JP5862886B2 - Method for producing organic solvent-dispersed silica sol - Google Patents
Method for producing organic solvent-dispersed silica sol Download PDFInfo
- Publication number
- JP5862886B2 JP5862886B2 JP2012120980A JP2012120980A JP5862886B2 JP 5862886 B2 JP5862886 B2 JP 5862886B2 JP 2012120980 A JP2012120980 A JP 2012120980A JP 2012120980 A JP2012120980 A JP 2012120980A JP 5862886 B2 JP5862886 B2 JP 5862886B2
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- silica sol
- dispersed
- silica
- silica particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 title claims description 95
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 153
- 239000003960 organic solvent Substances 0.000 claims description 59
- 238000010298 pulverizing process Methods 0.000 claims description 54
- 239000002994 raw material Substances 0.000 claims description 28
- 238000001556 precipitation Methods 0.000 claims description 16
- 238000000227 grinding Methods 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 6
- 125000003158 alcohol group Chemical group 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 48
- 238000000034 method Methods 0.000 description 36
- 239000000377 silicon dioxide Substances 0.000 description 36
- 239000011324 bead Substances 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 239000002245 particle Substances 0.000 description 24
- 239000000843 powder Substances 0.000 description 23
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002002 slurry Substances 0.000 description 17
- 238000002156 mixing Methods 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 12
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 7
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000003961 organosilicon compounds Chemical class 0.000 description 6
- 239000011975 tartaric acid Substances 0.000 description 6
- 235000002906 tartaric acid Nutrition 0.000 description 6
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 5
- 239000002612 dispersion medium Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 5
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010908 decantation Methods 0.000 description 4
- 239000012065 filter cake Substances 0.000 description 4
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- -1 methoxyethoxy Chemical group 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- NMRPBPVERJPACX-UHFFFAOYSA-N (3S)-octan-3-ol Natural products CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 1
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- YQJPWWLJDNCSCN-UHFFFAOYSA-N 1,3-diphenyltetramethyldisiloxane Chemical compound C=1C=CC=CC=1[Si](C)(C)O[Si](C)(C)C1=CC=CC=C1 YQJPWWLJDNCSCN-UHFFFAOYSA-N 0.000 description 1
- ZCCAOOJIWMTVGN-UHFFFAOYSA-N 1,6-diisocyanatohexane;[2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound O=C=NCCCCCCN=C=O.C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C ZCCAOOJIWMTVGN-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- JTWDWVCNOLORBR-UHFFFAOYSA-N 3-chloropropyl-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)CCCCl JTWDWVCNOLORBR-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- PRKPGWQEKNEVEU-UHFFFAOYSA-N 4-methyl-n-(3-triethoxysilylpropyl)pentan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC(C)C PRKPGWQEKNEVEU-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000003109 Karl Fischer titration Methods 0.000 description 1
- 239000001358 L(+)-tartaric acid Substances 0.000 description 1
- 235000011002 L(+)-tartaric acid Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-LWMBPPNESA-N L-(+)-Tartaric acid Natural products OC(=O)[C@@H](O)[C@H](O)C(O)=O FEWJPZIEWOKRBE-LWMBPPNESA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- RYBVCZSZPZFJOK-UHFFFAOYSA-N butyl-[butyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound CCCC[Si](C)(C)O[Si](C)(C)CCCC RYBVCZSZPZFJOK-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- OYWALDPIZVWXIM-UHFFFAOYSA-N dimethyl-[3-(oxiran-2-ylmethoxy)propyl]-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)CCCOCC1CO1 OYWALDPIZVWXIM-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- REQXNMOSXYEQLM-UHFFFAOYSA-N methoxy-dimethyl-phenylsilane Chemical compound CO[Si](C)(C)C1=CC=CC=C1 REQXNMOSXYEQLM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- WUMSTCDLAYQDNO-UHFFFAOYSA-N triethoxy(hexyl)silane Chemical compound CCCCCC[Si](OCC)(OCC)OCC WUMSTCDLAYQDNO-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- WILBTFWIBAOWLN-UHFFFAOYSA-N triethyl(triethylsilyloxy)silane Chemical compound CC[Si](CC)(CC)O[Si](CC)(CC)CC WILBTFWIBAOWLN-UHFFFAOYSA-N 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- PHPGKIATZDCVHL-UHFFFAOYSA-N trimethyl(propoxy)silane Chemical compound CCCO[Si](C)(C)C PHPGKIATZDCVHL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Description
本発明は、シリカ粒子を有機溶媒に分散させた有機溶媒分散シリカゾルの製造方法に関する。 The present invention relates to a method for producing an organic solvent-dispersed silica sol in which silica particles are dispersed in an organic solvent.
有機溶媒に例えば1000nm以下のコロイドサイズのシリカ粒子を分散させた有機溶媒分散シリカゾルは、樹脂や樹脂原料、バインダーに添加してコーティングやナノコンポジットの用途に用いられ、樹脂やバインダーの透明性を損なわずにその強度、硬度、耐熱性、絶縁性や、その他の特性を改良できるナノフィラーとして広く用いられている。このような有機溶媒分散シリカゾルは、まず、水や水を含有する水性溶媒を分散媒とする水性シリカゾルを作製した後、この水性シリカゾルの分散媒を有機溶媒で置換する方法により製造される(特許文献1等)。この溶媒置換による製法は時間がかかり、低沸点の有機溶媒に置換する場合は、脱水するために多量の有機溶媒を使用する必要がある。また、非水溶性の有機溶媒に置換する場合は、水溶性溶媒分散ゾルを経由して置換をする必要があり、手間のかかるプロセスとなっている。したがって、水性シリカゾルの溶媒置換により有機溶媒分散シリカゾルを得る方法では、手間がかかり、また、多量の有機溶媒を使用するため安価に有機溶媒分散シリカゾルを得ることはできなかった。 Organic solvent-dispersed silica sol, in which colloidal silica particles of 1000 nm or less, for example, are dispersed in an organic solvent, is added to resins, resin raw materials, and binders, and is used for coating and nanocomposite applications. It is widely used as a nanofiller that can improve its strength, hardness, heat resistance, insulation, and other properties. Such an organic solvent-dispersed silica sol is produced by first preparing an aqueous silica sol using water or an aqueous solvent containing water as a dispersion medium, and then replacing the dispersion medium of the aqueous silica sol with an organic solvent (patent) Literature 1 etc.). This method of solvent replacement takes time, and when replacing with a low boiling organic solvent, it is necessary to use a large amount of organic solvent for dehydration. Moreover, when replacing with a water-insoluble organic solvent, it is necessary to perform the replacement via a water-soluble solvent-dispersed sol, which is a laborious process. Therefore, the method for obtaining the organic solvent-dispersed silica sol by solvent replacement of the aqueous silica sol is time-consuming, and since a large amount of the organic solvent is used, the organic solvent-dispersed silica sol cannot be obtained at a low cost.
ここで、もしコロイドサイズのシリカ粉末を直接有機溶媒に分散することができれば、簡単に、且つ、多量の有機溶媒を使用することなく安価に、有機溶媒分散シリカゾルが得られるが、一般のシリカ粉末は凝集体を形成しており、何らかの機械的な粉砕を行う必要がある。 Here, if a colloidal silica powder can be directly dispersed in an organic solvent, an organic solvent-dispersed silica sol can be obtained easily and inexpensively without using a large amount of organic solvent. Form aggregates, and some mechanical pulverization is required.
そして、シリカ粉末として、塩化珪素をガス中で分解する気相法で得られたシリカ粒子を用いると、超音波分散機などの比較的マイルドな条件での粉砕で溶媒に分散が可能であるが、粉砕中に粘度が上昇しやすいため、高濃度で有機溶媒に分散することが難しく、高濃度のシリカ粒子を含有する有機溶媒分散シリカゾルを得難い。 When silica particles obtained by a vapor phase method in which silicon chloride is decomposed in gas are used as silica powder, it can be dispersed in a solvent by pulverization under relatively mild conditions such as an ultrasonic disperser. Since the viscosity is likely to increase during pulverization, it is difficult to disperse in an organic solvent at a high concentration, and it is difficult to obtain an organic solvent-dispersed silica sol containing high concentration silica particles.
そこで、高濃度のシリカ粒子を含有する有機溶媒分散シリカゾルを得るために、シリカ粒子として、水ガラス(ケイ酸ナトリウム)を中和して析出させる沈降法で得られたシリカ粒子を用いると、粉砕中にシリカ粒子が有機溶媒中で容易に沈降してしまう。したがって、沈降法で得られたシリカ粒子を有機溶媒中で沈降させずに分散するためには、粉砕メディアを用いた粉砕等、高エネルギーで粉砕する粉砕機を使用することが望ましいが、粉砕メディアを用いた粉砕等をすると粉砕中に粘度が上昇し、粉砕し難くなることが問題になる。また、得られる有機溶媒分散シリカゾルは、放置するとシリカ粒子が凝集して粘度が上昇してしまい、保存安定性が悪いということも問題になる。 Therefore, in order to obtain an organic solvent-dispersed silica sol containing high-concentration silica particles, silica particles obtained by a precipitation method in which water glass (sodium silicate) is neutralized and precipitated are used as the silica particles. Silica particles easily settle in an organic solvent. Therefore, in order to disperse the silica particles obtained by the precipitation method in an organic solvent without being precipitated, it is desirable to use a pulverizer that pulverizes with high energy, such as pulverization using a pulverization medium. When pulverizing using, etc., the viscosity increases during pulverization, which makes it difficult to pulverize. In addition, when the organic solvent-dispersed silica sol obtained is allowed to stand, the silica particles aggregate to increase the viscosity, resulting in a problem of poor storage stability.
なお、極性溶媒中に湿式シリカを分散した分散液であって、該分散液中のシリカ濃度が22重量%以上であり、且つ、シリカ粒子の平均粒子径が0.5μm未満であり、該分散液のpHが3〜5の範囲である湿式シリカ分散液が開示されている(特許文献2参照)。しかしながら、特許文献2はpHを規定するものであるため有機溶媒ではなく水を溶媒とするシリカゾルについての技術であり、有機溶媒にシリカを分散するものではない。また、シリカ沈降反応から生成する濾過ケーキに、カルボン酸を、該濾過ケーキの開砕処理の前に又は開砕処理中に混合又は添加することを含む、沈降シリカ又は沈降シリカ懸濁物の処理方法が開示されている(特許文献3参照)。しかしながら、シリカ沈降反応から生成する濾過ケーキは水を多く含むシリカ粒子の塊なので、特許文献3も水を溶媒とするシリカゾルについての技術であり、有機溶媒にシリカ粒子を分散するものではない。 A dispersion in which wet silica is dispersed in a polar solvent, the silica concentration in the dispersion is 22% by weight or more, and the average particle size of the silica particles is less than 0.5 μm, and the dispersion A wet silica dispersion having a pH of 3 to 5 is disclosed (see Patent Document 2). However, since Patent Document 2 regulates pH, it is a technique for silica sol using water as a solvent instead of an organic solvent, and does not disperse silica in an organic solvent. Also, treatment of precipitated silica or precipitated silica suspension comprising mixing or adding carboxylic acid to the filter cake produced from the silica precipitation reaction before or during the crushing process of the filter cake. A method is disclosed (see Patent Document 3). However, since the filter cake generated from the silica precipitation reaction is a lump of silica particles containing a large amount of water, Patent Document 3 is also a technique for silica sol using water as a solvent, and does not disperse silica particles in an organic solvent.
本発明の課題は、上述の従来技術の問題点を解決することにあり、保存安定性に優れた有機溶媒分散シリカゾルを、シリカ粒子の粉砕時の粘度上昇が抑制され且つ簡便で安価な方法で製造することができる有機溶媒分散シリカゾルの製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and an organic solvent-dispersed silica sol having excellent storage stability can be obtained by a simple and inexpensive method in which an increase in viscosity during pulverization of silica particles is suppressed. An object of the present invention is to provide a method for producing an organic solvent-dispersed silica sol that can be produced.
上記課題を解決する本発明の有機溶媒分散シリカゾルの製造方法は、沈降法で得られた原料シリカ粒子を、有機溶媒中で、多価カルボン酸の共存下、粉砕することを特徴とする。 The method for producing an organic solvent-dispersed silica sol of the present invention that solves the above problems is characterized in that the raw material silica particles obtained by the precipitation method are pulverized in an organic solvent in the presence of a polyvalent carboxylic acid.
また、沈降法で得られた原料シリカ粒子を、有機溶媒中で、多価カルボン酸の共存下、粉砕した後に、この粉砕により生じた前記多価カルボン酸の金属塩を除去することが好ましい。 In addition, it is preferable that the raw material silica particles obtained by the precipitation method are pulverized in an organic solvent in the presence of a polyvalent carboxylic acid, and then the metal salt of the polyvalent carboxylic acid generated by the pulverization is removed.
そして、前記有機溶媒が、アルコールであることが好ましい。 And it is preferable that the said organic solvent is alcohol.
また、有機珪素化合物を添加することが好ましい。 Moreover, it is preferable to add an organosilicon compound.
本発明によれば、沈降法で得られた原料シリカ粒子を有機溶媒中で多価カルボン酸の共存下粉砕することにより、シリカ粒子が有機溶媒に分散した有機溶媒分散シリカゾルを、シリカ粒子の粉砕時の粘度上昇が抑制され、且つ、簡便で安価な方法で製造することができる。そして、得られる有機溶媒分散シリカゾルは、保存安定性に優れたものである。 According to the present invention, the raw material silica particles obtained by the precipitation method are pulverized in the presence of polyvalent carboxylic acid in an organic solvent, whereby the organic solvent-dispersed silica sol in which the silica particles are dispersed in the organic solvent is pulverized. The increase in viscosity at the time is suppressed, and it can be produced by a simple and inexpensive method. The obtained organic solvent-dispersed silica sol has excellent storage stability.
本発明の有機溶媒分散シリカゾルの製造方法は、沈降法で得られた原料シリカ粒子を、有機溶媒中で、多価カルボン酸の共存下、粉砕するものである。 In the method for producing an organic solvent-dispersed silica sol of the present invention, the raw material silica particles obtained by the precipitation method are pulverized in an organic solvent in the presence of a polyvalent carboxylic acid.
原料シリカ粒子は、沈降法で得られたシリカ粒子、すなわち、水ガラス(ケイ酸ナトリウム)を酸等で中和してシリカ粒子を析出させるという沈降法によって得られるシリカ粒子である。ここで、本発明で粉砕する対象である原料シリカ粒子は、特許文献3のように水を含有する塊である濾過ケーキ等ではなく、乾燥した粉末であるため、水を実質的に含有しないものである。沈降法で得られた原料シリカ粒子の市販品としては、EVONIC製のSIPERNAT、CARPLEX、トクヤマ製のトクシール、ファインシール、東ソー・シリカ製のニップシール、PPG製のHi−Sil等が挙げられる。また、有機溶媒との親和性を向上させるために、沈降法で得られたシリカ粒子の表面に、メチル基、オクチル基、メタクリル基、フェニル基、アミノ基等の有機基と珪素とを含有する珪素有機基を導入し、親有機基を有するようにしたシリカ粒子を、原料シリカ粒子として用いてもよい。 The raw material silica particles are silica particles obtained by a precipitation method, that is, silica particles obtained by a precipitation method in which water glass (sodium silicate) is neutralized with an acid or the like to precipitate silica particles. Here, the raw material silica particles to be pulverized in the present invention is not a filter cake that is a lump containing water as in Patent Document 3, but a dry powder, and therefore contains substantially no water. It is. Commercially available raw silica particles obtained by the precipitation method include SIPONAT, CARPLEX, manufactured by EVONIC, Tokusil manufactured by Tokuyama, Fine Seal, nip seal manufactured by Tosoh Silica, Hi-Sil manufactured by PPG, and the like. Moreover, in order to improve the affinity with the organic solvent, the surface of the silica particles obtained by the precipitation method contains an organic group such as methyl group, octyl group, methacryl group, phenyl group, amino group and silicon. Silica particles introduced with a silicon organic group and having a parent organic group may be used as raw material silica particles.
原料シリカ粒子の粒子径や比表面積は限定されないが、例えば、窒素吸着法またはシアーズ滴定法(Anal.Chem. Vol.28,No.12,1956)で測定した比表面積が30〜500m2/gであることが好ましい。 The particle diameter and specific surface area of the raw silica particles are not limited. For example, the specific surface area measured by a nitrogen adsorption method or Sears titration method (Anal. Chem. Vol. 28, No. 12, 1956) is 30 to 500 m 2 / g. It is preferable that
有機溶媒としては、アルコールが挙げられる。アルコールの具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、1−ヘキサノール、1−オクタノール、2−エチル−1−ヘキサノール、アリルアルコール、ベンジルアルコール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、2−メトキシエタノール、2−エトキシエタノール、2−プロポキシエタノール、2−(メトキシエトキシ)エタノール、1−メトキシ−2−プロパノール、ジプロピレングリコールモノメチルエーテル、ジアセトンアルコール、エチルカルビトール、ブチルカルビトール等が挙げられる。有機溶媒は、1種類でもよく、また、2種以上を混合して用いてもよい。 Alcohol is mentioned as an organic solvent. Specific examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 1-hexanol, 1-octanol, 2- Ethyl-1-hexanol, allyl alcohol, benzyl alcohol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, 2- (methoxyethoxy) Examples include ethanol, 1-methoxy-2-propanol, dipropylene glycol monomethyl ether, diacetone alcohol, ethyl carbitol, and butyl carbitol. One organic solvent may be used, or two or more organic solvents may be mixed and used.
そして、多価カルボン酸とは、分子内に2つ以上のカルボキシル基を有するカルボン酸である。多価カルボン酸は、第1解離定数pKaが3.5以下であることが好ましく、さらに好ましくは第1解離定数pKaが3.0以下である。多価カルボン酸の具体例としては、シュウ酸、酒石酸、クエン酸、オキサロ酢酸、フタル酸、マレイン酸、マロン酸や、リンゴ酸などが挙げられる。多価カルボン酸は、1種類でもよいが、2種以上を共存させてもよい。なお、多価カルボン酸は、使用する有機溶媒に可溶なものを選択するのが好ましい。 The polyvalent carboxylic acid is a carboxylic acid having two or more carboxyl groups in the molecule. The polyvalent carboxylic acid preferably has a first dissociation constant pKa of 3.5 or less, more preferably a first dissociation constant pKa of 3.0 or less. Specific examples of the polyvalent carboxylic acid include oxalic acid, tartaric acid, citric acid, oxaloacetic acid, phthalic acid, maleic acid, malonic acid, malic acid, and the like. One type of polyvalent carboxylic acid may be used, but two or more types may be present together. In addition, it is preferable to select a polyvalent carboxylic acid that is soluble in the organic solvent to be used.
