)
A:増加率(定数)
AUC:ずり速度の積分値(動脈内皮刺激量)
B:変化曲線
B1:頂部
B2:基部
M1:上腕動脈
M7:動脈内壁面
H:血管径の変化率(指標値)
G1:上昇線
G2:減衰曲線
u:血流速度
μ:ずり速度(動脈内皮刺激値)
τ:時定数(減衰定数、定数)

Claims (5)

  1. 生体の動脈に対する駆血解放時に再開される血流に刺激されて発生する該動脈の拡張による該動脈の形状変化を測定し、該形状変化に基づいて動脈内皮機能を評価する指標値を算出する一方、前記駆血解放時に急増しその後に減衰する前記動脈内の血流速度を逐次測定し、該血流速度に基づいて動脈内皮刺激量を算出し、該動脈内皮刺激量に基づいて前記指標値を正規化して出力する生体の動脈内皮機能測定装置であって、
    前記駆血解放時に急増しその後に減衰する前記血流速度を示す変化曲線または該血流速度から算出される動脈内皮刺激値を示す変化曲線のうち予め定められた基部の変化を示す定数を求め、該定数に基づいて該変化曲線の頂部を推定し、少なくとも該推定された頂部に基づいて前記動脈内皮刺激量を算出することを特徴とする生体の動脈内皮機能測定装置。
  2. 前記変化曲線の基部および頂部は、該変化曲線の下降区間に含まれるものであり、
    該下降区間の頂部は、該下降区間の基部が示す減衰曲線と同じ減衰定数を有し、前記変化曲線の下降開始点からの減衰曲線として算出されることを特徴とする請求項1の生体の動脈内皮機能測定装置。
  3. 前記変化曲線の基部および頂部は、該変化曲線の上昇区間に含まれるものであり、
    該上昇区間の頂部は、該上昇区間の基部が示す増加率と同じ増加率を有し、前記変化曲線の下降開始時点まで続く上昇線として算出されることを特徴とする請求項1または2の生体の動脈内皮機能測定装置。
  4. 前記動脈内皮刺激値は、前記血流速度に基づいて算出される動脈内壁面のずり速度であり、
    前記動脈内皮刺激量は、前記駆血解放後の前記ずり速度の変化を示す変化曲線の前記駆血解放時点から所定区間の積分値である請求項1乃至3のいずれか1の生体の動脈内皮機能測定装置。
  5. 前記正規化は、前記動脈内皮刺激量に対する前記指標値の比である請求項1の生体の動脈内皮機能測定装置。
JP2012013571A 2012-01-25 2012-01-25 生体の動脈内皮機能測定装置 Active JP5896759B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012013571A JP5896759B2 (ja) 2012-01-25 2012-01-25 生体の動脈内皮機能測定装置
PCT/JP2012/052651 WO2013111349A1 (ja) 2012-01-25 2012-02-06 生体の動脈内皮機能測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013571A JP5896759B2 (ja) 2012-01-25 2012-01-25 生体の動脈内皮機能測定装置

Publications (2)

Publication Number Publication Date
JP2013150730A JP2013150730A (ja) 2013-08-08
JP5896759B2 true JP5896759B2 (ja) 2016-03-30

Family

ID=48873107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013571A Active JP5896759B2 (ja) 2012-01-25 2012-01-25 生体の動脈内皮機能測定装置

Country Status (2)

Country Link
JP (1) JP5896759B2 (ja)
WO (1) WO2013111349A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115269B2 (ja) * 2013-04-08 2017-04-19 コニカミノルタ株式会社 超音波プローブ支持装置、超音波診断装置、および超音波診断システム
AU2016288716B2 (en) * 2015-07-01 2020-08-20 Everist Genomics, Inc. System and method of assessing endothelial function
JP6371334B2 (ja) * 2016-05-27 2018-08-08 株式会社ユネクス 超音波断面画像測定装置
JP7328156B2 (ja) 2020-01-22 2023-08-16 キヤノンメディカルシステムズ株式会社 超音波診断装置、医用画像処理装置、および医用画像処理プログラム
JP2024179339A (ja) * 2023-06-14 2024-12-26 株式会社ユネクス 動脈血管の内皮機能検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785084B2 (ja) * 2001-11-09 2006-06-14 フクダ電子株式会社 血管内皮機能測定装置
US8657748B2 (en) * 2009-06-09 2014-02-25 National Institute Of Advanced Industrial Science And Technology Blood vessel function inspecting apparatus
WO2011004475A1 (ja) * 2009-07-08 2011-01-13 株式会社ユネクス 生体血管状態測定装置
JP5474986B2 (ja) * 2009-09-09 2014-04-16 株式会社ユネクス 血管機能検査装置
JP5504477B2 (ja) * 2010-03-16 2014-05-28 国立大学法人富山大学 指尖脈波解析装置及びこれを用いた血管内皮機能評価システム

Also Published As

Publication number Publication date
JP2013150730A (ja) 2013-08-08
WO2013111349A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
US10172527B2 (en) Method and apparatus for measuring a physical parameter in mammal soft tissues by propagating shear waves
JP5219228B2 (ja) 血管機能検査装置
CN100512764C (zh) 超声诊断设备和超声诊断方法
JPWO2007063619A1 (ja) 超音波診断装置
JP5896759B2 (ja) 生体の動脈内皮機能測定装置
JP6371334B2 (ja) 超音波断面画像測定装置
JP5998197B2 (ja) 生体の血管径連続測定装置
JP5474966B2 (ja) 生体血管状態測定装置
JP4620423B2 (ja) 平滑筋弛緩状態評価装置
WO2006001252A1 (ja) 血管内皮反応測定装置および血管内皮反応測定装置の制御方法
JP4627673B2 (ja) 血管弾性率測定方法及び血管弾性率測定装置
JP7019176B2 (ja) 動脈血管の内皮機能検査装置
JP6671065B2 (ja) 上腕動脈用血管内皮機能測定装置
JP2010207344A (ja) 血流圧力血流速度状態判定装置およびその判定方法
WO2005112774A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP6243719B2 (ja) 生体血管状態測定装置
US20170209117A1 (en) System and method for measurement of longitudinal and circumferential wave speeds in cylindrical vessels
JP5192859B2 (ja) 生体血管状態測定装置
JP6013377B2 (ja) 生体血管パラメータ測定装置
Greenleaf et al. Use of Radiation Force to Measure Arterial Properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5896759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250