以下、本発明の好ましい形態を説明する。
<有機光電変換素子>
本発明の一形態は、ナフトビスベンゾチアジアゾール環構造と、チアゾロチアゾール環構造又はチエノチオフェン環構造とを共に有する共役系高分子化合物を光電変換層に含む有機光電変換素子に関する。すなわち、本形態の共役系高分子化合物は、下記一般式1で表される部分構造および一般式2で表される部分構造をそれぞれ少なくとも1種有する点に特徴を有する。
一般式2中、−X1=は、それぞれ独立して、−C(R3)=または−N=を表す。すなわち、−X1=が−C(R3)=である場合、一般式2はチエノチオフェン環構造を表し、−X1=が−N=である場合、一般式2はチアゾロチアゾール環構造を表す。このうち、−X1=は、−N=であることが好ましい。これは、−X1=が−N=である場合の方が、−C(R3)=である場合よりも、平面性が高いため、高い移動度が得られやすく、光電変換効率および耐久性をより向上させることが可能となるためである。また、HOMO準位もより深いものとすることができ、好ましい。
一般式1および2中、R1〜R3は、それぞれ独立して、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、置換されたもしくは非置換の、炭素原子数1〜20のアルキル基、炭素原子数1〜20のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数1〜20のフッ化アルコキシ基、炭素原子数1〜20のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。
上記ハロゲン原子としては、特に制限はなく、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)、ヨウ素原子(I)のいずれであってもよい。このうち、重合時に副反応を起こしにくい(Br,Iはスズと反応する可能性がある)という観点からフッ素原子(F)または塩素原子であることが好ましく、フッ素原子(F)であることがより好ましい。
上記炭素原子数1〜20のアルキル基としては、特に制限はないが、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、2−エチルヘキシル基、2−ヘキシルデシル基などの、直鎖状または分岐状アルキル基が挙げられる。このうち、溶解性を向上させるという観点から、炭素原子数1〜12のアルキル基であることが好ましく、炭素原子数1〜8のアルキル基であることがより好ましい。
上記炭素原子数1〜20のフッ化アルキル基としては、特に制限はないが、例えば、上記で例示したアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、環(ナフトビスベンゾチアジアゾール環、チアゾロチアゾール環、チエノチオフェン環)との結合部位に最も近い炭素原子(すなわちアルキル基中の1位の炭素原子)のみがフッ素原子で置換された基であることが好ましい。具体的には、フルオロメチル基、1−フルオロエチル基、1−フルオロプロピル基、1−フルオロブチル基、1−フルオロオクチル基、1−フルオロデシル基、1−フルオロヘキサデシル基、1−フルオロ−2−エチルヘキシル基、1−フルオロ−2−ヘキシルデシル基などのモノフルオロアルキル基;ジフルオロメチル基、1,1−ジフルオロエチル基、1,1−ジフルオロプロピル基、1,1−ジフルオロブチル基、1,1−ジフルオロオクチル基、1,1−ジフルオロデシル基、1,1−ジフルオロヘキサデシル基、1,1−ジフルオロ−2−エチルヘキシル基、1,1−ジフルオロ−2−ヘキシルデシル基などのジフルオロアルキル基;トリフルオロメチル基等のトリフルオロアルキル基などが挙げられる。また、上層の塗布性を維持するという観点から、炭素原子数1〜3のフッ化アルキル基であることが好ましい。このような炭素原子数であれば、他の溶解性基に比して十分短く(溶解性を付与するための置換基は、一般にC6以上を用いている)、上層塗布性に対する影響が少ないためである。なかでも、炭素原子数が1であるトリフルオロメチル基であることがより好ましい。
上記炭素原子数3〜20のシクロアルキル基としては、特に制限はないが、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などが挙げられる。このうち、溶解性を向上させるという観点から、炭素原子数4〜8のシクロアルキル基であることが好ましい。
上記炭素原子数3〜20のフッ化シクロアルキル基としては、特に制限はないが、例えば、上記で例示したシクロアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したシクロアルキル基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切に調節されることが好ましい。また、溶解性を向上させるという観点から、炭素原子数4〜8のフッ化シクロアルキル基であることが好ましい。
上記炭素原子数1〜20のアルコキシ基としては、特に制限はないが、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、n−デシルオキシ基、n−ヘキサデシルオキシ基、2−エチルヘキシルオキシ基、2−ヘキシルデシルオキシ基などが挙げられる。
上記炭素原子数6〜30のアリール基としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。
上記炭素原子数6〜30のフッ化アリール基としては、特に制限はないが、例えば、上記で例示したアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したアリール基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切調節されることが好ましい。
上記炭素原子数1〜20のヘテロアリール基としては、特に制限はないが、例えば、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、フラニル基、ピロリル基、チオフェニル基(チエニル基)、キノリル基、フリル基、ピペリジル基、クマリニル基、シラフルオレニル基、ベンゾフラニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、インドリル基、カルバゾリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、インダゾリル基、ベンゾチアゾリル基、ピリダジニル基、シンノリル基、キナゾリル基、キノキサリル基、フタラジニル基、フタラジンジオニル基、フタルアミジル基、クロモニル基、ナフトラクタミル基、キノロニル基、ナフタリジニル基、ベンズイミダゾロニル基、ベンズオキサゾロニル基、ベンゾチアゾロニル基、ベンゾチアゾチオニル基、キナゾロニル基、キノキサロニル基、フタラゾニル基、ジオキソピリミジニル基、ピリドニル基、イソキノロニル基、イソキノリニル基、イソチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、インダジロニル基、アクリジニル基、アクリドニル基、キナゾリンジオニル基、キノキサリンジオニル基、ベンゾオキサジンジオニル基、ベンゾキサジノニル基、ナフタルイミジル基、ジチエノシクロペンタジエニル基、ジチエノシラシクロペンタジエニル基、ジチエノピロリル基、ベンゾジチオフェニル基などが挙げられる。
上記炭素原子数1〜20のフッ化ヘテロアリール基としては、特に制限はないが、例えば、上記で例示したヘテロアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したヘテロアリール基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切に調節されることが好ましい。
また、上記R1およびR2に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシカルボニル基、アミノ基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、シリル基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ハロゲン原子、ヒドロキシル基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基などを挙げることができる。
本発明では、上記2種の部分構造を共に有する共役系高分子化合物を有機光電変換素子の光電変換層に有することで、光電変換層に隣接する層(例えば、逆層型の素子においては正孔輸送層)の製膜性を向上させることが可能となる。また、当該共役系高分子化合物により優れた光電変換効率を達成することができるため、耐久性の面で有利な逆層型の素子への適用も可能となる。なお、本形態の共役系高分子化合物は、順層型の素子においても、従来よりも高い光電変換効率及び耐久性を達成することが可能である。
このように、本形態の共役系高分子化合物を用いることにより、従来のナフトビスベンゾチアジアゾール環構造を有する共役系高分子化合物を用いた場合よりも製膜性、光電変換効率、耐久性が向上する理由は定かではないが、本発明者らは以下のように推測している。すなわち、上述の非特許文献4または5の共役系高分子化合物を用いて逆層構成の素子を作製した場合、光電変換層内で当該共役系高分子化合物(p型有機半導体)とフラーレン類(n型有機半導体)とが、好ましくない分布をとっている(具体的には、後述の図2において光電変換層の相対的に上側部分(正孔を取り出す側面付近)にフラーレンが偏析している)のではないかと推定された。このような分布は、後述の図1の順層構成ように、光電変換層の上側部分から電子を取り出す場合においては好ましいが、逆層構成では正孔を取り出しにくくなり、十分な光電変換効率が得られないおそれがあった。このような分布となる原因は不明であるが、ナフトビスベンゾチアジアゾール環構造のような大きなπ共役系を有する化合物と、光電変換層の下の層(光電変換層の直前に製膜される層)とが強い相互作用を示すためであると想定される。特に逆層構成においては、光電変換層の下の層として(光電変換層の直前に形成される層として)正孔ブロック層が形成されることが好ましいが、当該正孔ブロック層は、一般に、アミノ基等の電子供与性基を含む化合物から構成されているため、ナフトビスベンゾチアジアゾール環構造を有する共役系高分子化合物との相互作用が強いものと想定される。
これに対し、本発明者らは、共役系高分子化合物に、ナフトビスベンゾチアジアゾール環構造と共にさらにチエノチオフェン環構造やチアゾロチアゾール環構造を導入することにより、上記相互作用を低減することに成功した。チエノチオフェン環構造やチアゾロチアゾール環構造は、低分子では液晶性を示すユニットであるため、一定の温度以上では等方的であるが、冷却されると自己凝集力により各種液晶構造が発生する。このようなユニットをポリマーに組み込んだ場合、高温の溶液中では互いに分子分散して溶解しているが、温度の低下と共に凝集を起こし、溶解性が低下するといった特性が発揮されうる。
このような特性を上記塗布プロセスに応用すると、共役系高分子化合物を高温で溶解した溶液を、高温に保持した基板上に塗布した場合、最も低温で、かつ蒸発により濃度が上昇して析出が始まるのは塗布膜の上層部分であり、塗布膜の上層部分に上記共役系高分子化合物(p型有機半導体)をリッチに存在させることができる。このような手法により、光電変換層内のp型有機半導体・n型有機半導体の分布を逆層構成に好ましい状態とすることができる。なおこのような特性を利用すれば、塗布時の基板温度を低く保つ等の温度制御により、塗布膜の下層部分に上記共役系高分子化合物(p型有機半導体)をリッチに存在させることができ、順層構成に好ましい層内分布とすることも可能である。なお、凝集力を補助するために、共役系高分子化合物の側鎖に極性基を導入することも有効である。
さらなる効果としては、一般に有機薄膜太陽電池において使用される正孔輸送層は水系溶媒を用いた塗布法により形成されるが、逆層構成においては極性の低いポリマー、フラーレンからなる光電変換層上に形成する必要があり、正孔輸送層の塗布性が課題となるが、本発明の手法によれば、正孔輸送層の塗布時のはじきも低減されることが挙げられる。このような効果が発現する原理は不明であるが、チアゾロチアゾール基においては正孔輸送層材料中のPSS等との酸・塩基相互作用等による効果とも想定される。
本形態の共役系高分子化合物は、上記一般式1で表される部分構造および一般式2で表される部分構造をそれぞれ少なくとも1種有する限りにおいて、(1)上記一般式1で表される部分構造および一般式2で表される部分構造のみからなる共重合体であってもよいし、(2)上記一般式1で表される部分構造および一般式2で表される部分構造と、他の部分構造1つ以上とを含む共重合体であってもよい。
また、本形態の共役系高分子化合物は、ドナー性ユニット(群)と、アクセプター性ユニット(群)とが交互に配列した構造を有する共重合体(以下、「D−Aポリマー」とも称する)であることが好ましい。このように、D−Aポリマーとすることにより、吸収域を長波長域に拡大することができる。したがって、このような共役系高分子化合物は、従来のp型有機半導体の吸収域(例えば、400〜700nm)に加え、長波長域(例えば、700〜1000nm)の光も吸収することが可能となる。
本明細書において、「ドナー性ユニット」とは、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が浅くなるような部分構造(ユニット)をいう。一方、本明細書において、「アクセプター性ユニット」とは、一般に、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が深くなるような部分構造(ユニット)をいう。また、「ユニット群」とは、それぞれ、2以上のユニットが連結されてなる部分構造を意味する。
上記ドナー性ユニットとしては、例えば、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエンなどの複素5員環、およびこれらの縮合環を含むユニットなどが挙げられる。具体的には、チオフェン、チエノチオフェン、ビチオフェン、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェンを含むユニットなどが挙げられるが、これらに制限されるものではない。中でも、硫黄原子を含むドナー性ユニットであることが好ましい。
上述の(2)上記一般式1で表される部分構造および一般式2で表される部分構造と、他の部分構造1つ以上とを含むD−Aポリマーの好ましい形態としては、下記一般式3Aで表わされる部分構造または下記一般式3Bで表される部分構造を少なくとも1種有する共役系高分子が挙げられる。
一般式3Aまたは一般式3B中、−X1=は、それぞれ独立して、−C(R3)=または−N=を表す。−X1=の好ましい形態に関しては、上記一般式2で説明したのと同様である。
一般式3Aまたは一般式3B中、R1〜R5は、それぞれ独立して、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、置換されたもしくは非置換の、炭素原子数1〜20のアルキル基、炭素原子数1〜20のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数1〜20のフッ化アルコキシ基、炭素原子数1〜20のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。
このうち、R1〜R3についての好ましい形態は、上記一般式1および2で説明したのと同様である。一方、R4および/またはR5は、それぞれ独立して、極性基で置換された炭素原子数1〜10のアルキル基であることが好ましく、より詳しくは、R4および/またはR5は、下記一般式4で表わされる基であることが好ましい。
一般式4中、Lは、それぞれ独立して、炭素原子数1〜10のアルキレン基を表す。具体的には、メチレン基(−CH2−)、エチレン基(−CH2CH2−)、トリメチレン基(−CH2CH2CH2−)、プロピレン基(−CH(CH3)CH2−)、2−エチルヘキサメチレン基(−CH2CH(CH2CH3)CH2CH2CH2CH2−)などの直鎖状及び分岐状アルキレン基が挙げられる。このうち、当該アルキレン基中の水素原子と、主鎖のチオフェン環との立体障害を考慮すると、アルキレン基が結合しているチオフェン環の3位または4位の炭素原子と、Y1(a=1のとき)またはZ(a=0のとき)とが距離的に十分離れている(具体的には、チオフェン環の3位または4位の炭素原子と、Y1またはZとが、エチレン基(−CH2CH2−)以上の距離を介している)ことが好ましい。したがって、Lの主鎖の炭素原子数は2以上であることが好ましい。また、合成上の容易性という観点から、またはエチレン基であることが好ましい。
一般式4中、Y1およびY2は、それぞれ独立して、酸素原子(O)、またはNR7を表す。Zは、それぞれ独立して、炭素原子(C)、硫黄原子(S)、またはリン原子(P)を表す。a、b、およびcは、2≦a+b+c≦4かつ0≦a、b、c≦2の関係式を満たす整数を表す。すなわち、一般式4で表される基のうち、Lを除いた部分は、極性基を表す。当該極性基としては、具体的には、エステル基(−C(O)OR6)、アミド基(−C(O)NR6R7)、スルホンアミド基(−SO2NR6R7)、カルバメート基(−OCONR6R7または−NR7C(O)OR6)、カルボネート基(−OCOOR6)、リン酸エステル基(−PO(OR6)2)、ウレア基(−NR7CONR6R7)、リン酸アミド基(−PO(NR6R7)2)、スルホンエステル基(−SO2OR6)などが挙げられる。このように、R4および/またはR5が極性基を有するアルキル基であると、共役系高分子化合物において分子間の相互作用が強くなり、素子の耐久性をより向上させることができる。
さらに、R4および/またはR5は、それぞれ独立して、強い極性基を有するアルキル基であることが好ましく、具体的には、一般式4において、a、b、およびcはa+b+c=3かつ0≦a、b、c≦2の関係式を満たす整数であることが好ましい。この場合の極性基としては、具体的には、スルホンアミド基(−SO2NR6R7)、カルバメート基(−OCONR6R7または−NR7C(O)OR6)、カルボネート基(−OCOOR6)、リン酸エステル基(−PO(OR6)2)、ウレア基(−NR7CONR6R7)、リン酸アミド基(−PO(NR6R7)2)、スルホンエステル基(−SO2OR6)などが挙げられる。なかでも、カルバメート基(−OCONR6R7または−NR7C(O)OR6)、カルボネート基(−OCOOR6)であることが好ましい。このように、R4および/またはR5が強い極性基を有するアルキル基であると、分子間相互作用がより強くなり、さらなる耐久性の向上が期待できる。また、極性基により親水性が高まるため、光電変換層上に水系溶媒を用いて正孔輸送層等を製膜する際に、塗布液が弾かれにくくなり、均一な層を形成することが可能となる。
一般式4中、R6およびR7は、それぞれ独立して、水素原子(H)、炭素原子数1〜20のアルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数2〜20のアルケニル基、炭素原子数6〜30のアリール基、または炭素原子数1〜20のヘテロアリール基を表す。ここで、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基の好ましい形態に関しては、上記一般式1および2で説明したのと同様である。
上記炭素原子数2〜20のアルケニル基としては、特に制限はないが、例えば、エチニル基、プロピニル基、ブチニル基、オクチニル基、ノニニル基、デシニル基などが挙げられる。このうち、溶解性を向上させるという観点から、炭素原子数6以上、特に炭素原子数6〜10のアルケニル基であることが好ましい。
上述の一般式3Aまたは一般式3B中、Dは、それぞれ独立して、硫黄原子(S)を含むドナー性ユニット(群)(より詳しくは、ドナー性複素芳香族環基および/またはドナー性複素縮合芳香族環基)を表す。以下に、ドナー性ユニットの好ましい具体例を示す。
上記D1〜17のドナー性ユニット(群)において、Rは、それぞれ独立して、水素原子(H)、または、それぞれ独立して、置換されたもしくは非置換の、炭素原子数1〜20のアルキル基、炭素原子数1〜20のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数1〜20のフッ化アルコキシ基、炭素原子数1〜20のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。これの基の好ましい形態は、上記一般式1および2中で説明したのと同様である。
これらのドナー性ユニット(D)うち、下記一般式5で表されるドナー性ユニットであることが好ましい。
一般式5中、Aは、炭素原子(C)、ケイ素原子(Si)、またはゲルマニウム原子(Ge)を表す。すなわち、D5、D8、D18で表わされるユニットであることが好ましい。このうち、Aは、ケイ素原子(Si)であることが好ましい。これらのユニットは高い溶解性と長波長までの吸収を有するユニットであるため、より高い光電変換効率を与えることができる。
一般式5中、R8は、それぞれ独立して、置換されたもしくは非置換の、炭素原子数1〜20のアルキル基、炭素原子数1〜20のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数1〜20のフッ化アルコキシ基、炭素原子数1〜20のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。これの基の好ましい形態は、上記一般式1および2中で説明したのと同様である。
以下、本形態の共役系高分子化合物の好ましい形態(例示化合物1〜35)を例示するが、本発明が以下の形態のみに限定されるわけではない。
本形態の共役系高分子化合物の分子量は特に制限はないが、共役系高分子化合物に良好なモルフォロジーを与えるためには、適度な分子量を有することが好ましい。他方で分子量が高すぎると溶解性が低くなることがある。具体的には、共役系高分子化合物の数平均分子量が10000〜100000であることが好ましく、15000〜70000であることがより好ましく、25000〜50000であることがさらに好ましい。特に、本形態の共役系高分子化合物をp型有機半導体として用いてバルクヘテロジャンクション型の光電変換層を構成する場合、n型有機半導体として低分子化合物(例えば、フラーレン誘導体)が広く用いられているが、p型有機半導体として用いられる共役系高分子化合物の分子量が上記範囲内であると、ミクロ相分離構造が良好に形成されるため、pn接合界面で発生した正孔と電子とを運ぶキャリアパスが形成されやすくなるためである。本明細書における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC;標準物質ポリスチレン)で測定することができる。
上述の本形態の共役系高分子化合物を光電変換層のp型有機半導体として用いることにより、優れた耐久性を有するとともに、十分な光電変換効率を発揮する素子とすることができる。すなわち、本発明の一形態に係る有機光電変換素子は、第一の電極と、第二の電極と、前記第一の電極および前記第二の電極の間に存在する、n型有機半導体およびp型有機半導体を含む光電変換層とを有し、前記p型有機半導体は、上述の共役系高分子化合物を含む。
以下、添付した図面を参照しながら本形態を説明するが、本発明の技術的範囲は、特許請求の範囲の記載により定められるべきものであり、以下の形態のみに制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
図1は、本発明の一実施形態に係る、順層型の有機光電変換素子を模式的に表した断面概略図である。具体的には、図1の有機光電変換素子10は、基板25上に、陽極(透明電極)11、正孔輸送層26、光電変換層14、電子輸送層27、および陰極(対電極)12がこの順に積層されてなる構成を有する。なお、基板25は、主に、その上の陽極(透明電極)11を塗布方式で形成するのを容易にするために任意に設けられる部材である。
図1に示す有機光電変換素子10の作動時において、光は基板25側から照射される。本実施形態において、陽極(透明電極)11は、照射された光が光電変換層14へと届くようにするため、透明な電極材料(例えば、ITO)で構成される。基板25側から照射された光は、透明な陽極(透明電極)11および正孔輸送層26を経て光電変換層14へと届く。
なお、正孔輸送層26は、正孔の移動度が高い材料で形成されており、光電変換層14のpn接合界面で生成した正孔を効率よく陽極(透明電極)11へと輸送する機能を担っている。一方、電子輸送層27は、電子の移動度が高い材料で形成されており、光電変換層14のpn接合界面で生成した電子を効率よく陰極(対電極)12へと輸送する機能を担っている。
図2は、本発明の他の一実施形態に係る、逆層型の有機光電変換素子を模式的に表した断面概略図である。図2の有機光電変換素子20は、図1の有機光電変換素子10と比較して、陽極11と陰極12とが逆の位置に配置され、また、正孔輸送層26と電子輸送層27とが逆の位置に配置されている点が異なる。すなわち、逆層型の有機光電変換素子は、第一の電極が陰極(透明電極)12であり、第二の電極が陽極(対電極)11であり、第二の電極および光電変換層14の間に正孔輸送層26が含まれる点に特徴を有する。図2の有機光電変換素子20は、基板25上に、陰極(透明電極)12、電子輸送層27、光電変換層14、正孔輸送層26、および陽極(対電極)11がこの順に積層されてなる構成を有している。このような構成を有することにより、光電変換層14のpn接合界面で生成される電子は電子輸送層27を経て陰極(透明電極)12へと輸送され、正孔は正孔輸送層26を経て陽極(対電極)11へと輸送される。
図3は、本発明の他の一実施形態に係る、タンデム型(多接合型)の光電変換層を備えた有機光電変換素子を模式的に表した断面概略図である。図3の有機光電変換素子30は、図1の有機光電変換素子10と比較して、光電変換層14に代えて、第1の光電変換層14aと、第2の光電変換層14bと、これら2つの光電変換層の間に介在する電荷再結合層38との積層体が配置されている点が異なる。図3に示すタンデム型の有機光電変換素子30では、第1の光電変換層14aおよび第2の光電変換層14bに、それぞれ吸収波長の異なる光電変換材料(p型有機半導体およびn型有機半導体)を用いることにより、より広い波長域の光を効率よく電気に変換することが可能となる。
以下、本発明に係る有機光電変換素子の各構成について詳細に説明する。
[電極]
本形態の有機光電変換素子は、第一の電極および第二の電極を必須に含む。第一の電極および第二の電極は、各々、陽極または陰極として機能する。本明細書において、「第一の」および「第二の」とは、陽極または陰極としての機能を区別するための用語である。したがって、第一の電極が陽極として機能し、第二の電極が陰極として機能する場合もあるし、逆に、第一の電極が陰極として機能し、第二の電極が陽極として機能する場合もある。上述したように、光電変換層14で生成されるキャリア(正孔・電子)は、電極間を移動し、正孔は陽極12へ、電子は陰極16へと到達する。なお、本発明においては主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。また、タンデム構成をとる場合には電荷再結合層(中間電極)を用いることでタンデム構成を達成することができる。さらに、電極が透光性を有するものであるか否かという機能面から、透光性を有する電極を透明電極と呼び、透光性のない電極を対電極と呼び分ける場合もある。順層構成の場合、通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。
本形態の電極に使用される材料は、光電変換素子として駆動する限りにおいては特に制限はなく、本技術分野で使用されうる電極材料を適宜採用することができる。なかでも、陽極は陰極と比較して相対的に仕事関数が大きい材料から構成されることが好ましく、逆に陰極は陽極と比較して相対的に仕事関数が小さい材料から構成から構成されることが好ましい。
上述の図1に示す順層型の有機光電変換素子10における陽極11は、相対的に仕事関数が大きく、透明な(380〜800nmの光を透過可能な)電極材料から構成されることが好ましい。一方、陰極12は、相対的に仕事関数が小さく(例えば、4eV以下)、通常、透光性の低い電極材料から構成されうる。
このような、順層型の有機光電変換素子10において、陽極(透明電極)に使用される電極材料としては、例えば、金、銀、白金などの金属;インジウムスズ酸化物(ITO)、SnO2、ZnOなどの透明な導電性金属酸化物;金属ナノワイヤー、カーボンナノチューブなどの炭素材料などが挙げられる。また、陽極の電極材料として導電性高分子を用いることも可能である。陽極に使用されうる導電性高分子としては、例えば、PEDOT:PSS、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン、ポリナフタレンおよびこれらの誘導体などが挙げられる。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。
一方、順層型の有機光電変換素子において、陰極(対電極)に使用される電極材料としては、金属、合金、電子電導性化合物、およびこれらの混合物が使用されうる。具体的には、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。このうち、電子の取り出し性能や、酸化などに対する耐久性の観点から、仕事関数が低い第一の金属と、第一の金属よりも仕事関数が大きく安定な金属である第二の金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物や、安定な金属であるアルミニウムなどを用いることが好ましい。また、これらの材料のうち金属を用いることも好ましく、これにより、第一の電極側から入射し光電変換層で吸収されずに透過した光を、第二の電極で反射させて光電変換に再利用することができ、光電変換効率を向上させることが可能である。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。なお、陰極(対電極)の厚さは特に制限はないが、通常10nm〜5μm、好ましくは50〜200nmである。
また、図2に示す逆層型の有機光電変換素子では、光が入射する基板25側に陰極12が位置し、反対側に陽極11が位置する。したがって、図2に示す逆層型の形態における陽極11は、相対的に仕事関数が大きく、通常、透光性の低い電極材料から構成されることが好ましい。一方、陰極12は、相対的に仕事関数が小さく、透明な電極材料から構成される。
逆層型の有機光電変換素子において、陰極(透明電極)に使用される電極材料としては、例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウムなどの金属、金属化合物、および合金;カーボンナノ粒子、カーボンナノワイヤー、カーボンナノ構造体などの炭素材料;が挙げられる。このうち、インジウム・スズ酸化物(ITO)などの透明な導電性金属酸化物を用いることが好ましい。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。このうち、カーボンナノワイヤーを用いることにより、透明で導電性の高い陰極を塗布法により形成できるため好ましい。また、金属系の材料を使用する場合、陽極(対電極)と対向する側に、例えば、アルミニウム、アルミニウム合金、銀、銀化合物などを用いて、1〜20nm程度の厚さの補助電極を作製した後、上述の順層型の有機光電変換素子の陽極(透明電極)材料として例示した導電性高分子の膜を設けることで、陰極(透明電極)とすることができる。
一方、逆層型の有機光電変換素子において、陽極(対電極)に使用される電極材料は、上記陰極(透明電極)よりも相対的に仕事関数が大きい電極材料であることが好ましい。一例を挙げると、銀、ニッケル、モリブデン、金、白金、タングステン、および銅などの金属材料を用いて陽極(対電極)が形成されうる。
前述のとおり、本発明においては、酸素や水分等で劣化しにくい材料を陽極・陰極の双方に用いることができる、図2の逆層構成の有機光電変換素子であることが好ましい。逆層構成において好ましい陽極・陰極の組合せの例としては、たとえば
1) 第一の電極(陰極)ITO, 第二の電極(陽極)銀
2) 第一の電極(陰極)PEDOT:PSS, 第二の電極(陽極)銀
3) 第一の電極(陰極)ITO, 第二の電極(陽極)銅
4) 第一の電極(陰極)PEDOT:PSS, 第二の電極(陽極)金
5) 第一の電極(陰極)ITO, 第二の電極(陽極)PEDOT:PSS
等を挙げることができる。
[光電変換層]
光電変換層は、光起電力効果を利用して光エネルギーを電気エネルギーに変換する機能を有する。本形態の有機光電変換素子は、光電変換層に、n型有機半導体および上述の本発明の共役系高分子化合物をp型有機半導体として必須に含む点に特徴を有する。これらの光電変換材料に光が吸収されると、励起子が発生し、これがpn接合界面において、正孔と電子とに電荷分離される。
本形態の光電変換層は、上述の本発明の共役系高分子化合物を必須に含み、必要に応じて、他のp型有機半導体材料を含みうる。他のp型有機半導体材料の一例を以下に示す。
縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、およびこれらの誘導体や前駆体が挙げられる。
また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
共役系ポリマーとしては、例えば、ポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェンおよびそのオリゴマー、またはTechnical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、国際公開第2008/000664号パンフレットに記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン−チアゾロチアゾール共重合体、Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロールおよびそのオリゴマー、ポリアニリン、ポリフェニレンおよびそのオリゴマー、ポリフェニレンビニレンおよびそのオリゴマー、ポリチエニレンビニレンおよびそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。
これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。より好ましくは、本発明のn型有機半導体材料であるフラーレン誘導体と適度な相溶性を有するような化合物(適度な相分離構造形成し得る化合物)であることが好ましい。
またバルクへテロジャンクション層上にさらに溶液プロセスで電子輸送層や正孔ブロック層を形成する際には、一度塗布した層の上にさらに塗布することができれば、容易に積層することができるが、通常溶解性のよい材料からなる層の上にさらに層を溶液プロセスによって積層使用とすると、下地の層を溶かしてしまうために積層することができないという課題を有していた。したがって、溶液プロセスで塗布した後に不溶化できるような材料が好ましい。
このような材料としては、Technical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008−16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。
なお、本形態の光電変換層に含まれるp型有機半導体は、上述の共役系高分子化合物を含む限りにおいては、上記他のp型有機半導体材料の含有量は特に制限はない。ただし、より高い光電変換効率を達成するためには、光電変換層に含まれるp型有機半導体の総量(光電変換層が2層以上含まれる場合には、全ての層における総量)に対して、上述の共役系高分子化合物の割合が多いほど好ましい。具体的には、p型有機半導体の総量に対する共役系高分子化合物の割合が、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、100質量%であることが最も好ましい。
一方、本形態の光電変換層に使用されるn型有機半導体も、前記p型有機半導体に対してアクセプター性(電子受容性)である有機化合物であれば特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。このような化合物としては、前記p型有機半導体のLUMO準位に対して0.2〜0.5eV以上深い化合物であればよく、例えば、フラーレン、カーボンナノチューブ、オクタアザポルフィリンなど、上記p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニンなど)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミドなどの芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物などが挙げられる。
このうち、p型有機半導体と高速(〜50fs)かつ効率的に電荷分離を行うことができるという観点から、フラーレンもしくはカーボンナノチューブまたはこれらの誘導体を用いることが好ましい。より具体的には、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層カーボンナノチューブ、単層カーボンナノチューブ、カーボンナノホーン(円錐型)など、およびこれらの一部が水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、置換されたまたは非置換の、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基などによって置換されたフラーレン誘導体が挙げられる。
特に、[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−nヘキシルエステル(PCBH)、[6,6]−フェニルC71−ブチリックアシッドメチルエステル(略称PC71BM)、Adv.Mater.,vol.20(2008),p2116に記載のbis−PCBM、特開2006−199674号公報に記載のアミノ化フラーレン、特開2008−130889号公報に記載のメタロセン化フラーレン、米国特許第7,329,709号明細書に記載の環状エーテル基を有するフラーレンなどのような、置換基により溶解性が向上されてなるフラーレン誘導体を用いることが好ましい。なお、本形態において、n型有機半導体は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。
本形態の光電変換層における、p型有機半導体およびn型有機半導体の接合形態は、特に制限はなく、平面へテロ接合であってもよいし、バルクへテロ接合(バルクヘテロジャンクション)であってもよい。平面ヘテロ接合とは、p型有機半導体を含むp型有機半導体層と、n型有機半導体を含むn型有機半導体層とが積層され、これら2つの層が接触する面がpn接合界面となる接合形態である。一方、バルクヘテロジャンクションとは、p型有機半導体とn型有機半導体との混合物を塗布することにより形成され、この単一の層中において、p型有機半導体のドメインとn型有機半導体のドメインとがミクロ相分離構造をとっている。したがって、バルクヘテロジャンクションでは、平面へテロ接合と比較して、pn接合界面が層全体にわたって数多く存在することになる。よって、光吸収により生成した励起子の多くがpn接合界面に到達できることになり、電荷分離に至る効率を高めることができる。このような理由から、本形態の光電変換層における、p型有機半導体とn型有機半導体との接合は、バルクヘテロジャンクションであることが好ましい。
また、バルクヘテロジャンクション層は、通常の、p型有機半導体材料とn型有機半導体層が混合されてなる単一の層(i層)からなる場合の他に、当該i層がp型有機半導体からなるp層およびn型有機半導体からなるn層により挟持されてなる3層構造(p−i−n構造)を有する場合がある。このようなp−i−n構造は、正孔および電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。
本発明において、光電変換層に含まれるp型有機半導体とn型有機半導体との混合比は、質量比で2:8〜8:2の範囲が好ましく、より好ましくは3.3:6.7〜5:5の範囲である。また、光電変換層1層の膜厚は、好ましくは50〜400nmであり、より好ましくは80〜300nmであり、特に好ましくは100〜200nmである。一般に、より多くの光を吸収させる観点から、光電変換層の膜厚は大きい方が好ましいが、膜厚が大きくなるとキャリア(正孔・電子)の取り出し効率が低下するために光電変換効率が低下する傾向がある。しかしながら、上述の本形態の共役系高分子化合物をp型有機半導体材料として用いて光電変換層を形成すると、従来のp型有機半導体材料を用いた光電変換層と比較して、100nm以上の膜厚とした場合であってもキャリア(正孔・電子)の取り出し効率が低下しにくいため、高い光電変換効率を維持することができる。よって、逆層型の光電変換素子において、光電変換層の膜厚を大きくした場合であっても十分な光電変換効率を達成することが可能となる。
(基板)
本発明の有機光電変換素子は、必要に応じて基板を含みうる。基板は、電極を塗布方式で形成する場合における、塗布液の被塗布部材としての役割を有する。
基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。
本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。なかでも透明性、耐熱性、取り扱いやすさ、強度およびコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
また、酸素および水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
(正孔輸送層)
本形態の有機光電変換素子は、必要に応じて正孔輸送層を含みうる。正孔輸送層は、正孔を輸送する機能を有し、かつ電子を輸送する能力が著しく小さい(例えば、正孔の移動度の10分の1以下)という性質を有する。正孔輸送層は、光電変換層と陽極との間に設けられ、正孔を陽極へと輸送しつつ、電子の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。
正孔輸送層に用いられる正孔輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。一例を挙げると、例えば、Clevios社製、商品名BaytronP等のPEDOT:PSS、欧州特許第1647566号等に記載のポリチエノチオフェン類、特開2010−206146号に記載のスルホン化ポリチオフェン類、ポリアニリンおよびそのドープ材料、国際公開第2006/019270号パンフレット等に記載のシアン化合物などが挙げられる。
また、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマーなどもまた、用いられうる。
また、これら以外にも、ポルフィリン化合物、芳香族第3級アミン化合物、およびスチリルアミン化合物などが使用可能であり、これらのうちでは、芳香族第3級アミン化合物を用いることが好ましい。なお、場合によっては、モリブデン、バナジウム、タングステンなどの金属酸化物やその混合物などの無機化合物を用いて正孔輸送層を形成してもよい。
さらに上記化合物に含まれる構造単位を高分子鎖に導入した、あるいは、上記化合物を高分子の主鎖とした高分子材料を正孔輸送材料として用いることもできる。また、特開平11−251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、p型正孔輸送材料を用いることもできる。さらに、不純物をドープしたp性の高い正孔輸送材料を用いることもできる。一例を挙げると、特開平4−297076号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)などに記載された材料が挙げられる。なお、これらの正孔輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて正孔輸送層を構成することも可能である。
正孔輸送層の厚さは、特に制限はないが、通常1〜2000nmである。リーク防止効果をより高める観点からは、厚さは5nm以上であることが好ましい。また、高い透過率と低い抵抗を維持する観点からは、厚さは1000nm以下であることが好ましく、200nm以下であることがより好ましい。
正孔輸送層の導電率は、一般的に高い方が好ましいが、高くなりすぎると電子が移動するのを阻止する能力が低下し、整流性が低くなりうる。したがって、正孔輸送層の導電率は、10−5〜1S/cmであることが好ましく、10−4〜10−2S/cmであることがより好ましい。
(電子輸送層)
本形態の有機光電変換素子は、必要に応じて電子輸送層を含みうる。電子輸送層は、電子を輸送する機能を有し、かつ正孔を輸送する能力が著しく小さいという性質を有する。電子輸送層は、光電変換層と陰極との間に設けられ、電子を陰極へと輸送しつつ、正孔の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。
電子輸送層に用いられる電子輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。例えば、オクタアザポルフィリン、p型有機半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、光電変換層に用いられるp型有機半導体のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。よって、より好ましくは、n型有機半導体のHOMO準位よりも深い材料が電子輸送材料として用いられる。このような電子輸送材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型有機半導体、および酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物およびフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等が用いられうる。また、光電変換層に用いたn型有機半導体単体からなる層を用いることもできる。なお、これらの電子輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて電子輸送層を構成することも可能である。
なお、前述のように耐久性の観点で有利な逆層型の素子とする場合には、第一の電極上に電子輸送層を形成した後に光電変換層が形成されるため、光電変換材料を含む塗布液に対して不溶である化合物が電子輸送材料として好ましい。そのような観点から、電子輸送材料は、酸化チタンや酸化亜鉛といった無機物、および国際公開2008−134492号パンフレットに記載のポリエチレンイミンやアミノシランカップリング剤のような架橋可能な有機物であることが好ましい。中でもアミノシランカップリング剤(一例を挙げると、3−(2−アミノエチル)−アミノプロピルトリメトキシシラン)を用いることが好ましい。
また、光電変換層を塗布する際に使用する溶剤に対して不溶な材料としては、アルコール類に可溶なπ共役高分子等を挙げることができ、APPLIED PHYSICS LETTERS 95(2009),p043301、Adv.Funct.Mat.,2010,p.1977、Adv.Mater.,2011,23,3086、J.Am.Chem.Soc.,2011,p.8416、Advanced Materials,2011(Vol 23,no.40),p4636−4643等に記載のポリフルオレン類、ポリチオフェン類等、および下記のポリフルオレン類を用いてもよい。これらのポリマーの場合、上記のシランカップリング剤等と異なり、順層構成、すなわち光電変換層上にも形成することができるために好ましい。また、ITO等の金属酸化物だけでなく、金、銀、銅などの金属電極に対しても電子輸送層・正孔ブロック層として機能させることができるため、順層構成においても酸化に安定な金属を陰極に用いることが可能となり、好ましい。
電子輸送層の厚さは、特に制限はないが、通常1〜2000nmである。リーク防止効果をより高める観点からは、厚さは2nm以上であることが好ましく、より好ましくは5nm以上である。また、高い透過率と低い抵抗を維持する観点からは、厚さは100nm以下であることが好ましく、20nm以下であることがより好ましい。
(電荷再結合層;中間電極)
図3で示すような、2以上の光電変換層を有するタンデム型(多接合型)の有機光電変換素子において、光電変換層間には、電荷再結合層(中間電極)が配置される。
電荷再結合層(中間電極)に用いられる材料は、導電性および透光性を併せ持つ材料であれば、特に制限はなく、上述の電極材料として例示した、ITO、AZO、FTO、酸化チタンなどの透明金属酸化物、Ag、Al、Auなどの金属、およびカーボンナノ粒子、カーボンナノワイヤーなどの炭素材料、PEDOT:PSS、ポリアニリンなどの導電性高分子などが用いられうる。これらの材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて電荷再結合層を構成することも可能である。
電荷再結合層の導電率は、高い変換効率を得る観点から、高いことが好ましく、具体的には、5〜50000S/cmであることが好ましく、100〜10,000S/cmであることがより好ましい。また、電荷再結合層の厚さは、特に制限はないが、1〜1000nmであることが好ましく、5〜50nmであることが好ましい。厚さが1nm以上とすることにより、膜面を平滑化することができる。一方、厚さが1000nm以下とすることにより、短絡電流密度Jsc(mA/cm2)の低下を軽減することができる。
(その他の層)
本形態の有機光電変換素子は、上記の各部材(各層)の他に、光電変換効率の向上や、素子の寿命の向上のために、他の部材(他の層)をさらに設けてもよい。その他の部材としては、例えば、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などが挙げられる。また、上層に偏在した金属酸化物微粒子をより安定にするため等にシランカップリング剤等の層を設けてもよい。さらに本発明の光電変換層に隣接して金属酸化物の層を積層してもよい。
また、本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてもよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度光電変換層に入射させることができるような光拡散層等が挙げられる。
反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層等を挙げることができる。
<有機光電変換素子の製造方法>
上述の本形態の有機光電変換素子の製造方法は特に制限はなく、従来公知の手法を適宜参照することにより製造することができる。以下、図2に示すような逆層型の有機光電変換素子の製造方法を例に挙げて、本形態の有機光電変換素子の好ましい製造方法を説明する。ただし、当該製造方法における各工程は、逆層型の有機光電変換素子のみならず、図1に示すような順層型の有機光電変換素子や、図3に示すようなタンデム型の製造に適用可能である。
本形態の有機光電変換素子の製造方法は、陰極を形成する工程と、前記陰極の上に、p型有機半導体材料およびn型有機半導体材料を含む光電変換層を形成する工程と、前記光電変換層の上に、陽極を形成する工程とを含む。以下、本形態の有機光電変換素子の製造方法の各工程について、詳細に説明する。
本形態の製造方法では、まず、陰極を形成する。陰極を形成する方法は、特に制限はないが、操作の容易性や、ダイコータなどの装置を用いてロール・ツー・ロールで生産可能なことから、基板の上に、陰極の構成材料を含む液体を塗布し、乾燥させる方法であることが好ましい。またこれ以外にも、市販の薄膜状の電極材料をそのまま使用しても構わない。
上記で陰極を形成した後、必要に応じて、この陰極上に、電子輸送層を形成してもよい。電子輸送層を形成する手段としては、蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。溶液塗布法を用いて電子輸送層を形成する場合には、上述した電子輸送材料を適当な溶剤に溶解・分散させた溶液を、適当な塗布法を用いて陰極上に塗布し、乾燥させればよい。溶液塗布法に用いられる塗布法としては、キャスト法、スピンコート法、ブレードコーティング法、ワイヤーバーコーティング法、グラビアコート法、スプレーコーティング法、ディッピング(浸漬)コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法、Langmuir−Blodgett(LB)法等の通常の方法を用いることができる。なかでも、ブレードコーティング法を用いることが特に好ましい。なお、塗布法に使用する溶液の固形分濃度は、塗布方法や膜厚によっても変動しうるが、1〜15質量%が好ましく、より好ましくは1.5〜10質量%である。また、なお、塗布の際の塗布液および/または塗布面の温度は、特に制限はないが、塗布・乾燥時の温度変動による析出、ムラを防ぐといった観点から、好ましくは30〜120℃であり、より好ましくは50〜110℃である。さらに、乾燥の具体的な形態についても特に制限はなく、従来公知の知見が適宜参照されうる。乾燥条件の一例を挙げると80〜140℃程度の温度で、数十秒間〜数十分間程度といった条件が例示される。乾燥に使用する装置としては、ホットプレート、温風乾燥、赤外線ヒーター、マイクロウエーブ、真空乾燥機などが挙げられるが、これ以外の乾燥装置を用いることも勿論可能である。
続いて、上記で形成した陰極または電子輸送層上に、p型有機半導体およびn型有機半導体を含む光電変換層を形成する。ここで、本形態の製造方法は、p型有機半導体として、上述の本発明の共役系高分子化合物を必須に含む。光電変換層を形成するための具体的な手法について特に制限はないが、好ましくは、p型有機半導体およびn型有機半導体をそれぞれ、または一括して、適当な溶剤に溶解・分散させた溶液を、適当な塗布法(具体的な形態については、上述した通りである)を用いて陰極または電子輸送層上に塗布し、乾燥させればよい。なお、p型有機半導体およびn型有機半導体を一括して溶剤に溶解・分散させた溶液を、塗布法により塗布する。その後、残留溶媒および水分、ガスの除去、および半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。このようにして、p型有機半導体およびn型有機半導体が一様に混合され、バルクヘテロジャンクション型の有機光電変換素子とすることができる。
一方、p型有機半導体とn型有機半導体の混合比の異なる複数層からなる光電変換層(例えば、p−i−n構造)を形成する場合には、一の層を塗布後に、当該層を不溶化(顔料化)し、その後、他の層を塗布することにより形成することが可能である。
なお、当該光電変換層を形成する工程以降は、酸素や水分に曝さないようにするために窒素雰囲気下のグローブボックス内で行うことが好ましい。このように、窒素雰囲気下で行うことにより、大気中の酸素または水分によりp型有機半導体が劣化するのを防ぎ、素子の耐久性を高めることができる。具体的には、前記グローブボックスの酸素および水分の濃度が1000ppm以下であることが好ましく、より好ましくは100ppm以下であることが好ましい。最も好ましくは10ppm以下である。
次に、上記で形成した光電変換層上に、陽極を形成する。陽極を形成するための手段についても特に制限はなく、蒸着法、溶液塗布法のいずれであってもよいが、好ましくは蒸着法(例えば、真空蒸着法)が用いられる。なお、光電変換層と陽極との間に正孔輸送層を設ける場合には、蒸着法または溶液塗布法、好ましくは溶液塗布法を用いて、正孔輸送層が形成される。なお、当該正孔輸送層を形成する工程は、上記光電変換層を形成する工程と同様、窒素雰囲気下のグローブボックス内で行うことが好ましい。このように、窒素雰囲気下で行うことにより、大気中の酸素または水分により光電変換層が劣化するのを防ぎ、素子の耐久性を高めることができる。また、本発明に係る共役系高分子化合物は、高い溶媒親和性を有する。よって、溶液塗布法を用いて正孔輸送層を形成する場合、光電変換層の表面において正孔輸送材料を含む塗布溶液がはじかれるのを効果的に防ぐことができ、正孔輸送層の製膜性が向上しうる。
さらに、上述した各種の層以外の層が含まれる場合には、これらの層を形成するための工程を、溶液塗布法や蒸着法などを用いることで適宜追加して行うことができる。
上記電極(陰極・陽極)、光電変換層、正孔輸送層、電子輸送層等は、必要に応じてパターニングされうる。パターニングの方法は特に制限はなく、公知の手法を適宜適用することができる。例えば、バルクへテロジャンクション型の光電変換層や正孔輸送層・電子輸送層などで使用される可溶性の材料をパターニングする場合には、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。一方、電極などで使用される不溶性の材料の場合は、真空蒸着法による堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフなどの公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。
また、本形態の有機光電変換素子は、環境中の酸素、水分などによる劣化を防止するために、必要に応じて封止されうる。封止の方法は特に制限はなく、有機光電変換素子や有機エレクトロルミネッセンス素子などで用いられる公知の手法によって行われうる。例えば、(1)アルミニウムまたはガラスなどでできたキャップを接着剤によって接着することによって封止する手法;(2)アルミニウム、酸化ケイ素、酸化アルミニウムなどのガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法;(3)ガスバリア性の高い有機高分子材料(ポリビニルアルコールなど)をスピンコートする方法;(4)ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウムなど)または有機膜(パリレン等)を真空下で堆積する方法;ならびに(5)これらを複合的用いて積層する方法などが挙げられる。
<有機光電変換素子の用途>
本発明の他の形態によれば、上述の有機光電変換素子を有する太陽電池が提供される。本形態の有機光電変換素子は、優れた耐久性を有し、十分な光電変換効率を達成することができるため、これを発電素子とする太陽電池に好適に使用されうる。
また、本発明のさらに他の形態によれば、上述した有機光電変換素子がアレイ状に配列されてなる光センサアレイが提供される。すなわち、本形態の有機光電変換素子は、その光電変換機能を利用して、光センサアレイ上に投影された画像を電気的な信号に変換する光センサアレイとして利用することもできる。
本発明の作用効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
<共役系高分子化合物の合成>
[例示化合物1の合成]
化合物Aは、前記非特許文献4(Macromolecules,2011,44(18),pp7184)を参考として合成した。HNMR(CDCl3)=9.01ppm(2H),s;7.95ppm(2H),s;2.62ppm(4H),d;1.84ppm(2H),m;1.35−1.25ppm(48H),br;0.85ppm(12H),m。
また、化合物Bは国際公開第2005/111045号パンフレットを参考として合成した。
上記化合物Aを254mg(0.25mmol)と、化合物Bを194mg(0.25mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、6.3mg(0.007mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、16.7mg(0.055mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで200mgの純粋なポリマー(Mn=15000)(例示化合物1)を得て、本発明の有機光電変換素子3に使用した。
[例示化合物3の合成]
化合物Cは、J.Mater.Chem.,2009,vol.19,p3449を参考として合成した。
化合物C 855mg(1mmol)を脱水THF100mlに溶解し、−78℃まで冷却した後、2.6Mのn−ブチルリチウム、ヘキサン溶液を1.53ml(4mmol)加え、−78℃で2時間撹拌した後、塩化トリメチルスズの1.0Mヘキサン溶液を6.0ml(6mmol)を加え、−78℃でさらに30分間撹拌後、さらに室温(25℃、以下同様)で1時間撹拌した。純水と酢酸エチルを加えて分液を行い、有機層を塩化マグネシウムで乾燥後、溶媒を留去し、さらにアセトンで再結晶を行うことにより、化合物Dを920mg得た(収率90%)。
上記化合物Aを254mg(0.25mmol)と、化合物Bを256mg(0.25mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、6.3mg(0.007mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、16.7mg(0.055mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで220mgの純粋なポリマー(Mn=21000)(例示化合物3)を得て、本発明の有機光電変換素子4に使用した。
[例示化合物4の合成]
国際公開第2011/085004号パンフレットを参考として、化合物Eを合成した。
上記化合物Aを254mg(0.25mmol)と、化合物Eを256mg(0.25mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、6.3mg(0.007mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、16.7mg(0.055mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで220mgの純粋なポリマー(Mn=29000)(例示化合物4)を得て、本発明の有機光電変換素子5に使用した。
[例示化合物12の合成]
J.AM.CHEM.SOC.2009,131,7514を参考として、化合物Fを合成した。また、Bull.Chem.Soc.Jpn.,1991,p68を参考として化合物Gを合成した。
化合物Fを1.40g(2.4mmol)、化合物G434mg(1.1mmol)をトルエン50mlに溶解し、95mgのトリス(ジベンジリデンアセトン)ジパラジウム(0)と、126mgのトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110〜120℃まで溶液を加熱し、4時間反応させた。放冷後、トルエンを留去し、トルエン:ヘプタン=100:0〜100:10(体積比)の溶離液でシリカゲルカラムクロマトグラフィーで精製を行うことにより、化合物Hを400mg(収率34%)得た。HNMR(CDCl3)=9.09ppm,2H,s;8.35ppm,2H,d;7.30ppm,2H,d;7.11ppm,2H,d;1.49ppm,2H,m;1.2−1.4ppm,32H,br;1.0−1.1ppm,8H,m;0.84ppm,12H,t。
400mg(0.37mmol)の化合物HをTHF20mlに溶解し、N−ブロモスクシンイミド(NBS)145mg(0.82mmol)を加え、50℃で3時間半撹拌を行った。反応終了後、溶媒を留去し、トルエン:ヘプタン=100:0〜100:10(体積比)の溶離液でシリカゲルカラムクロマトグラフィーで精製を行うことにより、化合物Iを370mg(収率81%)得た。HNMR(CDCl3)=9.09ppm,2H,s;8.34ppm,2H,d;7.09ppm,2H,d;1.49ppm,2H,m;1.2−1.4ppm,32H,br;1.0−1.1ppm,8H,m;0.84ppm,12H,t。
上記化合物Iを185mg(0.15mmol)と、化合物Eを153mg(0.15mmol)とを20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、3.9mg(0.0042mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、10mg(0.033mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで290mgの純粋なポリマー(Mn=50000)(例示化合物12)を得て、本発明の有機光電変換素子7に使用した。
[例示化合物10の合成]
上記例示化合物12の合成において、化合物Fの合成原料として4,4’−ビス−(2−エチルヘキシル)−4H−シロロ−[3,2−b:4,5−b’]−ジチオフェンの代わりに4,4’−ビス−(2−エチルヘキシル)−4H−シクロペンタ−[1,2−b:5,4−b’]−ジチオフェン(Macromolecules 2007,40,p1981を参考として合成)を用いた以外は同様にして、例示化合物10を合成した。収量は230mg、Mn=44000であり、本発明の有機光電変換素子6に使用した。
[例示化合物16の合成]
上記例示化合物12の合成において、化合物Fの合成原料として4,4’−ビス−(2−エチルヘキシル)−4H−シロロ−[3,2−b:4,5−b’]−ジチオフェンの代わりに4,8−ビス−(2−ヘキシルデシルオキシ)−ベンゾ[1,2−b:4,5−b’]−ジチオフェン(J.AM.CHEM.SOC.2009,131,p56を参考として合成)を用いた以外は同様にして、例示化合物16を合成した。収量は180mg、Mn=25000であり、本発明の有機光電変換素子8に使用した。
[例示化合物21の合成]
化合物Jは、米国特許出願公開第2010/137611号明細書を参考に合成した。
3−ブロモチオフェン−2−カルボキシアルデヒドを5.1g(27mmol)、ルベアン酸を0.73g(6.8mmol)取り、100mlのN,N−ジメチルホルムアミド(DMF)に溶解して150℃で5時間撹拌した。反応を停止して室温まで戻した後、純水を加えて30分間撹拌した。析出した固体をろ過して回収し、メタノールで洗浄した後60℃で10時間真空乾燥した。テトラヒドロフラン(THF)に溶解させてシリカゲルカラムクロマトグラフィーにて精製して化合物1を1.2g(収率38%)得た。
化合物Kは、J.Org.Chem.,1997,62,1376−1387を参考に合成した。化合物Jを1.0g(2.2mmol)脱水THF300mlに溶解し、−78℃に冷却した後にt−ブチルリチウム1.6Mヘキサン溶液を6.1ml(9.7mmol)滴下し、1時間撹拌した後にエチレンオキシド5.0Mエーテル溶液を1.5ml(2.4mmol)滴下し、徐々に室温まで戻しながら12時間撹拌した。反応終了後、食塩水と酢酸エチルを加えて分液操作を行い、有機層を抽出して硫酸マグネシウムで乾燥後に溶媒を留去した。その後シリカゲルカラムクロマトグラフィーにて精製して化合物Kを0.72g(収率83%)得た。
化合物K0.72g(1.8mmol)、デカン酸無水物1.53g(4.7mmol)をピリジン10mlに溶解し、5時間撹拌した。反応終了後、食塩水と酢酸エチルを加えて分液操作を行い、有機層を抽出して硫酸マグネシウムで乾燥後に溶媒を留去して、化合物Lを1.23g(収率97%)得た。
化合物L700mg(1.0mmol)を脱水THF100mlに溶解し、−78℃まで冷却した後、2.0Mのリチウムジイソプロピルアミド溶液を2.0ml(4mmol)加え、−78℃で2時間撹拌した後、塩化トリメチルスズの1.0Mヘキサン溶液を6.0ml(6mmol)を加え、−78℃でさらに30分間撹拌後、さらに室温で1時間撹拌した。純水と酢酸エチルを加えて分液を行い、有機層を塩化マグネシウムで乾燥後、溶媒を留去し、さらにメタノールで再結晶を行うことにより、化合物Mを833mg得た(収率81%)。
上記化合物Iを185mg(0.15mmol)と、化合物Mを154mg(0.15mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、3.9mg(0.0042mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、10mg(0.033mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで210mgの純粋なポリマー(Mn=28000)(例示化合物21)を得て、本発明の有機光電変換素子9に使用した。
[例示化合物22の合成]
化合物K 0.72g(1.8mmol)、クロロギ酸デシル1.04g(4.7mmol)をテトラヒドロフラン10mlおよびトリエチルアミン1mlに溶解し、5時間撹拌した。反応終了後、食塩水と酢酸エチルを加えて分液操作を行い、有機層を抽出して硫酸マグネシウムで乾燥後に溶媒を留去して、化合物Nを1.23g(収率97%)得た。
化合物N760mg(1.0mmol)を脱水THF100mlに溶解し、−78℃まで冷却した後、2.0Mのリチウムジイソプロピルアミド溶液を2.0ml(4mmol)加え、−78℃で2時間撹拌した後、塩化トリメチルスズの1.0Mヘキサン溶液を6.0ml(6mmol)を加え、−78℃でさらに30分間撹拌後、さらに室温で1時間撹拌した。純水と酢酸エチルを加えて分液を行い、有機層を塩化マグネシウムで乾燥後、溶媒を留去し、さらにメタノールで再結晶を行うことにより、化合物Oを816mg得た(収率75%)。
上記化合物Iを185mg(0.15mmol)と、化合物Oを163mg(0.15mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、3.9mg(0.0042mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、10mg(0.033mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで210mgの純粋なポリマー(Mn=22000)(例示化合物22)を得て、本発明の有機光電変換素子10に使用した。
<逆層型の有機光電変換素子の作製>
国際公開2008−134492号パンフットの記載を参考に、以下のようにして逆層型の有機光電変換素子を作製した。
[比較例1]
PET基板上に、第一の電極(陰極)としてインジウムスズ酸化物(ITO)透明導電膜150nm堆積したもの(シート抵抗12Ω/square cm2)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第一の電極を形成した。パターン形成した第一の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
この第一の電極上に、Aldrich社製3−(2−アミノエチル)−アミノプロピルトリメトキシシランの0.05質量%メトキシエタノール溶液を、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、ホットプレート上で120℃1分間の加熱処理をして、電子輸送層を製膜した。
次いで、o−ジクロロベンゼンに、p型有機半導体材料である比較化合物1(非特許文献4に基づいて合成)を0.8質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%で混合した溶液を調製し(p型有機半導体材料:n型有機半導体材料=33:67(質量比))、オーブンで110℃に加熱しながら一昼夜撹拌して溶解した後、乾燥膜厚が約200nmになるように基板温度を80℃に保持したブレードコーターを用いて塗布し、そのまま80℃で2分間乾燥して、光電変換層を製膜した。
光電変換層の乾燥完了後、再び大気(air)下に取り出し、次いで正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT−PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10−3S/cm)を等量のイソプロパノールで希釈した液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、90℃の温風で20秒間加熱処理して、有機物からなる正孔輸送層(有機材料層)を形成した。なお塗布時の大気の温度・湿度は23℃65%であった。
次に、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、1×10−3Pa以下にまで真空蒸着装置内を減圧した後、蒸着速度0.5nm/秒でAgメタルを200nm積層して、第二の電極(陽極)を形成した。
得られた積層体を窒素チャンバーに移動し、住友3M社製のUBF−9L(水蒸気透過率5.0×10−4g/m2/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570−B1)を用いて封止を行った後に大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子1を得た。
また、光電変換層を作成後、窒素雰囲気下のグローブボックス(N2)(酸素濃度10ppm、露点温度−80℃)から取り出すことなく、そのままグローブボックス内で正孔輸送層の形成を形成したことを除いては、同様の方法で逆層型の有機光電変換素子の作製を行った。
[比較例2]
光電変換層の形成において、p型有機半導体として比較化合物2(非特許文献5に基づいて合成)をそれぞれ用いたことを除いては、上記比較例1と同様の方法で、逆層型の有機光電変換素子を作製した。
[参考例1、実施例2〜8]
光電変換層の形成において、p型有機半導体として下記表1に記載の化合物をそれぞれ用いたことを除いては、上記比較例1と同様の方法で、逆層型の有機光電変換素子を作製した。
[化合物P(電子輸送材料)の合成]
下記反応により、化合物Pを合成した。
Adv.Mater.2007,19,2010を参考として、ポリ(9,9−ビス(6−ブロモヘキシル)−4,7−フルオレン)を合成した。この化合物の重量平均分子量は4400であった。この化合物1.0gおよび3,3’−イミノビス(N,N−ジメチルプロピルアミン)(アルドリッチ社製)9.0gを、テトラヒドロフラン100mlおよびN,N−ジメチルホルムアミド100mlの混合溶媒に溶解し、室温(25℃)で48時間撹拌して、反応を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、化合物Pを1.3g得た(収率90%)。得られた化合物について、H−NMRによって構造を特定した。結果を下記に示す。7.6〜8.0ppm(br),2.88ppm(br),2.18ppm(m),2.08ppm(s),1.50ppm(m),1.05ppm(br)。
<順層型の有機光電変換素子の作製>
[実施例9]
PET基板上に、第一の電極(陰極)としてインジウムスズ酸化物(ITO)透明導電膜150nm堆積したもの(シート抵抗12Ω/square cm2)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第一の電極を形成した。パターン形成した第一の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT−PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10−3S/cm)を2.0質量%で含むイソプロパノール溶液を調製し、乾燥膜厚が約30nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、正孔輸送層を上記第一の電極上に製膜した。これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を120℃で3分間加熱処理した。
次いで、o−ジクロロベンゼンに、p型有機半導体材料として前記例示化合物12を0.8質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%を混合した有機光電変換材料組成物溶液を調製し、ホットプレートで100℃に加熱しながら撹拌(60分間)して完全に溶解した後、乾燥膜厚が約170nmになるように、基板を40℃に調温したブレードコーターを用いて塗布し、2分間乾燥して、光電変換層を上記正孔輸送層上に製膜した。
続いて、前記化合物Pを、それぞれ、0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製した。この溶液を、乾燥膜厚が約5nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、電子輸送層を上記光電変換層上に製膜した。
次に、上記電子輸送層を製膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10−3Pa以下にまでに真空蒸着機内を減圧した後、蒸着速度で2nm/秒で銀を、それぞれ、100nm蒸着して、第二の電極を上記電子輸送層上に形成した。
得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL−9L(水蒸気透過率<5×10−4g/m2/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570−B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子11を作製した。
<有機光電変換素子の評価>
(開放電圧、曲線因子、および光電変換効率の評価)
上記参考例1、実施例2〜9および比較例1〜2で得た有機光電変換素子を、それぞれエポキシ樹脂とガラスキャップとで封止した。これにソーラーシミュレーター(AM1.5Gフィルタ)を用いて100mW/cm2の強度の光を照射し、有効面積を1cm2にしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm2)、開放電圧Voc(V)、および曲線因子FF測定した。得られたJsc、Voc、およびFFの値から、下記式1に従って光電変換効率η[%]を算出した。結果を表1に示す。
(光電変換層上への正孔輸送層の製膜性評価)
上記参考例1、実施例2〜8および比較例1〜2について、逆層型の有機光電変換素子の作製をそれぞれ5回ずつ試みた。そして、光電変換層上に正孔輸送層を塗布する際に、光電変換層上で有機溶剤系PEDOT:PSSの分散液に含まれる親水系溶媒が光電変換層上で弾かれることなく、良好に正孔輸送層が形成された回数により製膜性を評価した。結果を表1に示す。
(耐久性評価)
上記参考例1、実施例2〜9および比較例1〜2で得た各有機光電変換素子を、温度80℃、湿度80%に保持した容器内に保存し、定期的に取りだしてIV特性を測定し、初期の光電変換効率を100として、初期の効率の80%まで低下した時間をLT80[時間]として評価した。LT80の値が大きいほど、耐久性が良好であることを意味する。結果を表1に示す。
表1の結果より、本発明の共役系高分子化合物を用いた実施例は、比較例と比べて正孔輸送層の塗布性が良好で、かつ高い光電変換効率が得られることが示された。
また、素子の耐久性評価については、正孔輸送層を大気下で形成した場合およびグローブボックス内で形成した場合のいずれの実施例も、比較例よりも著しく耐久性が向上した。
さらに、酸素および水分が少ないグローブボックス内で正孔輸送層を形成した例は、大気下で正孔輸送層を形成した例と比較して、光電変換効率、素子の耐久性がより一層向上することが示された。一方、比較例1および2は、グローブボックス内で正孔輸送層を塗布する際に、親水性溶媒が弾かれて製膜が著しく困難であった。
なお実施例9で示されるように、本発明の共役系高分子化合物は順層構成においても高い光電変換効率を発揮できることが示された。