[go: up one dir, main page]

JP2009243798A - Heater for water for hot-water supply system, and hot-water supply system - Google Patents

Heater for water for hot-water supply system, and hot-water supply system Download PDF

Info

Publication number
JP2009243798A
JP2009243798A JP2008091961A JP2008091961A JP2009243798A JP 2009243798 A JP2009243798 A JP 2009243798A JP 2008091961 A JP2008091961 A JP 2008091961A JP 2008091961 A JP2008091961 A JP 2008091961A JP 2009243798 A JP2009243798 A JP 2009243798A
Authority
JP
Japan
Prior art keywords
water
heat transfer
side heat
transfer tube
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008091961A
Other languages
Japanese (ja)
Inventor
Yuki Miyazaki
裕貴 宮▲崎▼
Mitsuaki Ota
光昭 太田
Toshiro Abe
敏郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008091961A priority Critical patent/JP2009243798A/en
Publication of JP2009243798A publication Critical patent/JP2009243798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heater for water for a hot-water supply system and the hot-water supply system using the heater for water, for enhancing efficiency of work for removing scale within a water side heat-transfer pipe of the heater for water and simplifying the work. <P>SOLUTION: The heater 3 for water includes the water side heat-transfer pipe 29 wound and formed to have a coil shape and a water outlet header 25 to which a tip of a water outlet part 29E of the water side heat-transfer pipe 29 is connected. The water outlet part 29E of the water side heat-transfer pipe 29 is formed as a straight pipe part 36. In the water outlet header 25, an insertion hole for a cleaning tool is formed on an opposing wall face in a position facing, within the pipe, a wall face to which the straight pipe part 36 of the water side heat-transfer pipe 29 is connected, and a stopper member detachably fitted to the insertion hole for the cleaning tool is provided. The heater 3 for water is suitably used for the hot-water supply system K comprising a heat pump refrigerant circuit 1 and a water channel 2 for hot water supply. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、水側伝熱管内面に付着したスケールを物理的に洗浄、除去できる構造をもつ給湯機用の水用加熱器およびこれを用いた給湯機に関するものである。 The present invention relates to a water heater for a water heater having a structure capable of physically cleaning and removing scale attached to the inner surface of a water-side heat transfer tube, and a water heater using the same.

これまで、大気熱等をヒートポンプ冷媒回路の熱源として、冷媒の凝縮熱等を用いて水を加熱するヒートポンプ式の給湯機が知られている。この給湯機に使用される水は水道水や地下水などである。一般に、水道水や地下水などはカルシウムやマグネシウム等の硬度成分を含んでいるが、地域によっては硬度成分を非常に多く含んでいる場合がある。そこで、硬度成分を比較的多く含む水を、ヒートポンプ式給湯機の水用加熱器で長期間高温に加熱すると、最も高温となる水流路の水出口部近傍を中心に、硬度成分がスケール (例えば、炭酸カルシウム)として析出することが多い。このようなスケールが、水用加熱器の水流路内の伝熱面に付着し蓄積していくと、水の流路抵抗となって圧力損失が増大する。また、冷媒と水とが熱交換する際の伝熱面の熱抵抗となり、熱伝達率を著しく低減させるため、スケール除去剤を循環させたり、水流量を上げる運転(下記の特許文献1)や水循環量を上げる運転(下記の特許文献2)により加圧通水させることによって、スケールの洗浄が行われている。しかしながら、いったん析出してこびり付いたスケールは非常に硬く、特許文献1,2に記載のヒートポンプ式給湯機のように、単に加圧通水させるだけで剥離させることは極めて困難であり現実的でない。 Conventionally, heat pump type hot water heaters that heat water using atmospheric heat or the like as a heat source of a heat pump refrigerant circuit using condensation heat of the refrigerant or the like are known. The water used for this water heater is tap water or groundwater. In general, tap water, groundwater, and the like contain hardness components such as calcium and magnesium, but depending on the region, they may contain a very large amount of hardness components. Therefore, when water containing a relatively large hardness component is heated to a high temperature for a long time with a water heater of a heat pump type hot water heater, the hardness component is scaled around the vicinity of the water outlet of the water channel that becomes the highest temperature (for example, , Often as calcium carbonate). When such a scale adheres to and accumulates on the heat transfer surface in the water flow path of the water heater, it becomes water flow path resistance and pressure loss increases. In addition, the heat resistance of the heat transfer surface when the refrigerant and water exchange heat, and in order to significantly reduce the heat transfer rate, the operation of circulating the scale remover or increasing the water flow rate (Patent Document 1 below) The scale is washed by passing water under pressure by an operation for increasing the amount of water circulation (Patent Document 2 below). However, the scale once deposited and stuck is very hard, and it is extremely impractical to peel it off simply by passing water under pressure as in the heat pump type water heater described in Patent Documents 1 and 2.

特開2006−125654号公報JP 2006-125654 A 特開2005−308235号公報JP 2005-308235 A

ところで、カルシウムやマグネシウムなどの硬度成分を含んだ水を給湯機により昇温させて高温にすると、水中に溶解していた炭酸カルシウム等が過飽和となって析出し、その炭酸カルシウムが水用加熱器の水側伝熱管内で結晶化しスケールとなって蓄積する。 By the way, when water containing hardness components such as calcium and magnesium is heated to a high temperature by a water heater, calcium carbonate dissolved in water is supersaturated and precipitated, and the calcium carbonate is a water heater. It crystallizes and accumulates in the water-side heat transfer tube.

炭酸カルシウム等の析出によるスケールの付着は、水温が80℃付近を超えると顕著になる。しかしながら、これまでHFC冷媒使用のヒートポンプ式給湯機では90℃出湯を行なうと著しく効率が低下するために最高出湯温度は70℃までが一般的であった。これに対し、高温出湯でも高効率を確保でき90℃での出湯が可能な二酸化炭素(以下、CO2と称する)冷媒使用のヒートポンプ式給湯機は、スケールの原因となる炭酸カルシウムが析出しやすくなる。 Scale adhesion due to precipitation of calcium carbonate or the like becomes significant when the water temperature exceeds around 80 ° C. However, until now, heat pump water heaters using HFC refrigerants have been remarkably reduced in efficiency when 90 ° C. hot water is used, so the maximum hot water temperature is generally up to 70 ° C. On the other hand, a heat pump water heater using carbon dioxide (hereinafter referred to as CO2) refrigerant that can ensure high efficiency even at high temperature hot water and can hot water at 90 ° C. is likely to precipitate calcium carbonate that causes scale. .

また、従来のHFC冷媒使用のヒートポンプ式給湯機では、昇温方式としては保温運転が可能であること、また除霜時間が短くできることなどから循環加温方式を採用していた。すなわち、図15(A)に示すように、ヒートポンプ式の給湯機K1と貯湯槽60との間で水を数回循環させながら少しずつ昇温していくので、熱交換器の局所にスケールが付着しやすいということはなかった。しかし、CO2冷媒ヒートポンプ式給湯機は45℃を超える湯を効率的に昇温できないことから循環式に適していない。また、凝縮熱を給水温度まで利用することによる加熱能力の増大や小流量化によるポンプ動力の低減による高COP化を狙って一過式昇温方式が採用されている。図15(B)に示すように、給湯機K2の水用加熱器の水流路内で給水温度から90℃まで一気に昇温させて貯湯槽60に供給するため、水用加熱器出口側の水側伝熱管内において局所的にスケールが付着しやすくなる。 Further, in a conventional heat pump type water heater using an HFC refrigerant, a circulating heating method has been adopted as a temperature raising method because a heat retaining operation is possible and a defrosting time can be shortened. That is, as shown in FIG. 15 (A), since the temperature is gradually raised while circulating water several times between the heat pump type hot water heater K1 and the hot water tank 60, a scale is locally formed in the heat exchanger. It was not easy to adhere. However, the CO2 refrigerant heat pump type hot water heater is not suitable for the circulation type because it cannot efficiently raise the temperature of hot water exceeding 45 ° C. In addition, a one-time heating method is employed with the aim of increasing the heating capacity by using the condensation heat up to the feed water temperature and increasing the COP by reducing the pump power by reducing the flow rate. As shown in FIG. 15 (B), the water at the outlet side of the water heater is supplied to the hot water tank 60 by raising the temperature from the water supply temperature to 90 ° C. at a stretch in the water flow path of the water heater of the water heater K2. Scale easily adheres locally in the side heat transfer tubes.

従って、給湯機の水用加熱器の水側伝熱管内に炭酸カルシウムなどの析出によりスケールが付着した場合、配管の詰まりや熱伝達率の低下が発生するため、スケールの除去が必要となる。 Therefore, when scale adheres to the water-side heat transfer tube of the water heater of the water heater due to precipitation of calcium carbonate or the like, the piping is clogged or the heat transfer coefficient is reduced, so that the scale needs to be removed.

しかし、従来からの酸性溶液などのスケール除去剤を用いた方法において、使用されるスケール除去剤や洗浄剤と熱交換器素材の組合せによっては、熱交換器母材を腐食させる可能性があるという問題点があった。また、一般的にはスケール除去剤としての酸による腐食防止のため、中和洗浄などを実施することにより対処されているが、酸の洗浄除去が不完全であると、母材に腐食が発生する。更に、洗浄処理後の水処理においては有機酸を使用している物質が多いため、大掛かりな排水処理が必要となるという課題もある。
また、長い年月を経てスケールが蓄積された場合にはスケール除去剤の循環等だけではスケールの除去能力に限界があり、最終的にはブラシなどによる物理的な洗浄が必要となる。
However, in a conventional method using a scale remover such as an acidic solution, the heat exchanger base material may be corroded depending on the combination of the scale remover or cleaning agent used and the heat exchanger material. There was a problem. In general, neutralization cleaning is used to prevent corrosion caused by acid as a scale remover. However, if the acid is not completely cleaned, corrosion occurs in the base material. To do. Furthermore, since there are many substances using organic acids in the water treatment after the washing treatment, there is a problem that a large drainage treatment is required.
Further, when the scale is accumulated over a long period of time, the scale removal ability is limited only by circulation of the scale remover, and finally physical cleaning with a brush or the like is required.

また、熱交換器の伝熱長さが長くなると、水側伝熱管および冷媒側伝熱管の圧損が大きくなるため、給湯能力を大きくしようとして熱交換器を大きくする場合は、各伝熱管が複数パスに分割される。しかし、従来からの方法の一つである加圧通水による除去に関して、内部で数パスに分岐している熱交換器では、或るパスにおいてスケールが除去されるとそのパスに水の流れが集中することにより流量が均等に分配されず、スケールを除去できないパスが発生するおそれがあるという問題点がある。 Also, if the heat transfer length of the heat exchanger is increased, the pressure loss of the water-side heat transfer tube and the refrigerant-side heat transfer tube increases. Therefore, when increasing the heat exchanger in order to increase the hot water supply capacity, there are multiple heat transfer tubes. Divided into paths. However, with regard to removal by pressurized water flow, which is one of the conventional methods, in a heat exchanger branched internally into several passes, when scale is removed in a certain pass, water flows in that pass. Concentration causes a problem that the flow rate is not evenly distributed, and there is a possibility that a path where the scale cannot be removed may occur.

さらに、ブラシ等による洗浄は直管状の熱交換器においては有効であるが、巻き形状の熱交換器では曲げ部以降が洗浄し難いという問題点があった。 Further, although cleaning with a brush or the like is effective in a straight tubular heat exchanger, there is a problem that it is difficult to clean the bent portion and the subsequent portions in a wound heat exchanger.

本発明は、上記課題を解決するためになされたものであり、給湯機および水用加熱器を分解することなく、水用加熱器の水側伝熱管内のスケール除去における作業の効率化および簡略化を図ることのできる給湯機用の水用加熱器およびこれを用いた給湯機の提供を目的とする。 The present invention has been made to solve the above-described problems, and improves the efficiency and simplification of work in removing the scale in the water-side heat transfer tube of the water heater without disassembling the water heater and the water heater. It is an object of the present invention to provide a water heater for a water heater that can be converted into a water heater, and a water heater using the same.

この発明の水用加熱器は、コイル状に巻かれて形成された水側伝熱管と、水側伝熱管の水出口部の先端が接続された水出口ヘッダーとを有する水用加熱器であって、水側伝熱管の水出口部が直管部として形成され、水出口ヘッダーにおいて水側伝熱管の直管部が接続された壁面と管内で対面する位置の対向壁面に、掃除具挿通用穴が形成され、掃除具挿通用穴に着脱可能に装着される密栓部材を備えているものである。そして、この水用加熱器は、圧縮機、冷媒側伝熱管、膨張弁、および熱源側熱交換器を連結して成るヒートポンプ冷媒回路と、水ポンプ、および冷媒側伝熱管内の冷媒との間で熱交換を行なう水用加熱器の水側伝熱管を連結して成る給湯用水路とを有する給湯機に好適に適用される。 The water heater of the present invention is a water heater having a water side heat transfer tube formed by being wound in a coil shape, and a water outlet header to which the tip of the water outlet portion of the water side heat transfer tube is connected. The water outlet part of the water-side heat transfer tube is formed as a straight pipe part, and the cleaning tool is inserted into the opposite wall surface of the water outlet header facing the wall surface where the straight pipe part of the water-side heat transfer pipe is connected. A hole is formed, and a sealing plug member that is detachably attached to the cleaning tool insertion hole is provided. The water heater includes a heat pump refrigerant circuit formed by connecting a compressor, a refrigerant side heat transfer tube, an expansion valve, and a heat source side heat exchanger, and a water pump and a refrigerant in the refrigerant side heat transfer tube. It is suitably applied to a water heater having a hot water supply channel formed by connecting water-side heat transfer tubes of a water heater that performs heat exchange.

この発明に係る給湯機用の水用加熱器は、水側伝熱管の水出口部が直管部として形成され、水出口ヘッダーにおいて水側伝熱管の直管部が接続された壁面と管内で対面する位置の対向壁面に、掃除具挿通用穴が形成され、掃除具挿通用穴に着脱可能に装着される密栓部材を備えているので、通常は掃除具挿通用穴が密栓部材で水封されて使用される。そして、最も温度の高い水側伝熱管の水出口部にスケールが析出した場合、水出口部は直管部として形成されているので、給湯機本体から水用加熱器を取り外すことなく、密栓部材を外して開放した掃除具挿通用穴から直管部にブラシなどの掃除具を挿し込んでスケールを物理的に容易に除去できる。すなわち、本発明によれば、コイル巻き形状の熱交換器であっても、所定の直管部を設けたことにより、付着したスケールの大部分について物理的洗浄が可能になったのである。これにより、水用加熱器の水側伝熱管内のスケール除去における作業の効率化および簡略化を図ることができる。 A water heater for a water heater according to the present invention includes a water outlet portion of a water side heat transfer tube formed as a straight tube portion, and a wall surface and a pipe connected to the straight tube portion of the water side heat transfer tube in a water outlet header. Since the cleaning tool insertion hole is formed on the opposite wall surface at the facing position, and the sealing tool insertion hole is detachably attached to the cleaning tool insertion hole, the cleaning tool insertion hole is usually sealed with a sealing plug member. Have been used. And when scale deposits on the water outlet part of the water side heat transfer tube with the highest temperature, the water outlet part is formed as a straight pipe part, so without removing the water heater from the water heater body, the sealing plug member It is possible to physically easily remove the scale by inserting a cleaning tool such as a brush into the straight pipe portion from the cleaning tool insertion hole opened by removing the. That is, according to the present invention, even with a coil-wound heat exchanger, the provision of the predetermined straight pipe portion enables physical cleaning of most of the attached scale. Thereby, the efficiency and simplification of the operation | work in scale removal in the water side heat exchanger tube of the heater for water can be achieved.

実施の形態1.
図1はこの発明の実施の形態1における給湯機の回路構成図である。
図において、この実施の形態1に係る給湯機Kは、ヒートポンプ冷媒回路1と給湯用水路2とを備えている。ヒートポンプ冷媒回路1は、圧縮機4、水用加熱器3の伝熱管コイル24の冷媒側伝熱管30、膨張弁6、熱源側熱交換器7、マフラー8が冷媒配管9で環状に連結されて構成されている。このヒートポンプ冷媒回路1には、二酸化炭素(CO2)が冷媒として用いられる。給湯用水路2は、水ポンプ22、水流量調整弁12、および水用加熱器3の伝熱管コイル24の水側伝熱管29が水配管14を介して一連に連結して構成されている。水用加熱器3においては、水側伝熱管29の水流路13内の水と冷媒側伝熱管30の冷媒流路5内の冷媒との間で熱交換を行なうようになっている。そして、熱源側熱交換器7には、モータ11により駆動されるファン10によって室外空気が送風される。この給湯機Kは高温出湯が可能な一過式昇温方式を採用している。
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram of a water heater in Embodiment 1 of the present invention.
In the figure, a water heater K according to the first embodiment includes a heat pump refrigerant circuit 1 and a hot water supply channel 2. In the heat pump refrigerant circuit 1, a compressor 4, a refrigerant side heat transfer tube 30 of a heat transfer tube coil 24 of a water heater 3, an expansion valve 6, a heat source side heat exchanger 7, and a muffler 8 are annularly connected by a refrigerant pipe 9. It is configured. In the heat pump refrigerant circuit 1, carbon dioxide (CO2) is used as a refrigerant. The hot water supply channel 2 includes a water pump 22, a water flow rate adjusting valve 12, and a water side heat transfer tube 29 of a heat transfer tube coil 24 of the water heater 3 connected in series via a water pipe 14. In the water heater 3, heat exchange is performed between the water in the water flow path 13 of the water side heat transfer tube 29 and the refrigerant in the refrigerant flow path 5 of the refrigerant side heat transfer tube 30. Then, outdoor air is blown to the heat source side heat exchanger 7 by a fan 10 driven by a motor 11. This hot water heater K employs a one-time temperature raising method capable of high temperature hot water.

次に、この給湯機Kの外郭構造を図2〜図5に示す。基盤41の前部に前パネル42、フィンガード43、および上部パネル44が配置され、基盤41の両側部にサイドパネル45およびサイドパネル46が配備され、基盤41の背部に後パネル49および後上部パネル47が配備されている。上部パネル44、サイドパネル45、サイドパネル46、および後上部パネル47に囲まれた上面開口にはファンガード48が設置されている。そして、サイドパネル45,46、ベルマウス50、および機械室仕切板51により形成された空気通路を横切るように熱源側熱交換器7が配置され、熱源側熱交換器7の上方にファン10およびモータ11が配置されている。また、ケーシング下部の機械室仕切板51、前パネル42、および後パネル49によって外環境から区画された機械室内には、圧縮機4、マフラー8、水用加熱器3、水ポンプ22、水流量調整弁12、冷媒配管遺憾や水配管といった配管群52、制御ボックス23、その他が配備されている。 Next, the outer structure of the water heater K is shown in FIGS. The front panel 42, the fingered 43, and the upper panel 44 are disposed in the front part of the base 41, the side panel 45 and the side panel 46 are provided on both sides of the base 41, and the rear panel 49 and the rear upper part are disposed on the back of the base 41. A panel 47 is provided. A fan guard 48 is installed in an upper surface opening surrounded by the upper panel 44, the side panel 45, the side panel 46, and the rear upper panel 47. The heat source side heat exchanger 7 is disposed so as to cross the air passage formed by the side panels 45, 46, the bell mouth 50, and the machine room partition plate 51, and the fan 10 and the heat source side heat exchanger 7 are disposed above the heat source side heat exchanger 7. A motor 11 is arranged. Further, in the machine room partitioned from the outside environment by the machine room partition plate 51, the front panel 42, and the rear panel 49 at the lower part of the casing, there are a compressor 4, a muffler 8, a water heater 3, a water pump 22, a water flow rate. A regulating valve 12, a piping group 52 such as a refrigerant piping regret and water piping, a control box 23, and others are provided.

一方で、圧縮機4、膨張弁6、制御ボックス23、水ポンプ22については、サービス頻度が高いため、基盤41の前部に配置されており、修理・交換等の作業はユニット下部の前パネル42を外して行われる。他方、体積が大きくサービス頻度が比較的低い水用加熱器3は前部に配置することができず、基盤41の後部に配置されている。 On the other hand, since the compressor 4, the expansion valve 6, the control box 23, and the water pump 22 are frequently serviced, they are arranged in the front part of the base 41, and work such as repair and replacement is performed on the front panel at the bottom of the unit. 42 is performed. On the other hand, the water heater 3 having a large volume and a relatively low service frequency cannot be disposed at the front portion, and is disposed at the rear portion of the base 41.

尚、水用加熱器3の修理や交換等のサービス作業については、前方からは圧縮機4や制御ボックス23、配管群52などが障害となるために困難であり、後パネル49からは作業スペースが狭いために作業ができない。また、サイドパネル45,46はファン10やその他パネル等の重量を支える構造部材となっているため、取外しが困難である。また、水用加熱器3の上部においても熱源側熱交換器7が配置されているため、作業が困難となる。 Service work such as repair or replacement of the water heater 3 is difficult from the front because the compressor 4, the control box 23, the piping group 52, etc. are obstructed, and the work space from the rear panel 49 is difficult. The work is not possible due to the small size. Moreover, since the side panels 45 and 46 are structural members that support the weight of the fan 10 and other panels, it is difficult to remove them. Moreover, since the heat source side heat exchanger 7 is also arranged in the upper part of the water heater 3, the operation becomes difficult.

そして、給湯機Kの機械室内において、水用加熱器3は、図4に示すように、水側伝熱管29の掃除具挿通用穴37がサイドパネル46に向くように、配置されている。そして、サイドパネル46には、図5および図6に示すような水用加熱器3の洗浄作業を実施するための開口部38が形成されている。開口部38は水出口ヘッダー25に形成されている掃除具挿通用穴37,37,37,37,37が全て露出する程度の大きさに形成されている。開口部38はカバー板39により開閉可能に蓋止される。 And in the machine room of the water heater K, the water heater 3 is arranged so that the cleaning tool insertion hole 37 of the water side heat transfer tube 29 faces the side panel 46 as shown in FIG. And the opening part 38 for implementing the washing | cleaning operation | work of the water heater 3 as shown in FIG.5 and FIG.6 is formed in the side panel 46. FIG. The opening 38 is formed in such a size that all the cleaning tool insertion holes 37, 37, 37, 37, 37 formed in the water outlet header 25 are exposed. The opening 38 is covered with a cover plate 39 so as to be opened and closed.

水用加熱器3は、図7に示すように、5パスの伝熱管コイル24,24,24,24,24と、伝熱管コイル24,24,24,24,24への水側伝熱管29,29,29,29,29の水入側が接続された水入口ヘッダー26と、伝熱管コイル24,24,24,24,24からの水側伝熱管29,29,29,29,29の水出側が接続された水出口ヘッダー25と、伝熱管コイル24,24,24,24,24への冷媒側伝熱管30,30,30,30,30の冷媒入側が接続された冷媒入口ヘッダー27と、伝熱管コイル24,24,24,24,24からの冷媒側伝熱管30,30,30,30,30の冷媒出側が接続された冷媒出口ヘッダー28とにより構成される。これらの伝熱管コイル24、水入口ヘッダー26、水出口ヘッダー25、冷媒入口ヘッダー27、および冷媒出口ヘッダー28はそれぞれ、ろう付け等により接続される。ところで、給湯能力を大きくするためには水用加熱器3を大きくする必要がある。しかし、水用加熱器3の伝熱管長さが長くなると水流路13側および冷媒流路5側の圧損が大きくなるため、複数パスに分流させることにより1パスの圧損が抑制される。従って、給湯能力を大きくする場合には、図5のように伝熱管コイル24が複数パス並列に配置される。なお、この給湯機Kは最大能力20馬力相当の能力を有しているため、5パス(5本)の伝熱管コイル24(n=1〜5)を搭載している。1パスの伝熱管コイル24の長さは約10mである。 As shown in FIG. 7, the water heater 3 includes five-path heat transfer tube coils 24, 24, 24, 24, 24 and water-side heat transfer tubes 29 to the heat transfer tube coils 24, 24, 24, 24, 24. , 29, 29, 29, 29, the water inlet header 26 connected to the water inlet side, and the water side heat transfer tubes 29, 29, 29, 29, 29 from the heat transfer tube coils 24, 24, 24, 24, 24. A water outlet header 25 to which the outlet side is connected, and a refrigerant inlet header 27 to which the refrigerant inlet side of the refrigerant side heat transfer tubes 30, 30, 30, 30, 30 to the heat transfer tube coils 24, 24, 24, 24, 24 is connected The refrigerant outlet header 28 is connected to the refrigerant outlet side of the refrigerant side heat transfer tubes 30, 30, 30, 30, 30 from the heat transfer tube coils 24, 24, 24, 24, 24. These heat transfer tube coil 24, water inlet header 26, water outlet header 25, refrigerant inlet header 27, and refrigerant outlet header 28 are connected by brazing or the like. By the way, it is necessary to enlarge the water heater 3 in order to increase the hot water supply capacity. However, when the heat transfer tube length of the water heater 3 is increased, the pressure loss on the water flow path 13 side and the refrigerant flow path 5 side is increased. Therefore, when increasing the hot water supply capacity, the heat transfer tube coils 24 are arranged in parallel in a plurality of paths as shown in FIG. In addition, since this water heater K has the capacity | capacitance equivalent to the maximum capacity | capacitance of 20 horsepower, the heat transfer tube coil 24 (n = 1-5) of 5 paths | paths (5) is mounted. The length of the one-pass heat transfer tube coil 24 is about 10 m.

図8(A)に図7の水用加熱器3の伝熱管コイル24の断面図の例を示す。この伝熱管コイル24は、冷媒側伝熱管30内に水側伝熱管29が収容された二重管構造を有している。この場合、水と冷媒を対向流とし水側伝熱管29の周囲の冷媒流路5Aに冷媒を流すことにより水流路13内の水と熱交換するようになっている。 FIG. 8A shows an example of a cross-sectional view of the heat transfer tube coil 24 of the water heater 3 of FIG. The heat transfer tube coil 24 has a double tube structure in which a water side heat transfer tube 29 is accommodated in a refrigerant side heat transfer tube 30. In this case, heat is exchanged with water in the water flow path 13 by using water and a refrigerant as opposed flows and flowing the refrigerant through the refrigerant flow path 5A around the water-side heat transfer tube 29.

尚、この発明に用いる伝熱管コイルとしては、前記した伝熱管コイル24に限るものでなく、図8(B)に示すような伝熱管コイル24Aであっても構わない。この伝熱管コイル24Aは水側伝熱管29A(外径約15mmφ)に3本の冷媒側伝熱管30A,30A,30A(それぞれ外径約4mmφ)をねじって巻き付けて固着することで伝熱面積を増やして、水流路13A内の水と冷媒流路5A内の冷媒を対向流にして熱交換を行なう。この伝熱管コイル24Aは伝熱効率を向上させたことにより熱交換器をコンパクト化できる一方で、水流路13内の溝などのくぼんだ部分にスケールが溜まりやすく、また加圧通水などでは洗浄しにくいという欠点がある。 The heat transfer tube coil used in the present invention is not limited to the heat transfer tube coil 24 described above, and may be a heat transfer tube coil 24A as shown in FIG. This heat transfer tube coil 24A has three heat transfer tubes 30A, 30A, 30A (each with an outer diameter of about 4 mmφ) wound around the water side heat transfer tube 29A (with an outer diameter of about 15 mmφ) and fixed by twisting. The heat exchange is performed by making the water in the water flow path 13A and the refrigerant in the refrigerant flow path 5A counter flow. This heat transfer tube coil 24A can reduce the size of the heat exchanger by improving the heat transfer efficiency. On the other hand, the scale tends to accumulate in a recessed portion such as a groove in the water flow path 13, and the heat transfer coil 24A can be washed with pressurized water. There is a drawback that it is difficult.

そうして、この給湯機Kでは、図7に示したように水用加熱器3を機械室内に納めるために巻き形状とした伝熱管コイル24(図9)において、スケールが付着しやすい水出口部29Eに直線状に所定長さの直管部36が形成されている。また、図10に示すように、水出口ヘッダー25において、水側伝熱管29の直管部36が接続された壁面25Aに対し管内で対面する位置の対向壁面25Bに、掃除具挿通用穴37,37,37,37,37が形成されている。この場合、各掃除具挿通用穴37は各直管部36の管軸心とほぼ同軸となる位置の対向壁面25Bに配置されている。掃除具挿通用穴37はブラシなどの掃除具が入る程度の穴径に形成されている。掃除具挿通用穴37には、給湯機運転時に水封し、洗浄時等には開封される密栓部材40が着脱可能に装着される。 Then, in this water heater K, as shown in FIG. 7, in the heat transfer tube coil 24 (FIG. 9) which is wound to accommodate the water heater 3 in the machine room, the water outlet to which scale easily adheres. A straight pipe portion 36 having a predetermined length is formed linearly on the portion 29E. Further, as shown in FIG. 10, in the water outlet header 25, the cleaning tool insertion hole 37 is formed on the opposing wall surface 25 </ b> B at a position facing the wall surface 25 </ b> A to which the straight pipe portion 36 of the water-side heat transfer tube 29 is connected. , 37, 37, 37, 37 are formed. In this case, each cleaning tool insertion hole 37 is arranged on the opposing wall surface 25 </ b> B at a position substantially coaxial with the tube axis of each straight pipe portion 36. The cleaning tool insertion hole 37 is formed to have a hole diameter enough to accommodate a cleaning tool such as a brush. The cleaning tool insertion hole 37 is detachably mounted with a sealing member 40 which is sealed with water when the water heater is in operation and opened during cleaning.

掃除具挿通用穴37を開閉するための密栓部材40は、図11(A)、(B)に示すように、市販のクイックファスナ55を用いる接続構造によって、開閉が容易で、かつ、水漏れに対する信穎性の高い態様で使用される。水出口ヘッダー25の掃除具挿通用穴37に、管端を図11のように加工したヘッダー側配管53が接続され、密栓部材40が装着されて水封される。ヘッダー側配管53と密栓部材40の隙間はO−リング54により水密性が確保される。そして、ヘッダー側配管53の外周面に全周にわたって設けられた周鍔部53Aと、密栓部材40の外周面に全周にわたって設けられた周鍔部40Aとが、クイックファスナ55により挟持されることにより、ヘッダー側配管53から外れないように密栓部材40の管軸方向の動きが規制されるのである。 As shown in FIGS. 11A and 11B, the sealing member 40 for opening and closing the cleaning tool insertion hole 37 is easily opened and closed by a connection structure using a commercially available quick fastener 55, and water leaks. Used in a highly credible manner. A header side pipe 53 whose pipe end is processed as shown in FIG. 11 is connected to the cleaning tool insertion hole 37 of the water outlet header 25, and the sealing member 40 is attached and water sealed. Watertightness is ensured in the gap between the header side pipe 53 and the sealing plug member 40 by the O-ring 54. And the peripheral flange part 53A provided in the outer peripheral surface of the header side piping 53 over the perimeter, and the peripheral flange part 40A provided in the outer peripheral surface of the sealing plug member 40 over the entire periphery are clamped by the quick fastener 55. Thus, the movement of the sealing plug member 40 in the tube axis direction is regulated so as not to be detached from the header side piping 53.

図12は日本各地においてスケールが付着した給湯機の水用加熱器をスケール膜厚についてサンプリングした中でA地区とB地区で使用してスケールが付着した水用加熱器内における水温とスケール膜厚との関係を示している。図中の曲線からわかるように、傾向に多少の違いはあるが水温が80℃以上になる部分からスケールの付着が顕著になる傾向が認められる。地域によってカルシウムやマグネシウム等の硬度成分量に違いがあることより、溶け出し時のスケール膜圧に違いを生じるが、90℃以上では同等の膜厚となる。すなわち、硬度成分量に違いがあっても90℃以上ではスケールの付着量に差がないことが分かる。高温になるにつれて溶存できる空気の量が低下して気泡が発生し、水側伝熱管29の内面に溜まり、流路抵抗が大きくなったことでスケールの発生率が上がったと言える。 Fig. 12 shows the water temperature and scale film thickness in water heaters with scales attached using water heaters of water heaters with scales in various parts of Japan sampled for scale film thicknesses in A and B districts. Shows the relationship. As can be seen from the curve in the figure, although there is a slight difference in the tendency, there is a tendency that the adhesion of the scale becomes remarkable from the portion where the water temperature is 80 ° C. or higher. Although there is a difference in the amount of hardness components such as calcium and magnesium depending on the region, a difference occurs in the scale film pressure at the time of melting, but the film thickness is equivalent at 90 ° C. or higher. That is, it can be seen that even if there is a difference in the amount of hardness component, there is no difference in the amount of scale attached at 90 ° C. or higher. It can be said that as the temperature increases, the amount of air that can be dissolved decreases, bubbles are generated, accumulate on the inner surface of the water-side heat transfer tube 29, and the flow rate resistance increases, thereby increasing the scale generation rate.

図13はスケールが付着した水用加熱器の水側伝熱管内における水出口端からの距離とスケール膜厚との関係を示している。図中の曲線からわかるように、スケールが付着しやすい部分は熱交換器全体の4〜8%であり、この範囲においてスケールが付着しやすい。この給湯機Kは20馬力クラスであって水用加熱器3を5パスの伝熱管コイル24,24,24,24,24に分割しており、伝熱管コイル1パスの全長は約10mである。その場合、スケールが付着し易く洗浄可能とする必要のある水側伝熱管29の長さはおよそ80cm程度である。そこで、この長さ以上、すなわち水出口端部から遡って全長の約1割(すなわち所定比率。この場合、約1m)までの長さLの部分(水出口部29E)を、直管部36とし、ブラシなどの掃除具による洗浄作業をし易くすることで、ほぼ全てのスケールを取り除くことができる。 FIG. 13 shows the relationship between the distance from the water outlet end in the water-side heat transfer tube of the water heater to which the scale is attached and the scale film thickness. As can be seen from the curve in the figure, the portion where the scale easily adheres is 4 to 8% of the entire heat exchanger, and the scale easily adheres in this range. This water heater K is a 20 horsepower class, and the water heater 3 is divided into five-path heat transfer tube coils 24, 24, 24, 24, 24, and the total length of one heat transfer tube coil is about 10 m. . In that case, the length of the water-side heat transfer tube 29 that is easily attached to the scale and needs to be cleaned is about 80 cm. Therefore, a portion (water outlet portion 29E) having a length L that is longer than this length, that is, about 10% of the total length retroactively from the water outlet end portion (that is, a predetermined ratio, in this case, about 1 m) is connected to the straight pipe portion 36. By making the cleaning work easy with a cleaning tool such as a brush, almost all scales can be removed.

そこで、この給湯機Kによる水側伝熱管29内部のスケールの洗浄について説明すると、まず給湯機の運転を停止させてユニット内の水をユニットの水入口部から抜いた後で、水用加熱器付近のサイドパネル46からカバー板39を外して作業用開口部38を開け、次に水出口ヘッダー25から密栓部材40を外して掃除具挿通用穴37を開放し、ブラシを掃除具挿通用穴37から水側伝熱管29の直管部36終端の最奥部まで挿し込み、直管部36の管内壁に付着していたスケールを掻き落とす。ブラシで掻き出しきれずに水側伝熱管29内に残留したスケールについては掃除具挿通用穴37からホースで水を逆向きに注水することによって流し、給水用水路2の最低位置にある水抜き構造およびユニットの水入口部から排出させる。ユニットの水入口部からスケールが出てこなくなったのを確認した所で注水を止め、水出口ヘッダー25の掃除具挿通用穴37を密栓部材40で塞ぎ、サイドパネル46の作業用開口部38をカバー板39で蓋止して作業を終了する。 Accordingly, the cleaning of the scale inside the water-side heat transfer tube 29 by the hot water heater K will be described. First, the operation of the hot water heater is stopped and the water in the unit is drained from the water inlet of the unit, and then the water heater The cover plate 39 is removed from the nearby side panel 46 to open the working opening 38, then the sealing plug member 40 is removed from the water outlet header 25 to open the cleaning tool insertion hole 37, and the brush is inserted into the cleaning tool insertion hole. 37 to the farthest end of the straight pipe portion 36 of the water-side heat transfer tube 29, and the scale attached to the inner wall of the straight pipe portion 36 is scraped off. The scale remaining in the water-side heat transfer tube 29 without being scraped by the brush is poured by pouring water in the reverse direction with the hose from the cleaning tool insertion hole 37, and the drainage structure at the lowest position of the water supply channel 2 and Drain from the water inlet of the unit. Water injection was stopped when it was confirmed that the scale did not come out from the water inlet of the unit, the cleaning tool insertion hole 37 of the water outlet header 25 was closed with the sealing member 40, and the working opening 38 of the side panel 46 was closed. The cover is stopped by the cover plate 39 and the operation is completed.

洗浄に用いるブラシは、水側伝熱管29の直管部36内に容易に入る程度の直径を有する棒の外周に、水流路13の溝部の底に容易に届く長さの毛材を放射状に植え付けたものであり、水出口部29Eに設けた直管部36の全長に届き得る長さを有するものを用いる。このブラシの毛材としては、配管母材へ傷付きを与えにくい材質の繊維などが使用される。 The brush used for cleaning radially has a bristle length that easily reaches the bottom of the groove portion of the water flow path 13 on the outer periphery of a rod having a diameter that can easily enter the straight pipe portion 36 of the water-side heat transfer tube 29. A planted one having a length that can reach the entire length of the straight pipe portion 36 provided in the water outlet portion 29E is used. As the bristle material of the brush, fibers made of a material that hardly damages the piping base material are used.

上記したように、この実施の形態1の給湯機Kによれば、水側伝熱管29の水出口部29Eが直管部36として形成されているので、ケーシングを分解したり水用加熱器3を基盤41から取り外したりすることなく、密栓部材40を外して開放した掃除具挿通用穴37からブラシなどの掃除具を挿し込んで直管部36のスケールを物理的に容易に除去することができる。 As described above, according to the water heater K of the first embodiment, the water outlet portion 29E of the water-side heat transfer tube 29 is formed as the straight tube portion 36, so that the casing can be disassembled or the water heater 3 It is possible to physically remove the scale of the straight pipe portion 36 by inserting a cleaning tool such as a brush from the cleaning tool insertion hole 37 which is opened by removing the sealing plug member 40 without removing the base 41 from the base 41. it can.

実施の形態2.
上記した実施の形態1では、水用加熱器3の直管部36の内部をブラシ等により物理的に洗浄するために、水出口ヘッダー25に掃除具挿通用穴37を設けたが、本発明はこれに限定されるものでない。
例えば、図14に示すように、水出口ヘッダー25と水用加熱器3の伝熱管コイル24および水出口ヘッダー25以降の水配管14とを容易に分断する構造を採用しても構わない。例えば、水側伝熱管29の水出口部29Eが直管部36として形成され、水側伝熱管29からの水を受け取る受水管56が水出口ヘッダー25に接続される。そして、受水管56の先端と直管部36の先端とが連結手段63を介して取外し可能に連結される。この場合、例えば、直管部36の先端に設けたフランジ部61と、受水管56の先端に設けたフランジ部62と、これらのフランジ部61,62を連結するボルトおよびナット(図示省略)とから、連結手段63が構成される。一方、水出口ヘッダー25の上端と水配管14の下端とが連結手段66を介して取外し可能に連結される。この場合、例えば、水出口ヘッダー25の上端に設けたフランジ部64と、水配管14の下端に設けたフランジ部65と、これらのフランジ部64,65を連結するボルトおよびナット(図示省略)とから、連結手段66が構成される。
Embodiment 2. FIG.
In Embodiment 1 described above, the cleaning tool insertion hole 37 is provided in the water outlet header 25 in order to physically clean the inside of the straight pipe portion 36 of the water heater 3 with a brush or the like. Is not limited to this.
For example, as shown in FIG. 14, you may employ | adopt the structure which divides | segments easily the water outlet header 25, the heat exchanger tube coil 24 of the heater 3 for water, and the water piping 14 after the water outlet header 25. FIG. For example, the water outlet portion 29 </ b> E of the water side heat transfer tube 29 is formed as the straight tube portion 36, and the water receiving pipe 56 that receives water from the water side heat transfer tube 29 is connected to the water outlet header 25. And the front-end | tip of the water receiving pipe 56 and the front-end | tip of the straight pipe part 36 are connected through the connection means 63 so that removal is possible. In this case, for example, a flange portion 61 provided at the tip of the straight pipe portion 36, a flange portion 62 provided at the tip of the water receiving pipe 56, and bolts and nuts (not shown) that connect these flange portions 61 and 62. Thus, the connecting means 63 is configured. On the other hand, the upper end of the water outlet header 25 and the lower end of the water pipe 14 are detachably connected via a connecting means 66. In this case, for example, a flange portion 64 provided at the upper end of the water outlet header 25, a flange portion 65 provided at the lower end of the water pipe 14, and bolts and nuts (not shown) connecting these flange portions 64 and 65, Thus, the connecting means 66 is configured.

このように、水出口ヘッダー25を含む取外しユニット67を一体で取り外せる構造とすることによっても、直管部36の内部をブラシ等により洗浄してスケールを除去することが可能となる。 As described above, by adopting a structure in which the removal unit 67 including the water outlet header 25 can be integrally removed, the scale can be removed by washing the inside of the straight pipe portion 36 with a brush or the like.

実施の形態3.
上記した各実施の形態では、水用加熱器3をサイドパネル46の近傍に配置し、サイドパネル46に作業用開口部38を設けた例を示したが、基盤41の前部に設置スペースの余裕があるならば、水用加熱器3を前パネル42などのサービスパネル近傍に配置し、水用加熱器3の掃除具挿通用穴37をサービスパネル側に向けておくことにより、広い作業スペースをとれてサービス作業を行ないやすい給湯機の前面側からスケール除去作業を行なうことができる。
Embodiment 3 FIG.
In each of the above-described embodiments, the example in which the water heater 3 is disposed in the vicinity of the side panel 46 and the working opening 38 is provided in the side panel 46 has been described. If there is room, the water heater 3 is arranged in the vicinity of the service panel such as the front panel 42, and the cleaning tool insertion hole 37 of the water heater 3 is directed toward the service panel so that a wide working space is obtained. The scale removal work can be performed from the front side of the water heater that can be easily serviced.

尚、給湯機のヒートポンプ冷媒回路に用いる冷媒としては、先述した二酸化炭素が最も好適なのであるが、それ以外でも、出湯温度を70℃以上にする冷媒を用いることも可能である。   As the refrigerant used in the heat pump refrigerant circuit of the water heater, the carbon dioxide mentioned above is most suitable, but other than that, it is also possible to use a refrigerant that makes the hot water temperature 70 ° C. or higher.

この発明の実施の形態1における給湯機の回路構成図である。It is a circuit block diagram of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の外観図である。It is an external view of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の分解斜視図である。It is a disassembled perspective view of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の機械室内の平面図である。It is a top view in the machine room of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の左側面図である。It is a left view of the water heater in Embodiment 1 of this invention. 図5において作業用開口部を開いた状態を示す部分拡大側面図である。FIG. 6 is a partially enlarged side view showing a state in which the work opening is opened in FIG. 5. この発明の実施の形態1における給湯機の水用加熱器の斜視図である。It is a perspective view of the water heater of the water heater in Embodiment 1 of this invention. (A)は前記水用加熱器の伝熱管コイルの断面図、(B)は前記伝熱管コイルの別例を示す断面図である。(A) is sectional drawing of the heat exchanger tube coil of the said water heater, (B) is sectional drawing which shows another example of the said heat exchanger tube coil. (A)は前記伝熱管コイルの正面図、(B)は前記伝熱管コイルの平面図、(C)は前記伝熱管コイルの側面図である。(A) is a front view of the heat transfer tube coil, (B) is a plan view of the heat transfer tube coil, and (C) is a side view of the heat transfer tube coil. 前記伝熱管コイル、水出口ヘッダー、水入口ヘッダーおよび密栓部材を示す正面図である。It is a front view which shows the said heat exchanger tube coil, a water outlet header, a water inlet header, and a sealing plug member. (A)は前記水出口ヘッダーのヘッダー側配管、密栓部材およびクイックファスナを示す部分背面図、(B)は前記水出口ヘッダーのヘッダー側配管、密栓部材およびクイックファスナを示す斜視図である。(A) is a partial rear view showing the header side piping, sealing plug member and quick fastener of the water outlet header, and (B) is a perspective view showing the header side piping, sealing plug member and quick fastener of the water outlet header. 異なる地区で使用してスケールが付着した給湯機の水用加熱器内における水温とスケール膜厚との関係を示す図である。It is a figure which shows the relationship between the water temperature and the scale film thickness in the water heater of the water heater used in a different area and having a scale attached. スケールが付着した水用加熱器の水側伝熱管内における水出口端からの距離とスケール膜厚との関係を示す図である。It is a figure which shows the relationship between the distance from the water exit end in the water side heat exchanger tube of the water heater to which the scale adhered, and a scale film thickness. この発明の実施の形態1における給湯機の伝熱管コイルと水出口ヘッダーとの接続構造を示す正面図である。It is a front view which shows the connection structure of the heat exchanger tube coil and water outlet header of the water heater in Embodiment 1 of this invention. 一般のヒートポンプ給湯機と貯湯槽の概略構成図を示す図であって、(A)は湯を循環させる循環式昇温方式のもの示す図、(B)は水から湯を生成する一過式昇温方式のものを示す図である。It is a figure which shows schematic structure figure of a general heat pump water heater and a hot water storage tank, Comprising: (A) is a figure which shows the thing of the circulation-type temperature rising system which circulates hot water, (B) is a transient type which produces | generates hot water from water It is a figure which shows the thing of a temperature rising system.

符号の説明Explanation of symbols

1 ヒートポンプ冷媒回路、2 給湯用水路、3 水用加熱器、4 圧縮機、6 膨張弁、7 熱源側熱交換器、22 水ポンプ、25 水出口ヘッダー、25A 壁面、25B 対向壁面、29,29A 水側伝熱管、29E 水出口部、30,30A 冷媒側伝熱管、36 直管部、37 掃除具挿通用穴、38 作業用開口部、40 密栓部材、63 接続手段、66 接続手段、K 給湯機、L 長さ。 DESCRIPTION OF SYMBOLS 1 Heat pump refrigerant circuit, 2 hot water supply channel, 3 water heater, 4 compressor, 6 expansion valve, 7 heat source side heat exchanger, 22 water pump, 25 water outlet header, 25A wall surface, 25B opposing wall surface, 29, 29A water Side heat transfer pipe, 29E Water outlet, 30, 30A Refrigerant side heat transfer pipe, 36 Straight pipe, 37 Cleaning tool insertion hole, 38 Work opening, 40 Seal plug member, 63 Connection means, 66 Connection means, K Water heater , L Length.

Claims (4)

コイル状に巻かれて形成された水側伝熱管と、前記水側伝熱管の水出口部の先端が接続された水出口ヘッダーとを有する水用加熱器であって、前記水側伝熱管の水出口部が直管部として形成され、前記水出口ヘッダーにおいて前記水側伝熱管の直管部が接続された壁面と管内で対面する位置の対向壁面に、掃除具挿通用穴が形成され、前記掃除具挿通用穴に着脱可能に装着される密栓部材を備えていることを特徴とする給湯機用の水用加熱器。 A water heater having a water-side heat transfer tube formed in a coil shape and a water outlet header to which a tip of a water outlet portion of the water-side heat transfer tube is connected, the water-side heat transfer tube A water outlet portion is formed as a straight pipe portion, and a cleaning tool insertion hole is formed on the opposite wall surface of the water outlet header at a position facing the wall surface to which the straight pipe portion of the water-side heat transfer tube is connected, A water heater for a water heater, comprising a sealing plug member detachably attached to the cleaning tool insertion hole. コイル状に巻かれて形成された水側伝熱管と、前記水側伝熱管の水出口部の先端が接続された水出口ヘッダーとを有する水用加熱器であって、前記水側伝熱管の水出口部が直管部として形成され、前記水出口ヘッダーと前記直管部の先端とが連結手段を介して取外し可能に連結されていることを特徴とする給湯機用の水用加熱器。 A water heater having a water-side heat transfer tube formed in a coil shape and a water outlet header to which a tip of a water outlet portion of the water-side heat transfer tube is connected, the water-side heat transfer tube A water heater for a water heater, wherein the water outlet portion is formed as a straight pipe portion, and the water outlet header and the tip of the straight pipe portion are detachably connected via a connecting means. 圧縮機、冷媒側伝熱管、膨張弁、および熱源側熱交換器を連結して成るヒートポンプ冷媒回路と、水ポンプ、および前記冷媒側伝熱管内の冷媒との間で熱交換を行なう水用加熱器の水側伝熱管を連結して成る給湯用水路とを有する給湯機において、前記水用加熱器が請求項1または請求項2に記載の水用加熱器で構成され、前記水側伝熱管の直管部の先端が給湯機ケーシングの作業用開口部と対面するように、前記水用加熱器が前記給湯機ケーシング内に配置されていることを特徴とする給湯機。 Heating water for heat exchange between a heat pump refrigerant circuit formed by connecting a compressor, a refrigerant side heat transfer tube, an expansion valve, and a heat source side heat exchanger, a water pump, and a refrigerant in the refrigerant side heat transfer tube A water heater having a hot water supply channel formed by connecting water-side heat transfer tubes of a water heater, wherein the water heater is constituted by the water heater according to claim 1 or 2, and the water-side heat transfer tube The water heater is characterized in that the water heater is disposed in the water heater casing such that the front end of the straight pipe portion faces the working opening of the water heater casing. 冷媒として二酸化炭素が使用され、水側伝熱管の直管部の長さが前記水側伝熱管の全長に対する所定比率の長さに設定されるとともに、給湯用水路に水を一過式に流通させて湯を生成するように構成されていることを特徴とする請求項3に記載の給湯機。 Carbon dioxide is used as the refrigerant, and the length of the straight pipe portion of the water-side heat transfer tube is set to a predetermined ratio to the total length of the water-side heat transfer tube, and water is allowed to flow through the hot water supply channel temporarily. The hot water heater according to claim 3, wherein the hot water generator is configured to generate hot water.
JP2008091961A 2008-03-31 2008-03-31 Heater for water for hot-water supply system, and hot-water supply system Pending JP2009243798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091961A JP2009243798A (en) 2008-03-31 2008-03-31 Heater for water for hot-water supply system, and hot-water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091961A JP2009243798A (en) 2008-03-31 2008-03-31 Heater for water for hot-water supply system, and hot-water supply system

Publications (1)

Publication Number Publication Date
JP2009243798A true JP2009243798A (en) 2009-10-22

Family

ID=41305901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091961A Pending JP2009243798A (en) 2008-03-31 2008-03-31 Heater for water for hot-water supply system, and hot-water supply system

Country Status (1)

Country Link
JP (1) JP2009243798A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281551A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Water heater
JP2013044499A (en) * 2011-08-26 2013-03-04 Panasonic Corp Heat pump unit
JP2014202449A (en) * 2013-04-08 2014-10-27 リンナイ株式会社 Water heat exchanger
JP2014231942A (en) * 2013-05-29 2014-12-11 リンナイ株式会社 Water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281551A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Water heater
JP2013044499A (en) * 2011-08-26 2013-03-04 Panasonic Corp Heat pump unit
JP2014202449A (en) * 2013-04-08 2014-10-27 リンナイ株式会社 Water heat exchanger
JP2014231942A (en) * 2013-05-29 2014-12-11 リンナイ株式会社 Water heater

Similar Documents

Publication Publication Date Title
JP2004144445A (en) Heat pump water heater
CN202793087U (en) Enhanced heat-exchange shell-tube heat exchanger for anti-fouling and descaling by ultrasonic wave
JP2009243798A (en) Heater for water for hot-water supply system, and hot-water supply system
JP2009243797A (en) Water heater
CN104807368A (en) Automatic online washing device and automatic online washing method of water cooling water chilling unit tube-shell heat exchanger rubber ball
CN110487108A (en) A kind of compound cleaning method of tubular heat exchanger
CN101655295A (en) Refrigerant heat exchanger
CN210833227U (en) Descaling device of heat exchanger
CN103759576B (en) One cleans heat transmission equipment automatically
CN103822405A (en) Wall type pollution cleaning, contaminant release and heat exchange integrated native sewage heat pump energy increasing device
KR101777055B1 (en) The system is equipped with automatic cleaning boilers
JP2010133600A (en) Heat pump water heater
CN105571121A (en) Energy saving and water saving heater
CN218583882U (en) Wave plate type flow guide grid type spiral heat exchanger
CN203798246U (en) Back flushing system of plate-type heat exchanger
KR101222923B1 (en) Cold and hot water supply system using waste heat
CN201754044U (en) Corrugated pipe heat net heater
CN211060731U (en) Plate radiator online cleaning device
KR20160131787A (en) Cooling Device For Water Purifier By Using Direct Contact Method
KR101663201B1 (en) Heat exchanger for power plant using duplex pipe
CN201293496Y (en) Coolant heat exchanger
CN206450114U (en) Plate-type heat exchange system with not shutdown maintenance function
CN103836840B (en) Shell-and-tube scrubbing scale removal heat-exchange integrated native sewage water heat pump energy lift device
CN211116836U (en) Self-cleaning system of compressor cooling water route
CN107401858A (en) Source of sewage self-cleaning dry evaporator and control method