[go: up one dir, main page]

JP5776365B2 - Method and apparatus for manufacturing stepped cylindrical member - Google Patents

Method and apparatus for manufacturing stepped cylindrical member Download PDF

Info

Publication number
JP5776365B2
JP5776365B2 JP2011139055A JP2011139055A JP5776365B2 JP 5776365 B2 JP5776365 B2 JP 5776365B2 JP 2011139055 A JP2011139055 A JP 2011139055A JP 2011139055 A JP2011139055 A JP 2011139055A JP 5776365 B2 JP5776365 B2 JP 5776365B2
Authority
JP
Japan
Prior art keywords
intermediate material
tip
cylindrical surface
small diameter
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139055A
Other languages
Japanese (ja)
Other versions
JP2012024842A5 (en
JP2012024842A (en
Inventor
前田 俊秋
俊秋 前田
小林 一登
一登 小林
裕 安田
裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011139055A priority Critical patent/JP5776365B2/en
Publication of JP2012024842A publication Critical patent/JP2012024842A/en
Publication of JP2012024842A5 publication Critical patent/JP2012024842A5/ja
Application granted granted Critical
Publication of JP5776365B2 publication Critical patent/JP5776365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Description

この発明は、例えば、車輪支持用転がり軸受ユニットを構成する軌道輪部材、即ち、内輪と組み合わされてハブを構成するハブ本体の如く、外周面に互いに同心で径が互いに異なる、複数の円筒面部を設け、隣り合う円筒面部同士を段部により連続させた段付円柱状部材の製造方法及びこの製造方法で使用する製造装置の改良に関する。具体的には、この様な段付円柱状部材を、冷間での塑性加工である冷間鍛造加工により造る場合に、内部にシェブロンクラックと呼ばれる損傷が発生せず、良質の段付円柱状部材を安定して得られる(歩留の向上を図れる)製造方法の実現を図るものである。 The present invention provides, for example, a plurality of cylindrical surface portions that are concentric to the outer peripheral surface and have different diameters, such as a bearing ring member that constitutes a wheel bearing rolling bearing unit, that is, a hub body that constitutes a hub in combination with an inner ring. And a method for manufacturing a stepped columnar member in which adjacent cylindrical surface portions are made continuous with each other by a stepped portion, and an improvement of a manufacturing apparatus used in this manufacturing method . Specifically, when such a stepped columnar member is made by cold forging, which is plastic working in the cold, damage called a chevron crack does not occur inside, and a stepped columnar shape with good quality It is intended to realize a manufacturing method in which members can be stably obtained (yield can be improved).

自動車の車輪を構成するホイール、及び、制動用回転部材であるディスク或いはドラムを、懸架装置を構成するナックルに回転自在に支持する為に、車輪支持用転がり軸受ユニットが広く使用されている。図8は、従来から広く知られている、従動輪(FR車及びMR車の前輪、FF車の後輪)用の車輪支持用転がり軸受ユニット1の1例を示している。この車輪支持用転がり軸受ユニット1は、外輪2の内径側にハブ3を、複数の転動体4、4を介して、回転自在に支持している。使用状態では、前記外輪2を前記ナックルに結合固定し、前記ハブ3に車輪及び制動用回転部材を支持固定する。そして、これら車輪及び制動用回転部材を前記ナックルに対し、回転自在に支持する。   2. Description of the Related Art A wheel bearing rolling bearing unit is widely used to rotatably support a wheel constituting a wheel of an automobile and a disk or drum which is a rotating member for braking on a knuckle constituting a suspension device. FIG. 8 shows an example of a wheel bearing rolling bearing unit 1 for a driven wheel (a front wheel of an FR vehicle and an MR vehicle, a rear wheel of an FF vehicle) that has been widely known. The wheel supporting rolling bearing unit 1 supports a hub 3 on the inner diameter side of an outer ring 2 via a plurality of rolling elements 4 and 4 in a freely rotatable manner. In the state of use, the outer ring 2 is coupled and fixed to the knuckle, and the wheel and the brake rotating member are supported and fixed to the hub 3. Then, these wheels and the brake rotating member are rotatably supported with respect to the knuckle.

この為に、前記外輪2の内周面の2個所位置に複列の外輪軌道5、5を、外周面の一部で、軸方向中央部よりも少し軸方向内寄り部分(軸方向に関して内とは、使用状態で車体の幅方向中央側となる側を言い、図8の右側。反対に、使用状態で車体の幅方向外側となる、図8の左側を、軸方向に関して外と言う。本明細書全体で同じ。)に静止側フランジ6を、それぞれ形成している。一方、前記ハブ3の外周面には、前記外輪2よりも軸方向外方に突出した外端寄り部分に、車輪及び制動用回転部材を支持固定する為の回転側フランジ7を、軸方向中間部乃至内端寄り部分に複列の内輪軌道8、8を、それぞれ形成している。そして、これら両列の内輪軌道8、8と前記両列の外輪軌道5、5との間に前記各転動体4、4を、両列毎に複数個ずつ配置して、前記外輪2の内径側での前記ハブ3の回転を自在としている。   For this purpose, double-row outer ring raceways 5 and 5 are disposed at two positions on the inner peripheral surface of the outer ring 2 and are part of the outer peripheral surface slightly inwardly in the axial direction (inside of the axial direction inside). Means the side that is the central side in the width direction of the vehicle body in use, and is the right side of Fig. 8. Conversely, the left side of Fig. 8 that is the outside in the width direction of the vehicle body in use is called outside in the axial direction. The same applies to the entire specification), and the stationary side flanges 6 are respectively formed. On the other hand, the outer peripheral surface of the hub 3 is provided with a rotation-side flange 7 for supporting and fixing the wheel and the brake rotating member on a portion near the outer end protruding outward in the axial direction from the outer ring 2. Double-row inner ring raceways 8 and 8 are formed on the portion near the inner end. A plurality of rolling elements 4, 4 are arranged between the inner ring raceways 8, 8 in both rows and the outer ring raceways 5, 5 in both rows, and the inner diameter of the outer race 2 is set. The hub 3 can freely rotate on the side.

尚、前記ハブ3は、ハブ本体9と、内輪10と、ナット11とから成り、前記内輪軌道8、8は、このハブ本体9の中間部及びこの内輪10の外周面に形成されている。又、この内輪10は、このハブ本体9の軸方向内端寄り部分に形成した小径段部12に外嵌した状態で、前記ナット11により、前記ハブ本体9に対し固定している。尚、このハブ本体9の軸方向内端部に形成したかしめ部により、前記内輪10をこのハブ本体9に対し固定する構造も、広く知られている。   The hub 3 includes a hub body 9, an inner ring 10, and a nut 11, and the inner ring raceways 8 and 8 are formed in an intermediate portion of the hub body 9 and an outer peripheral surface of the inner ring 10. Further, the inner ring 10 is fixed to the hub body 9 by the nut 11 in a state where the inner ring 10 is externally fitted to a small-diameter step portion 12 formed near the inner end of the hub body 9 in the axial direction. A structure in which the inner ring 10 is fixed to the hub body 9 by a caulking portion formed at the inner end of the hub body 9 in the axial direction is also widely known.

上述の様な車輪支持用転がり軸受ユニット1を構成する前記ハブ本体9は、炭素鋼等の金属材料に塑性加工を施す事により造る。この様な塑性加工により造られるハブ本体の構造、並びにこの様な塑性加工の方法に就いては、例えば特許文献1〜4に記載される等により、従来から広く知られている。このうちの特許文献4に記載されたハブ本体の構造及びその製造方法に就いて、図9〜12により説明する。   The hub body 9 constituting the wheel support rolling bearing unit 1 as described above is manufactured by subjecting a metal material such as carbon steel to plastic working. The structure of the hub body produced by such plastic working and the method of such plastic working have been widely known, for example, as described in Patent Documents 1 to 4. Of these, the structure of the hub body and the manufacturing method thereof described in Patent Document 4 will be described with reference to FIGS.

このうちの図9に示したハブ本体9aは、外周面の軸方向外端寄り部分に放射状の回転側フランジ7aを、同じく中間部に内輪軌道8を、同じく内端部に小径段部12を、それぞれ形成している。
この様なハブ本体9aは、図10〜12に示した工程により造る。先ず、押し出し成形、圧延成形等により造られた長尺な原材料を所定長さに切断する事により、各図の(A)に示す様な、円柱状の素材13を得る。次いで、この素材13に、冷間鍛造加工の一種である、第一段階の前方押し出し加工を施す事により、各図の(B)に示した第一中間素材14を造る。次に、この第一中間素材14に、やはり冷間鍛造加工の一種である、第二段階の前方押し出し加工を施す事により、各図の(C)に示した第二中間素材15を得る。次に、この第二中間素材15を、前記特許文献4に記載されている様に、所定の内周面形状を有する分割型のダイス内にセットした状態で、前記第二中間素材15の軸方向端面{各図の(C)の上端面}にパンチを押し付ける。そして、この軸方向外端面を凹ませると共に、この第二中間素材15を構成する金属材料を径方向外方に流動させる、冷間鍛造の一種である側方押し出し加工を施す事により、各図の(D)に示す様な、回転側フランジ7aを有する、第三中間素材16とする。次に、この第三中間素材16に、スタッド17の頭部18(図8参照)の軸方向側面を当接させる座面19、19を形成する為のサイジング加工を施して、各図の(E)に示した第四中間素材20とする。
Of these, the hub main body 9a shown in FIG. 9 has a radial rotation side flange 7a on the outer peripheral portion of the outer peripheral surface in the axial direction, an inner ring raceway 8 in the middle portion, and a small diameter step portion 12 in the inner end portion. , Each formed.
Such a hub main body 9a is manufactured by the steps shown in FIGS. First, a long raw material made by extrusion molding, rolling molding, or the like is cut into a predetermined length to obtain a columnar material 13 as shown in FIG. Next, a first intermediate material 14 shown in (B) of each figure is produced by subjecting this material 13 to a first-stage forward extrusion process, which is a kind of cold forging process. Next, a second intermediate material 15 shown in (C) of each figure is obtained by subjecting the first intermediate material 14 to a second-stage forward extrusion process, which is also a kind of cold forging. Next, the shaft of the second intermediate material 15 is set in a state where the second intermediate material 15 is set in a split die having a predetermined inner peripheral surface shape as described in Patent Document 4. A punch is pressed against the direction end face {the upper end face of (C) in each figure}. And each figure is given by carrying out the side extrusion processing which is a kind of cold forging which makes the metal material which constitutes this 2nd intermediate material 15 flow radially outward while making this axial direction end face concave. A third intermediate material 16 having a rotation-side flange 7a as shown in FIG. Next, the third intermediate material 16 is subjected to sizing for forming seating surfaces 19 and 19 for contacting the axial side surface of the head 18 of the stud 17 (see FIG. 8). The fourth intermediate material 20 shown in E) is used.

この第四中間素材20の軸方向内端部{各図の(E)の下端部}には、外周面に雄ねじ部を形成するか(図8に示す様に、前記小径段部12に外嵌した内輪10の抜け止めをナット11により図る構造の場合)、或いは、図11の(F)に示す様に、軸方向内端面に開口する、有底で円形の凹孔21を形成し、この凹孔21の周囲部分を円筒部22として、第五中間素材23とする。この様な円筒部22は、前記小径段部12に前記内輪10を外嵌した状態で、径方向外方に塑性変形させて(かしめ拡げて)、この内輪10の軸方向内端面を抑え付け、この内輪10が前記小径段部12から抜け出る事を防止する。更に、前記第四中間素材20乃至前記第五中間素材23に、前記スタッド17を挿通する為の円孔を形成する為の穿孔、バリ取り、内輪軌道8の加工等の、所定の切削加工及び研削加工を施して、前記ハブ本体9aとする。   At the inner end in the axial direction of the fourth intermediate material 20 (the lower end of (E) in each figure), an external thread is formed on the outer peripheral surface (as shown in FIG. (In the case of a structure in which the fitted inner ring 10 is prevented by the nut 11), or as shown in FIG. 11 (F), a bottomed and circular concave hole 21 that opens to the inner end surface in the axial direction is formed. A peripheral portion of the concave hole 21 is a cylindrical portion 22 and is a fifth intermediate material 23. Such a cylindrical portion 22 is plastically deformed radially outward (clamped) in a state in which the inner ring 10 is externally fitted to the small-diameter stepped portion 12, and the axial inner end face of the inner ring 10 is suppressed. The inner ring 10 is prevented from coming out of the small diameter step portion 12. Further, predetermined cutting processing such as drilling for forming a circular hole for inserting the stud 17 in the fourth intermediate material 20 to the fifth intermediate material 23, deburring, and processing of the inner ring raceway 8; The hub body 9a is obtained by grinding.

上述の様に、冷間鍛造を主とし、切削加工及び研削加工を最小限に止めて、前記ハブ本体9aを造れば、材料の歩留まりを向上させると共に、これら切削加工及び研削加工に要する加工時間を短縮して、前記ハブ本体9aを含む、車輪支持用転がり軸受ユニット1(図8参照)のコスト低減を図れる。但し、上述の図10〜12に示す様に、冷間での前方押し出し加工を利用して前記ハブ本体9aを造ると、このハブ本体9aを構成する軸部24のうちの軸方向中間部乃至内端寄り部分に、非特許文献1に記載される等により冷間鍛造の技術分野で広く知られている、シェブロンクラックと呼ばれる亀裂が発生し、前記軸部24の強度が低下する可能性がある。特に、上述の図10〜12に示す様にして前記ハブ本体9aを造る場合、これら各図の(B)→(C)に示す様に、前記第一中間素材14を前記第二中間素材15に加工する過程で、次述する段部25から軸方向内端面に掛けての領域で、前記シェブロンクラックが発生し易い。   As described above, if the hub main body 9a is manufactured with the cold forging as the main, and cutting and grinding are minimized, the processing time required for these cutting and grinding is improved. The cost of the wheel bearing rolling bearing unit 1 (see FIG. 8) including the hub body 9a can be reduced. However, as shown in FIGS. 10 to 12 described above, when the hub main body 9a is made by using the forward extrusion process in the cold, the axial direction intermediate portion through the shaft portion 24 constituting the hub main body 9a. There is a possibility that a crack called a chevron crack, which is widely known in the technical field of cold forging due to the description in Non-Patent Document 1 or the like, occurs in the inner end portion and the strength of the shaft portion 24 is lowered. is there. In particular, when the hub main body 9a is manufactured as shown in FIGS. 10 to 12 described above, the first intermediate material 14 is replaced with the second intermediate material 15 as shown in FIGS. During the processing, the chevron crack is likely to occur in a region extending from the step portion 25 described below to the inner end surface in the axial direction.

この様にシェブロンクラックが発生し易い理由の第一は、前記各図の(A)→(B)に示した、前記素材13に前方押し出し加工を施して前記第一中間素材14とする過程で金属材料(一般的には、炭素濃度が0.3〜0.7重量%程度の中炭素鋼)が加工硬化しているものに、更に前方押し出し加工を施して前記第二中間素材15とする為である。又、理由の第二は、この前方押し出し加工時に於ける、前記金属材料が前記段部25を通過する際の移動速度の差が、径方向外寄り部分と同じく中央寄り部分との間で大きくなる為である。特に、前記段部25の傾斜角度や径方向に関する幅寸法(段差の大きさ)によっては、前記前方押し出し加工時に於ける金属材料の移動速度が、径方向外寄り部分で遅く、中央寄り部分で速くなる傾向が著しくなり(これら両部分の速度の差が大きくなり)、前記軸部24の内部に発生する引っ張り応力が大きくなって、前記シェブロンクラックが発生し易くなる。   As described above, the first reason why chevron cracks are likely to occur is the process shown in (A) → (B) of each of the drawings, in which the material 13 is subjected to forward extrusion processing to form the first intermediate material 14. A metal material (generally, medium carbon steel having a carbon concentration of about 0.3 to 0.7% by weight) is further subjected to forward extrusion to form the second intermediate material 15. Because of that. The second reason is that the difference in moving speed when the metal material passes through the step portion 25 during the forward extrusion process is large between the radially outer portion and the central portion. It is to become. In particular, depending on the inclination angle of the step portion 25 and the width dimension (step size) in the radial direction, the moving speed of the metal material during the forward extrusion process is slow at the radially outer portion and at the central portion. The tendency to increase becomes remarkable (the difference between the speeds of these two parts increases), the tensile stress generated inside the shaft part 24 increases, and the chevron crack is likely to occur.

この様なシェブロンクラックの発生を防止する為には、前記第一中間素材14を得た後、この第一中間素材14に焼鈍処理を施してから、前記第二中間素材15を得る為の、第二段階の前方押し出し加工を施す事が効果がある。但し、この場合には、前記ハブ本体9aの軸方向中間部で前記内輪軌道8を形成すべき部分を含め、各部に必要な硬度を確保する事が難しくなる。又、前記各図の(B)→(C)に示した、第二段階の前方押し出し加工時に、前記第一中間素材14乃至第二中間素材15を、例えば軸方向両側から強く押圧し(高い静水圧を加え)、この第一中間素材14乃至第二中間素材15の内部を圧縮応力場にすれば、前記シェブロンクラックの発生を防止できる。但し、この様な方法では、前記前方押し出し加工に使用する金型(パンチ及びダイス)として十分な強度及び剛性を有するものを使用する必要があり、この金型の制作費が嵩む。更には、プレス装置として、容量の大きな大型のものを使用する必要があり、この面からも設備費が嵩む。これに対して、前記第一中間素材14乃至第二中間素材15を中空構造とすれば(前記軸部24を中空円筒状とすれば)、前方押し出し加工時に於ける金属材料の移動速度の差を小さく抑えて、前記シェブロンクラックの発生を抑えられる。この様な方法は、駆動輪用の車輪支持用転がり軸受ユニットに組み込まれる、中心部にスプライン孔を有するハブを造る場合には有効であるが、従動輪用で中実のハブ本体9aを造る場合には、必ずしも好ましくない。即ち、ハブ本体を中空にする事で、軽量化を図れる反面、本来不要な中心孔(貫通孔)を形成する事で、この中心孔内に泥水等の異物が入り込むのを防止する為の密封構造が必要になり、コスト低減の面からは不利になる。   In order to prevent the occurrence of such chevron cracks, after obtaining the first intermediate material 14, the first intermediate material 14 is subjected to an annealing treatment, and then the second intermediate material 15 is obtained. It is effective to perform the second-stage forward extrusion. However, in this case, it is difficult to ensure the necessary hardness for each part including the part where the inner ring raceway 8 should be formed at the axially intermediate part of the hub body 9a. Further, at the time of the second-stage forward extrusion process shown in (B) → (C) of each figure, the first intermediate material 14 to the second intermediate material 15 are strongly pressed, for example, from both axial sides (high) If a hydrostatic pressure is applied and the inside of the first intermediate material 14 to the second intermediate material 15 is made a compressive stress field, the occurrence of the chevron crack can be prevented. However, in such a method, it is necessary to use a mold having a sufficient strength and rigidity as a mold (punch and die) used for the forward extrusion process, and the production cost of this mold increases. Furthermore, it is necessary to use a large press machine having a large capacity, and this also increases the equipment cost. On the other hand, if the first intermediate material 14 to the second intermediate material 15 have a hollow structure (if the shaft portion 24 has a hollow cylindrical shape), the difference in the moving speed of the metal material during forward extrusion processing. The occurrence of the chevron crack can be suppressed. Such a method is effective when building a hub having a spline hole at the center, which is incorporated in a wheel bearing rolling bearing unit for a drive wheel, but a solid hub body 9a for a driven wheel. In some cases, it is not always preferable. That is, by making the hub body hollow, it is possible to reduce the weight, but by forming a center hole (through hole) that is essentially unnecessary, sealing to prevent foreign matter such as muddy water from entering the center hole. A structure is required, which is disadvantageous in terms of cost reduction.

上述の様なシェブロンクラックの発生防止の為の他の方法として従来から、特許文献5〜7に記載された技術が知られている。このうちの特許文献5に記載された従来技術は、変形抵抗比を抑えられる材料を使用するもの、特許文献6に記載された従来技術は、材料の加工硬化指数と各段階での減面率とを規制するもの、特許文献7に記載された従来技術は、マンガン当量と減面率とを規制するものである。これら特許文献5〜7に記載された従来技術の場合、条件さえ満たす事ができれば、前記シェブロンクラックの発生を防止できると考えられる。但し、何れの場合も、金属材料(鋼材)の種類や減面率が制限される。本発明の製造方法の対象となるハブ本体9aの場合、使用可能な金属材料の種類が限られる(多くの場合中炭素鋼を使用する)し、減面率に関しても、前記ハブ本体9aの軸方向中間部の外径と小径段部12の外径との比をあまり小さくはできない為、条件を満たす事は難しい。従って、前記ハブ本体9aに関して、前記特許文献5〜7に記載された様な従来技術により、シェブロンクラックの発生を防止する事は難しい。   Conventionally, techniques described in Patent Documents 5 to 7 are known as other methods for preventing the occurrence of chevron cracks as described above. Among them, the conventional technique described in Patent Document 5 uses a material that can suppress the deformation resistance ratio, and the conventional technique described in Patent Document 6 includes a work hardening index of the material and an area reduction rate at each stage. The conventional technology described in Patent Document 7 regulates the manganese equivalent and the area reduction rate. In the case of these conventional techniques described in Patent Documents 5 to 7, it is considered that the generation of the chevron cracks can be prevented if even the conditions can be satisfied. However, in any case, the type of metal material (steel material) and the area reduction rate are limited. In the case of the hub main body 9a that is the object of the manufacturing method of the present invention, the types of metal materials that can be used are limited (in many cases, medium carbon steel is used), and the shaft area of the hub main body 9a is also reduced in terms of area reduction. It is difficult to satisfy the condition because the ratio between the outer diameter of the intermediate portion in the direction and the outer diameter of the small diameter step portion 12 cannot be made too small. Therefore, with respect to the hub body 9a, it is difficult to prevent the occurrence of chevron cracks by the conventional techniques as described in Patent Documents 5 to 7.

前記ハブ本体9aの軸部24の内部に前記シェブロンクラックの発生を防止する為には、前記各図の(B)→(C)に示した工程を廃止し、前記第一中間素材14に直接、前記回転側フランジ7aを形成する為の側方押し出し加工を施す事が考えられる。この様な製造方法を採用すれば、加工硬化後の前記第一中間素材14に、更に前方押し出し加工を施す必要がなくなる為、前記シェブロンクラックの発生を防止できる。但し、この様な方法では、前記ハブ本体9aの軸方向内端部の小径段部12全体を、削り加工により形成する必要がある。この為、材料の歩留が悪化するだけでなく、加工時間を要する削り加工の作業量の増大により、前記ハブ本体9aの製造コストが、金型のコストが1工程分減る以上に嵩む事が避けられない。   In order to prevent the occurrence of the chevron crack in the shaft portion 24 of the hub main body 9a, the steps shown in FIGS. It is conceivable to perform a side extrusion process for forming the rotation side flange 7a. By adopting such a manufacturing method, it is not necessary to further extrude the first intermediate material 14 after work hardening, so that the occurrence of the chevron crack can be prevented. However, in such a method, it is necessary to form the entire small-diameter step 12 at the inner end in the axial direction of the hub main body 9a by shaving. For this reason, not only the yield of the material is deteriorated, but also the manufacturing cost of the hub body 9a is increased more than the cost of the mold is reduced by one process due to an increase in the amount of machining that requires machining time. Unavoidable.

特開2006−111070号公報JP 2006-111070 A 特開2006−142983号公報JP 2006-142983 A 特開2008−296694号公報JP 2008-296694 A 特開2009−255751号公報JP 2009-255751 A 特開2000−042676号公報Japanese Patent Laid-Open No. 2000-042676 特開2000−312947号公報Japanese Patent Laid-Open No. 2000-312947 特開2007−130661号公報JP 2007-130661 A

木下修司、井上毅、秋田章二著、「鐵と鋼:日本鐵鋼協▲会▼々誌、62(4)」、社団法人日本鉄鋼協会、1976年3月10日、p.165Shuji Kinoshita, Atsushi Inoue, Shoji Akita, “Samurai and Steel: Nippon Steel Cooperative Society, 62 (4)”, Japan Iron and Steel Institute, March 10, 1976, p. 165

本発明は、上述の様な事情に鑑みて、使用する金属材料や形状が限られる場合にも、シェブロンクラックの発生を防止でき、しかも、材料の歩留が悪化したり、加工の手間が煩雑化するのを防止できる、段付円柱状部材の製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can prevent the occurrence of chevron cracks even when the metal material and shape to be used are limited, and the yield of the material is deteriorated, and the labor of processing is complicated. Invented to realize a method for manufacturing a stepped columnar member that can be prevented.

本発明の段付円柱状部材の製造方法は、車輪支持用転がり軸受ユニットを構成するハブ本体用の中間素材であり、外周面に外径が互いに異なる、複数の円筒面部を設け、隣り合う円筒面部同士を段部により連続させた段付円柱状部材を冷間鍛造加工により造るべく、素材乃至は前段階の(前の工程により得られた)中間素材の先端部をダイスに押し込む、前方押し出し加工を施す事により、この素材乃至は前段階の中間素材の先端部の外径を縮める。そして、この先端部に小径側の円筒面部を、この小径側の円筒面部の基端部に段部を、それぞれ形成する。
特に、本発明の段付円柱状部材の製造方法の場合には、前記小径側の円筒面部及び段部を形成する際に、前記素材乃至は前段階の中間素材の先端面の中央部を、前記ダイスの内径側に配置した、前記小径側の円筒面部の外径よりも小径のカウンターパンチの先端面に押し付けつつ、前記素材乃至は前段階の中間素材の先端部を前記ダイス内に押し込む。そして、この押し込みにより、この素材乃至は前段階の中間素材の先端部の外径を縮めて、前記小径側の円筒面部及び前記段部を形成すると同時に、この小径側の円筒面部の中心部の少なくとも先端寄り部分に、前記先端面の中央部に開口する有底の凹孔を形成する。
The manufacturing method of the stepped columnar member of the present invention is an intermediate material for a hub main body constituting a wheel bearing rolling bearing unit, and is provided with a plurality of cylindrical surface portions having different outer diameters on the outer peripheral surface, and adjacent cylinders. Pushing the tip of the material or the intermediate material at the previous stage (obtained by the previous process) into the die in order to produce a stepped cylindrical member with the surface parts continuous by the step part by cold forging. By processing, the outer diameter of the tip of this material or the intermediate material at the previous stage is reduced. A small-diameter cylindrical surface portion is formed at the distal end portion, and a step portion is formed at the proximal end portion of the small-diameter side cylindrical surface portion.
Particularly, in the case of the manufacturing method of the stepped columnar member of the present invention, when forming the cylindrical surface portion and the step portion on the small diameter side, the central portion of the tip surface of the material or the intermediate material of the previous stage, While pressing against the tip end surface of the counter punch having a smaller diameter than the outer diameter of the cylindrical surface portion on the small diameter side disposed on the inner diameter side of the die, the tip portion of the material or the intermediate material at the previous stage is pushed into the die. And by this pushing, the outer diameter of the tip of this material or the intermediate material of the previous stage is reduced to form the cylindrical surface portion and the stepped portion on the small diameter side, and at the same time, the central portion of the cylindrical surface portion on the small diameter side A bottomed recessed hole that opens at the center of the tip surface is formed at least at a portion near the tip.

上述の様な本発明の段付円柱状部材の製造方法を実施する場合に、例えば、先ず、円柱状の素材に第一段階の前方押し出し加工を施す事により、先端寄り部分を基端寄り部分よりも小径とした第一中間素材とした後、この第一中間素材の先端寄り部分に第二段階の前方押し出し加工を施して、この先端寄り部分に前記小径側の円筒面部よりも更に小径の第二円筒面部を、この先端寄り部分の軸方向中間部に第二段部を、それぞれ有する第二中間素材とする。
そして、前記素材の先端面の中央部に前記カウンターパンチの先端面を押し付けつつ、この素材を、この先端面の中央部に前記凹孔を有する前記第一中間素材とする。次いで、この凹孔内にスペーサを内嵌した状態で、この第一中間素材を前記第二中間素材に加工する。
又、上述の様な本発明を実施する場合には、追加的に、前記第二段階の前方押し出し加工の際、前記第二円筒面部の長さが、前記小径側の円筒面部の一部でこの第二円筒面部となるべき部分の軸方向長さよりも伸張すると共に、前記凹孔の軸方向寸法が大きくなる様に塑性変形させる構成を採用する事ができる。
又、本発明の技術的範囲からは外れるが、前記素材を前記第一中間素材とする際には、前記凹孔を形成せず、前記第一中間素材の先端面の中央部に前記カウンターパンチの先端面を押し付けて前記凹孔を形成しつつ、この第一中間素材を前記第二中間素材とする構成を採用する事もできる
更に、上述の様な本発明を実施する場合には、追加的に、前記スペーサを、上方に向いた弾力を付与された状態で設ける構成を採用する事ができる。
この様な構成を採用した場合には、前記第二段階の前方押し出し加工を、前記スペーサの上端面が前記凹孔の奥端面に当接し続けた状態で行う事ができる。
When implementing the manufacturing method of the stepped columnar member of the present invention as described above, for example, first , the first-stage forward extrusion processing is performed on the columnar material so that the distal end portion becomes the proximal end portion. After the first intermediate material having a smaller diameter than the first intermediate material, the second intermediate portion of the first intermediate material is subjected to a second-stage forward extrusion process, and the front end portion has a smaller diameter than the cylindrical surface portion on the small diameter side. Let the 2nd cylindrical surface part be the 2nd intermediate material which has a 2nd step part in the axial direction intermediate part of this tip side part, respectively.
And while pressing the front end surface of the counter punch against the central portion of the front end surface of the raw material, this material is used as the first intermediate material having the concave hole in the central portion of the front end surface. Next, the first intermediate material is processed into the second intermediate material with a spacer fitted in the concave hole.
Further, when the present invention as described above is carried out, in addition, the length of the second cylindrical surface portion may be a part of the cylindrical surface portion on the small diameter side during the forward extrusion process in the second stage. It is possible to employ a configuration in which the second cylindrical surface portion extends more than the length in the axial direction and is plastically deformed so that the axial dimension of the concave hole is increased.
Further, although not within the technical scope of the present invention, when the material is the first intermediate material, the counter punch is not formed in the central portion of the front end surface of the first intermediate material without forming the concave hole. It is also possible to adopt a configuration in which the first intermediate material is used as the second intermediate material while the concave surface is formed by pressing the front end surface of the first intermediate material.
Furthermore, when implementing the present invention as described above, it is possible to additionally employ a configuration in which the spacer is provided in a state of being given upward elasticity.
In the case of adopting such a configuration, the second-stage forward extrusion process can be performed in a state where the upper end surface of the spacer is kept in contact with the inner end surface of the concave hole.

又、上述の様な本発明の段付円柱状部材の製造方法を実施するのに使用する段付円柱状部材の製造装置は、フローティングダイスと、スリーブと、前記スペーサとを備えている。Moreover, the manufacturing apparatus of the stepped cylindrical member used for implementing the manufacturing method of the stepped cylindrical member of the present invention as described above includes a floating die, a sleeve, and the spacer.
このうちのフローティングダイスは、下方に向いた大きな力が加わった場合に下降する様に、昇降可能な状態で固定ブロックに支持されている。Of these, the floating die is supported by the fixed block in a state where it can be raised and lowered so that it is lowered when a large downward force is applied.
前記スリーブは、その上端部を、前記フローティングダイスのキャビティの下端部に上下方向の変位を可能に内嵌された状態で、前記固定ブロックに固定されている。The sleeve is fixed to the fixed block with the upper end thereof being fitted into the lower end of the cavity of the floating die so as to be vertically displaceable.
前記スペーサは、前記カウンターパンチとほぼ同じ外面形状を有しており、前記スリーブの内側に、上方に向いた弾力を付与された状態、且つ、昇降を可能な状態で設置されている。The spacer has substantially the same outer shape as the counter punch, and is installed inside the sleeve in a state where an upward elasticity is applied and in a state where it can be raised and lowered.
そして、上述の様な構成を備える段付円柱状部材の製造装置は、前記第二段階の前方押し出し加工の際、前記スペーサの上端面を前記第一中間素材の凹孔の奥端面に当接させた状態で、この第一中間素材の先端寄り部分を前記フローティングダイスのキャビティ及び前記スリーブの内側に押し込む事により前記第二中間素材とする為のものである。In the stepped columnar member manufacturing apparatus having the above-described configuration, the upper end surface of the spacer is brought into contact with the deep end surface of the concave hole of the first intermediate material during the second-stage forward extrusion processing. In this state, the portion close to the tip of the first intermediate material is pushed into the cavity of the floating die and the inside of the sleeve to form the second intermediate material.

上述の様に構成する本発明の段付円柱状部材の製造方法及び製造装置によれば、使用する金属材料や、段付円柱状部材の外面形状が限られる場合にも、シェブロンクラックの発生を防止でき、しかも、材料の歩留が悪化したり、加工の手間が煩雑化するのを防止できる。又、設備コストが嵩んだり、或いは、完成後の製品にシール板等、余分な部材を組み込む必要もなくなって、車輪支持用転がり軸受ユニットを構成するハブ本体の如き段付円柱状部材の製造コストの上昇を抑えられる。 According to the manufacturing method and manufacturing apparatus of the stepped columnar member of the present invention configured as described above, even when the metal material used and the outer surface shape of the stepped columnar member are limited, chevron cracks are generated. In addition, it is possible to prevent the yield of the material from deteriorating and complication of processing. In addition, equipment costs increase, or it is no longer necessary to incorporate extra members such as a seal plate into the finished product, and manufacture of stepped cylindrical members such as the hub body constituting the wheel bearing rolling bearing unit. Increase in cost can be suppressed.

即ち、本発明の段付円柱状部材の製造方法の場合には、素材乃至中間素材の先端部の外径を縮める際に、カウンターパンチにより小径側の円筒面部の中心部に有底の凹孔を形成する。この為、前記素材乃至中間素材の先端部をこの小径側の円筒面部とする過程で、この素材乃至中間素材の内部での金属材料の流れを整えられる。言い換えれば、前記シェブロンクラック発生の原因となる、前記素材乃至中間素材の外径寄り部分と中心寄り部分との間での金属材料の移動速度の差を小さくできる。この差を小さくできる事は、前記素材乃至中間素材の内部に生じる引っ張り応力の低減に結び付いて、前記シェブロンクラックの発生を抑えられる。更に、前記素材乃至中間素材の先端部の中心部を押し潰しつつ、前記凹孔を形成する事により、この素材乃至中間素材の内部に、圧縮応力が生じる。金属加工の分野で周知の様に、圧縮応力は亀裂の発生を抑える作用がある為、前記凹孔の形成に基づき、前記シェブロンクラック等の亀裂の発生を抑えられる。   That is, in the case of the manufacturing method of the stepped columnar member of the present invention, when the outer diameter of the tip portion of the material or intermediate material is reduced, the bottomed concave hole is formed in the center portion of the cylindrical surface portion on the small diameter side by the counter punch. Form. For this reason, the flow of the metal material inside the material or intermediate material can be adjusted in the process of making the tip of the material or intermediate material the cylindrical surface portion on the small diameter side. In other words, the difference in the moving speed of the metal material between the portion near the outer diameter and the portion near the center of the material or intermediate material, which causes the chevron crack, can be reduced. The fact that this difference can be reduced leads to a reduction in tensile stress generated inside the material or intermediate material, and the occurrence of chevron cracks can be suppressed. Furthermore, compressive stress is generated inside the material or intermediate material by forming the concave hole while crushing the center of the tip of the material or intermediate material. As is well known in the field of metal processing, compressive stress has the effect of suppressing the occurrence of cracks, and therefore, the occurrence of cracks such as the chevron cracks can be suppressed based on the formation of the concave holes.

又、前記素材乃至中間素材の内部での金属材料の流れを整えると共に、この内部を、圧縮応力場乃至はそれに近い状態にする為に、前記カウンターパンチをこの素材乃至中間素材の先端面からこの素材乃至中間素材の先端部内側に押し込んで前記凹孔を形成するが、この押し込みに要する力は小さくて済む。この為、前記素材乃至中間素材の先端部に小径側の円筒面部を形成する為に要する力が、前記凹孔を形成しない(従来方法の)場合に比べて、著しく大きくなる事はない。従って、前記小径側の円筒面部を形成する為に使用する金型として、特に大きな強度及び剛性を有するものを使用したり、プレス装置として、容量の大きな大型のものを使用する必要がない。この為、製造装置の為の費用を抑えて、この製造装置により造られる、前記ハブ本体等の段付円柱状部材の加工コストが嵩む事を防止できる。   Further, in order to arrange the flow of the metal material inside the material or intermediate material, and to bring the inside into a state of compressive stress or close to it, the counter punch is moved from the front end surface of the material or intermediate material. The concave hole is formed by being pushed into the front end portion of the material or intermediate material, but the force required for this pushing may be small. For this reason, the force required to form the cylindrical surface portion on the small diameter side at the tip portion of the material or intermediate material is not significantly increased as compared with the case where the concave hole is not formed (in the conventional method). Therefore, it is not necessary to use a mold having particularly high strength and rigidity as a mold used to form the cylindrical surface portion on the small diameter side, or to use a large-sized one having a large capacity as a pressing device. For this reason, the cost for a manufacturing apparatus can be suppressed and the processing cost of the stepped columnar member such as the hub body manufactured by the manufacturing apparatus can be prevented from increasing.

本発明の実施の形態の第1例に関して、中心軸を含む仮想平面に関する断面形状の変化を工程順に示すと共に、一部に就いて端面形状を示した図。The figure which showed the end face shape about a part while showing the change of the cross-sectional shape regarding the virtual plane containing a central axis in order of a process regarding the 1st example of embodiment of this invention. 金型装置により、素材を第一中間素材に加工した直後の状態を示す断面図。Sectional drawing which shows the state immediately after processing a raw material into the 1st intermediate raw material with a metal mold apparatus. カウンターパンチの先端部の形状の3例を示す部分側面図。The partial side view which shows three examples of the shape of the front-end | tip part of a counter punch. 同じく、金型装置により、第一中間素材を第二中間素材に加工した直後の状態を示す断面図。Similarly, sectional drawing which shows the state immediately after processing a 1st intermediate material into a 2nd intermediate material with a metal mold apparatus. 同じく、金型装置により、第二中間素材を第三中間素材に加工した直後の状態を示す断面図。Similarly, sectional drawing which shows the state immediately after processing a 2nd intermediate material into the 3rd intermediate material by the metal mold apparatus. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 本発明に関連する参考例の1例を示す、図1と同様の図。 The figure similar to FIG. 1 which shows one example of the reference example relevant to this invention . 本発明の製造方法の対象となるハブ本体を組み込んだ、車輪支持用転がり軸受ユニットの1例を示す断面図。Sectional drawing which shows an example of the rolling bearing unit for wheel support incorporating the hub main body used as the object of the manufacturing method of this invention. 冷間での鍛造加工により造られる、従来から知られたハブ本体の1例を示す、端面図(a)及び側面図(b)。The end view (a) and side view (b) which show an example of the hub body known conventionally from the forging process by cold. 従来から知られているハブ本体の製造方法の1例に関して、側面形状の変化を工程順に示すと共に、一部に関して端面形状を示した図。The figure which showed the end surface shape about one part while showing the change of a side surface shape in order of a process regarding one example of the manufacturing method of the hub main body conventionally known. 同じく側面形状乃至断面形状の変化を示す図。The figure which similarly shows the change of side surface shape thru | or cross-sectional shape. 同じく表面形状の変化を示す斜視図。The perspective view which similarly shows the change of surface shape.

[実施の形態の第1例]
本発明の実施の形態の第1例に就いて、図1〜5を参照しつつ説明する。本例の場合、先ず、第一工程で、図1の(A)に示した、中炭素鋼等の金属材製の素材13に、冷間で前方押し出し加工を施す事により、図1の(B)及び図2に示した第一中間素材14aとする。この様な第一工程では、先ず、前記素材13を、図2に示す様な、複数のブロックを重ね合わせて成るダイス26のキャビティ27内に挿入する。その後、図示しないプレス装置のラムで押圧される押圧パンチ28により、前記素材13をこのキャビティ27内に押し込む。この押し込み作業によりこの素材13が塑性変形し、この素材13が、このキャビティ27の内周面形状に見合う(母線形状が同じで凹凸が逆である)外周面形状を有する、前記第一中間素材14aとなる。
[First example of embodiment]
A first example of the embodiment of the present invention will be described with reference to FIGS. In the case of this example, first, in the first step, the material 13 made of a metal material such as medium carbon steel shown in FIG. B) and the first intermediate material 14a shown in FIG. In such a first step, first, the material 13 is inserted into a cavity 27 of a die 26 formed by overlapping a plurality of blocks as shown in FIG. Thereafter, the material 13 is pushed into the cavity 27 by a pressing punch 28 pressed by a ram of a pressing device (not shown). The material 13 is plastically deformed by the pushing operation, and the material 13 has an outer peripheral surface shape that matches the inner peripheral surface shape of the cavity 27 (the bus bar shape is the same and the unevenness is reversed). 14a.

特に、本例の製造方法の場合には、前記キャビティ27の下端部中央部に、カウンターパンチ29の上端部を突出させている。このカウンターパンチ29の下端部は、前記ダイス26を構成する複数個のブロックのうち、最下段のブロックの上面と、次段のブロックとの間で挟持固定している。又、前記カウンターパンチ29の周囲には、円筒状のスリーブ30を、昇降可能に外嵌している。前記キャビティ27の下端は、このスリーブ30の上端面と前記カウンターパンチ29の上端部外面とにより画成されている。又、このスリーブ30の下端面にそれぞれの上端面を突き当てたノックアウトピン31、31の下端面を、前記最下段のブロックに内嵌した、昇降駒32の上面に突き当てている。   In particular, in the case of the manufacturing method of this example, the upper end portion of the counter punch 29 is protruded from the central portion of the lower end portion of the cavity 27. The lower end portion of the counter punch 29 is clamped and fixed between the upper surface of the lowermost block among the plurality of blocks constituting the die 26 and the next block. A cylindrical sleeve 30 is fitted around the counter punch 29 so as to be movable up and down. The lower end of the cavity 27 is defined by the upper end surface of the sleeve 30 and the outer surface of the upper end portion of the counter punch 29. Further, the lower end surfaces of the knockout pins 31, 31 having their respective upper end surfaces abutted against the lower end surface of the sleeve 30 are abutted against the upper surface of the elevating piece 32 fitted in the lowermost block.

上述の様な、図2に示した金型装置を使用し、前記素材13を前記キャビティ27内に押し込むと、この素材13の先端部(下端部)外周面がこのキャビティ27の内周面に沿って塑性変形し、前記第一中間素材14aとなる。即ち、この第一中間素材14aの先端部に小径側の円筒面部33と、この小径側の円筒面部33の基端側から連続して、より大径の部分とを連続させる傾斜段部34とを形成する。これと同時に、前記第一中間素材14aのうちで前記小径側の円筒面部33の中心部に前記カウンターパンチ29の上端部が押し込まれ、この小径側の円筒面部33の中心部に、前記第一中間素材14aの先端面に開口する、断面形状が円形である、有底の凹孔35が形成される。尚、上記傾斜段部34が特許請求の範囲の請求項1に記載した段部に相当する。   When the material 13 is pushed into the cavity 27 using the mold apparatus shown in FIG. 2 as described above, the outer peripheral surface of the tip (lower end) of the material 13 is brought to the inner peripheral surface of the cavity 27. A plastic deformation occurs along the first intermediate material 14a. That is, a cylindrical surface portion 33 on the small diameter side at the distal end portion of the first intermediate material 14a, and an inclined step portion 34 that continues from the base end side of the cylindrical surface portion 33 on the small diameter side and a larger diameter portion. Form. At the same time, the upper end portion of the counter punch 29 is pushed into the center portion of the cylindrical surface portion 33 on the small diameter side in the first intermediate material 14a, and the first portion of the cylindrical surface portion 33 on the small diameter side is A bottomed concave hole 35 having a circular cross-sectional shape is formed in the distal end surface of the intermediate material 14a. In addition, the said inclination step part 34 is corresponded to the step part described in Claim 1 of a claim.

この凹孔35を形成する為の、前記カウンターパンチ29の外径及び軸方向長さは、前記素材13の炭素量により変わる、この素材13乃至前記第一中間素材14aを構成する金属材料の流動性や、前記カウンターパンチ29の耐久性を考慮して、設計的配慮により決定する。このカウンターパンチ29の外径に関しては、大きい程、その耐久性が向上する代わりに、前記第一中間素材14aの先端部で前記凹孔35の周囲部分が加工硬化する程度が著しくなる。そして、完成後のハブ本体の先端部(軸方向内端部)を径方向外方に塑性変形させる(かしめ拡げる)事が難しくなる。これらの点を考慮すれば、前記カウンターパンチ29の外径は、前記小径側の円筒面部33の外径の1/3〜2/3程度、最も好ましくは1/2程度に規制する。又、前記カウンターパンチ29の軸方向長さにより定まる、前記凹孔35の深さに関しても、前記耐久性及び加工硬化の程度を考慮して定める。本例の場合、前記押圧パンチ28を下死点にまで下降させ、前記第一中間素材14aの加工を完了した状態で、前記凹孔35の深さが、完成後のハブ本体の軸方向内端部に存在する小径段部12aの軸方向長さに一致するか、この軸方向長さよりも少しだけ大きくなる様にしている。又、前記カウンターパンチ29の先端面(上端面)の形状に関しても、前記耐久性及び加工硬化の程度を考慮して定める。例えば、図3の(a)に示す様な単なる平坦面、同じく(b)に示す様な円すい台形、同じく(c)に示す様な半球状を採用できる。   The outer diameter and axial length of the counter punch 29 for forming the concave hole 35 vary depending on the carbon content of the material 13, and the flow of the metal material constituting the material 13 to the first intermediate material 14a. In consideration of the characteristics and the durability of the counter punch 29, it is determined by design consideration. As the outer diameter of the counter punch 29 increases, the durability of the counter punch 29 increases, but the degree of work hardening of the peripheral portion of the concave hole 35 at the tip of the first intermediate material 14a becomes significant. Then, it becomes difficult to plastically deform (clamp and spread) the distal end portion (the inner end portion in the axial direction) of the hub body after completion in the radial direction. Considering these points, the outer diameter of the counter punch 29 is restricted to about 1/3 to 2/3, most preferably about 1/2 of the outer diameter of the cylindrical surface portion 33 on the small diameter side. Further, the depth of the concave hole 35 determined by the axial length of the counter punch 29 is determined in consideration of the durability and the degree of work hardening. In the case of this example, in the state where the pressing punch 28 is lowered to the bottom dead center and the processing of the first intermediate material 14a is completed, the depth of the concave hole 35 is set in the axial direction of the hub body after completion. It is made to correspond to the axial direction length of the small diameter step part 12a which exists in an edge part, or just to become slightly larger than this axial direction length. Further, the shape of the front end surface (upper end surface) of the counter punch 29 is determined in consideration of the durability and the degree of work hardening. For example, a simple flat surface as shown in FIG. 3A, a truncated trapezoidal shape as shown in FIG. 3B, or a hemispherical shape as shown in FIG.

何れの場合でも、前記押圧パンチ28を下死点まで下降させ、前記第一中間素材14aを形成したならば、この押圧パンチ28を上昇させるのに続いて、それまで下降していた前記昇降駒32を上昇させ、前記各ノックアウトピン31、31を介して前記スリーブ30を上昇させる。この結果、前記第一中間素材14aが前記キャビティ27から押し出される為、この第一中間素材14aを前記ダイス26から取り出し、次の第二工程を施す為、図4に示した金型装置の、フローティングダイス36の第二キャビティ37内に挿入する。このフローティングダイス36は、複数のばね38、38により固定ブロック39の上方に、下方に向いた大きな力が加わった場合に下降する様に、昇降可能に支持されている。又、前記固定ブロック39の上面に載置固定した第二スリーブ40(特許請求の範囲のスリーブに相当)の上端部を、前記フローティングダイス36の下端部に軸方向の変位(上下方向の摺動)を可能に内嵌している。更に、前記第二スリーブ40の下端部に、前記固定ブロック39の内径側に昇降可能に設置した、スリーブ30aの上端部を、軸方向の変位(上下方向の摺動)を可能に内嵌している。 In any case, if the pressing punch 28 is lowered to the bottom dead center and the first intermediate material 14a is formed, the raising / lowering piece which has been lowered until then is raised after the pressing punch 28 is raised. 32 is raised, and the sleeve 30 is raised via the knockout pins 31, 31. As a result, since the first intermediate material 14a is pushed out from the cavity 27, the first intermediate material 14a is taken out from the die 26 and subjected to the next second step, so that the mold apparatus shown in FIG. It is inserted into the second cavity 37 of the floating die 36. The floating die 36 is supported by a plurality of springs 38, 38 so as to be movable up and down so as to descend when a large downward force is applied above the fixed block 39. Further, the upper end of the second sleeve 40 (corresponding to the sleeve of the claims) placed and fixed on the upper surface of the fixed block 39 is displaced axially (sliding in the vertical direction ) to the lower end of the floating die 36. ) Is possible. Furthermore, the upper end of the sleeve 30a, which is installed on the inner diameter side of the fixed block 39, is fitted into the lower end of the second sleeve 40 so as to be capable of axial displacement (up and down sliding). ing.

又、前記スリーブ30aの内側に、前記カウンターパンチ29とほぼ同じ外面形状を有するスペーサ41を、このスリーブ30aとは独立した昇降を可能に設置している。本例の場合、このスペーサ41の下端面と、前記固定ブロック39を構成する固定板との間にばね42を設けて、このスペーサ41に、上方に向いた弾力を付与している。前記第一中間素材14a{図1の(B)及び図2参照}を前記第二キャビティ37内に挿入した状態で、前記スペーサ41の上端面は、前記凹孔35の奥端面に当接する。そして、前記第一中間素材14aを第二中間素材15aに加工する為の、前記第二工程の進行中、前記スペーサ41の上端面が前記凹孔35の奥端面に当接し続ける。前記第二キャビティ37の下部の内面形状は、前記第二スリーブ40の内周面及び先端面(上端面)と、前記スリーブ30aの上端面と、前記スペーサ41の外周面及び先端面とにより画成される。更に、前記フローティングダイス36には、押圧パンチ28aの下端部を押し込む事により、前記第一中間素材14aの外面形状を、前記第二キャビティ37の内面形状に合わせて塑性変形(前方押し出し成形)可能としている。   A spacer 41 having substantially the same outer shape as the counter punch 29 is installed inside the sleeve 30a so as to be able to move up and down independently of the sleeve 30a. In the case of this example, a spring 42 is provided between the lower end surface of the spacer 41 and the fixing plate constituting the fixing block 39, and an upward elasticity is applied to the spacer 41. With the first intermediate material 14a {see FIG. 1B and FIG. 2} inserted into the second cavity 37, the upper end surface of the spacer 41 abuts against the inner end surface of the concave hole 35. Then, the upper end surface of the spacer 41 continues to contact the inner end surface of the concave hole 35 during the progress of the second step for processing the first intermediate material 14a into the second intermediate material 15a. The inner surface shape of the lower portion of the second cavity 37 is defined by the inner peripheral surface and the front end surface (upper end surface) of the second sleeve 40, the upper end surface of the sleeve 30a, and the outer peripheral surface and front end surface of the spacer 41. Made. Further, by pushing the lower end of the pressing punch 28a into the floating die 36, the outer surface shape of the first intermediate material 14a can be plastically deformed (forward extrusion molding) in accordance with the inner surface shape of the second cavity 37. It is said.

上述の様な、図4に示した金型装置を使用し、前記第一中間素材14aを前記第二キャビティ37内に大きな力で押し込むと、この第一中間素材14aの下部が、この第二キャビティ37の内面に沿って塑性変形し、前記第二中間素材15aとなる。即ち、前記第一中間素材14aの先端部の小径側の円筒面部33の先端部乃至軸方向中間部が、前記第二スリーブ40の内周面と前記スペーサ41の外周面との間に存在する円筒状の空間内に押し込まれる。そして、この押し込まれた部分の外周面が、前記小径側の円筒面部33よりも更に小径の、小径段部12aとなる。この小径段部12aが、特許請求の範囲に記載した、第二円筒面部に相当する。又、前記押圧パンチ28aが下死点にまで下降した状態で、前記第二スリーブ40の先端面(上端面)により押圧された部分が、ハブ3を組み立てた状態で内輪10の軸方向外端面を突き当てる(図8参照)為の、段部25aとなる。尚、前記スペーサ41は、上述の様な第二工程の進行に伴って、前記ばね42を圧縮しつつ、その下端面が前記固定ブロック39を構成する一部のブロックの上面に当接するまで下降する。従って、この第二工程が進行する間中、前記スペーサ41の先端面が前記凹孔35の奥端面に押し付けられたままの状態となる。又、前記第二工程の進行に伴って、前記小径段部12aの軸方向長さが、元の小径側の円筒面部33の一部でこの小径段部12aとなるべき部分の軸方向長さよりも伸張し、これに伴って前記凹孔35の深さも深くなる。尚、上記段部25aが、特許請求の範囲に記載した第二段部に相当する。 When the mold apparatus shown in FIG. 4 as described above is used and the first intermediate material 14a is pushed into the second cavity 37 with a large force, the lower portion of the first intermediate material 14a becomes the second intermediate material 14a. It plastically deforms along the inner surface of the cavity 37 and becomes the second intermediate material 15a. That is, the distal end portion or the axial intermediate portion of the cylindrical surface portion 33 on the small diameter side of the distal end portion of the first intermediate material 14 a exists between the inner peripheral surface of the second sleeve 40 and the outer peripheral surface of the spacer 41. It is pushed into the cylindrical space. The outer peripheral surface of the pushed-in portion becomes a small-diameter step portion 12a having a smaller diameter than the cylindrical surface portion 33 on the small-diameter side. The small diameter step portion 12a corresponds to the second cylindrical surface portion described in the claims . Further, in a state where the pressing punch 28a is lowered to the bottom dead center, the portion pressed by the distal end surface (upper end surface) of the second sleeve 40 is the axially outer end surface of the inner ring 10 in a state where the hub 3 is assembled. Is a step portion 25a (see FIG. 8). The spacer 41 is lowered until the lower end surface of the spacer 41 comes into contact with the upper surface of a part of the fixed block 39 while compressing the spring 42 with the progress of the second step as described above. To do. Accordingly, while the second process proceeds, the tip end surface of the spacer 41 remains pressed against the back end surface of the concave hole 35. Further, as the second process proceeds, the axial length of the small diameter step portion 12a is larger than the axial length of the portion of the original cylindrical surface portion 33 on the small diameter side that should become the small diameter step portion 12a. And the depth of the concave hole 35 is increased accordingly. The step 25a corresponds to the second step described in the claims .

上述の様にして、前記第二中間素材15aを形成したならば、前記押圧パンチ28aを上昇させる。すると、前記フローティングダイス36が前記各ばね38、38の弾力により、前記スペーサ41が前記ばね42の弾力により、それぞれ少し上昇する。そこで、これら各部材36、41の上昇に続いて、それまで下降していた昇降駒32aを上昇させ、各ノックアウトピン31a、31aを介して前記スリーブ30aを上昇させる。この結果、前記第二中間素材15aが前記第二キャビティ37から押し出される為、この第二中間素材15aを前記フローティングダイス36から取り出し、次の第三工程を施す為、図5に示した金型装置の、ダイス43の第三キャビティ44内に挿入する。又、前記凹孔35に、ばね42aにより上方に付勢されているスペーサ41aの先端部(上端部側)を、隙間なく内嵌する。そして、押圧パンチ28bの周囲に配置したフローティングダイス45により前記第二中間素材15aを抑えつつ、前記押圧パンチ28bによりこの第二中間素材15aを軸方向に押し潰す。そして、外周面に放射状の回転側フランジ7aを設けた、図1の(D)及び図5に示す様な、第三中間素材16aとする。この様な第三工程の進行中、前記フローティングダイス45の下面は、ばね46、46の弾力により、前記ダイス43の上面に押し付けられたままとなる。   When the second intermediate material 15a is formed as described above, the pressing punch 28a is raised. Then, the floating die 36 is slightly lifted by the elasticity of the springs 38, 38, and the spacer 41 is slightly lifted by the elasticity of the spring 42. Therefore, following the ascent of each of the members 36 and 41, the elevating piece 32a that has been lowered is raised and the sleeve 30a is raised via the knockout pins 31a and 31a. As a result, since the second intermediate material 15a is pushed out from the second cavity 37, the second intermediate material 15a is taken out from the floating die 36 and subjected to the next third step. The device is inserted into the third cavity 44 of the die 43. Further, the front end portion (upper end portion side) of the spacer 41a urged upward by the spring 42a is fitted into the concave hole 35 without a gap. The second intermediate material 15a is crushed in the axial direction by the pressing punch 28b while the second intermediate material 15a is suppressed by the floating die 45 disposed around the pressing punch 28b. And it is set as the 3rd intermediate raw material 16a as shown to (D) of FIG. 1, and FIG. 5 which provided the radial rotation side flange 7a in the outer peripheral surface. During the progress of such a third step, the lower surface of the floating die 45 remains pressed against the upper surface of the die 43 by the elasticity of the springs 46 and 46.

上述の様にして、前記第三中間素材16aを形成したならば、前記押圧パンチ28bを上昇させてから、それまで下降していた昇降駒32bを上昇させ、各ノックアウトピン31b、31bを介してスリーブ30bを上昇させる。この結果、前記第三中間素材16aが前記第三キャビティ44から押し出される為、この第三中間素材16aを前記ダイス43から取り出し、次の工程に送る。
この次の工程では、前記第三中間素材16aのうちで、前記凹孔35の開口寄り部分の内径を、旋削加工等の削り加工により拡げ、当該部分を、別の凹孔21aとして、図1の(E)に示す様な、第四中間素材47とする。この別の凹孔21aの周囲部分は、前記小径段部12aに外嵌した内輪の軸方向内端面を抑え付ける為のかしめ部を形成する為に利用する。
前記第四中間素材47は、更に次の工程に送り、面押し加工や切削加工、研削加工等、必要な加工を施して、ハブ本体として完成する。これらの加工に就いては、従来の製造方法と同様であり、又、当業者にとって周知であるから、図示並びに説明は省略する。
As described above, when the third intermediate material 16a is formed, the pressing punch 28b is raised, and then the raising / lowering piece 32b that has been lowered is raised and the knockout pins 31b and 31b are interposed. The sleeve 30b is raised. As a result, since the third intermediate material 16a is pushed out from the third cavity 44, the third intermediate material 16a is taken out from the die 43 and sent to the next step.
In this next step, in the third intermediate material 16a, the inner diameter of the portion near the opening of the concave hole 35 is expanded by a cutting process such as turning, and this part is used as another concave hole 21a. A fourth intermediate material 47 as shown in (E) of FIG. The peripheral portion of the other concave hole 21a is used to form a caulking portion for suppressing the inner end surface in the axial direction of the inner ring fitted on the small diameter step portion 12a.
The fourth intermediate material 47 is further sent to the next step and subjected to necessary processing such as surface pressing, cutting, and grinding to complete the hub body. Since these processes are the same as those in the conventional manufacturing method and are well known to those skilled in the art, illustration and description are omitted.

上述の様に本例のハブ本体の製造方法の場合には、前記素材13の先端部(図1の下端部)の外径を縮めて前記第一中間素材14aとする際に、前記カウンターパンチ29により、前記小径側の円筒面部33の中心部に有底の凹孔35を形成する。この為、前記素材13の先端部をこの小径側の円筒面部33とする過程で、この素材13の内部での金属材料の流れを整流できて、前記シェブロンクラック発生の原因となる、この素材13の外径寄り部分と中心寄り部分との間での金属材料の移動速度の差を小さくできる。この結果、前記素材13乃至前記第一中間素材14aの内部に生じる引っ張り応力を低減して、前記シェブロンクラックの発生を抑えられる。更に、前記素材13の先端部の中心部を押し潰しつつ、前記凹孔35を形成する事により、この素材13を塑性変形させる事により得られる、前記第一中間素材14aの内部に、圧縮応力が生じる。金属加工の分野で周知の様に、圧縮応力は亀裂の発生を抑える作用がある為、前記凹孔35の形成に基づき、前記シェブロンクラック等の亀裂の発生を抑える事ができる。そして、前記第一工程で前記第一中間素材14aの内部に生じた、前記圧縮応力は、前記第二工程でも亀裂の発生防止に寄与して、この第二工程で前記第二中間素材15aの内部に、シェブロンクラックが発生する事を防止する。   As described above, in the case of the hub body manufacturing method of this example, when the outer diameter of the tip portion (lower end portion in FIG. 1) of the material 13 is reduced to form the first intermediate material 14a, the counter punch 29, a bottomed concave hole 35 is formed in the center of the cylindrical surface portion 33 on the small diameter side. For this reason, the flow of the metal material inside the material 13 can be rectified in the process of making the tip of the material 13 the cylindrical surface portion 33 on the small diameter side, and this material 13 causes the chevron crack. The difference in the moving speed of the metal material between the outer diameter portion and the center portion can be reduced. As a result, the tensile stress generated inside the material 13 to the first intermediate material 14a is reduced, and the occurrence of the chevron crack can be suppressed. Further, by compressing the material 13 by plastically deforming the material 13 by forming the concave hole 35 while crushing the central portion of the tip of the material 13, a compressive stress is applied. Occurs. As is well known in the field of metal processing, the compressive stress has the effect of suppressing the occurrence of cracks, and therefore, the generation of cracks such as the chevron cracks can be suppressed based on the formation of the concave holes 35. The compressive stress generated in the first intermediate material 14a in the first step contributes to prevention of cracking in the second step, and the second intermediate material 15a in the second step. Prevents chevron cracks from occurring inside.

又、前記カウンターパンチ29を前記素材13の先端面からこの素材13の先端部内側に押し込んで、前記凹孔35を形成する為に要する力は小さくて済む。従って、前記素材13の先端部に小径側の円筒面部33を形成する為に要する力が、前記凹孔35を形成しない(従来方法の)場合に比べて、著しく大きくなる事はない。従って、前記小径側の円筒面部33を形成する為に使用する金型として、特に大きな強度及び剛性を有するものを使用したり、プレス装置として、容量の大きな大型のものを使用する必要がない。この為、製造装置の為の費用を抑えて、この製造装置により造られる、前記ハブ本体等の段付円柱状部材の加工コストが嵩む事を防止できる。   Further, the force required to form the concave hole 35 by pushing the counter punch 29 from the front end surface of the raw material 13 into the inner end of the raw material 13 may be small. Therefore, the force required to form the small-diameter cylindrical surface portion 33 at the distal end portion of the material 13 is not significantly increased compared to the case where the concave hole 35 is not formed (in the conventional method). Accordingly, it is not necessary to use a mold having particularly high strength and rigidity as a mold used to form the cylindrical surface portion 33 on the small diameter side, or to use a large-sized one having a large capacity as a pressing device. For this reason, the cost for a manufacturing apparatus can be suppressed and the processing cost of the stepped columnar member such as the hub body manufactured by the manufacturing apparatus can be prevented from increasing.

[実施の形態の第2例]
図6は、本発明の実施の形態の第2例を示している。本例の場合には、素材13を第一中間素材14aに加工する第一工程{図6の(A)→(B)}で、この第一中間素材14aの先端部に形成する凹孔35aの深さを、上述した実施の形態の第1例の場合よりも浅くしている。そして、前記第一中間素材14aを第二中間素材15aとする、第二工程{図6の(B)→(C)}を終了した状態で、前記凹孔35aの奥端面の軸方向位置が、小径段部12aの基端部に存在する段部25aの軸方向位置とほぼ一致する様にしている。
その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
[Second Example of Embodiment]
FIG. 6 shows a second example of the embodiment of the present invention . In the case of this example, in the first step {(A) → (B)} in FIG. 6 which processes the material 13 into the first intermediate material 14a, the concave hole 35a formed at the tip of the first intermediate material 14a. Is made shallower than in the first example of the embodiment described above. Then, in the state where the second step {(B) → (C)} in FIG. 6}, in which the first intermediate material 14a is the second intermediate material 15a, the axial position of the back end surface of the concave hole 35a is The axial position of the step portion 25a existing at the base end portion of the small-diameter step portion 12a is substantially matched.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

本発明に関連する参考例の1例
図7は、本発明に関連する参考例の1例を示している。本参考例の場合には、素材13を第一中間素材14に加工する第一工程{図7の(A)→(B)}は、前述の図10〜12に示した従来方法と同様に行う。そして、次に行う、前記第一中間素材14を第二中間素材15aとする第二工程{図7の(B)→(C)}で、カウンターパンチ29(図2参照)により、この第二中間素材15aの先端中心部に、凹孔35を形成している。又、この第二中間素材15aの先端寄り部分に、小径段部12aを、この先端寄り部分の軸方向中間部(小径段部12aの基端部)に、段部35aを、それぞれ形成している。
[ One Reference Example Related to the Present Invention ]
FIG. 7 shows an example of a reference example related to the present invention . In the case of this reference example , the first process {(A) → (B)} in FIG. 7 for processing the material 13 into the first intermediate material 14 is the same as the conventional method shown in FIGS. Do. Then, in the second step {the step (B) → (C)} in FIG. 7) in which the first intermediate material 14 is used as the second intermediate material 15a, the second step is performed by the counter punch 29 (see FIG. 2). A concave hole 35 is formed in the center of the tip of the intermediate material 15a. Further , a small-diameter step portion 12a is formed at the tip portion of the second intermediate material 15a, and a step portion 35a is formed at the axially intermediate portion (base end portion of the small-diameter step portion 12a) near the tip portion. Yes.

前記第一工程時には、前記素材13が未だ加工硬化されていない為、得られる第一中間素材14の内部にシェブロンクラックが発生する事はない。これに対して、前記第二中間素材15aを得る第二工程時には、既に加工硬化している前記第一中間素材14の先端部の外径を前方押し出し加工により縮める為、シェブロンクラックが発生し易い。そこで、本参考例の場合には、この様な第二工程時に、前記第一中間素材14の先端面に前記凹孔35を形成して、前記シェブロンクラックの発生を防止する様にしている。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、同等部分に関する説明は省略する。
At the time of the first step, since the material 13 is not yet work hardened, chevron cracks do not occur in the obtained first intermediate material 14. On the other hand, in the second step of obtaining the second intermediate material 15a, the outer diameter of the tip of the first intermediate material 14 that has already been hardened is reduced by forward extrusion processing, so that chevron cracks are likely to occur. . Therefore, in the case of this reference example, the concave hole 35 is formed in the front end surface of the first intermediate material 14 during the second step, so that the chevron crack is prevented from occurring.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, the description regarding the equivalent parts is omitted.

本発明の段付円柱状部材の製造方法は、従動輪用の車輪支持用転がり軸受ユニットを構成するハブ本体を対象としたものである。但し、本発明の技術的範囲からは外れるが、複数段階で重複する部分に前方押し出し加工を施し、当該部分を段付形状とする物品であれば、前記ハブ本体に限らず、当該物品の製造に適用できる。 The manufacturing method of the stepped columnar member of the present invention is intended for a hub body constituting a wheel bearing rolling bearing unit for a driven wheel . However, although it is not within the technical scope of the present invention, the article is not limited to the hub body as long as it is an article that is subjected to forward extrusion processing in a plurality of stages and the part is stepped. Applicable to.

1 車輪支持用転がり軸受ユニット
2 外輪
3 ハブ
4 転動体
5 外輪軌道
6 静止側フランジ
7、7a 回転側フランジ
8 内輪軌道
9、9a ハブ本体
10 内輪
11 ナット
12、12a 小径段部
13 素材
14、14a 第一中間素材
15、15a 第二中間素材
16、16a 第三中間素材
17 スタッド
18 頭部
19 座面
20 第四中間素材
21、21a 凹孔
22 円筒部
23 第五中間素材
24 軸部
25、25a 段部
26 ダイス
27 キャビティ
28、28a 押圧パンチ
29 カウンターパンチ
30、30a、30b スリーブ
31、31a、31b ノックアウトピン
32、32a、32b 昇降駒
33 小径側の円筒面部
34 傾斜段部
35 凹孔
36 フローティングダイス
37 第二キャビティ
38 ばね
39 固定ブロック
40 第二スリーブ
41、41a スペーサ
42 ばね
43 ダイス
44 第三キャビティ
45 フローティングダイス
46 ばね
47 第四中間素材
DESCRIPTION OF SYMBOLS 1 Rolling bearing unit for wheel support 2 Outer ring 3 Hub 4 Rolling body 5 Outer ring raceway 6 Stationary side flange 7, 7a Rotation side flange 8 Inner ring raceway 9, 9a Hub body 10 Inner ring 11 Nut 12, 12a Small diameter step part 13 Material 14, 14a First intermediate material 15, 15a Second intermediate material 16, 16a Third intermediate material 17 Stud 18 Head 19 Seat surface 20 Fourth intermediate material 21, 21a Recessed hole 22 Cylindrical portion 23 Fifth intermediate material 24 Shaft portion 25, 25a Step portion 26 Dies 27 Cavity 28, 28a Press punch 29 Counter punch 30, 30a, 30b Sleeve 31, 31a, 31b Knockout pin 32, 32a, 32b Lifting piece 33 Small diameter cylindrical surface portion 34 Inclined step portion 35 Recessed hole 36 Floating die 37 Second cavity 38 Spring 39 Fixed block 0 second sleeve 41,41a spacer 42 spring 43 die 44 third cavity 45 floating die 46 spring 47 fourth intermediate material

Claims (3)

車輪支持用転がり軸受ユニットを構成するハブ本体用の中間素材であり、外周面に、外径が互いに異なる複数の円筒面部を設け、隣り合う円筒面部同士を段部により連続させた段付円柱状部材を冷間鍛造加工により造るべく、円柱状の素材の先端部をダイスに押し込む事により、この素材の先端部の外径を縮めて、この先端部に小径側の円筒面部を、この小径側の円筒面部の基端部に段部を、それぞれ形成する第一段階の前方押出し加工の際に、前記素材の先端面の中央部を、前記ダイスの内径側に配置した、前記小径側の円筒面部の外径よりも小径のカウンターパンチの先端面に押し付けつつ、前記素材の先端部を前記ダイス内に押し込む事により、この素材の先端部の外径を縮めて、前記小径側の円筒面部及び前記段部を形成すると同時に、この小径側の円筒面部の中心部の少なくとも先端寄り部分に、前記先端面の中央部に開口する有底の凹孔を形成した第一中間素材を形成した後、
前記凹孔内にスペーサを内嵌した状態で、前記第一中間素材の先端寄り部分に第二段階の前方押し出し加工を施して、この先端寄り部分に前記小径側の円筒面部よりも更に小径の第二円筒面部を、この先端寄り部分の軸方向中間部に第二段部を、それぞれ有する第二中間素材を形成する過程で、前記第二円筒面部の長さが、前記小径側の円筒面部の一部でこの第二円筒面部となるべき部分の軸方向長さよりも伸張すると共に、前記凹孔の軸方向寸法が大きくなる様に塑性変形させる段付円柱状部材の製造方法。
Stepped columnar shape that is an intermediate material for the hub body that constitutes a wheel bearing rolling bearing unit, and is provided with a plurality of cylindrical surface portions with different outer diameters on the outer peripheral surface, and the adjacent cylindrical surface portions are continued by stepped portions. In order to build a member by cold forging, the outer diameter of the tip of this material is reduced by pushing the tip of the columnar material into a die, and the cylindrical surface portion on the small diameter side is connected to the tip of this small diameter side. A cylindrical portion on the small diameter side, in which a central portion of the distal end surface of the material is disposed on the inner diameter side of the die during the first-stage forward extrusion process for forming a step portion at the base end portion of the cylindrical surface portion while pressed against the front end surface of the small diameter of the counter punch than the outer diameter of the surface portion, by pushing the tip of the material within the die, and shrink the outer diameter of the distal end portion of the material, the cylindrical surface portion of the small diameter side and Simultaneously with forming the step After this the small diameter side at least the tip portion near the central portion of the cylindrical surface portion of, to form a first intermediate material to form a concave hole with a bottom opening to a center portion of the tip surface,
In a state in which a spacer is fitted in the concave hole, a second-stage forward extrusion process is performed on the portion near the tip of the first intermediate material, and the portion near the tip has a smaller diameter than the cylindrical surface portion on the small diameter side. In the process of forming a second intermediate material having a second cylindrical surface portion and a second intermediate portion having a second step portion at the axially intermediate portion near the tip, the length of the second cylindrical surface portion is the cylindrical surface portion on the small diameter side. A stepped columnar member that is plastically deformed so that the axial dimension of the concave hole is larger than the length in the axial direction of the portion that should become the second cylindrical surface portion .
前記スペーサが、上方に向いた弾力を付与された状態で設けられており、The spacer is provided in a state of being given upward elasticity.
前記第二段階の前方押し出し加工は、前記スペーサの上端面が前記凹孔の奥端面に当接し続けた状態で行われる、請求項1に記載した段付円柱状部材の製造方法。The method of manufacturing a stepped columnar member according to claim 1, wherein the second-stage forward extrusion processing is performed in a state in which an upper end surface of the spacer is kept in contact with a rear end surface of the concave hole.
請求項1〜2のうちの何れか1項に記載した段付円柱状部材の製造方法を実施するのに使用されるものであり、It is used for carrying out the manufacturing method of the stepped columnar member according to any one of claims 1 and 2.
フローティングダイスと、スリーブと、前記スペーサとを備えており、A floating die, a sleeve, and the spacer;
このうちのフローティングダイスは、下方に向いた大きな力が加わった場合に下降する様に、昇降可能な状態で固定ブロックに支持されており、Of these, the floating die is supported by the fixed block so that it can be raised and lowered so that it falls when a large downward force is applied.
前記スリーブは、その上端部を、前記フローティングダイスのキャビティの下端部に上下方向の変位を可能に内嵌された状態で前記固定ブロックに固定されており、The sleeve is fixed to the fixed block in a state where the upper end of the sleeve is fitted into the lower end of the cavity of the floating die so as to allow vertical displacement.
前記スペーサは、前記カウンターパンチとほぼ同じ外面形状を有しており、前記スリーブの内側に、上方に向いた弾力を付与された状態、且つ、昇降を可能な状態で設置されており、The spacer has substantially the same outer shape as the counter punch, and is installed inside the sleeve in a state in which an upward elasticity is applied and in a state where it can be raised and lowered,
前記第二段階の前方押し出し加工の際、前記スペーサの上端面を前記第一中間素材の凹孔の奥端面に当接させた状態で、この第一中間素材の先端寄り部分を前記フローティングダイスのキャビティ及び前記スリーブの内側に押し込む事により前記第二中間素材とする段付円柱状部材の製造装置。In the second stage of forward extrusion, the upper end surface of the spacer is in contact with the back end surface of the concave hole of the first intermediate material, and the portion near the tip of the first intermediate material is placed on the floating die. An apparatus for manufacturing a stepped columnar member as the second intermediate material by being pushed into the cavity and the inside of the sleeve.
JP2011139055A 2010-06-25 2011-06-23 Method and apparatus for manufacturing stepped cylindrical member Active JP5776365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139055A JP5776365B2 (en) 2010-06-25 2011-06-23 Method and apparatus for manufacturing stepped cylindrical member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010145305 2010-06-25
JP2010145305 2010-06-25
JP2011139055A JP5776365B2 (en) 2010-06-25 2011-06-23 Method and apparatus for manufacturing stepped cylindrical member

Publications (3)

Publication Number Publication Date
JP2012024842A JP2012024842A (en) 2012-02-09
JP2012024842A5 JP2012024842A5 (en) 2014-03-20
JP5776365B2 true JP5776365B2 (en) 2015-09-09

Family

ID=45778423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139055A Active JP5776365B2 (en) 2010-06-25 2011-06-23 Method and apparatus for manufacturing stepped cylindrical member

Country Status (1)

Country Link
JP (1) JP5776365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368735B (en) * 2014-11-25 2017-01-04 张家港中环海陆特锻股份有限公司 Frock for heavy mine car hub for vehicle wheel blank forging

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173047A (en) * 1986-01-24 1987-07-29 Toyo Fastener Kk Manufacture of work having stepped hole
JP2774357B2 (en) * 1989-06-21 1998-07-09 日本特殊陶業株式会社 Manufacturing method of metal shell
JP2003230933A (en) * 2002-02-07 2003-08-19 Honda Motor Co Ltd Counter punch of forging die
JP4210611B2 (en) * 2004-02-24 2009-01-21 日本特殊陶業株式会社 Manufacturing method of metal shell for spark plug
JP4581615B2 (en) * 2004-10-13 2010-11-17 日本精工株式会社 Wheel supporting hub unit, raceway member of wheel supporting hub unit, and manufacturing method thereof
JP2006266286A (en) * 2005-03-22 2006-10-05 Honda Motor Co Ltd Manufacturing method for outer ring member for constant velocity joint and its intermediate molded body
JP4996879B2 (en) * 2006-05-19 2012-08-08 日立オートモティブシステムズ株式会社 Cup-shaped part with flange, molding method thereof and manufacturing apparatus thereof
JP4884188B2 (en) * 2006-12-04 2012-02-29 本田技研工業株式会社 Deep hole forming method
JP2009255751A (en) * 2008-04-17 2009-11-05 Nsk Ltd Metallic member with outward flange part, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2012024842A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4984910B2 (en) Method for manufacturing bearing ring member
JP6689151B2 (en) Cylindrical ring member manufacturing method, radial rolling bearing manufacturing method, and one-way clutch manufacturing method
JP4840102B2 (en) Method for manufacturing bearing ring member
JP5966726B2 (en) Method for manufacturing bearing ring member
JP6094653B2 (en) Rolling bearing unit for wheel support
JP5750998B2 (en) Method for manufacturing stepped cylindrical member
JP5737371B2 (en) Manufacturing method of outer ring of rolling bearing unit for wheel support
JP2014024091A5 (en)
JP4674580B2 (en) Method for manufacturing bearing ring member
JP5776365B2 (en) Method and apparatus for manufacturing stepped cylindrical member
JP6191423B2 (en) Manufacturing method of outer ring for rolling bearing unit and outer ring for rolling bearing unit
CN103987475A (en) Method for manufacturing mechanical parts with superior rolling fatigue life
JP5867070B2 (en) Method for manufacturing stepped cylindrical member
JP5446920B2 (en) Manufacturing method of metal member with outward flange
JP5556297B2 (en) Manufacturing method of bearing ring member of rolling bearing unit for supporting wheel
JP5880037B2 (en) Manufacturing method of stepped metal member
JP4826491B2 (en) Method for manufacturing bearing ring member
JP4978552B2 (en) Method for manufacturing ring-shaped raceway material
JP5483822B2 (en) Constant velocity joint
JP5834592B2 (en) Manufacturing method of metal member with outward flange
JP5322450B2 (en) Constant velocity joint, material before outer ring of constant velocity joint outer ring, and method of manufacturing constant velocity joint outer ring
JP5672181B2 (en) Method for manufacturing bearing ring member
US11371559B2 (en) Rolling component, bearing, and method of manufacturing the same
JP6245112B2 (en) Manufacturing method and manufacturing apparatus for ring-shaped member, manufacturing method and manufacturing apparatus for radial rolling bearing, and manufacturing method for rotating device
JP6311414B2 (en) Manufacturing method of metal member with outward flange, manufacturing method of rolling bearing unit for supporting wheel, and manufacturing method of automobile

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5776365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150