多価カルボン酸を有機溶媒に共存させる割合は特に限定されないが、例えば、原料シリカ粒子固形分に対して0.2〜10質量%程度が好ましく、さらに好ましくは0.5〜5質量%、最も好ましくは1.0〜5質量%である。 The ratio in which the polyvalent carboxylic acid is allowed to coexist in the organic solvent is not particularly limited. For example, it is preferably about 0.2 to 10% by mass, more preferably 0.5 to 5% by mass based on the solid content of the raw material silica particles. Preferably it is 1.0-5 mass%.
また、多価カルボン酸を有機溶媒に共存させる割合は、本発明の製造方法によって得られる有機溶媒分散シリカゾルと同じ質量の水を混合して作製した混合液のpHによって管理することもできる。具体的には、本発明の製造方法によって得られた有機溶媒分散シリカゾルに同じ質量の水を混合して作製した混合液のpHが2.0〜5.0の範囲内となる量の多価カルボン酸を共存させることが好ましい。ここで、本発明の有機溶媒分散シリカゾルの製造方法においては、シリカ粒子、すなわち、粉末状のシリカを用い、また、水を添加する工程を有さず、分散媒として水を含有しないため、得られる有機溶媒分散シリカゾルは、実質的に水を含有しない。具体的には、本発明の製造方法で得られる有機溶媒分散シリカゾルは、水を含んでいたとしても、シリカ粒子が吸着した大気中の水由来のみであるため、例えば、水分量は5質量%以下である。したがって、本発明の製造方法で得られる有機溶媒分散シリカゾルは、pHは測定できないものである。そこで、上述したように、同質量の水等を混合して作製した混合液のpHを求める。なお、このように本発明の製造方法によって得られる有機溶媒分散シリカゾルに同質量の水等を混合して求めたpHは、当然本発明の製造方法によって得られる有機溶媒分散シリカゾル自体のpHではない。 Moreover, the ratio in which the polyvalent carboxylic acid is allowed to coexist in the organic solvent can also be controlled by the pH of the mixed solution prepared by mixing water having the same mass as the organic solvent-dispersed silica sol obtained by the production method of the present invention. Specifically, the mixed solution prepared by mixing the organic solvent-dispersed silica sol obtained by the production method of the present invention with the same mass of water has a polyvalent amount in the range of pH in the range of 2.0 to 5.0. It is preferable to coexist carboxylic acid. Here, in the method for producing the organic solvent-dispersed silica sol of the present invention, silica particles, that is, powdered silica is used, and there is no step of adding water, and water is not contained as a dispersion medium. The resulting organic solvent-dispersed silica sol is substantially free of water. Specifically, even if the organic solvent-dispersed silica sol obtained by the production method of the present invention contains water, it is only derived from water in the atmosphere on which silica particles are adsorbed. It is as follows. Therefore, the pH of the organic solvent-dispersed silica sol obtained by the production method of the present invention cannot be measured. Therefore, as described above, the pH of the mixed solution prepared by mixing the same mass of water or the like is obtained. In addition, the pH obtained by mixing the same mass of water or the like with the organic solvent-dispersed silica sol obtained by the production method of the present invention is naturally not the pH of the organic solvent-dispersed silica sol itself obtained by the production method of the present invention. .
本発明においては、このような多価カルボン酸を共存させた状態で、有機溶媒中で、原料シリカ粒子を粉砕する。具体的には、有機溶媒に多価カルボン酸を共存させた後、すなわち、有機溶媒に多価カルボン酸を添加した後、原料シリカ粒子を粉砕する。原料シリカ粒子は、多価カルボン酸と同時に有機溶媒に添加してもよく、また、原料シリカ粒子と多価カルボン酸を順に有機溶媒に添加してもよい。また、多価カルボン酸は、原料シリカ粒子を有機溶媒中で粉砕している最中に共存していればよいため、粉砕の途中で添加する、すなわち、ある程度原料シリカ粒子を粉砕してスラリー状態にした後に多価カルボン酸を添加しその後さらにシリカ粒子を粉砕するようにしてもよい。 In the present invention, the raw material silica particles are pulverized in an organic solvent in the presence of such a polyvalent carboxylic acid. Specifically, after the polyvalent carboxylic acid is allowed to coexist in the organic solvent, that is, after the polyvalent carboxylic acid is added to the organic solvent, the raw material silica particles are pulverized. The raw material silica particles may be added to the organic solvent simultaneously with the polyvalent carboxylic acid, or the raw material silica particles and the polyvalent carboxylic acid may be added to the organic solvent in this order. Further, since the polyvalent carboxylic acid only needs to coexist during the pulverization of the raw material silica particles in the organic solvent, it is added during the pulverization, that is, the raw material silica particles are pulverized to some extent to form a slurry state. After that, polyvalent carboxylic acid may be added, and then the silica particles may be further pulverized.
原料シリカ粒子を粉砕する方法は特に限定されないが、高エネルギーで粉砕する粉砕機、例えば、ビーズミル等の粉砕メディアを用いた粉砕機を使用することが好ましい。粉砕メディアは、一般的なものを用いることができ、例えば、石英ガラス製ビーズ、ソーダライムガラス製ビーズ、低ソーダガラス製ビーズ、ジルコニア製ビーズ、アルミナ製ビーズ等が挙げられる。中でもシリカ系のガラスビーズが特に好ましい。 The method for pulverizing the raw silica particles is not particularly limited, but it is preferable to use a pulverizer that pulverizes with high energy, for example, a pulverizer using a pulverization medium such as a bead mill. Common grinding media can be used, and examples thereof include quartz glass beads, soda lime glass beads, low soda glass beads, zirconia beads, and alumina beads. Of these, silica-based glass beads are particularly preferable.
また、粉砕は、容器(粉砕機)に、有機溶媒、多価カルボン酸、原料シリカ粒子、必要に応じて粉砕メディアを入れ、回転等することにより粉砕するバッチ式でもよく、また、連続式粉砕機に必要に応じて粉砕メディアを入れ、有機溶媒、多価カルボン酸、原料シリカ粒子を含むシリカスラリーを通液又は循環する方式、または、連続式粉砕機に、必要に応じて粉砕メディアを入れ、有機溶媒、多価カルボン酸を通液運転しながら原料シリカ粒子を添加して、有機溶媒、多価カルボン酸及びシリカ粒子で形成されたスラリーを通液又は循環する方式でもよい。 In addition, the pulverization may be a batch type in which an organic solvent, polyvalent carboxylic acid, raw material silica particles, and if necessary, pulverization media are put into a container (pulverizer) and pulverized by rotating or the like, or continuous pulverization. If necessary, put grinding media into the machine and pass or circulate the silica slurry containing organic solvent, polyvalent carboxylic acid, raw silica particles, or continuous grinding machine, if necessary. Alternatively, the raw material silica particles may be added while the organic solvent and the polyvalent carboxylic acid are passed through, and the slurry formed of the organic solvent, the polyvalent carboxylic acid and the silica particles may be passed through or circulated.
このように多価カルボン酸を粉砕時に共存させることにより、沈降法で得られた原料シリカ粒子を有機溶媒中で粉砕しても、粘度上昇が抑制されるため、粉砕効率を向上することができ、容易に有機溶媒分散シリカゾルを製造することができる。例えば、原料シリカ粒子の添加を、少量ずつ時間をかけて行うという方法にすることにより、粉砕中の粘度上昇を抑制することがある程度可能であるが、本発明においては、粘度上昇が抑制されるため、原料シリカ粒子を少量ずつ時間をかけて添加しなくてもよく、例えば、原料シリカ粒子を一度に投入したり、または、原料シリカ粒子の添加速度を上げても、粉砕することができ、粉砕効率が高い。そして、本発明の有機溶媒分散シリカゾルの製造方法は、水を含有する溶媒を経由せず、シリカ粉末を有機溶媒中で粉砕することによりシリカ粉末を有機溶媒に直接分散する方法なので、溶媒置換等の操作が不要であり、簡便に且つ安価に有機溶媒分散シリカゾルを製造することができる。さらに、得られる有機溶媒分散シリカゾルは、保存安定性に優れたものである。したがって、製造後長期間放置してもシリカ粒子の凝集を抑制することができる。有機溶媒分散シリカゾルの保存安定性は、室温で3〜12ヶ月静置して物性値の変化を確認する方法や、50℃程度に加温して1ヶ月程度静置した後に物性値を確認する加温促進試験を行う方法などで確認することができる。なお、ナノ粒子で構成されるゾル製品は、輸送時や、保管時に常温以上で取り扱われる場合があるため、加温促進試験後でも物性値が殆ど変化しない程度の保存安定性を有することが求められている。また、この有機溶媒分散シリカゾルは、凝集粒子が少ないため、透明性に優れた樹脂膜等の充填剤や、コーティング剤となる。 By coexisting polyvalent carboxylic acid during pulverization in this way, even if the raw silica particles obtained by the precipitation method are pulverized in an organic solvent, the increase in viscosity is suppressed, so the pulverization efficiency can be improved. An organic solvent-dispersed silica sol can be easily produced. For example, it is possible to suppress the increase in viscosity during pulverization to some extent by adding raw material silica particles over time, but in the present invention, the increase in viscosity is suppressed. Therefore, it is not necessary to add the raw material silica particles over time little by little. For example, the raw material silica particles can be pulverized even if the raw silica particles are added at once or the addition speed of the raw silica particles is increased, High grinding efficiency. The method for producing the organic solvent-dispersed silica sol of the present invention is a method in which silica powder is directly dispersed in an organic solvent by pulverizing the silica powder in an organic solvent without passing through a solvent containing water. The organic solvent-dispersed silica sol can be produced easily and inexpensively. Furthermore, the obtained organic solvent-dispersed silica sol has excellent storage stability. Therefore, the aggregation of silica particles can be suppressed even when left for a long time after production. The storage stability of the organic solvent-dispersed silica sol is confirmed by a method of confirming a change in physical property value by standing at room temperature for 3 to 12 months, or by confirming a physical property value after warming to about 50 ° C. and allowing to stand for about 1 month. It can be confirmed by a method of performing a heating acceleration test. In addition, since sol products composed of nanoparticles may be handled at room temperature or higher during transportation or storage, it is required to have storage stability that does not substantially change the physical property value even after a heating acceleration test. It has been. Further, since this organic solvent-dispersed silica sol has few aggregated particles, it becomes a filler such as a resin film excellent in transparency and a coating agent.
なお、多価カルボン酸ではなく、1価のカルボン酸や鉱酸を用いた場合は、後述する比較例に示すように、原料シリカ粒子の粉砕時の粘度上昇が抑制され、且つ、得られる有機溶媒分散シリカゾルが保存安定性に優れるという本発明の効果を発揮することはできない。 In addition, when monovalent carboxylic acid or mineral acid is used instead of polyvalent carboxylic acid, as shown in a comparative example described later, an increase in viscosity at the time of pulverization of raw material silica particles is suppressed, and the resulting organic The effect of the present invention that the solvent-dispersed silica sol is excellent in storage stability cannot be exhibited.
このように多価カルボン酸を共存させた有機溶媒中で、沈降法で得られた原料シリカ粒子を粉砕すると、原料シリカ粒子の粉砕時の粘度上昇が抑制され、且つ、得られる有機溶媒分散シリカゾルが保存安定性に優れる理由は詳しくは不明だが、以下のように推測される。粉砕時に起こる粉砕メディア同士や、シリカ粒子、粉砕容器等の衝突によって、粉砕メディアや粉砕容器から、金属イオン(例えば、Na、Ca、Zrや、Al等)が生じると、生じた金属イオンが核となってシリカ粒子が凝集して粘度が上昇する。特に、有機溶媒中でのシリカ粒子の粉砕においては、水中でのシリカ粒子の粉砕よりも、粘度上昇は生じやすい。しかしながら、本発明においては、この粉砕によって生じた金属イオンが、共存させた多価カルボン酸と結合して、多価カルボン酸の金属塩を形成する。そして、この多価カルボン酸の金属塩は、有機溶媒への溶解度が小さいため、塩として析出し、シリカ粒子の凝集の核とはならない。したがって、本発明においては、シリカ粒子の粉砕時の粘度上昇が抑制される。なお、シリカ粒子の凝集の核となりうる金属イオンは、沈降法で得られた原料シリカ粒子からも生じる。 Thus, when the raw material silica particles obtained by the precipitation method are pulverized in an organic solvent coexisting with a polyvalent carboxylic acid, an increase in viscosity during pulverization of the raw silica particles is suppressed, and the obtained organic solvent-dispersed silica sol The reason why is excellent in storage stability is unknown in detail, but is presumed as follows. When metal ions (for example, Na, Ca, Zr, Al, etc.) are generated from the pulverization media or the pulverization container due to collisions between the pulverization media, silica particles, or the pulverization container, which occur during pulverization, the generated metal ions are nuclei. As a result, the silica particles are aggregated to increase the viscosity. In particular, in the pulverization of silica particles in an organic solvent, an increase in viscosity is more likely to occur than in the pulverization of silica particles in water. However, in the present invention, the metal ions generated by this pulverization are combined with the coexisting polyvalent carboxylic acid to form a polyvalent carboxylic acid metal salt. And since this metal salt of polyvalent carboxylic acid has low solubility in an organic solvent, it precipitates as a salt and does not become a nucleus of aggregation of silica particles. Therefore, in the present invention, an increase in viscosity during pulverization of silica particles is suppressed. In addition, the metal ion which can become a nucleus of aggregation of a silica particle arises also from the raw material silica particle obtained by the sedimentation method.
ここで、原料シリカ粒子を粉砕する粉砕機として高速回転のビーズミルなど高エネルギーで粉砕する粉砕機を用いると、ボールミル等のマイルドな方式の粉砕機に比べて、粉砕効率は良いが、一方で粉砕時に起こる粉砕メディア同士や、シリカ粒子、粉砕容器等の衝突によって生じる、粉砕メディアや粉砕容器からの金属イオンが多いためか、粘度上昇が特に生じやすい。また、連続式粉砕機であるビーズミルにおいては、スラリーとビーズの分離を遠心分離によって行っているものも多いため、バッチ式の粉砕機に比べて粘度上昇の影響を受け易く、少ない粘度増加でもビーズ分離が行えなくなり、運転が継続できなくなる。本発明においては、バッチ式の粉砕機は勿論、ビーズミル等の連続式粉砕機を用いても、粘度上昇を好適に抑制することができ、粉砕が容易である。 Here, if a pulverizer that pulverizes with high energy, such as a high-speed rotating bead mill, is used as a pulverizer for pulverizing the raw material silica particles, the pulverization efficiency is better than that of a mild type pulverizer such as a ball mill. The increase in viscosity is particularly likely to occur due to the large amount of metal ions from the grinding media and the grinding vessel that are generated by collisions between the grinding media and the silica particles and the grinding vessel. In addition, bead mills, which are continuous grinders, often use a centrifugal separator to separate slurry and beads, so they are more susceptible to increased viscosity compared to batch grinders, and even with a small increase in viscosity. Separation cannot be performed and operation cannot be continued. In the present invention, not only a batch type pulverizer but also a continuous pulverizer such as a bead mill can be used to suitably suppress an increase in viscosity, and pulverization is easy.
このような本発明の製造方法で得られる有機溶媒分散シリカゾルは、粉砕されたシリカ粒子が有機溶媒に分散したゾル状態のシリカ粒子分散液である。そして、粉砕されたシリカ粒子と、多価カルボン酸と、有機溶媒と、粉砕により生じた多価カルボン酸の金属塩を含有する。 The organic solvent-dispersed silica sol obtained by the production method of the present invention is a silica particle dispersion in a sol state in which pulverized silica particles are dispersed in an organic solvent. And it contains the pulverized silica particles, polyvalent carboxylic acid, organic solvent, and metal salt of polyvalent carboxylic acid generated by pulverization.
また、本発明の製造方法により製造される有機溶媒分散シリカゾルが含有する粉砕されたシリカ粒子の粒子径は、例えば、動的光散乱法による分散粒子径(光強度平均径)は10〜250nmとすることができる。 Moreover, the particle diameter of the pulverized silica particles contained in the organic solvent-dispersed silica sol produced by the production method of the present invention is, for example, a dispersed particle diameter (light intensity average diameter) by a dynamic light scattering method of 10 to 250 nm. can do.
また、本発明の製造方法では、粉砕時の粘度上昇が抑制されるため、高濃度の原料シリカ粒子を粉砕機に添加することができ、得られる有機溶媒分散シリカゾルの固形分濃度(すなわちシリカ粒子濃度)を5〜50質量%という高濃度にすることができる。 Further, in the production method of the present invention, since an increase in viscosity during pulverization is suppressed, high-concentration raw material silica particles can be added to the pulverizer, and the solid content concentration of the obtained organic solvent-dispersed silica sol (ie, silica particles) The concentration can be as high as 5 to 50% by mass.
また、粉砕により生じて析出した多価カルボン酸の金属塩の一部または全部を、粉砕工程の後に除去することが好ましい。また、粉砕工程の後、放置等した後に、多価カルボン酸の金属塩を除去するようにしてもよい。 Moreover, it is preferable to remove part or all of the metal salt of the polyvalent carboxylic acid generated and precipitated by pulverization after the pulverization step. In addition, after the pulverization step and after standing, the metal salt of the polyvalent carboxylic acid may be removed.
多価カルボン酸の金属塩を除去する方法としては、例えば、ろ過、遠心分離や、静置して多価カルボン酸の金属塩を沈降させた後にデカンテーション等を行なう方法等が挙げられる。 Examples of the method for removing the metal salt of the polyvalent carboxylic acid include filtration, centrifugation, and a method of allowing the metal salt of the polyvalent carboxylic acid to settle and allowing the decantation to be performed.
また、さらに、有機珪素化合物を添加する工程を有していてもよい。有機珪素化合物を添加することにより、得られる有機溶媒分散シリカゾルのシリカ粒子と樹脂との親和性を向上させることができる。シリカ粒子と樹脂との親和性を向上させることにより、有機溶媒分散シリカゾルを樹脂と混合して得られるコーティング剤等の透明性を高くすることができる。 Furthermore, you may have the process of adding an organosilicon compound. By adding the organosilicon compound, the affinity between the silica particles of the obtained organic solvent-dispersed silica sol and the resin can be improved. By improving the affinity between the silica particles and the resin, the transparency of the coating agent obtained by mixing the organic solvent-dispersed silica sol with the resin can be increased.
このような有機珪素化合物の例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルプロポキシシラン、フェニルジメチルメトキシシラン、クロロプロピルジメチルメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシロキサン、1,3−ジブチルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、ヘキサエチルジシロキサン、3−グリシドキシプロピルペンタメチルジシロキサン類などが挙げられる。このような有機珪素化合物を添加する場合は、例えば得られる有機溶媒分散シリカゾルが含有するシリカ粒子の固形分に対して1〜20質量%程度とすればよい。 Examples of such organosilicon compounds include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, phenyldimethylmethoxysilane, chloropropyldimethylmethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane. Ethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, vinyl Trimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxy Lopyltrimethoxysilane, 3-glycidoxypropylmethylditriethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxy Silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2 -(Aminoethyl) -3-aminopropylmethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane Lan, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, Alkoxysilanes such as 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, hexamethyldisiloxane, 1,3-dibutyltetramethyldisiloxane, 1,3- Examples include diphenyltetramethyldisiloxane, 1,3-divinyltetramethyldisiloxane, hexaethyldisiloxane, and 3-glycidoxypropylpentamethyldisiloxane. When such an organosilicon compound is added, for example, the content may be about 1 to 20% by mass with respect to the solid content of the silica particles contained in the obtained organic solvent-dispersed silica sol.
また、本発明の有機溶媒分散シリカゾルは、各種界面活性剤、シランカップリング剤や、アルコキシシラン類等を含有していてもよい。 The organic solvent-dispersed silica sol of the present invention may contain various surfactants, silane coupling agents, alkoxysilanes, and the like.
なお、有機珪素化合物等のその他の添加剤の添加時期は特に限定されず、粉砕の前または粉砕の途中で添加することができる。 In addition, the addition time of other additives, such as an organosilicon compound, is not specifically limited, It can add before a grinding | pulverization or in the middle of a grinding | pulverization.
このような本発明の製造方法により得られた有機溶媒分散シリカゾルは、例えば、樹脂や樹脂原料、バインダーに添加することにより、コーティングやナノコンポジットの用途に用いることができる。 The organic solvent-dispersed silica sol obtained by the production method of the present invention can be used, for example, for coating or nanocomposite by adding it to a resin, a resin raw material, or a binder.
以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。
〔実施例1〕
容量500ml,直径70mmのポリ容器に、原料シリカ粒子として表1に記載する沈降法で得られたシリカパウダーa 41.3g、2−プロパノール(以下IPAとも記載する。)(試薬1級)148.1g、L(+)−酒石酸(試薬特級)0.80g、粉砕メディアとして直径1〜1.5mmソーダライムガラスビーズ180gを入れ、回転数130rpmで72時間粉砕後、ビーズをろ別し、IPA分散シリカゾル(有機溶媒分散シリカゾル)を得た。用いたシリカパウダーの物性を表1に、また、シリカゾルの配合割合を表2−1に示す。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
[Example 1]
In a plastic container having a capacity of 500 ml and a diameter of 70 mm, 41.3 g of silica powder a obtained by the precipitation method described in Table 1 as raw silica particles, 2-propanol (hereinafter also referred to as IPA) (reagent grade 1) 148. 1 g, L (+)-tartaric acid (reagent special grade) 0.80 g, 180 g of soda lime glass beads having a diameter of 1 to 1.5 mm as grinding media, and grinding for 72 hours at 130 rpm, the beads are filtered and dispersed in IPA A silica sol (organic solvent-dispersed silica sol) was obtained. The physical properties of the silica powder used are shown in Table 1, and the blending ratio of silica sol is shown in Table 2-1.
なお、表1において、固形分は、シリカパウダーを800℃で30分間焼成して求めた。また、比表面積は、以下に記載するシアーズ滴定法により求めた。まず、固形分として1.50gのシリカパウダーを200mlビーカーに採取し、約100mlの純水を加えてスラリーとした後、30gのNaClを添加して溶解した。次に、1N−HClを添加してスラリーのpHを約3に調整した後、スラリーが150mlになるまで純水を加えた。このスラリーに対して25℃で0.1N−NaOHでpH滴定を行い、pHを4.00から9.00に上げるのに必要な0.1N−NaOH溶液の容量V(ml)を測定し、下記のシアーズの式(1)によって比表面積を求めた。
比表面積(m2/g)=32×V(ml)−25・・・・(1)
In Table 1, the solid content was determined by baking silica powder at 800 ° C. for 30 minutes. The specific surface area was determined by the Sears titration method described below. First, 1.50 g of silica powder as a solid content was collected in a 200 ml beaker, about 100 ml of pure water was added to form a slurry, and then 30 g of NaCl was added and dissolved. Next, 1N-HCl was added to adjust the pH of the slurry to about 3, and then pure water was added until the slurry became 150 ml. The slurry was subjected to pH titration with 0.1N NaOH at 25 ° C., and the volume V (ml) of the 0.1N NaOH solution necessary for raising the pH from 4.00 to 9.00 was measured. The specific surface area was determined by the following Sears formula (1).
Specific surface area (m 2 / g) = 32 × V (ml) −25 (1)
そして、シリカパウダーの平均粒子径は、島津製作所製レーザー回折式粒度分布測定装置SALD−7000で測定したメディアン径とした。分散媒は純水を用い、粒子の屈折率は1.45−0.10iを用いて求めた。また、シリカパウダーのpHは、シリカパウダーに対し質量基準で9.0倍の純水を添加して作製したスラリーについて測定した。 The average particle diameter of the silica powder was the median diameter measured with a laser diffraction particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation. The dispersion medium was determined using pure water, and the refractive index of the particles was determined using 1.45-0.10i. The pH of the silica powder was measured for a slurry prepared by adding 9.0 times pure water to the silica powder on a mass basis.
得られたIPA分散シリカゾルは、800℃で30分間焼成して求めた固形分は20.0%、カールフィッシャー滴定法による水分1.6%、B型粘度計で測定した20℃における粘度は13.8mPa・s、動的光散乱法による分散粒子径(光強度平均径)は187nmであった。なお、動的光散乱法による分散粒子径は、シリカゾルを分散媒と同じ溶媒で体積基準で100倍に希釈し、Malvern Instruments製のZetasizer Nanoで測定した平均粒子径(Z−Average)である。また、得られたIPA分散シリカゾルに水を、質量比でIPA分散シリカゾル:水=1:1になるように添加して作製した溶液をpHメーターで測定したところ、pHは3.5であった。 The obtained IPA-dispersed silica sol had a solid content of 20.0% obtained by baking at 800 ° C. for 30 minutes, a moisture content of 1.6% by Karl Fischer titration, and a viscosity at 20 ° C. measured by a B-type viscometer of 13 The dispersion particle diameter (light intensity average diameter) by dynamic light scattering method was 187 nm. In addition, the dispersed particle diameter by the dynamic light scattering method is an average particle diameter (Z-Average) measured by Zetasizer Nano manufactured by Malvern Instruments after diluting silica sol 100 times on a volume basis with the same solvent as the dispersion medium. Further, when a solution prepared by adding water to the obtained IPA-dispersed silica sol so that the mass ratio was IPA-dispersed silica sol: water = 1: 1 was measured with a pH meter, the pH was 3.5. .
また、このIPA分散シリカゾルの保存安定性を確認するために、IPA分散シリカゾルをガラス瓶に密閉し50℃で28日静置する加温促進試験を実施した。この結果、50℃で28日静置した後のIPA分散シリカゾルは、沈降、粘度上昇、分散粒子径の上昇は認められなかった。50℃で28日静置した後のIPA分散シリカゾルの粘度及び分散粒子径を表2−1に示す。 In order to confirm the storage stability of the IPA-dispersed silica sol, a heating acceleration test was performed in which the IPA-dispersed silica sol was sealed in a glass bottle and allowed to stand at 50 ° C. for 28 days. As a result, the IPA-dispersed silica sol after standing at 50 ° C. for 28 days showed no sedimentation, increased viscosity, or increased dispersed particle size. Table 2-1 shows the viscosity and dispersed particle size of the IPA-dispersed silica sol after standing at 50 ° C. for 28 days.
〔実施例2〜5〕
シリカパウダーの種類(表1)及び配合割合、多価カルボン酸の種類及び配合割合や、有機溶媒の配合割合を表2−1に示すようにした以外は、実施例1と同様の操作を行って、有機溶媒分散シリカゾルを得て、物性の測定及び加温促進試験を実施した。
[Examples 2 to 5]
The same operation as in Example 1 was performed except that the types (Table 1) and blending ratios of silica powder, the types and blending ratios of polyvalent carboxylic acids, and the blending ratios of organic solvents were as shown in Table 2-1. Thus, an organic solvent-dispersed silica sol was obtained, and physical properties were measured and a heating acceleration test was performed.
〔比較例1〜2〕
多価カルボン酸を添加せず、また、シリカパウダーの種類及び配合割合や、有機溶媒の配合割合を表2−2に示すようにした以外は、実施例1と同様の操作を行って、有機溶媒分散シリカゾルを得て、物性の測定及び加温促進試験を実施した。結果を表2−2に示す。
[Comparative Examples 1-2]
The same operation as in Example 1 was performed except that the polyvalent carboxylic acid was not added, and the type and blending ratio of the silica powder and the blending ratio of the organic solvent were as shown in Table 2-2. A solvent-dispersed silica sol was obtained, and physical properties were measured and a heating acceleration test was performed. The results are shown in Table 2-2.
〔比較例3〕
多価カルボン酸の代わりに10%硝酸を1.5g添加し、また、シリカパウダーの種類及び配合割合や、有機溶媒の配合割合を表2−2に示すようにした以外は、実施例1と同様の操作を行って、有機溶媒分散シリカゾルを得て、物性の測定及び加温促進試験を実施した。結果を表2−2に示す。
[Comparative Example 3]
Example 1 except that 1.5 g of 10% nitric acid was added instead of the polyvalent carboxylic acid, and the type and blending ratio of the silica powder and the blending ratio of the organic solvent were as shown in Table 2-2. The same operation was performed to obtain an organic solvent-dispersed silica sol, and physical properties were measured and a heating acceleration test was performed. The results are shown in Table 2-2.
〔比較例4〕
多価カルボン酸の代わりにグリコール酸を0.61g添加し、また、シリカパウダーの種類及び配合割合や、有機溶媒の配合割合を表2−2に示すようにした以外は、実施例1と同様の操作を行って、有機溶媒分散シリカゾルを得て、物性の測定及び加温促進試験を実施した。結果を表2−2に示す。
[Comparative Example 4]
As in Example 1, except that 0.61 g of glycolic acid was added instead of the polyvalent carboxylic acid, and the kind and blending ratio of silica powder and blending ratio of the organic solvent were as shown in Table 2-2. Thus, an organic solvent-dispersed silica sol was obtained, and physical properties were measured and a heating acceleration test was performed. The results are shown in Table 2-2.
〔実施例6〕
スラリータンク付のビーズミル(寿工業(株)製 アペックスミル015 粉砕室容量150ml)に直径0.2mmのソーダライムビーズを100ml充填し、2−プロパノール 1545gに酒石酸8.4gを溶解した溶液を仕込み、粉砕機(ビーズミル)を周速6m/sで循環運転しながら、シリカパウダーb 445gを15分かけて少量ずつ添加した。添加終了後、周速を8m/sに上げて8時間循環粉砕を行い、実施例6−1のIPA分散シリカゾルを得た。この実施例6−1のIPA分散シリカゾル 800gを透明な1Lプラスチック容器に移して、室温(23℃)で7日間静置した。静置後、容器の下部に微量の白色沈殿物が生成していた。この上部のゾルを、デカンテーションで回収した、すなわち、実施例6−1のIPA分散シリカゾルを静置することにより生じた沈殿を除去した。この回収したゾルは795gであり、これを実施例6−2のIPA分散シリカゾルとした。
Example 6
A bead mill with a slurry tank (Apex Mill 015 manufactured by Kotobuki Industries Co., Ltd., 150 ml capacity) is filled with 100 ml of 0.2 mm soda lime beads, and a solution of 8.4 g of tartaric acid dissolved in 1545 g of 2-propanol is prepared. While circulating the crusher (bead mill) at a peripheral speed of 6 m / s, 445 g of silica powder b was added little by little over 15 minutes. After completion of the addition, the peripheral speed was increased to 8 m / s, and circulation pulverization was performed for 8 hours to obtain the IPA-dispersed silica sol of Example 6-1. 800 g of the IPA-dispersed silica sol of Example 6-1 was transferred to a transparent 1 L plastic container and allowed to stand at room temperature (23 ° C.) for 7 days. After standing, a small amount of white precipitate was formed at the bottom of the container. The upper sol was recovered by decantation, that is, the precipitate generated by standing the IPA-dispersed silica sol of Example 6-1 was removed. The recovered sol weighed 795 g, and was used as the IPA-dispersed silica sol of Example 6-2.
実施例6−1のIPA分散シリカゾル及び実施例6−2のIPA分散シリカゾルについて、実施例1と同様の方法で、それぞれ物性の測定及び加温促進試験を実施した。結果を表2−1に示す。 With respect to the IPA-dispersed silica sol of Example 6-1 and the IPA-dispersed silica sol of Example 6-2, physical property measurements and warming acceleration tests were performed in the same manner as in Example 1, respectively. The results are shown in Table 2-1.
また、この上部のゾルをデカンテーションで回収した残り、すなわち白色沈殿物を有するプラスチック容器にIPA 10gを加え、白色沈殿物をスラリーとして15g回収した。この白色沈殿物のスラリー中にはプラスチック容器内部に付着して残ったシリカゾルも含まれる。この白色沈殿物のスラリーについて、回収量(質量)、固形分、アニオン及び金属不純物を求めた。また、実施例6−2のIPA分散シリカゾルについても、回収量、固形分、アニオン及び金属不純物を求めた。なお、固形分は、白色沈殿物のスラリーまたは実施例6−2のIPA分散シリカゾルを800℃で30分間焼成して求め、アニオン及び金属不純物は、この固形分に対する質量%とした。結果を表3に示す。 Further, 10 g of IPA was added to the remainder of the sol collected by decantation, that is, a plastic container having a white precipitate, and 15 g of the white precipitate was recovered as a slurry. This white precipitate slurry contains silica sol remaining inside the plastic container. About this white precipitate slurry, the recovered amount (mass), solid content, anion and metal impurities were determined. Moreover, about the IPA dispersion | distribution silica sol of Example 6-2, the collection amount, solid content, an anion, and the metal impurity were calculated | required. The solid content was obtained by baking a white precipitate slurry or the IPA-dispersed silica sol of Example 6-2 at 800 ° C. for 30 minutes, and the anions and metal impurities were mass% based on the solid content. The results are shown in Table 3.
〔実施例7〕
実施例6と同じスラリータンク付のビーズミルに、直径0.2mmのソーダライムビーズを100ml充填し、2−プロパノール 1528gに酒石酸8.4gを溶解した溶液を仕込み、粉砕機(ビースミル)を周速6m/sで循環運転しながら、シリカパウダーb 443gを15分かけて少量ずつ添加し、続いてメチルトリメトキシシラン20gを添加した。添加終了後、周速を8m/sに上げて8時間循環粉砕を行った。得られたゾルを室温で7日間静置し、生じた微量の沈殿物をテカンテーションで除去して、IPA分散シリカゾル(有機溶媒分散シリカゾル)を得た。
Example 7
A bead mill with the same slurry tank as in Example 6 was filled with 100 ml of 0.2 mm diameter soda lime beads, and a solution of 8.4 g of tartaric acid dissolved in 1528 g of 2-propanol was charged. While circulating at / s, 443 g of silica powder b was added in small portions over 15 minutes, followed by 20 g of methyltrimethoxysilane. After completion of the addition, the peripheral speed was increased to 8 m / s, and cyclic grinding was performed for 8 hours. The obtained sol was allowed to stand at room temperature for 7 days, and the generated trace amount of precipitate was removed by decantation to obtain an IPA-dispersed silica sol (organic solvent-dispersed silica sol).
得られたIPA分散シリカゾルを、実施例1と同様の方法で測定したところ、固形分20.0%、水分1.6%、粘度11.7mPa・s、pH 3.6、分散粒子径155nmであった。また、このIPA分散シリカゾルをガラス瓶に密閉した後のIPA分散シリカゾルは、沈降、粘度上昇、分散粒子径の上昇は認められなかった。50℃で28日静置した後のIPA分散シリカゾルの粘度及び分散粒子径を表2−1に示す。 The obtained IPA-dispersed silica sol was measured in the same manner as in Example 1. As a result, the solid content was 20.0%, the moisture was 1.6%, the viscosity was 11.7 mPa · s, the pH was 3.6, and the dispersed particle size was 155 nm. there were. In addition, the IPA-dispersed silica sol after the IPA-dispersed silica sol was sealed in a glass bottle did not show sedimentation, increased viscosity, or increased dispersed particle size. Table 2-1 shows the viscosity and dispersed particle size of the IPA-dispersed silica sol after standing at 50 ° C. for 28 days.
〔比較例5〕
実施例6と同じスラリータンク付のビーズミルに、直径0.2mmのソーダライムビーズを100ml充填し、2−プロパノール 1553gを仕込み、粉砕機(ビースミル)を周速6m/sで循環運転しながら、シリカパウダーb 445gを少量ずつ20分かけて添加した。添加終了後、周速を8m/sに上げて循環粉砕を開始したところ、数分後に著しく粘度が増加し、送液が行えなくなったため、運転を中止した。
[Comparative Example 5]
The same bead mill with slurry tank as in Example 6 was filled with 100 ml of 0.2 mm soda lime beads, charged with 1553 g of 2-propanol, and the pulverizer (bead mill) was circulated at a peripheral speed of 6 m / s, while silica. 445 g of powder b was added in small portions over 20 minutes. After the addition was completed, the peripheral speed was increased to 8 m / s and circulation pulverization was started. After a few minutes, the viscosity increased remarkably and the liquid could not be fed, so the operation was stopped.
〔比較例6〕
実施例6と同じスラリータンク付のビーズミルに、直径0.2mmのソーダライムビーズを100ml充填し、2−プロパノール 1536gを仕込み、粉砕機(ビースミル)を周速6m/sで循環運転しながら、シリカパウダーb 443gを45分かけて少量ずつ添加した。続いてメチルトリメトキシシラン 20gを添加した。添加終了後、周速を8m/sに上げて15時間循環粉砕を行って、IPA分散シリカゾル(有機溶媒分散シリカゾル)を得た。得られたIPA分散シリカゾルを、実施例1と同様の方法で測定したところ、固形分20.0%、水分1.6%、粘度20.0mPa・s、pH7.1、分散粒子径160nmであった。また、このIPA分散シリカゾルをガラス瓶に密閉し50℃で静置したところ、粘度が上昇し、2週間後にゲル化した。
[Comparative Example 6]
The same bead mill with slurry tank as in Example 6 was filled with 100 ml of 0.2 mm soda lime beads, charged with 1536 g of 2-propanol, and the pulverizer (bead mill) was circulated at a peripheral speed of 6 m / s, while silica. 443 g of powder b was added in small portions over 45 minutes. Subsequently, 20 g of methyltrimethoxysilane was added. After completion of the addition, the peripheral speed was increased to 8 m / s and circulation pulverization was performed for 15 hours to obtain an IPA-dispersed silica sol (organic solvent-dispersed silica sol). The obtained IPA-dispersed silica sol was measured by the same method as in Example 1. The solid content was 20.0%, the moisture was 1.6%, the viscosity was 20.0 mPa · s, the pH was 7.1, and the dispersed particle size was 160 nm. It was. When this IPA-dispersed silica sol was sealed in a glass bottle and allowed to stand at 50 ° C., the viscosity increased and gelled after 2 weeks.
〔実施例8〕
実施例6と同じスラリータンク付のビーズミルに、直径0.2mmのソーダライムビーズを100ml充填し、1−メトキシ−2−プロパノール(以下PGMとも記載する) 1520gに酒石酸8.4gを溶解した溶液を仕込み、粉砕機(ビーズミル)を周速6m/sで循環運転しながら、シリカパウダーbを443g添加し、続いて3−メタクリロキシプロピルトリメトキシシラン30gを添加した。添加終了後、周速を8m/sに上げて8時間循環粉砕を行ってゾルを得た。このゾルを室温で5日間静置し、生じた微量の沈殿物を1μmのガラス繊維製ろ紙(アドバンテックGA−100)をセットしたブフナーロートで吸引ろ過して除去し、PGM分散シリカゾル(有機溶媒分散シリカゾル)を得た。
Example 8
A bead mill with the same slurry tank as in Example 6 was filled with 100 ml of 0.2 mm diameter soda lime beads, and a solution of 8.4 g of tartaric acid dissolved in 1520 g of 1-methoxy-2-propanol (hereinafter also referred to as PGM). 443g of silica powder b was added while charging and circulating the grinder (bead mill) at a peripheral speed of 6m / s, and then 30g of 3-methacryloxypropyltrimethoxysilane was added. After completion of the addition, the peripheral speed was increased to 8 m / s and circulation pulverization was performed for 8 hours to obtain a sol. This sol was allowed to stand at room temperature for 5 days, and a small amount of the resulting precipitate was removed by suction filtration with a Buchner funnel set with 1 μm glass fiber filter paper (Advantech GA-100), and PGM-dispersed silica sol (organic solvent dispersed) Silica sol) was obtained.
得られたPGM分散シリカゾルを、実施例1と同様の方法で測定したところ、固形分20.0%、水分1.6%、粘度12.0mPa・s、pH3.7、分散粒子径153nmであった。また、このPGM分散シリカゾルを50℃で28日間静置した後、再分析を行ったところ、粘度は12.4mPa・s、分散粒子径は155nmであった。なお、pHは、PGM分散シリカゾルと同質量の水と同質量のメタノールを添加した溶液のpHをpHメーターで測定した。 The obtained PGM-dispersed silica sol was measured in the same manner as in Example 1. The solid content was 20.0%, the moisture was 1.6%, the viscosity was 12.0 mPa · s, the pH was 3.7, and the dispersed particle size was 153 nm. It was. When this PGM-dispersed silica sol was allowed to stand at 50 ° C. for 28 days and then reanalyzed, the viscosity was 12.4 mPa · s and the dispersed particle size was 155 nm. In addition, pH measured the pH of the solution which added the same mass water and the same mass methanol as the PGM dispersion | distribution silica sol with the pH meter.
これらの結果、多価カルボン酸が共存する有機溶媒中で原料シリカ粒子を粉砕した実施例1〜8は、粉砕中の粘度の上昇が小さく、容易に粉砕することができた。一方、多価カルボン酸を共存させない有機溶媒中で粉砕した比較例、具体的には、酸を共存させない有機溶媒中で粉砕した比較例1及び2、硝酸を共存させた有機溶媒中で粉砕した比較例3や、1価のカルボン酸を共存させた有機溶媒中で粉砕した比較例4では、粉砕中に、著しく粘度が上昇し、粉砕し難かった。 As a result, Examples 1 to 8 in which the raw material silica particles were pulverized in an organic solvent in which a polycarboxylic acid coexists had a small increase in viscosity during pulverization and could be easily pulverized. On the other hand, the comparative example which grind | pulverized in the organic solvent which does not coexist polyvalent carboxylic acid, specifically, the comparative example 1 and 2 which grind | pulverized in the organic solvent which does not coexist an acid, and grind | pulverized in the organic solvent which coexisted nitric acid In Comparative Example 3 and Comparative Example 4 pulverized in an organic solvent coexisting with a monovalent carboxylic acid, the viscosity increased significantly during pulverization, and pulverization was difficult.
また、連続式粉砕機を用いた比較例5では、粘度が上昇し送液が行えなくなり、粉砕できなかった。また、シリカパウダーの添加を、少量ずつ時間をかけて行った比較例6では、比較例5のように送液が行えなくなることはなかったが、実施例6〜8と比較すると、粉砕中の粘度上昇が大きかった。また、比較例5では、シリカパウダーの添加および粉砕に時間がかかり、粉砕効率が悪かった。なお、比較例1〜6は、粉砕中に一旦著しく粘度が上昇し、その後粘度は低下した。 Further, in Comparative Example 5 using a continuous pulverizer, the viscosity increased and liquid feeding could not be performed, and pulverization could not be performed. Moreover, in Comparative Example 6 in which the addition of silica powder was performed over time little by little, liquid feeding could not be performed unlike Comparative Example 5, but in comparison with Examples 6 to 8, The increase in viscosity was large. In Comparative Example 5, it took time to add and pulverize the silica powder, and the pulverization efficiency was poor. In Comparative Examples 1 to 6, the viscosity once increased significantly during pulverization, and then the viscosity decreased.
また、実施例1〜8では、28日間静置後も沈降、粘度上昇、分散粒子径の上昇は認められなかったが、多価カルボン酸を共存させない有機溶媒中で粉砕した比較例1〜5では、静置すると、シリカ粒子が凝集したためか、粘度が著しく上昇し、保存安定性が悪かった。 Moreover, in Examples 1-8, sedimentation, increase in viscosity, and increase in dispersed particle size were not observed even after standing for 28 days, but Comparative Examples 1-5 were pulverized in an organic solvent in which no polyvalent carboxylic acid was allowed to coexist. Then, after standing, the viscosity was remarkably increased due to the aggregation of the silica particles, and the storage stability was poor.
また、表3に示すように、生じた白色沈殿物と、上記の実施例6−2のIPA分散シリカゾルと比較すると、白色沈殿物中には、多価カルボン酸である酒石酸と、粉砕メディアや粉砕容器から生じる金属(Na、Ca、Mg)との化合物である多価カルボン酸の塩が含まれ、特に、酒石酸とナトリウムが特に高濃度で含まれていた。 Further, as shown in Table 3, when compared with the generated white precipitate and the IPA-dispersed silica sol of Example 6-2, the white precipitate contains tartaric acid, which is a polyvalent carboxylic acid, pulverization media, The salt of polyvalent carboxylic acid which is a compound with the metal (Na, Ca, Mg) generated from the pulverization container was included, and in particular, tartaric acid and sodium were included at a particularly high concentration.
〔試験例1〕
UV(紫外線)硬化性樹脂であるペンタエリスリトールトリアクリレート(日本化薬(株)製KAYARAD PET3A)100質量部に対し、実施例6−1、実施例6−2及び実施例7で作成したIPA分散シリカゾルを、それぞれ、シリカ固形分として25質量部又は50質量部混合し、さらに重合開始剤(イルガキュア184)を5質量部混合した。得られた混合物を、PET(ポリエチレンテレフタラート)フィルム(東洋紡コスモシャインA4100、125μm)にワイヤーバー#9(WET膜厚20.6μm)で塗布した。これを50℃ホットプレート上で10分乾燥後、UVを照射して硬化させた。得られたフィルムの全光線透過率及びヘイズを、TOKYO DENSHOKU,SPECTRAL HAZE METER,TC−H3DPK−MKIIにて測定した。また得られたフィルムの鉛筆硬度を測定した。結果を表4に示す。
[Test Example 1]
The IPA dispersion prepared in Example 6-1, Example 6-2, and Example 7 with respect to 100 parts by mass of pentaerythritol triacrylate (KAYARAD PET3A manufactured by Nippon Kayaku Co., Ltd.), which is a UV (ultraviolet) curable resin. Silica sol was mixed in an amount of 25 parts by mass or 50 parts by mass as silica solid content, and further 5 parts by mass of a polymerization initiator (Irgacure 184) was mixed. The obtained mixture was applied to a PET (polyethylene terephthalate) film (Toyobo Cosmo Shine A4100, 125 μm) with wire bar # 9 (WET film thickness 20.6 μm). This was dried on a hot plate at 50 ° C. for 10 minutes and then cured by irradiation with UV. The total light transmittance and haze of the obtained film were measured with TOKYO DENSHOKU, SPECTRAL HAZE METER, TC-H3DPK-MKII. Moreover, the pencil hardness of the obtained film was measured. The results are shown in Table 4.
〔試験例2〕
UV硬化性樹脂であるUA−306H(共栄社化学株式会社製、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネート、ウレタン変性アクリル樹脂)70質量部をメチルエチルケトン(MEK)30質量部に溶解した液に、樹脂固形分100質量部に対し、実施例6−2及び実施例7で作成したIPA分散シリカゾルを、それぞれ、シリカ固形分として25質量部又は50質量部混合し、さらに重合開始剤(イルガキュア184)を5質量部混合した。得られた混合物を、PET(ポリエチレンテレフタラート)フィルム(東洋紡コスモシャインA4100、125μm)にワイヤーバー#9(WET膜厚20.6μm)で塗布した。これを50℃ホットプレート上で10分乾燥後、UVを照射して硬化させた。得られたフィルムの全光線透過率及びヘイズを、TOKYO DENSHOKU,SPECTRAL HAZE METER,TC−H3DPK−MKIIにて測定した。また得られたフィルムの鉛筆硬度を測定した。結果を表5に示す。
[Test Example 2]
Resin solid content 100 in a solution obtained by dissolving 70 parts by mass of UA-306H (Kyoeisha Chemical Co., Ltd., pentaerythritol triacrylate hexamethylene diisocyanate, urethane-modified acrylic resin), which is a UV curable resin, in 30 parts by mass of methyl ethyl ketone (MEK). 25 parts by mass or 50 parts by mass of the IPA-dispersed silica sol prepared in Example 6-2 and Example 7 as silica solids is mixed with 5 parts by mass of the polymerization initiator (Irgacure 184). Mixed. The obtained mixture was applied to a PET (polyethylene terephthalate) film (Toyobo Cosmo Shine A4100, 125 μm) with wire bar # 9 (WET film thickness 20.6 μm). This was dried on a hot plate at 50 ° C. for 10 minutes and then cured by irradiation with UV. The total light transmittance and haze of the obtained film were measured with TOKYO DENSHOKU, SPECTRAL HAZE METER, TC-H3DPK-MKII. Moreover, the pencil hardness of the obtained film was measured. The results are shown in Table 5.
表4及び表5に示すように、本発明の有機溶媒分散シリカゾルは、いずれの実施例を用いた場合も、得られたUV硬化フィルムは高い透明性を有していた。また、いずれの実施例もフィルム等のハードコート剤として十分な硬度を有していた。また、実施例の有機溶媒分散シリカゾルのかわりに多価カルボン酸を共存させずに粉砕した比較例1〜5の有機溶媒分散シリカゾルを用いると、比較例1〜5の有機溶媒分散シリカゾルはシリカ粒子が凝集し、上記実施例の有機溶媒分散シリカゾルを用いた場合のように、高い透明性を有するものは得られない。 As shown in Tables 4 and 5, the organic solvent-dispersed silica sol of the present invention had high transparency even when any of the Examples was used. In addition, all of the examples had sufficient hardness as a hard coat agent such as a film. In addition, when the organic solvent-dispersed silica sol of Comparative Examples 1 to 5 pulverized without coexisting polyvalent carboxylic acid instead of the organic solvent-dispersed silica sol of Example is used, the organic solvent-dispersed silica sol of Comparative Examples 1 to 5 is silica particles. Aggregates, and a product having high transparency cannot be obtained as in the case of using the organic solvent-dispersed silica sol of the above example.
Claims (3)
An organic silicon compound is added, The method for producing an organic solvent-dispersed silica sol according to claim 1 or 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012120980A JP5862886B2 (en) | 2012-05-28 | 2012-05-28 | Method for producing organic solvent-dispersed silica sol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012120980A JP5862886B2 (en) | 2012-05-28 | 2012-05-28 | Method for producing organic solvent-dispersed silica sol |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013245148A JP2013245148A (en) | 2013-12-09 |
JP5862886B2 true JP5862886B2 (en) | 2016-02-16 |
Family
ID=49845209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012120980A Active JP5862886B2 (en) | 2012-05-28 | 2012-05-28 | Method for producing organic solvent-dispersed silica sol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5862886B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023145780A1 (en) | 2022-01-28 | 2023-08-03 | 日産化学株式会社 | Low-dielectric-tangent silica sol, and method for producing low-dielectric-tangent silica sol |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10501637B2 (en) * | 2014-08-07 | 2019-12-10 | Nissan Chemical Industries, Ltd. | Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of silane-treated forsterite fine particles and production method therefor |
JP6455142B2 (en) * | 2014-12-26 | 2019-01-23 | 三菱マテリアル株式会社 | Silica sol dispersion and silica porous film forming composition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4301858B2 (en) * | 2003-05-12 | 2009-07-22 | 株式会社トクヤマ | Wet silica dispersion and method for producing the same |
FR2886285B1 (en) * | 2005-05-27 | 2008-05-30 | Rhodia Chimie Sa | PROCESS FOR THE PREPARATION OF PRECIPITATED SILICA, PRECIPITATED SILICA AND USES, IN PARTICULAR AS CHARGING IN SILICONE MATRICES |
DE102010001135A1 (en) * | 2010-01-22 | 2011-07-28 | Evonik Degussa GmbH, 45128 | Stable aqueous dispersions of precipitated silica |
-
2012
- 2012-05-28 JP JP2012120980A patent/JP5862886B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023145780A1 (en) | 2022-01-28 | 2023-08-03 | 日産化学株式会社 | Low-dielectric-tangent silica sol, and method for producing low-dielectric-tangent silica sol |
Also Published As
Publication number | Publication date |
---|---|
JP2013245148A (en) | 2013-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2628504T3 (en) | Liquid suspension of cerium oxide particles and their preparation procedure | |
AU2006202179B2 (en) | Lower-energy process for preparing passivated inorganic nanoparticles | |
KR20010079521A (en) | Dispersion of fine porous inorganic oxide particles and processes for preparing same | |
JPH0586432B2 (en) | ||
CN101796144A (en) | cyclic-treated metal oxide | |
JP6214412B2 (en) | Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof | |
US4155769A (en) | Non-settling coating composition and flatting pigment | |
Hyung Mi et al. | Comparative study of various preparation methods of colloidal silica | |
WO2020179559A1 (en) | Hydrophobic silica powder and toner resin particle | |
JP5862886B2 (en) | Method for producing organic solvent-dispersed silica sol | |
CN101353486A (en) | A kind of preparation method of calcium carbonate composite particle | |
US20190127587A1 (en) | SO2 Containing Dispersion With High Salt Stability | |
JP6203672B2 (en) | Three-dimensional mounting type semiconductor device, resin composition and manufacturing method thereof | |
JP2008285406A (en) | Silica spherical particles | |
CN110643214A (en) | High-dispersity precipitated silica anti-settling agent for coating and preparation method thereof | |
JP2563027B2 (en) | Novel silicas, their production and their use as fillers, especially in paper | |
JP6322474B2 (en) | Hydrophobic silica powder, rubber molding composition containing the same, and method for producing the same | |
US20180194947A1 (en) | Metal Oxide-Containing Dispersion With High Salt Stability | |
JPWO2003055800A1 (en) | Inorganic oxide | |
JP6004211B2 (en) | Organic solvent-dispersed silica sol and method for producing organic solvent-dispersed silica sol | |
JP4184683B2 (en) | Metal oxide spherical particles and method for producing the same | |
JP6195524B2 (en) | Hydrophobic silica powder and method for producing the same | |
JP4193036B2 (en) | Method for producing conductive tin oxide | |
JPH0587445B2 (en) | ||
KR102019698B1 (en) | Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141204 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151215 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5862886 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |