[go: up one dir, main page]

JP5741157B2 - Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method - Google Patents

Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method Download PDF

Info

Publication number
JP5741157B2
JP5741157B2 JP2011085796A JP2011085796A JP5741157B2 JP 5741157 B2 JP5741157 B2 JP 5741157B2 JP 2011085796 A JP2011085796 A JP 2011085796A JP 2011085796 A JP2011085796 A JP 2011085796A JP 5741157 B2 JP5741157 B2 JP 5741157B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
carrier
holding hole
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011085796A
Other languages
Japanese (ja)
Other versions
JP2012218103A (en
Inventor
徳仁 志田
徳仁 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011085796A priority Critical patent/JP5741157B2/en
Priority to PH12012000075A priority patent/PH12012000075A1/en
Publication of JP2012218103A publication Critical patent/JP2012218103A/en
Application granted granted Critical
Publication of JP5741157B2 publication Critical patent/JP5741157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は研磨工程でガラス基板を保持するよう構成された研磨用キャリア及びガラス基板の研磨方法及びガラス基板の製造方法及び磁気記録媒体用ガラス基板に関する。   The present invention relates to a polishing carrier configured to hold a glass substrate in a polishing step, a method for polishing the glass substrate, a method for manufacturing the glass substrate, and a glass substrate for a magnetic recording medium.

一般に、磁気記録媒体用として使用されるガラス基板の製造ラインは、少なくとも以下の工程1〜工程7を含む。
(工程1)フロート法、フュージョン法、リドロー法、またはプレス成形法により成形されたガラス素基板を、中央部に円形孔を有する円盤形状に加工した後、内周側面と外周側面を面取り加工する。
(工程2)ガラス基板の内周または外周の少なくとも一方の側面部と面取り部に端面研磨する。
(工程3)ガラス基板の上下主平面を研磨加工する。
(工程4)ガラス基板を精密洗浄する。
(工程5)洗浄されたガラス基板を乾燥させる。
(工程6)乾燥したガラス基板の欠陥を目視又は光学方式表面観察機により検査する。
(工程7)検査したガラス基板をガラス基板収納容器に収納して包装する。
Generally, a glass substrate production line used for a magnetic recording medium includes at least the following steps 1 to 7.
(Step 1) After processing a glass base substrate formed by a float method, a fusion method, a redraw method, or a press molding method into a disk shape having a circular hole in the center, the inner peripheral side surface and the outer peripheral side surface are chamfered. .
(Step 2) End face polishing is performed on at least one side surface portion and chamfered portion of the inner periphery or outer periphery of the glass substrate.
(Step 3) The upper and lower main planes of the glass substrate are polished.
(Step 4) The glass substrate is precisely cleaned.
(Step 5) The cleaned glass substrate is dried.
(Step 6) The dried glass substrate is inspected visually or with an optical surface observing device.
(Step 7) The inspected glass substrate is stored in a glass substrate storage container and packaged.

少なくとも上記工程1〜工程7を含むガラス基板の製造ラインにより製造されたガラス基板は製品として出荷される。   A glass substrate manufactured by a glass substrate manufacturing line including at least the above-described steps 1 to 7 is shipped as a product.

研磨工程においては、研磨用キャリアが研磨装置の遊星歯車機構により回転(自転しながら公転する)することで、研磨用キャリアの保持穴に挿入されたガラス基板と研磨面との相対変位によりガラス基板の主平面を研磨する(例えば、特許文献1参照)。   In the polishing process, the polishing carrier is rotated (revolved while rotating) by the planetary gear mechanism of the polishing apparatus, so that the glass substrate is inserted by the relative displacement between the glass substrate inserted into the holding hole of the polishing carrier and the polishing surface. The main plane is polished (see, for example, Patent Document 1).

研磨用キャリアは、樹脂材により円盤状に成形されており、外周側面に研磨装置のサンギヤと、研磨装置の外周縁部に形成されたインターナルギヤとに噛合する複数の歯が形成されたギヤ部が設けられ、ギヤ部の内側平面に複数のガラス基板保持穴が設けられている。   The polishing carrier is formed in a disk shape from a resin material, and a gear having a plurality of teeth meshing with a sun gear of the polishing device and an internal gear formed on the outer peripheral edge of the polishing device on the outer peripheral side surface Part is provided, and a plurality of glass substrate holding holes are provided on the inner plane of the gear part.

研磨工程においては、研磨液を研磨パッドの研磨面に供給しながらガラス基板の主平面(上下面)を研磨しており、研磨用キャリアの各ガラス基板保持穴に収納保持されたガラス基板は、研磨用キャリアのギヤ部が研磨装置のサンギヤ及びインターナルギヤに噛合して回転する際に主平面が研磨される。このように研磨用キャリアは、ギヤ部による回転駆動力及びガラス基板と研磨パッドとの間の相対運動によって生じる研磨抵抗を受けるため、樹脂材のみでは強度不足になる。研磨キャリアは、ガラス等の繊維を樹脂材に含浸して積層することで、研磨キャリアの強度が高められている。   In the polishing process, the main plane (upper and lower surfaces) of the glass substrate is polished while supplying the polishing liquid to the polishing surface of the polishing pad, and the glass substrate stored and held in each glass substrate holding hole of the polishing carrier is: The main plane is polished when the gear portion of the polishing carrier meshes with the sun gear and the internal gear of the polishing apparatus and rotates. As described above, the polishing carrier is subjected to the rotational driving force by the gear portion and the polishing resistance generated by the relative motion between the glass substrate and the polishing pad, and therefore the strength is insufficient only with the resin material. The abrasive carrier is enhanced in strength by impregnating and laminating a resin material with fibers such as glass.

また、研磨キャリアに含まれる繊維は、硬いので、特に繊維が研磨用キャリアのガラス基板保持穴内にはみ出しているとガラス基板に接触してガラス基板の外周側面を傷つけるという問題が発生する。そのため、研磨キャリアの製造工程では、繊維と樹脂材料とを含む複合材料を用いて研磨用キャリアを成型し、キャリア平面部に複数のガラス基板保持穴を加工した後に、ガラス基板保持穴の内周壁面をバリ取り加工している。これにより、ガラス基板保持穴の内周壁面は、大きな凹凸の無い平滑面に形成されるため、ガラス基板の外周側面が損傷することがある程度抑制される。   Moreover, since the fiber contained in the polishing carrier is hard, there is a problem that the outer peripheral side surface of the glass substrate is damaged by contacting the glass substrate, particularly when the fiber protrudes into the glass substrate holding hole of the polishing carrier. Therefore, in the manufacturing process of the polishing carrier, the polishing carrier is molded using a composite material including fibers and a resin material, and a plurality of glass substrate holding holes are processed in the carrier plane portion. The wall surface is deburred. Thereby, since the inner peripheral wall surface of the glass substrate holding hole is formed on a smooth surface without large unevenness, the outer peripheral side surface of the glass substrate is suppressed to some extent.

特開2008−6526号公報JP 2008-6526 A

上記従来の研磨用キャリアは、ガラス基板保持穴の内周壁面にバリ取り加工を施しているが、ガラス基板保持穴の内周壁面を平滑に加工しても、内周壁面と繊維が同一面であるため、ガラス基板の外周側面がガラス基板保持穴の内周壁面に接触した際に硬い繊維にも接触し、キズが発生することを充分に防止できない。また、使用回数が増加すると共にガラス基板の外周側面がガラス基板保持穴の内周壁面に接触する回数が増加すると、徐々に繊維がガラス基板保持穴の内周壁面からはみ出してガラス基板の外周側面により強く接触する。   In the above conventional polishing carrier, the inner peripheral wall surface of the glass substrate holding hole is deburred, but even if the inner peripheral wall surface of the glass substrate holding hole is processed smoothly, the inner peripheral wall surface and the fiber are the same surface. Therefore, when the outer peripheral side surface of the glass substrate is in contact with the inner peripheral wall surface of the glass substrate holding hole, it is also impossible to sufficiently prevent the hard fiber from coming into contact with the hard fiber. In addition, as the number of uses increases and the number of times the outer peripheral side surface of the glass substrate contacts the inner peripheral wall surface of the glass substrate holding hole increases, the fibers gradually protrude from the inner peripheral wall surface of the glass substrate holding hole. Make a stronger contact.

また、研磨工程において、繊維が擦られて微細な破片(例えば、ガラス粉)が発生すると、当該破片が研磨面に付着または研磨液に混入してガラス基板の主平面を傷つけることがあった。   Further, in the polishing process, when fine fibers (for example, glass powder) are rubbed and the fibers are rubbed, the broken particles may adhere to the polishing surface or be mixed into the polishing liquid and damage the main plane of the glass substrate.

そこで、本発明は上記事情に鑑み、ガラス基板保持穴の内周壁面から所定距離外側の領域にのみ繊維を配することで上記課題を解決した研磨用キャリア及び該キャリアを用いたガラス基板の研磨方法及びガラス基板の製造方法及び磁気記録媒体用ガラス基板の提供を目的とする。   Therefore, in view of the above circumstances, the present invention provides a polishing carrier that solves the above problems by arranging fibers only in a region outside a predetermined distance from the inner peripheral wall surface of the glass substrate holding hole, and polishing of the glass substrate using the carrier. An object is to provide a method, a method for producing a glass substrate, and a glass substrate for a magnetic recording medium.

上記課題を解決するため、本発明の一態様によれば、
繊維と樹脂材料とを含む複合材料を用いて形成され、ガラス基板を保持するガラス基板保持穴を有する保持部と、前記保持部の外周に設けられた複数の歯を有するギヤ部とを備えた研磨用キャリアにおいて、
前記ガラス基板保持穴の内周壁面に複数の凹部が配され、前記内周壁面から外側に前記樹脂材料のみにより形成された保持穴緩衝領域と、
前記保持穴緩衝領域の外側に前記複合材料により形成された保持穴補強領域とを有し、
前記ギヤ部は、各歯の外周壁面に複数の凹部が配され、前記樹脂材料のみにより形成されたギヤ部緩衝領域と、前記ギヤ部緩衝領域の内側に前記複合材料により形成されたギヤ部補強領域とを有することを特徴とする研磨用キャリアが提供される。
In order to solve the above problems , according to one aspect of the present invention ,
A holding part that is formed using a composite material including a fiber and a resin material and has a glass substrate holding hole for holding a glass substrate, and a gear part that has a plurality of teeth provided on the outer periphery of the holding part In polishing carrier,
A plurality of recesses are arranged on the inner peripheral wall surface of the glass substrate holding hole, and a holding hole buffering region formed only from the resin material on the outside from the inner peripheral wall surface;
A holding hole reinforcing region formed of the composite material outside the holding hole buffering region ;
The gear part has a plurality of recesses on the outer peripheral wall surface of each tooth, a gear part buffering area formed by only the resin material, and a gear part reinforcement formed by the composite material inside the gear part buffering area. A polishing carrier characterized in that it has a region .

本発明によれば、研磨用キャリアに形成されたガラス基板保持穴の内周壁面から繊維がはみ出すことがないので、研磨工程時にガラス基板保持穴に挿入されたガラス基板の外周側面が損傷することを防止できる。また、繊維から破片(例えば、ガラス粉)が発生しにくくなるため、ガラス基板の主平面が損傷することを抑制できると共に、ガラス基板保持穴の内周壁面の凹部に研磨液が保持され、内周壁面に対する摩擦が軽減されてガラス基板保持穴内のガラス基板が回転しやすくなるため、ガラス基板の主平面の平行度がより高められる。   According to the present invention, since fibers do not protrude from the inner peripheral wall surface of the glass substrate holding hole formed in the polishing carrier, the outer peripheral side surface of the glass substrate inserted into the glass substrate holding hole is damaged during the polishing process. Can be prevented. Moreover, since it becomes difficult to generate | occur | produce fragments (for example, glass powder) from a fiber, while being able to suppress that the main plane of a glass substrate is damaged, polishing liquid is hold | maintained at the recessed part of the inner peripheral wall surface of a glass substrate holding hole, Since the friction with respect to the peripheral wall surface is reduced and the glass substrate in the glass substrate holding hole is easily rotated, the parallelism of the main plane of the glass substrate is further increased.

ガラス基板の一実施例を示す斜視図である。It is a perspective view which shows one Example of a glass substrate. ガラス基板の断面形状を示す断面斜視図である。It is a cross-sectional perspective view which shows the cross-sectional shape of a glass substrate. 本発明による研磨用キャリアの一実施例を示す平面図である。It is a top view which shows one Example of the carrier for grinding | polishing by this invention. 研磨用キャリア20Aの図3中X−X線に沿う縦断面図である。It is a longitudinal cross-sectional view in alignment with the XX line in FIG. 3 of carrier 20A for grinding | polishing. 研磨用キャリア20Bの図3中X−X線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the XX line in FIG. 3 of the carrier 20B for grinding | polishing. 本発明による研磨用キャリアが用いられる両面研磨装置の構成を示す正面図である。It is a front view which shows the structure of the double-side polish apparatus in which the carrier for grinding | polishing by this invention is used. 研磨用キャリアを両面研磨装置に取付けた研磨工程を示す斜視図である。It is a perspective view which shows the grinding | polishing process which attached the grinding | polishing carrier to the double-side polish apparatus.

以下、図面を参照して本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〔ガラス基板の構成、製造〕
図1はガラス基板の一実施例を示す斜視図である。図1に示されるように、磁気記録媒体用ガラス基板を製造する工程では、先ず、フロート法、フュージョン法、リドロー法、またはプレス成形法で成形されたSiOを主成分とするガラス素基板を製作し、外径65mm、内径20mm、板厚0.635mmの寸法のガラス基板10が得られるようにガラス素基板を加工する。ガラス基板10は、両主平面11の中央部に円形孔12を有する円盤状に形成され、内周側面13と、外周側面14とを有する。
[Configuration and production of glass substrate]
FIG. 1 is a perspective view showing an embodiment of a glass substrate. As shown in FIG. 1, in the process of manufacturing a glass substrate for a magnetic recording medium, first, a glass substrate mainly composed of SiO 2 formed by a float method, a fusion method, a redraw method, or a press molding method is used. The glass substrate is manufactured and processed so as to obtain a glass substrate 10 having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.635 mm. The glass substrate 10 is formed in a disk shape having a circular hole 12 at the center of both main planes 11, and has an inner peripheral side surface 13 and an outer peripheral side surface 14.

図2はガラス基板の断面形状を示す断面斜視図である。図2に示されるように、ガラス基板10の内周側面13及び外周側面14を面取り幅0.15mm、面取り角度45度の面取り部15、16のガラス基板が得られるように加工を施す。その後、ガラス基板10の内周側面13、外周側面14及び内周面取り部15、外周面取り部16を、研磨ブラシと酸化セリウム砥粒を用いて研磨して微細なキズを除去する。次いでガラス基板10の表面に付着した砥粒を洗浄し、除去する。   FIG. 2 is a cross-sectional perspective view showing the cross-sectional shape of the glass substrate. As shown in FIG. 2, the inner peripheral side surface 13 and the outer peripheral side surface 14 of the glass substrate 10 are processed so as to obtain glass substrates having chamfered portions 15 and 16 having a chamfering width of 0.15 mm and a chamfering angle of 45 degrees. Thereafter, the inner peripheral side surface 13, the outer peripheral side surface 14, the inner peripheral chamfered portion 15, and the outer peripheral chamfered portion 16 of the glass substrate 10 are polished using a polishing brush and cerium oxide abrasive grains to remove fine scratches. Next, the abrasive grains adhering to the surface of the glass substrate 10 are washed and removed.

ガラス基板10の上下主平面11を研磨する研磨方法としては以下の研磨方法がある。   As a polishing method for polishing the upper and lower main planes 11 of the glass substrate 10, there are the following polishing methods.

本実施例のガラス基板の研磨方法では、研磨装置の定盤の研磨面を、研磨用キャリアのガラス基板保持穴に保持されたガラス基板10の主平面11に押圧し、研磨液を研磨面とガラス基板10との間に供給すると共に、研磨用キャリアと研磨面とを相対的に動かしてガラス基板10の主平面11を研磨する。   In the glass substrate polishing method of the present embodiment, the polishing surface of the surface plate of the polishing apparatus is pressed against the main flat surface 11 of the glass substrate 10 held in the glass substrate holding hole of the polishing carrier, and the polishing liquid is used as the polishing surface. While being supplied between the glass substrate 10 and the polishing carrier and the polishing surface are relatively moved, the main plane 11 of the glass substrate 10 is polished.

ここで、ガラス基板の研磨方法の具体例について説明する。   Here, a specific example of the glass substrate polishing method will be described.

(I)研磨方法Aとしては、研磨装置の定盤に装着した固定砥粒工具の研磨面と研磨液を用いてガラス基板10の主平面11を研磨する固定砥粒研磨方法(固定砥粒研磨工程)がある。   (I) As the polishing method A, a fixed abrasive polishing method (fixed abrasive polishing) in which the main surface 11 of the glass substrate 10 is polished using a polishing surface and a polishing liquid of a fixed abrasive tool mounted on a surface plate of a polishing apparatus. Process).

(II)研磨方法Bとしては、研磨装置の定盤の研磨面と砥粒を含有する研磨液を用いてガラス基板10の主平面11を研磨する遊離砥粒研磨方法(遊離砥粒研磨工程)がある。   (II) As the polishing method B, a free abrasive polishing method (free abrasive polishing step) in which the main surface 11 of the glass substrate 10 is polished using a polishing liquid containing a polishing surface of a surface plate of a polishing apparatus and abrasive grains. There is.

(III)研磨方法Cとしては、研磨装置の定盤に装着した研磨パッドの研磨面と砥粒を含有する研磨液を用いてガラス基板10の主平面11を研磨する鏡面研磨方法(鏡面研磨工程)がある。   (III) As the polishing method C, a mirror surface polishing method (mirror polishing step) in which the main surface 11 of the glass substrate 10 is polished using a polishing liquid containing a polishing surface of a polishing pad mounted on a surface plate of a polishing apparatus and abrasive grains. )

尚、上記研磨方法A〜Cは、目的に応じて適宜選択される。例えば、ガラス基板の板厚を揃える、ガラス基板の平坦度を所望の値とするように研磨する場合は、アルミナ砥粒などの遊離砥粒を含む研磨液を用いてガラス基板10の上下主平面11をラップ加工する上記研磨方法B、または固定砥粒工具と研磨液を用いてガラス基板10の上下主平面11を研削加工する上記研磨方法Aが適用される。   The polishing methods A to C are appropriately selected according to the purpose. For example, when polishing so that the thickness of the glass substrate is uniform and the flatness of the glass substrate is a desired value, the upper and lower main planes of the glass substrate 10 using a polishing liquid containing free abrasive grains such as alumina abrasive grains. The polishing method B for lapping 11 or the polishing method A for grinding the upper and lower principal planes 11 of the glass substrate 10 using a fixed abrasive tool and a polishing liquid is applied.

また、磁気記録媒体用のガラス基板10の両主平面11を、例えば、波長405nmのレーザ光を用いて測定した60nm〜160nmの表面うねりnWaが0.3nm以下となるように研磨する場合は、上記研磨方法Cが適用される。
〔ガラス基板の製造工程〕
(形状加工工程)
フロート法、フュージョン法、リドロー法、またはプレス成形法により成形されたガラス素基板を、中央部に円形孔を有する円盤形状に加工した後、内周側面と外周側面を面取り加工する。
Further, when polishing both main planes 11 of the glass substrate 10 for a magnetic recording medium so that, for example, the surface waviness nWa of 60 nm to 160 nm measured using a laser beam having a wavelength of 405 nm is 0.3 nm or less, The polishing method C is applied.
[Glass substrate manufacturing process]
(Shaping process)
A glass base substrate formed by a float method, a fusion method, a redraw method, or a press molding method is processed into a disk shape having a circular hole in the center, and then the inner peripheral side surface and the outer peripheral side surface are chamfered.

(端面研磨工程)
上記面取り加工したガラス基板10の外周側面14と外周面取り部16を研磨して、外周側面14と外周面取り部16のキズを除去し、鏡面にする(外周端面研磨)。外周端面研磨は、例えは研磨ブラシと砥粒を含有する研磨液を用いて行う。ガラス基板10の内周側面13と内周面取り部15も、鏡面となるように研磨することが好ましい(内周端面研磨)。
(End face polishing process)
The outer peripheral side surface 14 and the outer peripheral chamfered portion 16 of the glass substrate 10 subjected to the chamfering process are polished to remove scratches on the outer peripheral side surface 14 and the outer peripheral chamfered portion 16 to make a mirror surface (outer peripheral end surface polishing). The outer peripheral end surface polishing is performed using, for example, a polishing liquid containing a polishing brush and abrasive grains. The inner peripheral side surface 13 and the inner peripheral chamfered portion 15 of the glass substrate 10 are also preferably polished so as to be a mirror surface (inner peripheral end surface polishing).

(固定砥粒研磨工程又は遊離砥粒研磨工程)
上記端面加工が終了したガラス基板10の上下主平面11を、ダイヤモンド砥粒を含有する固定砥粒工具と研磨液、又はアルミナ砥粒を含有する研磨液とラップ定盤を用いて研磨加工する(前述した研磨方法A(固定砥粒研磨工程)又は研磨方法B(遊離砥粒研磨工程)に相当する)。
(Fixed abrasive polishing process or loose abrasive polishing process)
The upper and lower main planes 11 of the glass substrate 10 on which the end face processing has been finished are polished using a fixed abrasive tool containing diamond abrasive grains and a polishing liquid, or a polishing liquid containing alumina abrasive grains and a lapping plate ( This corresponds to the aforementioned polishing method A (fixed abrasive polishing step) or polishing method B (free abrasive polishing step)).

(1次鏡面研磨工程(以下、「1次研磨」という。))
ガラス基板10は、後述する両面研磨装置(図5を参照)により上下主平面11が1次研磨される。1次研磨工程では、例えば、研磨具として硬質ウレタン製の研磨パッドと、酸化セリウム砥粒を含有する研磨液(平均粒子直径、1.3μmの酸化セリウムを主成分とした研磨液組成物)とを用いる(前述した研磨方法C(鏡面研磨工程)に相当する)。
(Primary mirror polishing step (hereinafter referred to as “primary polishing”))
The upper and lower main planes 11 of the glass substrate 10 are primarily polished by a double-side polishing apparatus (see FIG. 5) described later. In the primary polishing step, for example, a polishing pad made of hard urethane as a polishing tool, and a polishing liquid containing cerium oxide abrasive grains (a polishing liquid composition having an average particle diameter of 1.3 μm as a main component of cerium oxide) and (Corresponding to the polishing method C (mirror polishing step) described above).

また、1次研磨では、主研磨加工圧力は10kPa、定盤回転数は30rpm、研磨時間は研磨量が上下主平面11の厚さ方向で合計40μmとなるように研磨加工条件を設定する。この研磨条件により1次研磨を行う。   In the primary polishing, the polishing conditions are set so that the main polishing pressure is 10 kPa, the platen rotation speed is 30 rpm, and the polishing time is a total of 40 μm in the thickness direction of the upper and lower main planes 11. Primary polishing is performed under these polishing conditions.

1次研磨終了後のガラス基板10は、研磨具として軟質ウレタン製の研磨パッドと、平均粒子直径が1.3μmよりも小さい酸化セリウムを主成分とした研磨液とを用いて上記両面研磨装置により上下主平面11を2次研磨する。   The glass substrate 10 after the completion of the primary polishing is obtained by the above double-side polishing apparatus using a polishing pad made of soft urethane as a polishing tool and a polishing liquid mainly composed of cerium oxide having an average particle diameter of less than 1.3 μm. The upper and lower main planes 11 are secondarily polished.

(2次鏡面研磨工程(以下、「2次研磨」という。))
2次研磨では、研磨加工圧力は10kPa、定盤回転数は30rpm、研磨時間は研磨量が上下主平面11の厚さ方向で合計5μmとなるように研磨加工条件を設定する。この研磨加工条件により2次研磨を行う(前述した研磨方法C(鏡面研磨工程)に相当する)。
(Secondary mirror polishing step (hereinafter referred to as “secondary polishing”))
In the secondary polishing, the polishing process conditions are set so that the polishing process pressure is 10 kPa, the platen rotational speed is 30 rpm, and the polishing time is 5 μm in total in the thickness direction of the upper and lower main planes 11. Secondary polishing is performed under these polishing conditions (corresponding to the polishing method C (mirror polishing step) described above).

(3次鏡面研磨工程(以下、「3次研磨」という。))
2次研磨終了後のガラス基板10は、研磨具として軟質ウレタン製の研磨パッドと、コロイダルシリカを含有する研磨液を用いて上記両面研磨装置により上下主平面11が3次研磨される。3次研磨では、一次粒子の平均粒子直径が20〜30nmのコロイダルシリカを主成分とする研磨液を用いてガラス基板10の上下主平面11を研磨して仕上げる。
(Third mirror polishing step (hereinafter referred to as “third polishing”))
After completion of the secondary polishing, the upper and lower main surfaces 11 are subjected to tertiary polishing by the double-side polishing apparatus using a polishing pad containing soft urethane as a polishing tool and a polishing liquid containing colloidal silica. In the tertiary polishing, the upper and lower main planes 11 of the glass substrate 10 are polished and finished using a polishing liquid mainly composed of colloidal silica having an average primary particle diameter of 20 to 30 nm.

(洗浄、乾燥工程)3次研磨が終了したガラス基板10は、洗剤によるスクラブ洗浄、洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い、イソプロピルアルコール蒸気にて乾燥される。   (Washing and drying step) The glass substrate 10 after the third polishing is sequentially subjected to scrub cleaning with a detergent, ultrasonic cleaning in a state immersed in a detergent solution, ultrasonic cleaning in a state immersed in pure water, Dry with isopropyl alcohol vapor.

(検査工程)上記洗浄と乾燥を施したガラス基板10は、ガラス基板10の上下主平面11のキズなどの欠陥の有無やガラス基板10の形状特性を検査し、検査に合格したものが製品として出荷される。
〔研磨用キャリアの構成〕
図3は本発明による研磨用キャリアの一実施例を示す平面図である。図3に示されるように、研磨用キャリア20A、20Bは、繊維と樹脂材料とを含む複合材料を用いて形成され、ガラス基板10を保持するガラス基板保持穴21を有する保持部22と、保持部22の外周に設けられた複数の歯を有するギヤ部24とを有する。
(Inspection step) The glass substrate 10 that has been subjected to the cleaning and drying is inspected for defects such as scratches on the upper and lower main planes 11 of the glass substrate 10 and the shape characteristics of the glass substrate 10, and those that passed the inspection are products. Shipped.
[Configuration of polishing carrier]
FIG. 3 is a plan view showing an embodiment of the polishing carrier according to the present invention. As shown in FIG. 3, the polishing carriers 20 </ b> A and 20 </ b> B are formed using a composite material including fibers and a resin material, and have a holding portion 22 having a glass substrate holding hole 21 for holding the glass substrate 10, and holding And a gear portion 24 having a plurality of teeth provided on the outer periphery of the portion 22.

上記研磨用キャリア20A、20Bを形成する繊維としては、例えば、ガラス繊維、金属繊維を用いることができ、中でもガラス繊維を使用することが好ましい。以下の説明では、ガラス繊維と樹脂材とを含む複合材料により研磨用キャリアが形成される場合を一例として例示する。   As the fibers forming the polishing carriers 20A and 20B, for example, glass fibers and metal fibers can be used, and it is preferable to use glass fibers. In the following description, a case where a polishing carrier is formed of a composite material including glass fibers and a resin material is exemplified as an example.

研磨用キャリア20A、20Bは、それぞれ同一形状であるが、後述するように、ギヤ部24の材質が異なる。一方の研磨用キャリア20Aは、固定砥粒研磨工程、遊離砥粒研磨工程、1次研磨工程など初期研磨工程用のキャリアであり、ガラス基板保持穴21の内周壁面25のみがガラス繊維を有しない樹脂材料により形成されている。また、他方の研磨用キャリア20Bは、最終研磨工程(例えば、鏡面研磨工程における2次研磨工程、又は3次研磨工程)で用いられる仕上研磨用キャリアであり、ガラス基板保持穴21の内周壁面25及びギヤ部24の外周壁面27がガラス繊維を有しない樹脂材料により形成されている。   The polishing carriers 20A and 20B have the same shape, but the material of the gear portion 24 is different as will be described later. One polishing carrier 20A is a carrier for an initial polishing step such as a fixed abrasive polishing step, a loose abrasive polishing step, and a primary polishing step, and only the inner peripheral wall surface 25 of the glass substrate holding hole 21 has glass fibers. It is formed of a resin material that does not. The other polishing carrier 20B is a finish polishing carrier used in the final polishing step (for example, the secondary polishing step or the tertiary polishing step in the mirror polishing step), and the inner peripheral wall surface of the glass substrate holding hole 21 25 and the outer peripheral wall surface 27 of the gear part 24 are formed with the resin material which does not have glass fiber.

図4Aは研磨用キャリア20Aの図3中X−X線に沿う縦断面図である。図4Aに示されるように、研磨用キャリア20Aは、繊維質シート体30と、シート体30に含浸される樹脂製含浸体40とを積層した複合材料により成型される。繊維質のシート体30は、ガラス繊維32と樹脂製含浸体40とを積層してなり、ガラス繊維32の繊維質シート体30を複数枚積層したものである。樹脂製含浸体40は、例えば、エポキシ樹脂、フェノール樹脂、ポリミイド樹脂等が用いられる。   4A is a longitudinal sectional view of the polishing carrier 20A taken along line XX in FIG. As shown in FIG. 4A, the polishing carrier 20A is molded by a composite material in which a fibrous sheet body 30 and a resin impregnated body 40 impregnated in the sheet body 30 are laminated. The fibrous sheet body 30 is formed by laminating glass fibers 32 and a resin impregnated body 40, and a plurality of fibrous sheet bodies 30 of glass fibers 32 are laminated. For the resin impregnated body 40, for example, an epoxy resin, a phenol resin, a polyimide resin, or the like is used.

また、繊維質シート体30は、繊維を縦方向と横方向に交差させて織り込んだ構造を持つため、研磨加工に耐えうる強度や剛性を備えている。   Moreover, since the fibrous sheet body 30 has a structure in which fibers are woven so as to intersect with each other in the vertical direction and the horizontal direction, it has strength and rigidity that can withstand polishing.

研磨用キャリア20Aは、樹脂材料のみにより形成された保持穴緩衝領域50と、複合材料(繊維質シート体30と樹脂製含浸体40)により形成された保持穴補強領域60とを有する。   The polishing carrier 20A has a holding hole buffering region 50 formed only from a resin material and a holding hole reinforcing region 60 formed from a composite material (the fibrous sheet body 30 and the resin impregnated body 40).

保持穴緩衝領域50は、ガラス基板保持穴21の内周壁面25に複数の凹部26が配されており、ガラス繊維が存在しないため、弾性変形しやすい。また、凹部26は、内周壁面25から外側の所定距離の範囲La(例えば、深さがLa=2μm以上)に形成されている。尚、複数の凹部26の間隔及び配列パターンは、繊維質シート体30におけるガラス繊維の配置と、樹脂製含浸体40との積層条件によって決まる。   The holding hole buffering region 50 is easily elastically deformed because a plurality of recesses 26 are arranged on the inner peripheral wall surface 25 of the glass substrate holding hole 21 and no glass fiber is present. Further, the recess 26 is formed in a range La (for example, the depth is La = 2 μm or more) at a predetermined distance from the inner peripheral wall surface 25 to the outside. In addition, the space | interval and arrangement | sequence pattern of several recessed part 26 are decided by the lamination conditions of the arrangement | positioning of the glass fiber in the fiber sheet body 30, and the resin-made impregnation bodies 40.

また、保持穴緩衝領域50は、樹脂材料のみからなる樹脂製含浸体40により形成されており、ガラス繊維32が存在していないため、ガラス基板保持穴21の内周壁面25からガラス繊維32が露出してガラス基板10の外周側面14と接触することが防止されている。ガラス基板保持穴21は、内周壁面25に複数の凹部26が配され、表面が弾性変形可能に形成されているため、ガラス基板10の外周側面14が損傷しないように当該ガラス基板10を保持するように構成されている。   In addition, the holding hole buffer region 50 is formed by the resin impregnated body 40 made of only a resin material, and the glass fibers 32 are not present, so that the glass fibers 32 are drawn from the inner peripheral wall surface 25 of the glass substrate holding hole 21. The exposure and contact with the outer peripheral side surface 14 of the glass substrate 10 are prevented. The glass substrate holding hole 21 has a plurality of concave portions 26 arranged on the inner peripheral wall surface 25 and the surface thereof is formed so as to be elastically deformable. Therefore, the glass substrate 10 is held so that the outer peripheral side surface 14 of the glass substrate 10 is not damaged. Is configured to do.

さらに、内周壁面25に形成された複数の凹部26には、研磨液が保持されるため、ガラス基板保持穴21に挿入されたガラス基板10の外周との摩擦が緩和され、ガラス基板10が回転しやすくなる。これにより、ガラス基板10の主平面11の全面が均一に研磨されるため、上下主平面11の平行度が高められる。   Further, since the polishing liquid is held in the plurality of recesses 26 formed in the inner peripheral wall surface 25, friction with the outer periphery of the glass substrate 10 inserted into the glass substrate holding hole 21 is reduced, and the glass substrate 10 It becomes easy to rotate. Thereby, since the whole surface of the main plane 11 of the glass substrate 10 is grind | polished uniformly, the parallelism of the up-and-down main plane 11 is raised.

保持穴補強領域60は、保持穴緩衝領域50の外側の範囲Lb(内周壁面25から外側の所定距離の範囲Laを除く領域)であるので、ガラス基板保持穴21の周囲を囲むように形成されており、ガラス基板保持穴21の強度を高めている。また、研磨用キャリア20Aでは、ギヤ部24も保持穴補強領域60と同様に、複合材料(繊維質のシート体30と樹脂製含浸体40)により形成されたギヤ部補強領域70であるので、ギヤ部24の強度及び耐久性が高められている。よって、研磨用キャリア20Aでは、ギヤ部24が摩耗しにくいので、高速回転及び長時間連続回転に耐えることができ、例えば、固定砥粒研磨工程により研磨することも可能である。   Since the holding hole reinforcing region 60 is a range Lb outside the holding hole buffering region 50 (a region excluding a predetermined range La from the inner peripheral wall surface 25), the holding hole reinforcing region 60 is formed so as to surround the periphery of the glass substrate holding hole 21. The strength of the glass substrate holding hole 21 is increased. Further, in the polishing carrier 20A, the gear portion 24 is also a gear portion reinforcing region 70 formed of a composite material (fibrous sheet body 30 and resin impregnated body 40), similarly to the holding hole reinforcing region 60. The strength and durability of the gear portion 24 are enhanced. Therefore, in the polishing carrier 20A, since the gear portion 24 is not easily worn, it can withstand high-speed rotation and long-time continuous rotation, and for example, it can be polished by a fixed abrasive polishing process.

図4Bは研磨用キャリア20Bの図3中X−X線に沿う縦断面図である。図4Bに示されるように、研磨用キャリア20Bは、前述した研磨用キャリア20Aと同様に、繊維質の繊維質シート体30と、繊維質シート体30に含浸される樹脂製含浸体40とを積層した複合材料により成型される。また、研磨用キャリア20Bは、前述した研磨用キャリア20Aと同様に、複数の凹部26が配され、保持穴緩衝領域50と、保持穴補強領域60とを有する。   4B is a longitudinal sectional view of the polishing carrier 20B taken along line XX in FIG. As shown in FIG. 4B, the polishing carrier 20B includes a fibrous fibrous sheet body 30 and a resin impregnated body 40 impregnated in the fibrous sheet body 30 in the same manner as the above-described polishing carrier 20A. Molded with laminated composite material. In addition, the polishing carrier 20B is provided with a plurality of recesses 26 and has a holding hole buffering area 50 and a holding hole reinforcing area 60, similarly to the above-described polishing carrier 20A.

研磨用キャリア20Bにおいて、研磨用キャリア20Aと異なり、ギヤ部24が各歯の外周壁面に複数の凹部26が配され、樹脂製含浸体40からなる樹脂材料のみにより形成されたギヤ部緩衝領域80を有する。ギヤ部緩衝領域80は、複合材料により形成されたギヤ部補強領域70の外側に形成されており、ガラス繊維32を有していないため、駆動時に研磨装置のサンギヤとインターナルギヤの摩耗を低減できると共に、駆動時にギヤ部24の外周壁面からガラス繊維の摩耗粉の発生を防止できる。
〔両面研磨装置の構成〕
図5は両面研磨装置の概略構成を示す正面図である。図5に示されるように、両面研磨装置200は、複数のガラス基板の上主平面及び下主平面を同時に研磨するように構成されており、基台220と、上定盤201と、下定盤202と、昇降機構208とを有する。基台220の上部には、下定盤202が回転可能に支持されており、基台220の内部には、上定盤201を駆動する定盤駆動モータが取り付けられている。
In the polishing carrier 20B, unlike the polishing carrier 20A, the gear portion 24 has a plurality of recesses 26 arranged on the outer peripheral wall surface of each tooth, and the gear portion buffering region 80 formed only by the resin material made of the resin impregnated body 40. Have The gear part buffering region 80 is formed outside the gear part reinforcing region 70 formed of a composite material and does not have the glass fiber 32, so that the wear of the sun gear and the internal gear of the polishing apparatus is reduced during driving. In addition, it is possible to prevent generation of glass fiber abrasion powder from the outer peripheral wall surface of the gear portion 24 during driving.
[Configuration of double-side polishing machine]
FIG. 5 is a front view showing a schematic configuration of the double-side polishing apparatus. As shown in FIG. 5, the double-side polishing apparatus 200 is configured to simultaneously polish the upper main plane and the lower main plane of a plurality of glass substrates, and includes a base 220, an upper surface plate 201, and a lower surface plate. 202 and an elevating mechanism 208. A lower surface plate 202 is rotatably supported on an upper portion of the base 220, and a surface plate driving motor for driving the upper surface plate 201 is attached inside the base 220.

上定盤201は、下定盤202の上方に対向配置され、研磨用キャリア20A(又は研磨用キャリア20B)に保持された複数のガラス基板10の上主平面11を研磨する上側研磨面130を有する。また、下定盤202は、研磨用キャリア20A(又は研磨用キャリア20B)に保持された複数のガラス基板10の下主平面11を研磨する下側研磨面140を有する。   The upper surface plate 201 has an upper polishing surface 130 that is disposed opposite to the upper surface plate 202 and that polishes the upper main plane 11 of the plurality of glass substrates 10 held by the polishing carrier 20A (or the polishing carrier 20B). . Further, the lower surface plate 202 has a lower polishing surface 140 for polishing the lower main plane 11 of the plurality of glass substrates 10 held by the polishing carrier 20A (or the polishing carrier 20B).

昇降機構208は、基台220の上方に起立する門型のフレーム206により支持されており、ガラス基板交換時に上定盤201を上昇させる昇降用シリンダ装置209を有する。昇降用シリンダ装置209は、フレーム206の中央に取り付けられている。昇降用シリンダ装置209のピストンロッド254は、下方に延在しており、その下端部には上定盤201を支持する支持機構207が連結されている。   The lifting mechanism 208 is supported by a gate-shaped frame 206 that stands above the base 220, and has a lifting cylinder device 209 that lifts the upper surface plate 201 when the glass substrate is replaced. The lifting cylinder device 209 is attached to the center of the frame 206. The piston rod 254 of the lifting cylinder device 209 extends downward, and a support mechanism 207 that supports the upper surface plate 201 is connected to the lower end portion thereof.

支持機構207は、下方に延在する支柱207aと、上定盤201の上面に固定された固定ベース207bとを有する。固定ベース207bには、定盤駆動モータの回転軸150に設けられた溝262aに結合されるロック機構260が設けられている。   The support mechanism 207 includes a support column 207 a that extends downward, and a fixed base 207 b that is fixed to the upper surface of the upper surface plate 201. The fixed base 207b is provided with a lock mechanism 260 that is coupled to a groove 262a provided in the rotary shaft 150 of the surface plate drive motor.

ロック機構260は、溝262aに結合されるロックピン281と、ロックピン281を固定ベース207bに連結する軸282とを有する。   The lock mechanism 260 includes a lock pin 281 coupled to the groove 262a and a shaft 282 that couples the lock pin 281 to the fixed base 207b.

上定盤201は、昇降用シリンダ装置209のピストンロッド254の昇動作によりガラス基板交換時に上昇し、研磨時には降下する。また、昇降機構208の昇降用シリンダ装置209、及び定盤駆動モータは、制御部210により制御される。
〔キャリアの取付構造〕
図6は研磨用キャリア20A(20B)を両面研磨装置200に取付けた研磨工程を示す斜視図である。図6に示されるように、上定盤201は、回転軸150により回転可能に支持されている。また、回転軸150に設けられたサンギヤ203は、複数の研磨用キャリア20A(20B)の外周に形成されたギヤ部24に噛合している。さらに、複数の研磨用キャリア20A(20B)のギヤ部24の各歯は、インターナルギヤ205に噛合している。これらの各ギヤ203、24、205は遊星歯車機構を構成しており、各研磨用キャリア20A(20B)はサンギヤ203とインターナルギヤ205の回転により自転しながら回転軸150の周囲を公転する。
The upper surface plate 201 rises when the glass substrate is replaced by the ascending operation of the piston rod 254 of the elevating cylinder device 209 and descends when polishing. Further, the lifting cylinder device 209 and the surface plate drive motor of the lifting mechanism 208 are controlled by the control unit 210.
[Carrier mounting structure]
FIG. 6 is a perspective view showing a polishing process in which the polishing carrier 20A (20B) is attached to the double-side polishing apparatus 200. FIG. As shown in FIG. 6, the upper surface plate 201 is rotatably supported by the rotation shaft 150. The sun gear 203 provided on the rotating shaft 150 meshes with a gear portion 24 formed on the outer periphery of the plurality of polishing carriers 20A (20B). Further, each tooth of the gear portion 24 of the plurality of polishing carriers 20 </ b> A (20 </ b> B) meshes with the internal gear 205. Each of these gears 203, 24, 205 constitutes a planetary gear mechanism, and each polishing carrier 20A (20B) revolves around the rotating shaft 150 while rotating by the rotation of the sun gear 203 and the internal gear 205.

これにより、ガラス基板用の各研磨用キャリア20A(20B)のガラス基板保持穴21に挿入されたガラス基板は、上定盤201に固定された上側研磨面130及び下定盤202に固定された下側研磨面140に摺接しながら両面研磨される。
〔ガラス基板の研磨の作業手順〕
ここで、ガラス基板の研磨の作業手順について説明する。
(手順A1) 研磨用キャリア20Aを下側研磨面140上に装着する。そして、未研磨のガラス基板10をガラス基板用の研磨用キャリア20Aの各ガラス基板保持穴21に挿入する。
(手順A2) 次に、図5に示されるように、両面研磨装置200の昇降用シリンダ装置209を作動させてピストンロッド254を降下させ、上定盤201の上側研磨面130を被研磨体であるガラス基板10の上主平面11に当接させる。
(手順A3) ロック機構260のロックピン281を、回転軸150の溝262aに結合させる。この後は、駆動モータにより上定盤201及び下定盤202、サンギヤ203及びインターナルギヤ205を回転させて上記研磨用キャリア20Aの各ガラス基板保持穴21に挿入された各ガラス基板10の上、下主平面11を同時に研磨する。
(手順A4) ガラス基板10の研磨終了後、両面研磨装置200の昇降用シリンダ装置209を作動させてピストンロッド254を上昇させ、上定盤201の上側研磨面130を研磨用キャリア20A(20B)から離間させる。そして、各ガラス基板10を取出す。
Thereby, the glass substrate inserted into the glass substrate holding hole 21 of each polishing carrier 20A (20B) for the glass substrate is fixed to the upper polishing surface 130 fixed to the upper surface plate 201 and the lower surface plate 202. Both surfaces are polished while being in sliding contact with the side polishing surface 140.
[Glass substrate polishing procedure]
Here, a procedure for polishing the glass substrate will be described.
(Procedure A1) The polishing carrier 20A is mounted on the lower polishing surface 140. Then, the unpolished glass substrate 10 is inserted into each glass substrate holding hole 21 of the polishing carrier 20A for glass substrate.
(Procedure A2) Next, as shown in FIG. 5, the lifting cylinder device 209 of the double-side polishing apparatus 200 is operated to lower the piston rod 254, and the upper polishing surface 130 of the upper surface plate 201 is covered with the object to be polished. The glass substrate 10 is brought into contact with the upper main plane 11.
(Procedure A3) The lock pin 281 of the lock mechanism 260 is coupled to the groove 262a of the rotary shaft 150. Thereafter, the upper surface plate 201, the lower surface plate 202, the sun gear 203, and the internal gear 205 are rotated by a driving motor, and the glass substrate 10 is inserted into the glass substrate holding holes 21 of the polishing carrier 20A. The lower main plane 11 is polished simultaneously.
(Procedure A4) After polishing of the glass substrate 10, the lifting cylinder device 209 of the double-side polishing apparatus 200 is operated to raise the piston rod 254, and the upper polishing surface 130 of the upper surface plate 201 is polished to the polishing carrier 20A (20B). Separate from. And each glass substrate 10 is taken out.

前述した、固定砥粒研磨工程、遊離砥粒研磨工程、1次研磨工程〜3次研磨工程では、研磨条件(研磨パッドの種類、砥粒の種類、回転数、研磨時間など)を変えてそれぞれ上記手順1〜手順4を行う。
(手順A5) ガラス基板10の研磨を終了したときは、両面研磨装置200による研磨を停止し、各ガラス基板を取出して洗浄して検査工程へ搬送する。
〔研磨用キャリアの加工工程について〕
〔樹脂成型機による成形工程〕
研磨用キャリア20A、20Bは、熱プレス機を用いて樹脂材料とガラス繊維とを含む複合材料により板状に成形される。
In the above-described fixed abrasive polishing step, loose abrasive polishing step, primary polishing step to tertiary polishing step, the polishing conditions (type of polishing pad, type of abrasive grain, rotation speed, polishing time, etc.) are changed, respectively. Steps 1 to 4 are performed.
(Procedure A5) When the polishing of the glass substrate 10 is finished, the polishing by the double-side polishing apparatus 200 is stopped, each glass substrate is taken out, washed and transported to the inspection process.
[About polishing carrier processing steps]
[Molding process with resin molding machine]
The polishing carriers 20A and 20B are formed into a plate shape from a composite material including a resin material and glass fibers using a hot press.

〔ガラス基板保持穴とギヤ部の形成工程〕
成形された後、図3に示されるように、キャリア平面部に複数のガラス基板保持穴21とギヤ部24をエンドミルにより切削形成する。各ガラス基板保持穴21内はガラス基板10を挿入できる外径に対応した内径に形成する。
[Glass substrate holding hole and gear forming process]
After the molding, as shown in FIG. 3, a plurality of glass substrate holding holes 21 and gear portions 24 are cut and formed on the carrier plane portion by an end mill. Each glass substrate holding hole 21 is formed to have an inner diameter corresponding to the outer diameter into which the glass substrate 10 can be inserted.

〔エッチング工程〕
図4Aに示される研磨用キャリア20Aは、所定時間エッチング溶液に浸されることにより各ガラス基板保持穴21の内周壁面25に露出するガラス繊維32を除去される。エッチング工程では、エッチング液に浸される時間によりエッチング量が決まり、その時間に応じた深さのガラス繊維32が溶解されて除去される。また、エッチング工程終了後は、内周壁面25におけるガラス繊維32の露出割合を示すガラス繊維32の露出面積率が5%以下であることが望ましい。尚、露出面積率とは、例えば、(内周壁面25におけるガラス繊維32の露出面積)÷(内周壁面25の全面積)×100(%)で求まる数値である。
[Etching process]
The polishing carrier 20A shown in FIG. 4A is soaked in an etching solution for a predetermined time to remove the glass fibers 32 exposed on the inner peripheral wall surface 25 of each glass substrate holding hole 21. In the etching process, the etching amount is determined by the time of immersion in the etching solution, and the glass fiber 32 having a depth corresponding to the time is dissolved and removed. Moreover, after the etching process is finished, it is desirable that the exposed area ratio of the glass fibers 32 indicating the exposure ratio of the glass fibers 32 on the inner peripheral wall surface 25 is 5% or less. The exposed area ratio is a numerical value obtained by, for example, (exposed area of glass fiber 32 on inner peripheral wall surface 25) ÷ (total area of inner peripheral wall surface 25) × 100 (%).

また、研磨用キャリア20Aでは、ギヤ部24に回転駆動トルクが伝達される際のギヤ部24の耐久性及び耐摩耗性を維持するため、ギヤ部24にガラス繊維32が存在する。研磨用キャリア20Aをエッチングする際は、ギヤ部24の外周壁面に露出するガラス繊維32を残すため、ギヤ部24の外周壁面27にマスク用テープを貼着又はマスク用樹脂材(例えば、比較的摩擦係数の小さい4フッ化エチレン樹脂、又はエポキシ樹脂等)をコーティングする。これにより、研磨用キャリア20Aをエッチング溶液に浸漬する際は、各ガラス基板保持穴21の内周壁面25に露出するガラス繊維32が除去されるが、ギヤ部24の外側壁面27には、ガラス繊維32が残される。   In the polishing carrier 20 </ b> A, the glass fiber 32 is present in the gear portion 24 in order to maintain the durability and wear resistance of the gear portion 24 when the rotational driving torque is transmitted to the gear portion 24. When etching the polishing carrier 20A, in order to leave the glass fiber 32 exposed on the outer peripheral wall surface of the gear portion 24, a mask tape is attached to the outer peripheral wall surface 27 of the gear portion 24 or a mask resin material (for example, relatively Coating is performed with a tetrafluoroethylene resin or an epoxy resin having a small friction coefficient. Thus, when the polishing carrier 20A is immersed in the etching solution, the glass fibers 32 exposed on the inner peripheral wall surface 25 of each glass substrate holding hole 21 are removed, but the outer wall surface 27 of the gear portion 24 has a glass Fiber 32 is left.

尚、マスク用テープは、エッチング終了後にギヤ部24から剥がされるが、マスク用樹脂材は除去してもよく、そのまま残してもよく、そのまま残した場合はギヤ部24の表面を保護する保護膜としても機能し、駆動時にギヤ部24の外周壁面27からガラス繊維32の摩耗粉の発生を防止する。   The mask tape is peeled off from the gear portion 24 after the etching is finished. However, the mask resin material may be removed or left as it is, and if left as it is, a protective film for protecting the surface of the gear portion 24. And prevents generation of abrasion powder of the glass fiber 32 from the outer peripheral wall surface 27 of the gear portion 24 during driving.

また、図4Bに示される研磨用キャリア20Bは、ギヤ部24の外周壁面27に露出するガラス繊維32を内側に所定寸法La分除去することで、最終(仕上)研磨工程において、ガラス繊維32の一部が研磨面に付着する、又は研磨液に混入することを防止する。   Further, the polishing carrier 20B shown in FIG. 4B removes the glass fiber 32 exposed on the outer peripheral wall surface 27 of the gear portion 24 by a predetermined dimension La, so that the glass fiber 32 is removed in the final (finish) polishing step. A part is prevented from adhering to the polishing surface or mixed into the polishing liquid.

研磨用キャリア20Bは、所定時間エッチング溶液に浸されることにより各ガラス基板保持穴21の内周壁面25及びギヤ部24の外周壁面27に露出するガラス繊維32が除去され、外周壁面27に複数の凹部26が形成される。   The polishing carrier 20 </ b> B is immersed in an etching solution for a predetermined time to remove the glass fibers 32 exposed on the inner peripheral wall surface 25 of each glass substrate holding hole 21 and the outer peripheral wall surface 27 of the gear portion 24. A recess 26 is formed.

〔エッチング処理の手順〕
(手順B1)ガラス基板保持穴21とギヤ部24を形成したキャリア20A(20B)をエッチング溶液(例えば、0.01%〜2.0%のフッ酸を含む酸性溶液)に所定時間(例えば、24時間程度)浸漬する。なお、本明細書において、%とは質量百分率を意味する。
[Procedure for etching process]
(Procedure B1) Carrier 20A (20B) in which glass substrate holding hole 21 and gear part 24 are formed is etched in an etching solution (for example, an acidic solution containing 0.01% to 2.0% hydrofluoric acid) for a predetermined time (for example, Soak for about 24 hours). In the present specification,% means mass percentage.

例えば、フッ酸(HF=0.01%〜2.0%)+硝酸(HNO3=0.02%〜4.0%)からなるエッチング溶液を容器に入れ、当該容器の上部開口からキャリア20A、20Bを縦置き又は横置きにして上記エッチング溶液に所定時間(例えば、1時間程度)浸漬する。この場合、フッ酸の希薄液を用いると、エッチング作業が安全に行える。   For example, an etching solution composed of hydrofluoric acid (HF = 0.01% to 2.0%) + nitric acid (HNO3 = 0.02% to 4.0%) is put into a container, and the carrier 20A is inserted from the upper opening of the container. 20B is vertically or horizontally placed and immersed in the etching solution for a predetermined time (for example, about 1 hour). In this case, when a dilute solution of hydrofluoric acid is used, the etching operation can be performed safely.

尚、上記0.01%〜2.0%のフッ酸を含む酸性溶液によるエッチング処理のための浸漬時間は、ガラス繊維32のエッチング量(寸法)とエッチング溶液のフッ酸や硝酸の濃度に応じて適宜変更される。例えば、凹部26の深さ寸法をLa=16μm〜20μmとした場合、フッ酸(HF=0.1%)+硝酸(HNO3=0.2%)からなるエッチング溶液を用いておおよそ20時間〜24時間程度のエッチング処理を施す。また、エッチング処理の効率を考慮すると、例えば、フッ酸(HF=1.8%)+硝酸(HNO3=3.7%)からなるエッチング溶液に7分間浸漬する方法、あるいはフッ酸(HF=1.3%)+硝酸(HNO3=2.6%)からなるエッチング溶液に15分間浸漬する方法がある。   The immersion time for the etching treatment with the acidic solution containing 0.01% to 2.0% hydrofluoric acid depends on the etching amount (size) of the glass fiber 32 and the concentration of hydrofluoric acid or nitric acid in the etching solution. As appropriate. For example, when the depth dimension of the recess 26 is set to La = 16 μm to 20 μm, about 20 hours to 24 hours using an etching solution made of hydrofluoric acid (HF = 0.1%) + nitric acid (HNO 3 = 0.2%). Etching for about an hour. Considering the efficiency of the etching process, for example, a method of immersing in an etching solution made of hydrofluoric acid (HF = 1.8%) + nitric acid (HNO3 = 3.7%) for 7 minutes, or hydrofluoric acid (HF = 1) .3%) + nitric acid (HNO3 = 2.6%) is dipped in an etching solution for 15 minutes.

(手順B2)研磨用キャリア20A、20Bをエッチング溶液から取出し、研磨用キャリア20A、20Bの表面に付着したエッチング溶液を中和液で洗浄する。このエッチング処理により前述した保持穴緩衝領域50及びギヤ部緩衝領域80が形成される。   (Procedure B2) The polishing carriers 20A and 20B are taken out from the etching solution, and the etching solution adhering to the surfaces of the polishing carriers 20A and 20B is washed with a neutralizing solution. By this etching process, the holding hole buffer region 50 and the gear portion buffer region 80 described above are formed.

研磨用キャリア20A、20Bでは、上記エッチング処理により各ガラス基板保持穴21の内周壁面25から内側に所定範囲(例えばLa≒16μm〜20μm)のガラス繊維32が除去されるため、各ガラス基板保持穴21の内周壁面25には、ガラス繊維32が取り除かれたスペースに複数の凹部26が残される。   In the polishing carriers 20A and 20B, glass fibers 32 in a predetermined range (for example, La≈16 μm to 20 μm) are removed from the inner peripheral wall surface 25 of each glass substrate holding hole 21 by the above etching process. On the inner peripheral wall surface 25 of the hole 21, a plurality of recesses 26 are left in the space from which the glass fibers 32 have been removed.

また、一方の研磨用キャリア20Aは、ギヤ部24の外周壁面27にマスク用テープが貼着され、あるいはマスク用樹脂材がコーティングされてマスキングされているため、ギヤ部24の外周壁面27にガラス繊維32が露出している。他方の研磨用キャリア20Bでは、ギヤ部24に対してマスキング処理を行なわないため、ギヤ部24の外周壁面27から内側に所定範囲(例えばLa≒16μm〜20μm)のガラス繊維32がエッチング処理により除去される。   In addition, since one polishing carrier 20A is masked with a mask tape attached to the outer peripheral wall surface 27 of the gear portion 24 or coated with a mask resin material, the outer peripheral wall surface 27 of the gear portion 24 is coated with glass. The fiber 32 is exposed. In the other polishing carrier 20B, since the masking process is not performed on the gear part 24, the glass fiber 32 in a predetermined range (for example, La≈16 μm to 20 μm) is removed by the etching process from the outer peripheral wall surface 27 of the gear part 24 to the inside. Is done.

尚、本実施例では、エッチング液へ浸漬することによりガラス基板保持穴21の内周壁面25に露出するガラス繊維32を所定範囲Laまで溶解する方法を用いた場合について説明したが、ガラス繊維32を除去する加工方法としてはエッチング液へ浸漬すること以外の加工方法(例えば、フッ化水素又はフッ化水素ナトリウムなどをガラス基板保持穴21の内周壁面25やギヤ部24に塗布する方法)を用いても良い。   In addition, although the present Example demonstrated the case where the method of melt | dissolving the glass fiber 32 exposed to the inner peripheral wall surface 25 of the glass substrate holding hole 21 to predetermined range La by being immersed in etching liquid was demonstrated, glass fiber 32 A processing method other than immersing in an etching solution (for example, a method of applying hydrogen fluoride, sodium hydrogen fluoride, or the like to the inner peripheral wall surface 25 or the gear portion 24 of the glass substrate holding hole 21) It may be used.

また、本実施例においては、ガラス繊維32を含有する研磨用キャリア20A、20Bについてガラス繊維の除去方法を述べたが、本発明の適用範囲はこれに限ったものではない。例えば樹脂母材に金属繊維を含有した研磨用キャリアについて無機酸等を用いてガラス基板保持穴21の内周壁面25及びギヤ部24の外周壁面27に露出する当該金属繊維を溶出除去してもよい。
〔研磨用キャリア20A、20Bを用いて研磨されたガラス基板の検査結果〕
(固定砥粒研磨工程の実験結果)
表1は研磨用キャリア20A(ギヤ部マスキング有り)を研磨装置200に取付けてガラス基板10を固定砥粒研磨した場合(実施例No.1)と従来の研磨用キャリア(エッチング処理無し)を用いてガラス基板10を固定砥粒研磨した場合(比較例No.2)との比較結果を示す。
In the present embodiment, the glass fiber removal method has been described for the polishing carriers 20A and 20B containing the glass fiber 32, but the scope of application of the present invention is not limited to this. For example, even if an abrasive carrier containing metal fibers in a resin base material is used, an inorganic acid or the like is used to elute and remove the metal fibers exposed on the inner peripheral wall surface 25 of the glass substrate holding hole 21 and the outer peripheral wall surface 27 of the gear portion 24. Good.
[Inspection result of glass substrate polished using polishing carriers 20A and 20B]
(Experimental result of fixed abrasive polishing process)
Table 1 shows the case where the polishing carrier 20A (with gear part masking) is attached to the polishing apparatus 200 and the glass substrate 10 is polished with fixed abrasive (Example No. 1) and the conventional polishing carrier (without etching treatment). A comparison result with the case where the glass substrate 10 is polished with fixed abrasive (Comparative Example No. 2) is shown.

Figure 0005741157
表1より、研磨用キャリア20Aを用いてガラス基板10を固定砥粒研磨した場合、ガラス基板10の外周側面14の表面粗さ曲線の最大谷深さRv=0.06μm〜0.08μmであるのに対して、従来の研磨用キャリアではガラス基板10の表面粗さ曲線の最大谷深さRv=0.15μm〜0.23μmである。尚、外周側面14の表面粗さは、例えば触針式表面粗さ測定器(東京精密社製、SURFCOM 1400D)により、R0.2μmの触針を外周側面14の表面で主平面11と垂直の方向に0.2mm走査させて測定する。
Figure 0005741157
From Table 1, when the glass substrate 10 is fixed abrasive-polished using the polishing carrier 20A, the maximum valley depth Rv of the surface roughness curve of the outer peripheral side surface 14 of the glass substrate 10 is 0.06 μm to 0.08 μm. On the other hand, in the conventional polishing carrier, the maximum valley depth Rv of the surface roughness curve of the glass substrate 10 is 0.15 μm to 0.23 μm. Incidentally, the surface roughness of the outer peripheral side surface 14 is perpendicular to the main plane 11 on the surface of the outer peripheral side surface 14 by using, for example, a stylus type surface roughness measuring instrument (manufactured by Tokyo Seimitsu Co., Ltd., SURFCOM 1400D). Measurement is performed by scanning 0.2 mm in the direction.

また、研磨用キャリア20Aを用いてガラス基板10を研磨した場合、ガラス基板10の外周側面14の単位面積当たりに発生した凹形状欠陥(最大径または縦横寸法が10μm以上のキズなどの欠陥)の数nがn=0個であるのに対して、従来の研磨用キャリアではガラス基板10の外周側面14の単位面積当たりに発生した凹形状欠陥の数nがn=2個である。尚、凹形状欠陥数の測定は、例えば光学顕微鏡により単位面積当たり(例えば、1mm当たり)に発生した最大径または縦横寸法が10μm以上のキズなどの凹形状欠陥をカウントすることで判断する。ガラス基板10の外周側面14においては、大きさが10μm以上となる凹形状欠陥の数が5個/mm以下であることが望ましい。 In addition, when the glass substrate 10 is polished using the polishing carrier 20A, concave-shaped defects (defects such as scratches having a maximum diameter or vertical and horizontal dimensions of 10 μm or more) generated per unit area of the outer peripheral side surface 14 of the glass substrate 10 Whereas the number n is n = 0, in the conventional polishing carrier, the number n of concave defects generated per unit area of the outer peripheral side surface 14 of the glass substrate 10 is n = 2. The number of concave defects is determined by counting, for example, concave defects such as scratches having a maximum diameter or vertical and horizontal dimensions of 10 μm or more generated per unit area (for example, per 1 mm 2 ) using an optical microscope. In the outer peripheral side surface 14 of the glass substrate 10, it is desirable that the number of concave defects having a size of 10 μm or more is 5 / mm 2 or less.

また、研磨用キャリア20Aを用いてガラス基板10を固定砥粒研磨した場合、ガラス基板10の上下主平面11の平行度aが0μmであるのに対して、従来の研磨用キャリアではガラス基板10の上下主平面11の平行度aが1μmであった。   Further, when the glass substrate 10 is fixed abrasive-polished using the polishing carrier 20A, the parallelism a of the upper and lower main planes 11 of the glass substrate 10 is 0 μm, whereas in the conventional polishing carrier, the glass substrate 10 The parallelism a of the upper and lower main planes 11 was 1 μm.

本実施例の平行度aの測定方法としては、ガラス基板10の周方向0°、90°、180°、270°の各2箇所ずつ、計8箇所で板厚をマイクロメータ(ミツトヨ製MDC−MJ/PJ)により測定する。そして、最大板厚値と最小板厚値との差を求めて平行度aを得る。   As a method for measuring the parallelism a in this example, the thickness of the glass substrate 10 was measured at two locations of 0 °, 90 °, 180 °, and 270 ° in the circumferential direction at a total of 8 micrometers (MDC-Mitutoyo MDC-). MJ / PJ). Then, the difference between the maximum thickness value and the minimum thickness value is obtained to obtain the parallelism a.

この実験結果により、研磨用キャリア20Aを用いて固定砥粒研磨加工されたガラス基板10は、外周側面14の表面粗さ、外周側面14の凹形状欠陥数、上下主平面11の平行度aでいずれも従来の研磨用キャリアよりも良い結果が得られることが分かる。
(鏡面研磨工程の実験結果)
表2は研磨用キャリア20Aを研磨装置200に取付けてガラス基板10を1次研磨あるいは2次研磨した場合(実施例No.3)と従来の研磨用キャリアを用いてガラス基板10を研磨した場合(比較例No.4)との比較結果を示す。
As a result of this experiment, the glass substrate 10 subjected to the fixed abrasive polishing process using the polishing carrier 20A has the surface roughness of the outer peripheral side surface 14, the number of concave defects on the outer peripheral side surface 14, and the parallelism a of the upper and lower main planes 11. It can be seen that the results are better than those of the conventional polishing carrier.
(Experimental result of mirror polishing process)
Table 2 shows the case where the polishing carrier 20A is attached to the polishing apparatus 200 and the glass substrate 10 is subjected to primary polishing or secondary polishing (Example No. 3) and the glass substrate 10 is polished using a conventional polishing carrier. A comparison result with (comparative example No. 4) is shown.

Figure 0005741157
表2より、研磨用キャリア20Aを用いてガラス基板10を1次研磨した場合、ガラス基板10の外周側面14の表面粗さ曲線の最大谷深さRv=0.06μm〜0.08μmであるのに対して、従来の研磨用キャリアではガラス基板10の外周側面14の表面粗さ曲線の最大谷深さRv=0.15μm〜0.42μmである。尚、表面粗さの測定方法は、上記固定砥粒研磨工程の場合と同じである。
Figure 0005741157
From Table 2, when the glass substrate 10 is primarily polished using the polishing carrier 20A, the maximum valley depth Rv = 0.06 μm to 0.08 μm of the surface roughness curve of the outer peripheral side surface 14 of the glass substrate 10 is obtained. On the other hand, in the conventional polishing carrier, the maximum valley depth Rv of the surface roughness curve of the outer peripheral side surface 14 of the glass substrate 10 is 0.15 μm to 0.42 μm. In addition, the measuring method of surface roughness is the same as the case of the said fixed abrasive polishing process.

また、研磨用キャリア20Aを用いてガラス基板10を1次研磨(又は2次研磨)した場合、ガラス基板10の外周側面14の単位面積当たり(例えば、1mm当たり)に発生した凹形状欠陥の数nがn=0個であるのに対して、従来の研磨用キャリアではガラス基板10の外周側面14の単位面積当たり(例えば、1mm当たり)に発生した凹形状欠陥の数nがn=10個である。尚、凹形状欠陥数の測定方法は、上記固定砥粒研磨工程の場合と同じである。ガラス基板10の外周側面14においては、大きさが10μm以上となる凹形状欠陥の数が5個/mm以下であることが望ましい。 In addition, when the glass substrate 10 is subjected to primary polishing (or secondary polishing) using the polishing carrier 20A, concave defects generated per unit area (for example, per 1 mm 2 ) of the outer peripheral side surface 14 of the glass substrate 10 Whereas the number n is n = 0, the number n of concave defects generated per unit area (for example, per 1 mm 2 ) of the outer peripheral side surface 14 of the glass substrate 10 in the conventional polishing carrier is n = 10 pieces. The method for measuring the number of concave defects is the same as that in the fixed abrasive polishing step. In the outer peripheral side surface 14 of the glass substrate 10, it is desirable that the number of concave defects having a size of 10 μm or more is 5 / mm 2 or less.

また、研磨用キャリア20Aを用いてガラス基板10を1次研磨した場合、ガラス基板10の上下主平面11の平行度bがa=0.3μmであるのに対して、従来の研磨用キャリアではガラス基板10の上下主平面11の平行度bがa=0.9μmである。平行度bの測定方法は、レーザ干渉計(例えば、フジノン社製、製品名:平面測定用フィゾー干渉計、G102S)を用いて行う。   In addition, when the glass substrate 10 is primarily polished using the polishing carrier 20A, the parallelism b of the upper and lower main planes 11 of the glass substrate 10 is a = 0.3 μm, whereas in the conventional polishing carrier The parallelism b of the upper and lower main planes 11 of the glass substrate 10 is a = 0.9 μm. The parallelism b is measured using a laser interferometer (for example, a product name: Fizeau interferometer for plane measurement, G102S, manufactured by Fujinon).

この実験結果により、研磨用キャリア20Aを用いて研磨加工されたガラス基板10は、外周側面14の表面粗さ、外周側面14の凹形状欠陥数、上下主平面11の平行度bでいずれも従来の研磨用キャリアよりも良い結果が得られることが分かる。
(仕上研磨工程の実験結果)
表3は研磨用キャリア20B(ギヤ部マスキング無し)を研磨装置200に取付けてガラス基板10を研磨した場合(実施例No.5)と従来の研磨用キャリアを用いてガラス基板10を研磨した場合(比較例No.6)との比較結果を示す。尚、仕上研磨工程とは、1〜2次研磨を行う場合は2次研磨のことであり、1〜3次研磨を行う場合は3次研磨のことであり、研磨工程の最後に実施される仕上げ研磨を意味する。
As a result of this experiment, the glass substrate 10 polished using the polishing carrier 20A is conventional in terms of the surface roughness of the outer peripheral side surface 14, the number of concave defects on the outer peripheral side surface 14, and the parallelism b of the upper and lower main planes 11. It can be seen that better results are obtained than the polishing carrier.
(Experimental result of finish polishing process)
Table 3 shows a case where a polishing carrier 20B (without gear portion masking) is attached to the polishing apparatus 200 to polish the glass substrate 10 (Example No. 5) and a case where the glass substrate 10 is polished using a conventional polishing carrier. A comparison result with (comparative example No. 6) is shown. The finish polishing step is secondary polishing when performing primary to secondary polishing, and is tertiary polishing when performing primary to secondary polishing, and is performed at the end of the polishing step. It means finish polishing.

Figure 0005741157
表3より、研磨用キャリア20Bを用いてガラス基板10の仕上研磨を行った場合、ガラス基板10の外周側面14の表面粗さ曲線の最大谷深さRv=0.06μm〜0.08μmであるのに対して、従来の研磨用キャリアではガラス基板10の外周側面14の表面粗さが表面粗さ曲線の最大谷深さRv=0.15μmである。尚、表面粗さの測定方法は、上記固定砥粒研磨工程、鏡面研磨工程の場合と同じである。
Figure 0005741157
From Table 3, when finishing polishing of the glass substrate 10 using the polishing carrier 20B, the maximum valley depth Rv = 0.06 μm to 0.08 μm of the surface roughness curve of the outer peripheral side surface 14 of the glass substrate 10 is obtained. On the other hand, in the conventional polishing carrier, the surface roughness of the outer peripheral side surface 14 of the glass substrate 10 is the maximum valley depth Rv = 0.15 μm of the surface roughness curve. In addition, the measuring method of surface roughness is the same as the case of the said fixed abrasive polishing process and mirror polishing process.

また、研磨用キャリア20Bを用いてガラス基板10を仕上研磨した場合、ガラス基板10の外周側面14の単位面積当たり(例えば、1mm当たり)に発生した凹形状欠陥数nがn=0個であるのに対して、従来の研磨用キャリアではガラス基板10の外周側面14の単位面積当たり(例えば、1mm当たり)に発生した凹形状欠陥数nがn=8個である。尚、凹形状欠陥数の測定方法は、上記固定砥粒研磨工程、鏡面研磨工程の場合と同じである。 Further, when the glass substrate 10 is finish-polished using the polishing carrier 20B, the number of concave defects n generated per unit area (for example, per 1 mm 2 ) of the outer peripheral side surface 14 of the glass substrate 10 is n = 0. On the other hand, in the conventional polishing carrier, the number n of concave defects generated per unit area (for example, per 1 mm 2 ) of the outer peripheral side surface 14 of the glass substrate 10 is n = 8. The method for measuring the number of concave defects is the same as in the fixed abrasive polishing step and the mirror polishing step.

また、研磨用キャリア20Aを用いてガラス基板10を仕上研磨した場合、ガラス基板10の両主平面11のキズの数naがna=0個であるのに対して、従来の研磨用キャリアではガラス基板10の両主平面のキズの数naがna=5個である。尚、上下主平面11のキズの測定方法は、検査員の目視によって行う。その際、照明をメタルハロイドランプ、300kルクスの明るさでキズの有無を検査し、大きさ(長さ)が5μm以上のキズをカウントする。   Further, when the glass substrate 10 is finish-polished using the polishing carrier 20A, the number na of scratches on both main planes 11 of the glass substrate 10 is na = 0, whereas the conventional polishing carrier is made of glass. The number na of scratches on both main planes of the substrate 10 is na = 5. In addition, the measuring method of the crack of the upper and lower main plane 11 is performed by an inspector's visual observation. At that time, the presence of scratches is inspected at a brightness of 300 k lux with a metal haloid lamp, and scratches having a size (length) of 5 μm or more are counted.

この実験結果により、研磨用キャリア20Bを用いて仕上研磨加工されたガラス基板10は、外周側面14の表面粗さ、外周側面14の凹形状欠陥数、両主平面11のキズでいずれも従来の研磨用キャリアよりも良い結果が得られることが分かる。   As a result of this experiment, the glass substrate 10 finish-polished using the polishing carrier 20B has the conventional surface roughness on the outer peripheral side surface 14, the number of concave defects on the outer peripheral side surface 14, and the scratches on both main planes 11. It can be seen that better results are obtained than the polishing carrier.

このように、本発明の研磨用キャリア20A、20Bを用いてガラス基板10を研磨することにより、ガラス基板10の外周側面14の表面粗さ、外周側面14の凹形状欠陥数、両主平面11のキズ、両主平面11の平行度が良好になる。さらに、研磨液に含まれる研磨剤(例えば、酸化セリウム(CeO)などのレアアース(希土類))の使用量を削減して研磨液の研磨剤の濃度を下げても、ガラス基板10の外周側面14の表面粗さ、外周側面14の凹形状欠陥数が増加する不具合が発生せず、研磨品質を維持することが可能である。よって、研磨工程で使用される研磨液の砥粒濃度を従来よりも低くして、貴重な研磨剤の消費量を削減して研磨工程におけるコストを安価に抑えると共に、研磨剤を節約することが可能になる。 Thus, by polishing the glass substrate 10 using the polishing carriers 20A and 20B of the present invention, the surface roughness of the outer peripheral side surface 14 of the glass substrate 10, the number of concave defects on the outer peripheral side surface 14, both main planes 11 The degree of parallelism between the scratches and the two principal planes 11 is improved. Further, even if the amount of polishing agent (for example, rare earth (rare earth) such as cerium oxide (CeO 2 )) contained in the polishing liquid is reduced to reduce the concentration of the polishing agent in the polishing liquid, the outer peripheral side surface of the glass substrate 10 Thus, the problem of increasing the surface roughness of 14 and the number of concave defects on the outer peripheral side surface 14 does not occur, and the polishing quality can be maintained. Therefore, the abrasive concentration of the polishing liquid used in the polishing process can be made lower than before, reducing the consumption of valuable abrasives, keeping the costs in the polishing process low, and saving the abrasives. It becomes possible.

〔平行度a、bについて〕
ここで、前述した平行度a、bについて説明する。
[About parallelism a and b]
Here, the parallelism a and b described above will be described.

本発明によるガラス基板の製造方法によって製造された磁気記録媒体用のガラス基板10の両主平面11の平行度a、bは、磁気記録媒体用ガラス基板の各領域における板厚が均一であるほど優れており、各領域における板厚が不均一(板厚偏差が大きい)であるほど劣ることになる。   The parallelisms a and b of both main planes 11 of the glass substrate 10 for a magnetic recording medium manufactured by the method for manufacturing a glass substrate according to the present invention are such that the plate thickness in each region of the glass substrate for a magnetic recording medium is uniform. It is excellent, and it is inferior so that the board thickness in each area | region is non-uniform | heterogenous (a board thickness deviation is large).

磁気記録媒体用のガラス基板10の両主平面11の平行度は、マイクロメータ、レーザ変位計、レーザ干渉計などの測定機を用いて測定する。   The parallelism of both main planes 11 of the glass substrate 10 for magnetic recording media is measured using a measuring machine such as a micrometer, a laser displacement meter, a laser interferometer.

マイクロメータやレーザ変位計を用いた固定砥粒研磨工程による平行度aの測定は、磁気記録媒体用のガラス基板10の主平面11内において任意に決めた複数箇所で板厚を測定し、最大板厚値と最小板厚値の差を求めて行う。   The measurement of the parallelism a by the fixed abrasive polishing process using a micrometer or a laser displacement meter is performed by measuring the plate thickness at a plurality of points arbitrarily determined in the main plane 11 of the glass substrate 10 for magnetic recording media. The difference between the thickness value and the minimum thickness value is obtained.

レーザ干渉計は、光の波長を物差しとしているので、鏡面研磨工程による平行度bを高精度に測定できる。また、磁気記録媒体用のガラス基板10の両主平面11の平行度bを、1回のデータ取得で測定できるため、測定効率に優れる。   Since the laser interferometer uses the wavelength of light as a rule, it can measure the parallelism b by the mirror polishing process with high accuracy. Moreover, since the parallelism b of both main planes 11 of the glass substrate 10 for magnetic recording media can be measured by one data acquisition, it is excellent in measurement efficiency.

レーザ干渉計を用いた磁気記録媒体用のガラス基板10の両主平面11の平行度bの測定は、両主平面11から反射した反射光の位相差により形成される干渉縞を観察し、得られた干渉縞を解析することにより行う。レーザ干渉計で観察される明暗の干渉縞は等高線となっており、その間隔は光源の波長と入射角により決定される。   The measurement of the parallelism b of both main planes 11 of the glass substrate 10 for magnetic recording media using a laser interferometer is obtained by observing interference fringes formed by the phase difference of the reflected light reflected from both main planes 11. This is done by analyzing the interference fringes. The bright and dark interference fringes observed with the laser interferometer are contour lines, and the interval is determined by the wavelength of the light source and the incident angle.

観察された干渉縞本数が少ないほど、磁気記録媒体用のガラス基板10の両主平面11の平行度は優れている、つまり、磁気記録媒体用のガラス基板10の両主平面11の平行度bを測定した領域の板厚偏差が小さく、同一ガラス基板10の主平面11内の板厚分布が優れることを意味する。   The smaller the number of interference fringes observed, the better the parallelism of both main planes 11 of the glass substrate 10 for magnetic recording media, that is, the parallelism b of both main planes 11 of the glass substrate 10 for magnetic recording media. It means that the thickness deviation in the area where the measurement is performed is small, and the thickness distribution in the main plane 11 of the same glass substrate 10 is excellent.

上記実施例では、磁気記録媒体用のガラス基板を製造する工程を例に挙げて説明したが、これに限らず、これ以外の用途で使用されるガラス基板を研磨加工する各工程にも本発明を適用することができるのは勿論である。   In the above embodiment, the process of manufacturing a glass substrate for a magnetic recording medium has been described as an example. However, the present invention is not limited to this, and the present invention is also applied to each process of polishing a glass substrate used for other purposes. Of course, can be applied.

また、本発明が適用できるガラス基板としては、磁気記録媒体用、フォトマスク用、液晶や有機EL等のディスプレイ用、光ピックアップ素子や光学フィルタ等の光学部品用などのガラス基板が具体的なものとして挙げられる。   Specific examples of glass substrates to which the present invention can be applied include glass substrates for magnetic recording media, photomasks, displays such as liquid crystals and organic EL, and optical components such as optical pickup elements and optical filters. As mentioned.

10 ガラス基板
11 主平面
12 円形孔
13 内周側面
14 外周側面
15 内周面取り部
16 外周面取り部
20A、20B 研磨用キャリア
21 ガラス基板保持穴
22 保持部
24 ギヤ部
25 内周壁面
26 凹部
27 外周壁面
30 繊維質シート体
32 繊維
40 樹脂製含浸体
50 保持穴緩衝領域
60 保持穴補強領域
70 ギヤ部補強領域
80 ギヤ部緩衝領域
130 上側研磨面
140 下側研磨面
150 回転軸
200 両面研磨装置
201 上定盤
202 下定盤
203 サンギヤ
205 インターナルギヤ
206 フレーム
207 支持機構
208 昇降機構
209 昇降用シリンダ装置
210 制御部
220 基台
254 ピストンロッド
260 ロック機構
DESCRIPTION OF SYMBOLS 10 Glass substrate 11 Main plane 12 Circular hole 13 Inner peripheral side surface 14 Outer peripheral side surface 15 Inner peripheral chamfered portion 16 Outer peripheral chamfered portion 20A, 20B Polishing carrier 21 Glass substrate holding hole 22 Holding portion 24 Gear portion 25 Inner peripheral wall surface 26 Recessed portion 27 Outer periphery Wall surface 30 Fibrous sheet body 32 Fiber 40 Resin impregnated body 50 Holding hole buffering area 60 Holding hole reinforcing area 70 Gear part reinforcing area 80 Gear part buffering area 130 Upper polishing surface 140 Lower polishing surface 150 Rotating shaft 200 Double-side polishing apparatus 201 Upper surface plate 202 Lower surface plate 203 Sun gear 205 Internal gear 206 Frame 207 Support mechanism 208 Lift mechanism 209 Lift cylinder device 210 Control unit 220 Base 254 Piston rod 260 Lock mechanism

Claims (10)

繊維と樹脂材料とを含む複合材料を用いて形成され、ガラス基板を保持するガラス基板保持穴を有する保持部と、前記保持部の外周に設けられた複数の歯を有するギヤ部とを備えた研磨用キャリアにおいて、
前記ガラス基板保持穴の内周壁面に複数の凹部が配され、前記内周壁面から外側に前記樹脂材料のみにより形成された保持穴緩衝領域と、
前記保持穴緩衝領域の外側に前記複合材料により形成された保持穴補強領域とを有し、
前記ギヤ部は、各歯の外周壁面に複数の凹部が配され、前記樹脂材料のみにより形成されたギヤ部緩衝領域と、前記ギヤ部緩衝領域の内側に前記複合材料により形成されたギヤ部補強領域とを有することを特徴とする研磨用キャリア。
A holding part that is formed using a composite material including a fiber and a resin material and has a glass substrate holding hole for holding a glass substrate, and a gear part that has a plurality of teeth provided on the outer periphery of the holding part In polishing carrier,
A plurality of recesses are arranged on the inner peripheral wall surface of the glass substrate holding hole, and a holding hole buffering region formed only from the resin material on the outside from the inner peripheral wall surface;
A holding hole reinforcing region formed of the composite material outside the holding hole buffering region ;
The gear part has a plurality of recesses on the outer peripheral wall surface of each tooth, a gear part buffering area formed by only the resin material, and a gear part reinforcement formed by the composite material inside the gear part buffering area. polishing carrier and having a region.
前記内周壁面における前記繊維の露出割合を示す前記繊維の露出面積率が5%以下である請求項に記載の研磨用キャリア。 The polishing carrier according to claim 1 , wherein an exposed area ratio of the fibers indicating an exposed ratio of the fibers on the inner peripheral wall surface is 5% or less. 前記内周壁面に配される前記凹部は、前記内周壁面よりの深さが2μm以上である請求項1又は2に記載の研磨用キャリア。 The recess, polishing carrier according to claim 1 or 2 depth from the inner peripheral wall surface is 2μm or more which is arranged in said peripheral wall. 前記繊維は、ガラス繊維又は金属繊維である請求項1〜の何れかに記載の研磨用キャリア。 The carrier for polishing according to any one of claims 1 to 3 , wherein the fibers are glass fibers or metal fibers. 前記ガラス基板は、中央部に円形孔を有する円盤形状の磁気記録媒体用ガラス基板である請求項1〜4の何れかに記載の研磨用キャリア。 The glass substrate is polished carrier according to any one of claims 1-4 in a central portion which is a glass substrate for a magnetic recording medium of a disk shape having a circular hole. 研磨装置の定盤の研磨面を、研磨用キャリアのガラス基板保持穴に保持されたガラス基板の主平面に押圧し、研磨液を前記研磨面と前記ガラス基板との間に供給すると共に、前記研磨用キャリアと前記研磨面とを相対的に動かして前記ガラス基板の主平面を研磨するガラス基板の研磨方法において、
前記研磨用キャリアは、請求項1〜の何れかに記載の研磨用キャリアであることを特徴とするガラス基板の研磨方法。
The polishing surface of the surface plate of the polishing apparatus is pressed against the main plane of the glass substrate held in the glass substrate holding hole of the polishing carrier, and a polishing liquid is supplied between the polishing surface and the glass substrate, and In the glass substrate polishing method of polishing the main plane of the glass substrate by relatively moving the polishing carrier and the polishing surface,
The polishing carrier, the polishing method for a glass substrate, which is a polishing carrier according to any one of claims 1-5.
請求項に記載のガラス基板の研磨方法であって、
前記研磨装置の定盤に装着した固定砥粒工具の研磨面と研磨液を用いた固定砥粒研磨工程により前記ガラス基板の主平面を研磨するガラス基板の研磨方法。
A method for polishing a glass substrate according to claim 6 ,
A polishing method for a glass substrate, wherein the main surface of the glass substrate is polished by a polishing process using a polishing surface of a fixed abrasive tool mounted on a surface plate of the polishing apparatus and a polishing liquid.
請求項に記載のガラス基板の研磨方法であって、
前記研磨装置の定盤の研磨面と砥粒を含有する研磨液を用いた遊離砥粒研磨工程により前記ガラス基板の主平面を研磨するガラス基板の研磨方法。
A method for polishing a glass substrate according to claim 6 ,
A polishing method for a glass substrate, comprising polishing a main surface of the glass substrate by a free abrasive polishing process using a polishing liquid containing a polishing surface of a surface plate of the polishing apparatus and abrasive grains.
請求項に記載のガラス基板の研磨方法であって、
前記研磨装置の定盤に装着した研磨パッドの研磨面と砥粒を含有する研磨液を用いた鏡面研磨工程により前記ガラス基板の主平面を研磨するガラス基板の研磨方法。
A method for polishing a glass substrate according to claim 6 ,
A polishing method for a glass substrate, wherein a main surface of the glass substrate is polished by a mirror polishing process using a polishing liquid containing a polishing surface and an abrasive containing a polishing pad mounted on a surface plate of the polishing apparatus.
ガラス板を所望の形状を有するガラス基板に加工する形状加工工程と、前記ガラス基板の主平面を研磨する研磨工程と、前記ガラス基板の洗浄工程と、を有するガラス基板の製造方法において、
前記研磨工程は、請求項1〜の何れかに記載の研磨用キャリアのガラス基板保持穴に前記ガラス基板を挿入した状態で前記主平面を研磨することを特徴とするガラス基板の製造方法。
In a method of manufacturing a glass substrate, comprising: a shape processing step of processing a glass plate into a glass substrate having a desired shape; a polishing step of polishing a main plane of the glass substrate; and a cleaning step of the glass substrate.
The said grinding | polishing process grinds the said main plane in the state which inserted the said glass substrate in the glass substrate holding hole of the carrier for grinding | polishing in any one of Claims 1-5 , The manufacturing method of the glass substrate characterized by the above-mentioned.
JP2011085796A 2011-04-07 2011-04-07 Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method Expired - Fee Related JP5741157B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011085796A JP5741157B2 (en) 2011-04-07 2011-04-07 Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method
PH12012000075A PH12012000075A1 (en) 2011-04-07 2012-04-03 Polishing carrier, method for polishing glass substrate using the carrier, method for producing glass substrate, and glass substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085796A JP5741157B2 (en) 2011-04-07 2011-04-07 Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015091963A Division JP2015181082A (en) 2015-04-28 2015-04-28 Glass substrate for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2012218103A JP2012218103A (en) 2012-11-12
JP5741157B2 true JP5741157B2 (en) 2015-07-01

Family

ID=47270194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085796A Expired - Fee Related JP5741157B2 (en) 2011-04-07 2011-04-07 Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method

Country Status (2)

Country Link
JP (1) JP5741157B2 (en)
PH (1) PH12012000075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434418B1 (en) * 2022-03-10 2022-08-22 (주)뉴이스트 Manufacturing Method for Carrier Used in Polishing Wafer for Seimi-Conductor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150097484A (en) * 2012-12-27 2015-08-26 호야 가부시키가이샤 Mask blank substrate processing device, mask blank substrate processing method, mask blank substrate fabrication method, mask blank fabrication method, and transfer mask fabrication method
MY170789A (en) * 2013-06-30 2019-08-28 Hoya Corp Carrier, method for manufacturing magnetic-disk substrate, and method for manufacturing magnetic disk
CN108857869B (en) * 2013-11-29 2021-04-27 Hoya株式会社 Carrier for polishing or grinding treatment, method for producing same, and method for producing substrate
JP6208565B2 (en) * 2013-11-29 2017-10-04 Hoya株式会社 Polishing carrier manufacturing method, magnetic disk substrate manufacturing method, and magnetic disk glass substrate manufacturing method
JP6152340B2 (en) * 2013-12-26 2017-06-21 Hoya株式会社 Manufacturing method of disk-shaped substrate and carrier for grinding or polishing
JP6695318B2 (en) * 2017-12-27 2020-05-20 Hoya株式会社 Disk-shaped glass substrate manufacturing method, thin glass substrate manufacturing method, light guide plate manufacturing method, and disk-shaped glass substrate
MY204661A (en) * 2018-01-31 2024-09-07 Hoya Corp Method for producing glass substrate for magnetic disk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309665A (en) * 1998-04-30 1999-11-09 Toshiba Corp Manufacture of oxide single crystal substrate
JP2000084834A (en) * 1998-09-04 2000-03-28 Ngk Insulators Ltd Grinding carrier
JP5037975B2 (en) * 2006-03-28 2012-10-03 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
KR100898821B1 (en) * 2007-11-29 2009-05-22 주식회사 실트론 Wafer Carrier Manufacturing Method
JPWO2010150757A1 (en) * 2009-06-24 2012-12-10 旭硝子株式会社 Glass disk polishing apparatus and glass disk polishing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434418B1 (en) * 2022-03-10 2022-08-22 (주)뉴이스트 Manufacturing Method for Carrier Used in Polishing Wafer for Seimi-Conductor

Also Published As

Publication number Publication date
JP2012218103A (en) 2012-11-12
PH12012000075A1 (en) 2014-08-04

Similar Documents

Publication Publication Date Title
JP5741157B2 (en) Polishing carrier, glass substrate polishing method using the carrier, and glass substrate manufacturing method
JP5056961B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP5454180B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP6577636B2 (en) Polishing or grinding carrier manufacturing method, polishing or grinding carrier, and substrate manufacturing method
TWI618616B (en) Rectangular mold-forming substrate
JP2015181082A (en) Glass substrate for magnetic recording medium
JP5598371B2 (en) Glass substrate polishing method
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
JP5585269B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5853408B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
CN104170013B (en) The manufacture method and information recording carrier of glass substrate for information recording medium
JP5333428B2 (en) Polishing pad dresser, manufacturing method thereof, glass substrate, manufacturing method thereof, and glass substrate for magnetic recording medium
JP5725134B2 (en) Method for manufacturing glass substrate for magnetic recording medium
WO2015002152A1 (en) Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk
JP5413409B2 (en) Support jig and method for manufacturing glass substrate for magnetic recording medium
JP5461936B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2007102843A (en) Glass substrate for magnetic recording medium and magnetic disk
JP5659813B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP5792932B2 (en) Glass substrate polishing method and glass substrate manufacturing method using the glass substrate polishing method
CN104170012B (en) The manufacture method and information recording carrier of glass substrate for information recording medium
CN108942417A (en) The manufacturing method and glass substrate polishing device of glass substrate
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
KR20070104062A (en) Mask Repair Device and Repair Method
JP5731245B2 (en) Manufacturing method of glass substrate for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees