[go: up one dir, main page]

JP5811053B2 - Heat exchanger and operation method thereof - Google Patents

Heat exchanger and operation method thereof Download PDF

Info

Publication number
JP5811053B2
JP5811053B2 JP2012153782A JP2012153782A JP5811053B2 JP 5811053 B2 JP5811053 B2 JP 5811053B2 JP 2012153782 A JP2012153782 A JP 2012153782A JP 2012153782 A JP2012153782 A JP 2012153782A JP 5811053 B2 JP5811053 B2 JP 5811053B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
pulsation
scale
heat exchangers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012153782A
Other languages
Japanese (ja)
Other versions
JP2014016098A (en
Inventor
禎司 齊藤
禎司 齊藤
一普 宮
一普 宮
古川 誠司
誠司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012153782A priority Critical patent/JP5811053B2/en
Publication of JP2014016098A publication Critical patent/JP2014016098A/en
Application granted granted Critical
Publication of JP5811053B2 publication Critical patent/JP5811053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

給湯器、冷却器などの冷熱機器における熱交換器およびその運転方法に関するものである。   The present invention relates to a heat exchanger in a cooling device such as a water heater and a cooler and an operation method thereof.

浴室や台所に温水を供給する給湯器は、電気給湯器、ガス給湯器(ガスボイラー)、石油給湯器などに大別されるが、いずれも熱を水に伝えるための熱交換器と呼ばれる部分が存在する。電気給湯器の中でも、最近特に、省エネや地球温暖化対策としての二酸化炭素削減の観点から、ヒートポンプ熱交換式の電気給湯器(ヒートポンプ給湯器)が注目されている。その原理は、大気の熱を熱媒体に移し、その熱でお湯を沸かすものである。具体的に言えば気体を圧縮したときに発生する高熱を熱交換器によって水へ移し、その気体を膨張させたときの冷気によって再び熱媒体の温度を大気温まで戻す繰り返し(冷熱サイクル)によるものである。理論上、投入エネルギー以上の熱エネルギーを取り出すことはできないが、ヒートポンプ給湯器は大気の熱を活用する仕組みのため、運転に要するエネルギーよりも多くの熱エネルギーを利用することができる。   Hot water heaters that supply hot water to bathrooms and kitchens are roughly divided into electric water heaters, gas water heaters (gas boilers), and oil water heaters, all of which are called heat exchangers for transferring heat to water. Exists. Among electric water heaters, in particular, heat pump heat exchange type electric water heaters (heat pump water heaters) are attracting attention from the viewpoint of energy saving and carbon dioxide reduction as a measure against global warming. The principle is that the heat of the atmosphere is transferred to a heat medium, and hot water is boiled with that heat. Specifically, high heat generated when gas is compressed is transferred to water by a heat exchanger, and the temperature of the heat medium is returned to atmospheric temperature again by cold air when the gas is expanded (cooling cycle) It is. Theoretically, it is not possible to extract more heat energy than the input energy, but since the heat pump water heater uses the heat of the atmosphere, more heat energy than the energy required for operation can be used.

熱交換器は水に対して熱を伝えるために、伝熱面を常に清浄な状態に保つことが非常に重要である。壁面が汚れると有効な熱伝達面積が減少し、熱伝達性能の低下を招く。また、汚れが蓄積すると、最悪の場合には流路の閉塞を招くことになる。特に、スケール(硬度成分、硫酸塩、ケイ酸成分、金属イオンなどを含む結晶状の生成物)成分を含む水を給湯器などの冷熱機器へ供給すると、スケールが熱交換器表面や給湯タンクまたは配管内に付着し、熱交換効率の低下や流路を閉塞させるなどの問題があった。   In order for the heat exchanger to transfer heat to the water, it is very important to keep the heat transfer surface clean. When the wall surface becomes dirty, the effective heat transfer area is reduced and the heat transfer performance is deteriorated. Further, when the dirt accumulates, the flow path is blocked in the worst case. In particular, when water containing scale components (crystalline products including hardness components, sulfates, silicic acid components, metal ions, etc.) is supplied to a cooling device such as a water heater, the scale is exposed to the surface of the heat exchanger, hot water tank or There were problems such as sticking in the piping, lowering heat exchange efficiency, and blocking the flow path.

これらの問題を解決する様々な方法が検討されている。その例として、特許文献1(特開2006−125654)や特許文献2(特開2010−133600)について説明する。特許文献1では、貯湯槽底部から取り出した湯水を給湯熱交換器に設けた水流路を介し加熱して貯湯槽上部へ戻す運転時に、水流路を流れる流量の平均値を水流路平均流量とし、水流路を流れる湯水の流量を水流路平均流量の4倍以上となるように制御する運転モードを備えることで、水流路に析出したスケールを洗い出すものである。   Various methods for solving these problems have been studied. As an example, Japanese Patent Application Laid-Open No. 2006-125654 and Japanese Patent Application Laid-Open No. 2010-133600 will be described. In Patent Literature 1, when the hot water taken out from the bottom of the hot water tank is heated through the water flow path provided in the hot water heat exchanger and returned to the upper part of the hot water tank, the average value of the flow rate flowing through the water flow path is set as the water flow path average flow rate. By providing an operation mode in which the flow rate of hot water flowing through the water channel is controlled to be four times or more the average flow rate of the water channel, the scale deposited in the water channel is washed out.

また、特許文献2では、複数ある水冷媒熱交換器の水側伝熱管の水出口部に水配管温度検知手段とその一つに脱着可能な擬似伝熱管部が設置してあり、その検知部がスケール付着によって設定温度と異なった場合には、発報する手段を設けることでスケールの付着を検知し、さらに薬液洗浄前後に擬似伝熱管部を脱着して目視でスケールの付着を確認できるため、無駄なく薬液洗浄できるものである。   Moreover, in patent document 2, the water piping temperature detection means and the pseudo | simulated heat exchanger tube part which can be attached or detached to one of them are installed in the water outlet part of the water side heat exchanger tube of a plurality of water refrigerant heat exchangers, When the temperature differs from the set temperature due to scale adhesion, it is possible to detect the scale adhesion by providing a means for reporting, and further, the adhesion of the scale can be confirmed visually by removing and attaching the simulated heat transfer tube part before and after chemical cleaning. It can be cleaned without any waste.

特開2006−125654号公報JP 2006-125654 A 特開2010−133600号公報JP 2010-133600 A

しかしながら、特許文献1のように、平均流量を多くしただけでは、付着したスケールは除去しきれない場合があり、またポンプへの負担も大きいといった問題点があった。また、特許文献2では、水温検知部と擬似伝熱管部によってスケールの付着を検知できるが、複数の水冷媒熱交換器に付着したスケールを給湯運転時以外に薬液を使用して洗浄するのは非常に手間で困難であり、また薬液の使用や水温検知部を複数の水冷媒熱交換器にそれぞれ設置していることから構成が複雑になるといった問題点があった。   However, as in Patent Document 1, there are cases in which the attached scale cannot be completely removed only by increasing the average flow rate, and the burden on the pump is large. Moreover, in patent document 2, although adhesion of a scale can be detected with a water temperature detection part and a pseudo heat exchanger tube part, the scale adhering to several water refrigerant | coolant heat exchangers is wash | cleaned using a chemical | medical solution other than at the time of hot water supply operation. There is a problem that the configuration is complicated because the use of the chemical solution and the water temperature detectors are respectively installed in a plurality of water refrigerant heat exchangers.

本発明は、上記のような問題点を解決するためになされたものであり、薬液を用いずに、給湯運転時に付着したスケールを除去することができる熱交換器およびその運転方法を提供することを目的としている。   The present invention has been made to solve the above-described problems, and provides a heat exchanger capable of removing scales adhered during hot water supply operation without using a chemical solution and an operation method thereof. It is an object.

本発明は、水と冷媒とで熱交換をする複数の熱交換器と、水を分岐して複数の熱交換器に流入する入流用流路と、複数の熱交換器から流出した水を合流する流出用流路とを備えた熱交換器を用いた熱交換器の運転方法であって、熱交換器は入流用流路に並列され複数の熱交換器毎に開閉機構を備えて接続される脈動印加用流路を備え、開閉機構の開閉で水による脈動を制御することを特徴とする熱交換器の運転方法である。   The present invention combines a plurality of heat exchangers for exchanging heat between water and a refrigerant, an inflow channel for branching water into the plurality of heat exchangers, and water flowing out from the plurality of heat exchangers. A heat exchanger using a heat exchanger provided with an outflow passage, wherein the heat exchanger is connected in parallel with the inflow passage and provided with an opening / closing mechanism for each of the plurality of heat exchangers. The heat exchanger operating method is characterized in that the pulsation application flow path is provided and the pulsation due to water is controlled by opening and closing the opening / closing mechanism.

また、本発明は、水と冷媒とで熱交換をする複数の熱交換器と、水を分岐して複数の熱交換器に流入する入流用流路と、複数の熱交換器から流出した水を合流する流出用流路と、入流用流路に並列され複数の熱交換器毎に開閉機構を備えて接続される脈動印加用流路と、開閉機構の開閉で水による脈動を制御する制御手段とを備えたことを特徴とする熱交換器である。   The present invention also provides a plurality of heat exchangers for exchanging heat between water and a refrigerant, an inflow channel for branching water into the plurality of heat exchangers, and water flowing out from the plurality of heat exchangers. A flow path for merging, a flow path for pulsation connected in parallel to the flow path for inflow and provided with an opening / closing mechanism for each of a plurality of heat exchangers, and a control for controlling pulsation caused by water by opening / closing the opening / closing mechanism And a heat exchanger.

この発明によれば、薬液を用いず、給湯運転時にスケール付着を除去することができるので、熱交換器の品質低下を防止し、長寿命な熱交換器が得られる。   According to the present invention, scale adhesion can be removed during a hot water supply operation without using a chemical solution, so that a deterioration in the quality of the heat exchanger can be prevented and a long-life heat exchanger can be obtained.

本発明の実施の形態1における熱交換器の構成の概略図である。It is the schematic of the structure of the heat exchanger in Embodiment 1 of this invention. 本発明の実施の形態1における水−冷媒用熱交換器周辺の概略を示す図である。It is a figure which shows the outline of the heat exchanger periphery for water-refrigerants in Embodiment 1 of this invention. 本発明の実施の形態1における脈動発生部の構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the pulsation generation | occurrence | production part in Embodiment 1 of this invention. 本発明の実施の形態1における脈動有無でのスケール付着量の実験結果である。It is an experimental result of the amount of scale adhesion with and without pulsation in Embodiment 1 of the present invention. 本発明の実施の形態1における最高水圧値とスケール付着量との相関図である。It is a correlation diagram of the maximum water pressure value and scale adhesion amount in Embodiment 1 of this invention. 本発明の実施の形態1におけるスケール除去運転時の印加パルスの概要図である。It is a schematic diagram of the applied pulse at the time of scale removal operation in Embodiment 1 of the present invention. 本発明の実施の形態2におけるスケール除去運転時の印加パルスの概要図である。It is a schematic diagram of the applied pulse at the time of the scale removal operation in Embodiment 2 of the present invention. 本発明の実施の形態3におけるスケール除去運転時の印加パルスの概要図である。It is a schematic diagram of the applied pulse at the time of scale removal operation in Embodiment 3 of the present invention. 本発明の実施の形態4におけるスケール除去運転時の印加パルスの概要図である。It is a schematic diagram of the applied pulse at the time of the scale removal operation in Embodiment 4 of the present invention.

実施の形態1.
図1は本発明の実施の形態1における熱交換器の構成の概略図である。本発明の熱交換器1は、空気−冷媒用熱交換器2と、空気−冷媒用熱交換器2に送風する送風機3と、冷媒を圧縮する圧縮機4と、水−冷媒用熱交換器5と、膨張弁などの減圧器6で構成されている。より具体的には、図示したように、空気−冷媒用熱交換器2、圧縮機4、水−冷媒用熱交換器5、減圧器6の順番で、それぞれ冷媒用流路7によって接続されている。冷媒用流路7内には、冷媒が循環している。冷媒の種類は様々あるが、例えば二酸化炭素(CO2)といった(自然)冷媒が充填されている。水−冷媒熱交換器5には、冷媒用流路7の他に被加熱水用流路8も接続されている。被加熱水は、ポンプ9によって被加熱水用流路8を通水させている。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of a configuration of a heat exchanger according to Embodiment 1 of the present invention. The heat exchanger 1 of the present invention includes an air-refrigerant heat exchanger 2, a blower 3 that blows air to the air-refrigerant heat exchanger 2, a compressor 4 that compresses the refrigerant, and a water-refrigerant heat exchanger. 5 and a decompressor 6 such as an expansion valve. More specifically, as illustrated, the air-refrigerant heat exchanger 2, the compressor 4, the water-refrigerant heat exchanger 5, and the decompressor 6 are connected by the refrigerant flow path 7 in this order. Yes. A refrigerant circulates in the refrigerant flow path 7. Although there are various types of refrigerants, they are filled with (natural) refrigerants such as carbon dioxide (CO 2 ). The water-refrigerant heat exchanger 5 is connected to a heated water flow path 8 in addition to the refrigerant flow path 7. The heated water is passed through the heated water flow path 8 by the pump 9.

図2は本発明の実施の形態1における水−冷媒用熱交換器周辺の概略を示す図である。図2に示すように、本実施の形態1では、給湯能力を大きくするため、複数の水−冷媒用熱交換器5を並列に配置させている。具体的には、水−冷媒用熱交換器5には、並列した5つの水−冷媒用熱交換器5a〜5eに被加熱水用流路8a〜8eを各々接続させている。脈動印加用流路12は、ポンプ9と付着検知部17の後に被加熱水用流路8から分岐させ、流路切替バルブ13a〜13eを介して被加熱水用流路8a〜8eに再接続させた。脈動発生部11は、脈動印加用流路12が被加熱水用流路8から分岐した後の流路に配置されている。逆止弁10a〜10eは、水−冷媒用熱交換器5a〜5eに流入する手前の被加熱水用流路8a〜8eにそれぞれ接続させている。   FIG. 2 is a diagram schematically showing the periphery of the water-refrigerant heat exchanger in Embodiment 1 of the present invention. As shown in FIG. 2, in this Embodiment 1, in order to enlarge hot water supply capability, the some heat exchanger 5 for water-refrigerants is arrange | positioned in parallel. Specifically, the water-refrigerant heat exchanger 5 is connected to five water-refrigerant heat exchangers 5a to 5e in parallel with heated water flow paths 8a to 8e, respectively. The pulsation applying flow channel 12 is branched from the heated water flow channel 8 after the pump 9 and the adhesion detection unit 17, and reconnected to the heated water flow channels 8a to 8e via the flow channel switching valves 13a to 13e. I let you. The pulsation generator 11 is disposed in the flow path after the pulsation application flow path 12 branches off from the heated water flow path 8. The check valves 10a to 10e are respectively connected to heated water flow paths 8a to 8e before flowing into the water-refrigerant heat exchangers 5a to 5e.

図3は本発明の実施の形態1における脈動発生部の構成の概要を示す図である。脈動発生部11は、図3に示すように、脈動印加用流路12にポンプ9aと逆止弁10fとが設置されている。コントロールボックス14は、脈動制御配線15と流路切替バルブ制御配線16を介してポンプ9aと流路切替バルブ13a〜13eに接続させた。   FIG. 3 is a diagram showing an outline of the configuration of the pulsation generator in the first embodiment of the present invention. As shown in FIG. 3, the pulsation generator 11 is provided with a pump 9 a and a check valve 10 f in a pulsation application flow path 12. The control box 14 was connected to the pump 9a and the flow path switching valves 13a to 13e via the pulsation control wiring 15 and the flow path switching valve control wiring 16.

複数の熱交換器5に被加熱水を供給するポンプ9の後段に付着検知部17と、複数の熱交換器5に流入する被加熱水流路8に並列させた脈動印加用水流路12に、脈動発生手段とコントロールボックス14を備えた脈動発生部11一つと、脈動印加用水流路12が複数の熱交換器5も合流する手前にそれぞれ水流路切替バルブ13を備え、脈動発生部11内のコントロールボックス14で脈動発生手段と水流路切替バルブ13を制御する熱交換器である。   In the subsequent stage of the pump 9 for supplying the heated water to the plurality of heat exchangers 5, the adhesion detecting unit 17 and the pulsation applying water channel 12 arranged in parallel to the heated water channel 8 flowing into the plurality of heat exchangers 5, One pulsation generating unit 11 including pulsation generating means and a control box 14, and a water flow path switching valve 13 before the pulsation applying water flow path 12 joins the plurality of heat exchangers 5, respectively, The heat exchanger controls the pulsation generating means and the water flow path switching valve 13 with the control box 14.

次に、本発明の実施の形態1における熱交換器1の動作について図1を参照しながら説明する。空気−冷媒用熱交換器2では、送風機3からの送風で大気の熱を吸収した冷媒が圧縮機4で圧縮される。圧縮され高温・高圧になった冷媒は、水−冷媒用熱交換器5の昇温部で伝熱面を介して被加熱水用流路8内の被加熱水と熱交換される。加熱された被加熱水は貯湯タンクに送られる。熱交換して温度が低下した冷媒は、減圧器6で減圧されて低圧になった後、再度、空気−冷媒用熱交換器2に送られる。これらの動作(冷熱サイクル)が熱交換器の運転中繰り返される。   Next, operation | movement of the heat exchanger 1 in Embodiment 1 of this invention is demonstrated, referring FIG. In the air-refrigerant heat exchanger 2, the refrigerant that has absorbed the heat of the atmosphere by the air blown from the blower 3 is compressed by the compressor 4. The compressed high-temperature and high-pressure refrigerant is heat-exchanged with the heated water in the heated water flow path 8 through the heat transfer surface at the temperature raising portion of the water-refrigerant heat exchanger 5. The heated water to be heated is sent to a hot water storage tank. The refrigerant whose temperature has decreased due to the heat exchange is reduced in pressure by the pressure reducer 6 and then becomes low pressure, and then is sent to the air-refrigerant heat exchanger 2 again. These operations (cooling cycle) are repeated during operation of the heat exchanger.

ここで、スケール成分(硬度成分:炭酸カルシウム(CaCO3))を含む被加熱水中では、(1)式のような溶解平衡が保たれている。ところが、その水が加熱されると、炭酸ガス(CO2)の溶解度が下がり、溶存していた炭酸ガスが脱気されるため、(1)式で示した溶解平衡が右辺にずれ、スケール(炭酸カルシウム)が析出する。 Here, in the water to be heated containing the scale component (hardness component: calcium carbonate (CaCO 3 )), the dissolution equilibrium as in the formula (1) is maintained. However, when the water is heated, the solubility of carbon dioxide (CO 2 ) decreases and the dissolved carbon dioxide is degassed, so that the dissolution equilibrium shown in equation (1) shifts to the right side and the scale ( Calcium carbonate) is deposited.

Ca(HCO32 ⇔ CaCO3↓ + CO2↑ + H2O ・・・(1)
これより、水−冷媒用熱交換器5では、スケール成分を含む被加熱水が昇温部の伝熱面で加熱されると、その伝熱面からスケールが析出し付着していく。
Ca (HCO 3 ) 2 Ca CaCO 3 ↓ + CO 2 ↑ + H 2 O (1)
Thus, in the water-refrigerant heat exchanger 5, when the water to be heated including the scale component is heated on the heat transfer surface of the temperature raising portion, the scale is deposited and attached from the heat transfer surface.

昇温部の伝熱面にスケールが析出する理由について次に説明する。上述したように、スケール成分を含む水に熱などのエネルギーを加え、そのエネルギーがある閾値(臨界核生成エネルギー)を超えると、(1)式の溶解平衡がずれ、炭酸カルシウムが析出、すなわち結晶核が生成される。この結晶核は、液相と接触する面積が小さい方がエネルギー的に有利(安定)なため、固液界面、例えば異物や壁面があると、そこに接するようにまずは微小なスケール核が形成される。このようなメカニズムにより、水−冷媒用熱交換器5の昇温部にスケール核が形成され成長していくことでスケールが付着していく。   The reason why the scale is deposited on the heat transfer surface of the temperature raising portion will be described next. As described above, when energy such as heat is added to water containing scale components, and the energy exceeds a certain threshold value (critical nucleation energy), the dissolution equilibrium of equation (1) shifts and calcium carbonate precipitates, that is, crystals Nuclei are generated. This crystal nucleus is more energy-efficient (stable) when the area in contact with the liquid phase is smaller. Therefore, if there is a solid-liquid interface, for example, a foreign object or a wall surface, a small scale nucleus is first formed so as to come into contact therewith. The Due to such a mechanism, scale nuclei are formed and grow in the temperature raising portion of the water-refrigerant heat exchanger 5, and the scale adheres.

そこで、流路切替バルブ13a〜13eを切り替えることで、脈動発生部11を通過して水−冷媒用熱交換器5a〜5eに冷媒が流れる経路を限定する。例えば、流路切替バルブ13a〜13dを閉めて、流路切替バルブ13eのみを開くことで、水−冷媒用熱交換器5a〜5eの内、水−冷媒用熱交換器5eのみに脈動発生部11を通過した冷媒を流すことができる。この例では、一つの水−冷媒用熱交換器のみに流す例を示したが、同時に他の水−冷媒用熱交換器、例えば水−冷媒用熱交換器5aにも流すこともできる。すなわち、流路切替バルブ13の一部を開けて、残りの流路切替バルブ13は閉めることになる。もっとも、どれか一つの流路切替バルブ13を開けて、残りの流路切替バルブ13は閉めると、脈動発生部11による脈動の効果が最大になる。   Therefore, by switching the flow path switching valves 13a to 13e, the path through which the refrigerant passes through the pulsation generator 11 and flows to the water-refrigerant heat exchangers 5a to 5e is limited. For example, by closing the flow path switching valves 13a to 13d and opening only the flow path switching valve 13e, only the water-refrigerant heat exchanger 5e among the water-refrigerant heat exchangers 5a to 5e has a pulsation generator. 11 can flow through the refrigerant. In this example, an example is shown in which the flow is made only to one water-refrigerant heat exchanger, but it can also be made to flow to another water-refrigerant heat exchanger, for example, the water-refrigerant heat exchanger 5a. That is, a part of the flow path switching valve 13 is opened and the remaining flow path switching valves 13 are closed. However, if any one of the flow path switching valves 13 is opened and the remaining flow path switching valves 13 are closed, the effect of pulsation by the pulsation generator 11 is maximized.

このスケール付着のメカニズムに対して、本発明によれば、脈動発生部11から発生させた一つの脈動を確実に一つの水−冷媒用熱交換器5a〜5eに印加することで、脈動によるスケール除去効果を分散させることなく発揮できる運転方法を提供できる。また、均等の水流を順次、水−冷媒用熱交換器5a〜5eに印加することで、仮にスケール付着が起こった水−冷媒用熱交換器5a〜5eの内のいずれかの水−冷媒用熱交換器5a〜5eでは伝熱性能や流量が低下するため、自然とスケール付着が緩和する運転方法を提供できる。さらに、順次均等の脈動を印加しているため、水流の変化から水−冷媒用熱交換器5a〜5eの内、スケールが付着した水−冷媒用熱交換器5a〜5eがいずれであるかを検知し特定できるため、スケールが付着した水−冷媒用熱交換器5a〜5eに集中的に脈動を印加することで、付着したスケールを除去する運転方法を提供できる。   In contrast to this scale adhesion mechanism, according to the present invention, one pulsation generated from the pulsation generator 11 is reliably applied to one of the water-refrigerant heat exchangers 5a to 5e, so that the scale due to pulsation is achieved. It is possible to provide an operation method that can exhibit the removal effect without being dispersed. In addition, by applying a uniform water flow sequentially to the water-refrigerant heat exchangers 5a to 5e, any one of the water-refrigerant heat exchangers 5a to 5e in which the scale adhesion has occurred temporarily. In the heat exchangers 5a to 5e, since the heat transfer performance and the flow rate are lowered, it is possible to provide an operation method that naturally reduces scale adhesion. Furthermore, since uniform pulsations are sequentially applied, it is determined which of the water-refrigerant heat exchangers 5a-5e to which the scale is attached from among the water-refrigerant heat exchangers 5a-5e due to the change in the water flow. Since it can be detected and specified, an operation method for removing the adhered scale can be provided by applying pulsation intensively to the water-refrigerant heat exchangers 5a to 5e to which the scale is adhered.

その原理について次に説明する。上述したように、スケール成分(硬度成分)を含む被加熱水を水−冷媒用熱交換器5a〜5eで昇温していくと、昇温部の伝熱面にまず微小な結晶核として形成される。ところが、スケール成分(硬度成分)を含む被加熱水を加熱しているため、伝熱面でのスケール核の発生を防止するのは非常に難しい。そこで、生成したスケール核を水流脈動による剪断応力で除去する方法を考えた。   The principle will be described next. As described above, when heated water containing scale components (hardness components) is heated by the water-refrigerant heat exchangers 5a to 5e, first, as crystal nuclei are formed on the heat transfer surface of the temperature rising portion. Is done. However, since heated water containing a scale component (hardness component) is heated, it is very difficult to prevent the generation of scale nuclei on the heat transfer surface. Therefore, we considered a method of removing the generated scale nuclei with shear stress caused by water pulsation.

水流を脈動させた時の最大剪断応力は、脈動させずに脈動印加時の最大流量で通水させた時の剪断応力より大きい。その脈動による剪断応力を脈動の回数分だけ与えることで、伝熱面に付着したスケールを一定流量で通水させる時よりも確実に除去できる。そして、一つの脈動による剪断応力を分散させることなく確実に複数の水−冷媒用熱交換器の内の一つに印加することでスケールを除去できる。また、均等の水流を順次複数の熱交換器に印加することで、仮にスケール付着が起こった熱交換器では伝熱性能や流量が低下するため、自然とスケールの付着を緩和することができる。さらに、順次均等の脈動を印加しているため、水流の変化からスケールが付着した熱交換器を検知し特定できるため、スケールが付着した熱交換器に集中的に脈動を印加することで、付着したスケールを除去できる。以上、上述した装置構成かつ脈動の運転方法を行うことで、給湯運転時に水−冷媒用熱交換器に付着したスケールを確実に除去できることを見出した。   The maximum shear stress when the water flow is pulsated is larger than the shear stress when water is passed at the maximum flow rate when the pulsation is applied without pulsating. By giving the shear stress due to the pulsation as many times as the number of pulsations, the scale adhered to the heat transfer surface can be removed more reliably than when water is passed at a constant flow rate. And a scale can be removed by applying to one of the several water-refrigerant heat exchangers reliably, without disperse | distributing the shear stress by one pulsation. In addition, by applying an equal water flow to a plurality of heat exchangers sequentially, heat transfer performance and flow rate are reduced in a heat exchanger in which scale adhesion has occurred, so that scale adhesion can be relaxed naturally. In addition, since uniform pulsations are applied sequentially, the heat exchanger with the scale attached can be detected and identified from the change in the water flow, so the pulsation can be applied intensively to the heat exchanger with the scale attached. Can remove the scale. As described above, it has been found that the scale attached to the water-refrigerant heat exchanger during the hot water supply operation can be reliably removed by performing the above-described apparatus configuration and pulsation operation method.

本発明に使用する脈動発生部11は、図3に示すように、装置寿命の観点からポンプを用いるのが好ましいが、それに限定されるものではなく、ポンプを電磁弁に換えるなど脈動を発生させる機構が備わっていればよい。逆止弁10a〜10fは、必ずしも設置しなくてもよいが、脈動印加による水流の逆流を防ぎ急峻な脈動波形を得られるので設置したほうが好ましい。付着検知部17は、水流の変化を検知できるものであれば特に限定されるものではないが、好ましくは流量計または水圧計がよく、両方設置してもよいが、少なくともどちらかが一方あればよい。   As shown in FIG. 3, the pulsation generator 11 used in the present invention preferably uses a pump from the viewpoint of the device life, but is not limited to this, and generates pulsation such as replacing the pump with an electromagnetic valve. It only needs to be equipped with a mechanism. The check valves 10a to 10f are not necessarily installed, but are preferably installed because they prevent the reverse flow of the water flow due to the pulsation application and can obtain a steep pulsation waveform. The adhesion detection unit 17 is not particularly limited as long as it can detect a change in the water flow, but preferably a flow meter or a water pressure meter, and both may be installed, but at least one of them may be provided. Good.

また、特開2010−133600のように、各水−冷媒用熱交換器の後段に水温を検知する部位が既存している場合は、付着検知部にも温度計を設置し、既存の温度計との温度差を利用してスケール付着を検知してもよい。水−冷媒用熱交換器5は、特開2010−133600で使用されている熱交換器だけではなく、様々な形状の熱交換器、例えば特開2008−249163、特開2005−003209、特開2008−075898、特開2004−085172や特開平6−2947で記載されているようなものでもよく、特別な構成である必要はない。   In addition, as in JP 2010-133600 A, when there is an existing part for detecting the water temperature at the subsequent stage of each water-refrigerant heat exchanger, a thermometer is also installed in the adhesion detector, and the existing thermometer The adhesion of the scale may be detected using the difference in temperature. The water-refrigerant heat exchanger 5 is not limited to the heat exchanger used in Japanese Patent Application Laid-Open No. 2010-133600, but various heat exchangers such as Japanese Patent Application Laid-Open No. 2008-249163, Japanese Patent Application Laid-Open No. 2005-003209, and Japanese Patent Application Laid-Open No. 2005-003209. 2008-075898, Japanese Patent Application Laid-Open No. 2004-085172 and Japanese Patent Application Laid-Open No. 6-2947 may be used, and there is no need for a special configuration.

次に、本発明における実施の形態1の具体例を説明する。実施の形態1では、実機で使用している熱交換器を5つ並列に配置して使用した。付着検知部には、長野計器製水圧計GC61と横河製流量MODEL/AXF005Gを直列に設置した。なお、本実施の形態では、検証のため、付着検知部と水−冷媒用熱交換器5a〜5eの後段にTOP製K熱電対S1も各々設置した。被加熱水には、一般試薬で調製した模擬高硬度水(初期水質:硬度100mg−CaCO3/L、Mアルカリ度140mg−CaCO3/L、pH7.5)を被加熱水として用いた。その被加熱水200Lを給湯タンクに入れ、水−冷媒用熱交換器の被加熱水用流路にポンプで循環させた。水−冷媒用熱交換器で加熱された被加熱水は、水−冷媒用熱交換器を出た後に被加熱水用流路を冷却器で冷やしてから給湯タンクに返送した。 Next, a specific example of the first embodiment of the present invention will be described. In the first embodiment, five heat exchangers used in an actual machine are arranged in parallel and used. In the adhesion detector, a Nagano Keiki water pressure gauge GC61 and a Yokogawa flow rate MODEL / AXF005G were installed in series. In this embodiment, for the purpose of verification, a TOP-made K thermocouple S1 is also installed after the adhesion detector and the water-refrigerant heat exchangers 5a to 5e. The heated water, simulated high hardness water in general reagent was prepared: using (initial water hardness 100mg-CaCO 3 / L, M alkalinity 140mg-CaCO 3 /L,pH7.5) as heated water. 200 L of the heated water was placed in a hot water supply tank and circulated by a pump through the heated water flow path of the water-refrigerant heat exchanger. The heated water heated by the water-refrigerant heat exchanger was returned to the hot water supply tank after leaving the water-refrigerant heat exchanger and cooling the heated water flow path using a cooler.

また、本実施の形態では、パルス型の脈動波形を5秒に1回1秒のタイミングで水−冷媒用熱交換器にそれぞれ印加した。その発生方法は、ポンプ9で調節したベース流量に、脈動発生部で発生させたパルス波形を合一させた。パルス型の脈動波形は、コントロールボックス14内のタイマーにてポンプ9aをOn/Offさせることで発生させた。逆流を防止し急峻なパルスを得るために、すなわち高い流量比(パルス流量最大到達点/ベース流量)と押し出し水圧を得るためにスウェジロック製逆止弁(型式SS−4CPA4−3)をそれぞれ6個、図2および図3に示す位置に設置した。ポンプは、アズワン製可変速耐薬ギアポンプ(型式AWT−40W)を用いた。   In the present embodiment, a pulse-type pulsation waveform is applied to the water-refrigerant heat exchanger once every 5 seconds at a timing of 1 second. The generation method was to combine the pulse waveform generated in the pulsation generating unit with the base flow rate adjusted by the pump 9. The pulse-type pulsation waveform was generated by turning the pump 9a on / off with a timer in the control box 14. In order to prevent backflow and obtain steep pulses, that is, to obtain a high flow rate ratio (maximum pulse flow point / base flow rate) and extrusion water pressure, six Swagelok check valves (model SS-4CPA4-3) each. 2 and 3 were installed at the positions shown in FIG. As the pump, a variable speed chemical resistant gear pump (model AWT-40W) manufactured by AS ONE was used.

運転条件を次に示す。給湯タンクからの被加熱水の温度は25℃で、各水−冷媒用熱交換器を通り合一したときの出湯温度は80℃とした。なお、前述したように、水−冷媒用熱交換器を出湯した被加熱水は、冷却器で冷やしてから給湯タンクに返送後また循環させた。パルス脈動は、通常運転、すなわちスケール付着が検知されるまでは5秒に1回、各水−冷媒用熱交換器5a〜5eに順次印加されるように脈動発生部で制御した。パルス脈動は、ベース流量0.4L/min、流量比5(パルス流量最大到達点/ベース流量)となるように調整した。その時の付着検知部の最大水圧差(最大パルス印加時の値−ベース流量時の値)は0.06MPaであった。水−冷媒用熱交換器の被加熱水流路に付着したスケール量は、実験終了後に水−冷媒用熱交換器をそれぞれ取り外し、1mol/Lの塩酸を所定濃度に希釈させた水溶液で被加熱水用流路内を循環させ、付着したスケールを溶解させた。そして、その溶解した液中のカルシウムイオン量を分析した。カルシウムイオン量は、高速液体クロマトグラフィ分析装置を使って測定した。   The operating conditions are as follows. The temperature of the heated water from the hot water supply tank was 25 ° C., and the temperature of the hot water when the water-refrigerant heat exchangers were combined was 80 ° C. As described above, the heated water discharged from the water-refrigerant heat exchanger was cooled by a cooler, returned to the hot water supply tank, and then circulated again. The pulse pulsation was controlled by the pulsation generator so that the pulse pulsation was sequentially applied to each of the water-refrigerant heat exchangers 5a to 5e once every 5 seconds until normal operation, that is, scale adhesion was detected. The pulse pulsation was adjusted so that the base flow rate was 0.4 L / min and the flow rate ratio was 5 (pulse flow flow maximum arrival point / base flow rate). At that time, the maximum water pressure difference (the value at the time of applying the maximum pulse-the value at the base flow rate) of the adhesion detection unit was 0.06 MPa. The amount of scale attached to the heated water flow path of the water-refrigerant heat exchanger is determined by removing the water-refrigerant heat exchanger after the experiment, and heating water with an aqueous solution in which 1 mol / L hydrochloric acid is diluted to a predetermined concentration. The inside of the working channel was circulated to dissolve the attached scale. Then, the amount of calcium ions in the dissolved liquid was analyzed. The amount of calcium ions was measured using a high performance liquid chromatography analyzer.

図4は本発明の実施の形態1における脈動有無でのスケール付着量の実験結果であり、より具体的には、脈動有無における運転時間264時間後のスケール総付着量を示している。ここで、縦軸のスケール総付着量は、5つの水−冷媒用熱交換器の被加熱水用流路に付着していた総計である。脈動を印加したスケール総付着量は、脈動無時の約1/100以下であった。これより、5つの水−冷媒用熱交換器に順次脈動を印加することで付着したスケールを除去できた。運転時間480時間後、水−冷媒用熱交換器5dに印加する最大水圧差が0.06MPaから0.055MPaに、流量比が5から4.8になった。また、この時の出湯温度は80℃から78℃と低下していた。   FIG. 4 shows the experimental results of the amount of scale adhesion with and without pulsation in the first embodiment of the present invention. More specifically, FIG. 4 shows the total amount of scale adhesion after 264 hours of operation with and without pulsation. Here, the total scale adhesion amount on the vertical axis is the total adhered to the heated water flow paths of the five water-refrigerant heat exchangers. The total scale adhesion amount to which pulsation was applied was about 1/100 or less when no pulsation occurred. Thus, the attached scale could be removed by sequentially applying pulsation to the five water-refrigerant heat exchangers. After 480 hours of operation time, the maximum water pressure difference applied to the water-refrigerant heat exchanger 5d was changed from 0.06 MPa to 0.055 MPa, and the flow rate ratio was changed from 5 to 4.8. Moreover, the hot water temperature at this time was lowered from 80 ° C. to 78 ° C.

図5は本発明の実施の形態1における最高水圧値とスケール付着量との相関図であり、より具体的には、事前の予備実験として、水−冷媒用熱交換器単体でのスケール付着量と水圧の相関を示している。これより、水−冷媒用熱交換器5dでは、スケールが付着していると検知された。また、水−冷媒用熱交換器5dでは、スケールが付着したことで、自然と出湯温度および流量が低下し、スケールの付着が緩和されていたことが確認できた。   FIG. 5 is a correlation diagram between the maximum water pressure value and the amount of scale adhesion in Embodiment 1 of the present invention. More specifically, as a preliminary experiment, the amount of scale adhesion in a single water-refrigerant heat exchanger is shown. And the water pressure correlation. From this, it was detected that the scale adhered to the water-refrigerant heat exchanger 5d. In addition, in the water-refrigerant heat exchanger 5d, it was confirmed that the scale adhered, and thus the temperature and flow rate of the hot water naturally decreased, and the scale adhesion was alleviated.

図6は本発明の実施の形態1におけるスケール除去運転時の印加パルスの概要図である。水−冷媒用熱交換器5dにスケールの付着が検知されたことから、図6に示すように、水−冷媒用熱交換器5dにのみパルス脈動を連続して2パルス印加する除去運転に切り替えて給湯運転を続けた。その結果、約24時間後に水−冷媒用熱交換器5dの水圧が0.06MPa、流量比が5、出湯温度も80℃に戻り、他の水−冷媒用熱交換器とほぼ同じ値を示した。   FIG. 6 is a schematic diagram of applied pulses during the scale removal operation according to Embodiment 1 of the present invention. Since the adhesion of the scale to the water-refrigerant heat exchanger 5d is detected, as shown in FIG. 6, the operation is switched to a removal operation in which two pulses are continuously applied only to the water-refrigerant heat exchanger 5d. Continued hot water operation. As a result, after about 24 hours, the water-refrigerant heat exchanger 5d has a water pressure of 0.06 MPa, a flow rate ratio of 5, and a tapping temperature of 80 ° C., which is almost the same value as other water-refrigerant heat exchangers. It was.

以上のように、脈動発生部から発生させた一つの脈動を確実に一つの熱交換器に印加することで、脈動によるスケール除去効果を分散させることなく発揮できる運転方法を提供できた。また、均等の水流を順次熱交換器に印加することで、仮にスケール付着が起こった熱交換器では伝熱性能や流量が低下するため、自然とスケール付着が緩和する運転方法を提供できた。さらに、順次均等の脈動を印加しているため、水流の変化からスケールが付着した熱交換器を検知し特定できるため、スケールが付着した熱交換器に集中的に脈動を印加することで、付着したスケールを除去する運転方法を提供できた。これにより、給湯運転時に付着したスケールを除去できたことから、水−冷媒用熱交換器の品質低下を防止し長寿命な熱交換器を得ることができた。   As described above, it is possible to provide an operation method that can exert the scale removal effect due to pulsation without being dispersed by reliably applying one pulsation generated from the pulsation generating unit to one heat exchanger. In addition, by applying uniform water flow to the heat exchanger sequentially, heat transfer performance and flow rate are reduced in the heat exchanger in which scale adhesion has occurred, and therefore, an operation method that naturally reduces scale adhesion could be provided. In addition, since uniform pulsations are applied sequentially, the heat exchanger with the scale attached can be detected and identified from the change in the water flow, so the pulsation can be applied intensively to the heat exchanger with the scale attached. It was possible to provide an operation method for removing the scale. Thereby, since the scale adhered during the hot water supply operation could be removed, it was possible to prevent deterioration in quality of the water-refrigerant heat exchanger and obtain a long-life heat exchanger.

また、本実施の形態における通常運転時の脈動条件は、これに限るものではなく、流量比は少なくとも2以上、好ましくは5以上がよく、脈動は少なくとも10秒以内に1回、好ましくは5秒に一回が良い。   Further, the pulsation condition during normal operation in the present embodiment is not limited to this, and the flow rate ratio is at least 2 or more, preferably 5 or more, and the pulsation is at least once within 10 seconds, preferably 5 seconds. One time is good.

さらに、例えば、特開2008−249163、特開2005−003209、特開2008−075898および特開2004−085172に記載されているような各種の水−冷媒用熱交換器や、特開平6−2947のようなガスボイラー式熱交換器でも、各熱交換器の前に脈動発生部と付着検知部を設置して、本実施の形態と同じような運転方法をすることで同様の効果が得られる。   Furthermore, for example, various water-refrigerant heat exchangers as described in JP-A-2008-249163, JP-A-2005-003209, JP-A-2008-075898 and JP-A-2004-085172, Even in a gas boiler type heat exchanger such as this, the same effect can be obtained by installing a pulsation generator and an adhesion detector in front of each heat exchanger and performing the same operation method as in the present embodiment. .

複数の熱交換器5に流入する被加熱水流路8に並列させた脈動印加用水流路12に脈動発生部11一つと、各熱交換器5への合流点の手前にそれぞれ水流路切替バルブ13を備えた熱交換器1において、脈動発生部11から発生させた脈動の一つが熱交換器5の何れか一つに印加する運転方法である。また、この運転方法において、脈動発生部11から発生させた均等の水流を順次熱交換器5に印加することができる。さらに、水流の変化でスケールの付着を検知した熱交換器5に対し、脈動を集中的に印加することで、付着したスケールを除去することができる。熱交換器5毎にスケールの付着状態を検出するスケール付着検出装置を設けることで、脈動を集中的に印加することができる。   One pulsation generating section 11 is provided in the pulsation application water flow path 12 arranged in parallel with the heated water flow path 8 flowing into the plurality of heat exchangers 5, and the water flow path switching valve 13 is disposed in front of the merging point to each heat exchanger 5. In the heat exchanger 1 having the above, one of the pulsations generated from the pulsation generator 11 is applied to any one of the heat exchangers 5. Further, in this operation method, an equal water flow generated from the pulsation generator 11 can be sequentially applied to the heat exchanger 5. Furthermore, the adhered scale can be removed by intensively applying pulsation to the heat exchanger 5 in which the adhesion of the scale is detected by a change in water flow. By providing a scale adhesion detection device that detects the scale adhesion state for each heat exchanger 5, pulsation can be applied intensively.

また、脈動発生部11から発生させた一つの脈動を確実に一つの熱交換器5に印加することで、脈動によるスケール除去効果を分散させることなく発揮できる。さらに、均等の水流を順次熱交換器5に印加することで、仮にスケール付着が起こった熱交換器5は伝熱性能や流量が低下するため、自然とスケールの付着が緩和される。しかも、順次均等の脈動を印加しているため、水流の変化からスケールが付着した熱交換器5を検知特定できる。また、スケールが付着した熱交換器5に対し集中的に脈動を印加することで、スケールを除去することができる。   In addition, by applying one pulsation generated from the pulsation generator 11 to one heat exchanger 5 with certainty, the scale removal effect due to the pulsation can be exhibited without being dispersed. Furthermore, by applying an equal water flow to the heat exchanger 5 in sequence, the heat exchanger 5 on which scale deposition has occurred temporarily reduces the heat transfer performance and flow rate, so that the scale adhesion is naturally relaxed. Moreover, since uniform pulsations are sequentially applied, it is possible to detect and identify the heat exchanger 5 to which the scale has adhered from the change in the water flow. Moreover, a scale can be removed by applying a pulsation intensively with respect to the heat exchanger 5 to which the scale adhered.

さらに、水と冷媒とで熱交換をする複数の熱交換器5と、水を分岐して複数の熱交換5に流入する入流用流路(被加熱水用流路8)と、複数の熱交換から流出した水を合流する流出用流路(被加熱水用流路8)と、入流用流路(被加熱水用流路8)に並列され複数の熱交換5毎に開閉機構を備えて接続される脈動印加用流路12と、開閉機構の開閉で水による脈動を制御する制御手段(コントロールボックス14)とを備えた熱交換器1である。   Furthermore, a plurality of heat exchangers 5 for exchanging heat between water and the refrigerant, an inflow channel (water channel 8 to be heated) that branches water and flows into the plurality of heat exchanges 5, and a plurality of heats An outflow channel (heated water channel 8) that joins the water that flows out from the exchange and an inflow channel (heated water channel 8) are provided in parallel to each of the plurality of heat exchanges 5 in parallel with the inflow channel (heated water channel 8). The heat exchanger 1 is provided with a pulsation applying flow path 12 connected to each other and a control means (control box 14) for controlling the pulsation caused by water by opening and closing the opening / closing mechanism.

また、水と冷媒とで熱交換をする複数の熱交換器5と、水を分岐して複数の熱交換器に流入する入流用流路(被加熱水用流路8)と、複数の熱交換器5から流出した水を合流する流出用流路(被加熱水用流路8)とを備えた熱交換器5を用いた熱交換器1の運転方法であって、熱交換器5は入流用流路(被加熱水用流路8)に並列され複数の熱交換5毎に開閉機構を備えて接続される脈動印加用水流路12を備えおり、開閉機構の開閉で水による脈動を制御する熱交換器の運転方法である。なお、開閉機構は、例えば、流路切替バルブ13である。   Also, a plurality of heat exchangers 5 for exchanging heat with water and a refrigerant, a flow path for incoming flow (flow path 8 for heated water) that branches water and flows into the plurality of heat exchangers, and a plurality of heat The operation method of the heat exchanger 1 using the heat exchanger 5 provided with the outflow channel (heated water channel 8) that joins the water flowing out of the exchanger 5, A pulsation application water passage 12 is provided in parallel with the inflow passage (heated water passage 8) and connected to each of the plurality of heat exchanges 5 with an opening / closing mechanism. It is the operation method of the heat exchanger to control. The opening / closing mechanism is, for example, the flow path switching valve 13.

さらに、開閉機構を制御して複数の熱交換器の内一つを選択して脈動流を流入することができる。また、開閉機構を制御して複数の熱交換器5から順次選択して脈動流を流入することができる。さらに、開閉機構を制御して複数の熱交換器5の内、最もスケール付着が多い熱交換器5に脈動流を流入させることができる。   Further, the pulsating flow can be introduced by controlling the opening / closing mechanism to select one of the plurality of heat exchangers. Further, it is possible to control the opening / closing mechanism and sequentially select from the plurality of heat exchangers 5 to allow the pulsating flow to flow. Furthermore, the pulsating flow can be caused to flow into the heat exchanger 5 having the largest scale adhesion among the plurality of heat exchangers 5 by controlling the opening / closing mechanism.

さらに、薬液を用いず、給湯運転時にスケール付着を除去することができるので、熱交換器の品質低下を防止し、長寿命な熱交換器が得られる。   Furthermore, since the scale adhesion can be removed during the hot water supply operation without using a chemical solution, the deterioration of the quality of the heat exchanger can be prevented and a long-life heat exchanger can be obtained.

実施の形態2.
図7は本発明の実施の形態2におけるスケール除去運転時の印加パルスの概要図である。図7より、本実施の形態では、スケール付着が検知された水−冷媒熱交換器5dに対して、通常時の2倍のパルス脈動を印加する除去運転以外は、実施の形態1と同様の構成および運転条件とした。その結果、約12時間後に水−冷媒用熱交換器5dの水圧が0.06MPaに戻り、実施の形態1と同様の結果が得られた。これより、給湯運転時にスケール付着を除去でき、品質の低下を防止し長寿命な熱交換器が得られた。なお、印加するパルスは通常時の少なくとも1倍以上であれば本実施の形態と同様の結果が得られる。
Embodiment 2. FIG.
FIG. 7 is a schematic diagram of applied pulses during the scale removal operation according to Embodiment 2 of the present invention. As shown in FIG. 7, in the present embodiment, the same operation as that of the first embodiment is performed except for the removal operation in which the pulse pulsation twice the normal time is applied to the water-refrigerant heat exchanger 5d in which scale adhesion is detected. The configuration and operating conditions were used. As a result, the water pressure of the water-refrigerant heat exchanger 5d returned to 0.06 MPa after about 12 hours, and the same result as in the first embodiment was obtained. As a result, it was possible to remove scale adhesion during the hot water supply operation, and to obtain a long-life heat exchanger that prevented deterioration in quality. Note that the same result as in the present embodiment can be obtained as long as the applied pulse is at least one time the normal pulse or more.

また、例えば、特開2008−249163、特開2005−003209、特開2008−075898および特開2004−085172に記載されているような各種の水−冷媒用熱交換器や、特開平6−2947のようなガスボイラー式熱交換器でも、各熱交換器の前に脈動発生部と付着検知部を設置して、本実施の形態と同じような運転方法をすることで同様の効果が得られる。   Further, for example, various water-refrigerant heat exchangers described in JP-A-2008-249163, JP-A-2005-003209, JP-A-2008-075898 and JP-A-2004-085172, and JP-A-6-2947 are disclosed. Even in a gas boiler type heat exchanger such as this, the same effect can be obtained by installing a pulsation generator and an adhesion detector in front of each heat exchanger and performing the same operation method as in the present embodiment. .

さらに、薬液を用いず、給湯運転時にスケール付着を除去することができるので、熱交換器の品質低下を防止し、長寿命な熱交換器が得られる。   Furthermore, since the scale adhesion can be removed during the hot water supply operation without using a chemical solution, the deterioration of the quality of the heat exchanger can be prevented and a long-life heat exchanger can be obtained.

実施の形態3.
図8は本発明の実施の形態3におけるスケール除去運転時の印加パルスの概要図であり、より具体的には、除去運転時の印加パルス脈動波形の概略図である。図8より、本実施の形態では、スケール付着が検知された水−冷媒熱交換器5dに対し、他の熱交換器と交互にパルス脈動を印加する除去運転以外は、実施の形態1と同様の構成および運転条件とした。その結果、約10時間後に水−冷媒用熱交換器5dの水圧が0.06MPaに戻り、実施の形態1と同様の結果が得られた。これより、給湯運転時にスケール付着を除去でき、品質の低下を防止し長寿命な熱交換器が得られた。
Embodiment 3 FIG.
FIG. 8 is a schematic diagram of the applied pulse during the scale removal operation according to Embodiment 3 of the present invention, and more specifically, a schematic diagram of the applied pulse pulsation waveform during the removal operation. As shown in FIG. 8, in the present embodiment, the water-refrigerant heat exchanger 5d in which scale adhesion has been detected is the same as in the first embodiment except for the removal operation in which pulse pulsations are alternately applied to other heat exchangers. The configuration and operating conditions were as follows. As a result, the water pressure of the water-refrigerant heat exchanger 5d returned to 0.06 MPa after about 10 hours, and the same result as in the first embodiment was obtained. As a result, it was possible to remove scale adhesion during the hot water supply operation, and to obtain a long-life heat exchanger that prevented deterioration in quality.

また、例えば、特開2008−249163、特開2005−003209、特開2008−075898および特開2004−085172に記載されているような各種の水−冷媒用熱交換器や、特開平6−2947のようなガスボイラー式熱交換器でも、各熱交換器の前に脈動発生部と付着検知部を設置して、本実施の形態と同じような運転方法をすることで同様の効果が得られる。   Further, for example, various water-refrigerant heat exchangers described in JP-A-2008-249163, JP-A-2005-003209, JP-A-2008-075898 and JP-A-2004-085172, and JP-A-6-2947 are disclosed. Even in a gas boiler type heat exchanger such as this, the same effect can be obtained by installing a pulsation generator and an adhesion detector in front of each heat exchanger and performing the same operation method as in the present embodiment. .

さらに、薬液を用いず、給湯運転時にスケール付着を除去することができるので、熱交換器の品質低下を防止し、長寿命な熱交換器が得られる。   Furthermore, since the scale adhesion can be removed during the hot water supply operation without using a chemical solution, the deterioration of the quality of the heat exchanger can be prevented and a long-life heat exchanger can be obtained.

実施の形態4.
図9は本発明の実施の形態4におけるスケール除去運転時の印加パルスの概要図である。図9より、本実施の形態では、スケール付着が検知された水−冷媒熱交換器5dに対し、他の熱交換器と交互に通常時の2倍のパルス脈動を印加し、かつ、他の熱交換器と交互にパルス脈動を印加する除去運転以外は、実施の形態1と同様の構成および運転条件とした。実施の形態2と実施の形態3とを組み合わせた運転方法である。その結果、約8時間後に水−冷媒用熱交換器5dの水圧が0.06MPaに戻り、実施の形態1と同様の結果が得られた。これより、給湯運転時にスケール付着を除去でき、品質の低下を防止し長寿命な熱交換器が得られた。なお、印加するパルスは通常時の少なくとも1倍以上であれば本実施の形態と同様の結果が得られる。
Embodiment 4 FIG.
FIG. 9 is a schematic diagram of applied pulses during the scale removal operation according to Embodiment 4 of the present invention. As shown in FIG. 9, in the present embodiment, a pulse pulsation twice the normal time is applied alternately to the other heat exchanger to the water-refrigerant heat exchanger 5d in which scale adhesion has been detected, Except for the removal operation in which the pulse pulsation is applied alternately to the heat exchanger, the same configuration and operating conditions as in the first embodiment were adopted. This is an operation method in which the second embodiment and the third embodiment are combined. As a result, the water pressure of the water-refrigerant heat exchanger 5d returned to 0.06 MPa after about 8 hours, and the same result as in the first embodiment was obtained. As a result, it was possible to remove scale adhesion during the hot water supply operation, and to obtain a long-life heat exchanger that prevented deterioration in quality. Note that the same result as in the present embodiment can be obtained as long as the applied pulse is at least one time the normal pulse or more.

また、例えば、特開2008−249163、特開2005−003209、特開2008−075898および特開2004−085172に記載されているような各種の水−冷媒用熱交換器や、特開平6−2947のようなガスボイラー式熱交換器でも、各熱交換器の前に脈動発生部と付着検知部を設置して、本実施の形態と同じような運転方法をすることで同様の効果が得られる。   Further, for example, various water-refrigerant heat exchangers described in JP-A-2008-249163, JP-A-2005-003209, JP-A-2008-075898 and JP-A-2004-085172, and JP-A-6-2947 are disclosed. Even in a gas boiler type heat exchanger such as this, the same effect can be obtained by installing a pulsation generator and an adhesion detector in front of each heat exchanger and performing the same operation method as in the present embodiment. .

さらに、薬液を用いず、給湯運転時にスケール付着を除去することができるので、熱交換器の品質低下を防止し、長寿命な熱交換器が得られる。   Furthermore, since the scale adhesion can be removed during the hot water supply operation without using a chemical solution, the deterioration of the quality of the heat exchanger can be prevented and a long-life heat exchanger can be obtained.

1 熱交換器、2 空気−冷媒用熱交換器、3 送風機、4 圧縮機、5 水−冷媒用熱交換器、6 減圧器、7 冷媒用流路、8 被加熱水用流路、9 ポンプ、10 逆止弁、11 脈動発生部、12 脈動印加用流路、13 流路切替バルブ、14 コントロールボックス、15 脈動制御配線、16 流路切替バルブ制御配線、17 付着検知部。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Air-refrigerant heat exchanger, 3 Blower, 4 Compressor, 5 Water-refrigerant heat exchanger, 6 Decompressor, 7 Refrigerant flow path, 8 Heated water flow path, 9 Pump DESCRIPTION OF SYMBOLS 10 Check valve, 11 Pulsation generation part, 12 Pulsation application flow path, 13 Flow path switching valve, 14 Control box, 15 Pulsation control wiring, 16 Flow path switching valve control wiring, 17 Adhesion detection part.

Claims (5)

水と冷媒とで熱交換をする複数の熱交換器と、前記水を分岐して前記複数の熱交換器に流入する入流用流路と、前記複数の熱交換器から流出した前記水を合流する流出用流路とを備えた熱交換器を用いた熱交換器の運転方法であって、
前記熱交換器は前記入流用流路に並列され前記複数の熱交換器毎に開閉機構を備えて接続される脈動印加用流路を備え
前記開閉機構の開閉で前記水による脈動を制御することを特徴とする熱交換器の運転方法。
A plurality of heat exchangers that exchange heat with water and a refrigerant, an inflow channel that branches the water and flows into the plurality of heat exchangers, and the water that has flowed out of the plurality of heat exchangers merges A heat exchanger operating method using a heat exchanger provided with an outflow channel,
The heat exchanger includes a pulsation applying flow path that is connected in parallel to the inflow flow path and includes an opening / closing mechanism for each of the plurality of heat exchangers, and controls the pulsation due to the water by opening / closing the opening / closing mechanism. A heat exchanger operating method characterized by the above.
開閉機構を制御して複数の熱交換器の内一つを選択して脈動流を流入することを特徴とする請求項1に記載の熱交換器の運転方法。 The operation method of the heat exchanger according to claim 1, wherein the switching mechanism is controlled to select one of the plurality of heat exchangers to flow a pulsating flow. 開閉機構を制御して複数の熱交換器から順次選択して脈動流を流入することを特徴とする請求項1または請求項2に記載の熱交換器の運転方法。 The operating method of the heat exchanger according to claim 1 or 2, wherein the pulsating flow is introduced by controlling the opening / closing mechanism and sequentially selecting from a plurality of heat exchangers. 開閉機構を制御して複数の熱交換器の内、最もスケール付着が多い熱交換器に脈動流を流入することを特徴とする請求項1に記載の熱交換器の運転方法。 The operating method of the heat exchanger according to claim 1, wherein the pulsating flow flows into a heat exchanger having the largest scale adhesion among a plurality of heat exchangers by controlling an opening / closing mechanism. 水と冷媒とで熱交換をする複数の熱交換器と、
前記水を分岐して前記複数の熱交換器に流入する入流用流路と、
前記複数の熱交換器から流出した前記水を合流する流出用流路と、
前記入流用流路に並列され前記複数の熱交換器毎に開閉機構を備えて接続される脈動印加用流路と、
前記開閉機構の開閉で前記水による脈動を制御する制御手段とを備えたことを特徴とする熱交換器。
A plurality of heat exchangers that exchange heat between water and refrigerant;
An inflow channel for branching the water and flowing into the plurality of heat exchangers;
An outflow channel that joins the water flowing out of the plurality of heat exchangers;
A pulsation applying flow path that is connected in parallel to the flow path for inflow and provided with an opening / closing mechanism for each of the plurality of heat exchangers;
And a control means for controlling the pulsation caused by the water by opening and closing the opening and closing mechanism.
JP2012153782A 2012-07-09 2012-07-09 Heat exchanger and operation method thereof Expired - Fee Related JP5811053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153782A JP5811053B2 (en) 2012-07-09 2012-07-09 Heat exchanger and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153782A JP5811053B2 (en) 2012-07-09 2012-07-09 Heat exchanger and operation method thereof

Publications (2)

Publication Number Publication Date
JP2014016098A JP2014016098A (en) 2014-01-30
JP5811053B2 true JP5811053B2 (en) 2015-11-11

Family

ID=50110945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153782A Expired - Fee Related JP5811053B2 (en) 2012-07-09 2012-07-09 Heat exchanger and operation method thereof

Country Status (1)

Country Link
JP (1) JP5811053B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214955B (en) * 2014-09-29 2017-02-15 芜湖美的厨卫电器制造有限公司 Control method for water supply system
WO2016132540A1 (en) * 2015-02-20 2016-08-25 三菱電機株式会社 Heat exchanging device and heat pump water heater
JP2017133758A (en) * 2016-01-28 2017-08-03 エア・ウォーター・プラントエンジニアリング株式会社 Cleaning method and device of heat exchanger
WO2017158938A1 (en) 2016-03-16 2017-09-21 三菱電機株式会社 Heat exchange system and scale suppression method for heat exchange system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190466A (en) * 2009-02-17 2010-09-02 Sanyo Electric Co Ltd Water heater
JP2012117776A (en) * 2010-12-02 2012-06-21 Mitsubishi Electric Corp Heat pump type water heater

Also Published As

Publication number Publication date
JP2014016098A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP4756035B2 (en) Water heater
JP5811053B2 (en) Heat exchanger and operation method thereof
JP5546680B2 (en) Water heater and flow rate control method
JP2004144445A (en) Heat pump water heater
AU2010299259A1 (en) Hot water supply system
JP5501279B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
CN110487108A (en) A kind of compound cleaning method of tubular heat exchanger
JP5975956B2 (en) Abnormality notification method in water heater and water heater
JP6239199B1 (en) Heat exchange system and method for suppressing scale of heat exchange system
JP2011145010A (en) Storage water heater
JP2009243798A (en) Heater for water for hot-water supply system, and hot-water supply system
EP3260794B1 (en) Heat exchanging device and heat pump water heater
JP2010133600A (en) Heat pump water heater
JP2008215753A (en) Boiler water system impurity monitoring apparatus and method
JP2015183948A (en) Solar device
JP6642958B2 (en) Heat exchange system and method for cleaning heat exchanger
JP6229589B2 (en) Heat pump water heater
JP6710331B2 (en) Hot water supply system
KR20120126259A (en) Supply system for cold and hot water using waste heat
KR100699916B1 (en) Bath and heating control system to improve thermal efficiency
RU2528776C1 (en) Method of cleaning heat exchanger from carbonate deposits
JP6184846B2 (en) Chemical cleaning method for boiler piping
Harrison Passive heat exchanger anti-fouling for solar DHW systems
JP2013130356A (en) Storage water heater
JP2007071431A (en) Water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5811053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees