[go: up one dir, main page]

JP5724600B2 - Carbon dioxide recovery method and recovery apparatus - Google Patents

Carbon dioxide recovery method and recovery apparatus Download PDF

Info

Publication number
JP5724600B2
JP5724600B2 JP2011105107A JP2011105107A JP5724600B2 JP 5724600 B2 JP5724600 B2 JP 5724600B2 JP 2011105107 A JP2011105107 A JP 2011105107A JP 2011105107 A JP2011105107 A JP 2011105107A JP 5724600 B2 JP5724600 B2 JP 5724600B2
Authority
JP
Japan
Prior art keywords
water vapor
carbon dioxide
flow rate
gas
recovered gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011105107A
Other languages
Japanese (ja)
Other versions
JP2012236118A (en
Inventor
真也 奥野
真也 奥野
至高 中村
至高 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011105107A priority Critical patent/JP5724600B2/en
Publication of JP2012236118A publication Critical patent/JP2012236118A/en
Application granted granted Critical
Publication of JP5724600B2 publication Critical patent/JP5724600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、燃焼ガスなどの二酸化炭素を含むガスから二酸化炭素を分離回収し、清浄なガスを大気に還元するための二酸化炭素の回収方法及び二酸化炭素の回収装置に関する。   The present invention relates to a carbon dioxide recovery method and a carbon dioxide recovery device for separating and recovering carbon dioxide from a gas containing carbon dioxide such as combustion gas and reducing clean gas to the atmosphere.

火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物及び二酸化炭素は、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収・貯蔵を可能とするために、様々な研究が精力的に進められ、二酸化炭素の回収方法として、例えば、PSA(圧力スウィング)法、膜分離濃縮法や、塩基性化合物による反応吸収を利用する化学吸収法などが知られている。   Facilities such as thermal power plants, steelworks, and boilers use large amounts of fuel such as coal, heavy oil, and super heavy oil. Sulfur oxides, nitrogen oxides, and carbon dioxide emitted by the combustion of fuel are There is a need for quantitative and concentration restrictions on emissions from the perspective of air pollution prevention and global environmental protection. In recent years, carbon dioxide has been seen as a major cause of global warming, and movements to suppress emissions have become active worldwide. For this reason, in order to enable the recovery and storage of carbon dioxide from combustion exhaust gases and process exhaust gases without releasing them into the atmosphere, various researches have been vigorously advanced. As a carbon dioxide recovery method, for example, PSA ( Known are pressure swinging), membrane separation and concentration, and chemical absorption using reaction absorption by basic compounds.

化学吸収法においては、主にアルカノールアミン系の塩基性化合物を吸収剤として用い、その処理プロセスでは、概して、吸収剤を含む水性液を吸収液として、ガスに含まれる二酸化炭素を吸収液に吸収させる吸収工程と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する再生工程とを交互に繰り返すように吸収液を循環させる(例えば、下記特許文献1参照)。再生工程においては、二酸化炭素を放出させるための加熱が必要であり、二酸化炭素回収の操業費用を削減するには、再生のために加熱/冷却に要するエネルギーを低減することが重要となる。   In the chemical absorption method, mainly alkanolamine-based basic compounds are used as the absorbent. In the treatment process, an aqueous liquid containing the absorbent is generally used as the absorbent, and carbon dioxide contained in the gas is absorbed into the absorbent. The absorbing solution is circulated so as to alternately repeat the absorbing step to be performed and the regeneration step of regenerating the absorbing solution by releasing the absorbed carbon dioxide from the absorbing solution (see, for example, Patent Document 1 below). In the regeneration process, heating for releasing carbon dioxide is necessary, and in order to reduce the operating cost of carbon dioxide recovery, it is important to reduce the energy required for heating / cooling for regeneration.

又、吸収塔及び再生塔における気液接触効率を改善して回収率を向上させることや、プロセス全体の最適化によるエネルギー効率の改善も必要であり、特許文献1では、再生塔へ供給する吸収液の一部を再生塔出口ガスによって加熱しており、下記特許文献2では、吸収液から二酸化炭素を回収する際に要するエネルギーの削減を目的として、再生工程の吸収液を抜き出して高温スチームによって熱交換するための再生加熱器から生じるスチーム凝縮水の余熱を、吸収液の加熱に利用している。また、下記特許文献3では、吸収された二酸化炭素の放出を促進するために、二酸化炭素を随伴するようにストリッピング用ガスを導入することを記載する。   Further, it is necessary to improve the recovery rate by improving the gas-liquid contact efficiency in the absorption tower and the regeneration tower, and also to improve the energy efficiency by optimizing the whole process. A part of the liquid is heated by the regeneration tower outlet gas, and in Patent Document 2 below, for the purpose of reducing the energy required for recovering carbon dioxide from the absorption liquid, the absorption liquid in the regeneration process is extracted and subjected to high temperature steam. The residual heat of the steam condensate generated from the regenerative heater for heat exchange is used for heating the absorbent. Patent Document 3 below describes introducing a stripping gas so as to accompany carbon dioxide in order to promote the release of absorbed carbon dioxide.

特開2009−214089号公報JP 2009-214089 A 特開2005−254212号公報JP-A-2005-254212 特開2005−230808号公報Japanese Patent Laid-Open No. 2005-230808

再生工程において必要とされるエネルギーには、吸収液の温度上昇に要する顕熱、吸収液から二酸化炭素を放出する際の反応熱、及び、吸収液の水分蒸発による熱損失を補うための潜熱がある。上述の先行技術は、顕熱又は反応熱に関連する技術である。   The energy required in the regeneration process includes sensible heat required to raise the temperature of the absorbing solution, reaction heat when releasing carbon dioxide from the absorbing solution, and latent heat to compensate for heat loss due to moisture evaporation of the absorbing solution. is there. The above-described prior art is a technique related to sensible heat or reaction heat.

再生熱エネルギーのうち、水分の蒸発潜熱は約10〜20%を占めるので、潜熱分のエネルギー消費は無視できる量ではなく、この節減は有用である。特に、吸収液による二酸化炭素の吸収効率が高ければ、その再生に要する熱エネルギーも多くなり、潜熱分の熱エネルギーの節減における重要性も高くなる。   Since the latent heat of vaporization of moisture accounts for about 10 to 20% of the regenerative heat energy, the energy consumption of the latent heat is not negligible and this saving is useful. In particular, if the absorption efficiency of carbon dioxide by the absorption liquid is high, the heat energy required for the regeneration increases, and the importance in reducing the heat energy of latent heat increases.

本発明の課題は、吸収液を再生するために要するエネルギーを削減して操業費用を低減可能な二酸化炭素の回収方法及び回収装置を提供することである。   An object of the present invention is to provide a carbon dioxide recovery method and a recovery apparatus capable of reducing energy required for regenerating an absorbing solution and reducing operation costs.

又、本発明の課題は、装置への負担や煩雑な作業を伴わず、吸収液を再生するために要するエネルギーを削減して、高い二酸化炭素の回収効率でエネルギーコストを低減可能な二酸化炭素の回収方法及び回収装置を提供することである。   Further, an object of the present invention is to reduce the energy required to regenerate the absorbing liquid without burdening the apparatus and complicated work, and to reduce the energy cost with high carbon dioxide recovery efficiency. It is to provide a recovery method and a recovery device.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、再生工程への水蒸気供給を利用して吸収液の水分蒸発に関する潜熱の供給を低減し、この利点を有効に利用可能な形態を見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research and, as a result, reduced the supply of latent heat related to water evaporation of the absorption liquid by using the water vapor supply to the regeneration process, and effectively use this advantage. A possible form has been found and the present invention has been completed.

本発明の一態様によれば、二酸化炭素の回収装置は、二酸化炭素を含有するガスを吸収液に接触させて、前記吸収液に二酸化炭素を吸収させる吸収塔と、前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生塔と、前記再生塔から排出される二酸化炭素を含んだ回収ガスに含まれる水蒸気量を測定する測定部と、前記測定部によって測定される前記回収ガスの水蒸気量を基準量として、前記回収ガスに含まれる水蒸気の流量の0.4〜1.0倍量の水蒸気を前記再生塔に供給する水蒸気供給システムとを有することを要旨とする。 According to one aspect of the present invention, a carbon dioxide recovery device is configured to bring a gas containing carbon dioxide into contact with an absorption liquid, so that the absorption liquid absorbs carbon dioxide, and carbon dioxide is absorbed by the absorption tower. The absorption liquid that is absorbed is heated to release carbon dioxide from the absorption liquid to regenerate the absorption liquid, and the amount of water vapor contained in the recovered gas containing carbon dioxide that is discharged from the regeneration tower is measured. Using the measurement unit and the amount of water vapor of the recovered gas measured by the measurement unit as a reference amount, 0.4 to 1.0 times the amount of water vapor contained in the recovered gas is supplied to the regeneration tower. The main point is to have a water vapor supply system.

又、本発明の一態様によれば、二酸化炭素の回収方法は、二酸化炭素を含有するガスを加圧下で吸収液に接触させて、前記吸収液に二酸化炭素を吸収させる吸収工程と、前記吸収工程で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生工程と、前記再生工程から排出される二酸化炭素を含んだ回収ガスに含まれる水蒸気量を測定する測定工程と、前記測定工程によって測定される前記回収ガスの水蒸気量を基準として、前記回収ガスに含まれる水蒸気の流量の0.4〜1.0倍量の水蒸気を前記再生塔に供給する水蒸気供給工程とを有することを要旨とする。
According to another aspect of the present invention, a method for recovering carbon dioxide includes an absorption step in which a gas containing carbon dioxide is brought into contact with an absorption liquid under pressure to cause the absorption liquid to absorb carbon dioxide, and the absorption Included in the regeneration step of regenerating the absorption liquid by heating the absorption liquid that has absorbed carbon dioxide in the process to release carbon dioxide from the absorption liquid, and the recovered gas containing carbon dioxide discharged from the regeneration process Based on the measurement step of measuring the amount of water vapor and the amount of water vapor of the recovered gas measured in the measurement step, the regenerated water vapor is 0.4 to 1.0 times the amount of water vapor contained in the recovered gas. And having a steam supply step for supplying to the tower.

本発明によれば、ガスに含まれる二酸化炭素を回収するプロセスにおいて、吸収液の再生に要するエネルギー供給を低減して操業に要する費用を削減でき、又、装置にかかる負担も低減可能であり、省エネルギー及び環境保護に貢献可能な二酸化炭素の回収装置を提供できる。特に、高回収率で二酸化炭素を吸収した吸収液の再生においてエネルギー効率の改善が有効に作用し、吸収液の劣化防止や装置等の負担軽減にも有効である。二酸化炭素の回収方法において特殊な装備や高価な装置を必要とせず、一般的な設備を利用して簡易に実施できるので、経済的に有利である。   According to the present invention, in the process of recovering carbon dioxide contained in the gas, it is possible to reduce the cost of operation by reducing the energy supply required for regeneration of the absorbing liquid, and it is also possible to reduce the burden on the apparatus, A carbon dioxide recovery device that can contribute to energy saving and environmental protection can be provided. In particular, the energy efficiency improvement is effective in the regeneration of the absorbing solution that has absorbed carbon dioxide at a high recovery rate, and is effective in preventing the deterioration of the absorbing solution and reducing the burden on the apparatus. The carbon dioxide recovery method does not require special equipment or expensive equipment, and can be easily performed using general equipment, which is economically advantageous.

本発明の第1の実施形態に係る二酸化炭素の回収装置を示す概略構成図。1 is a schematic configuration diagram showing a carbon dioxide recovery apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態に係る二酸化炭素の回収装置を示す概略構成図。The schematic block diagram which shows the collection | recovery apparatus of the carbon dioxide which concerns on the 2nd Embodiment of this invention.

一般的に、吸収液から二酸化炭素を放出させて再生するための手法として、吸収液を加熱して反応熱を供給するが、このためには、吸収液の温度上昇に要する顕熱、及び、吸収液の水分蒸発による熱損失を補うための潜熱の供給も必要となる。この熱供給の軽減を目的として吸収液の水分蒸発を抑制することは、加圧によって吸収液の沸点を上昇させることで可能であるが、この方法では、吸収液から二酸化炭素を放出するための加熱温度も高くなり、却って顕熱の必要量が増加し、吸収液の劣化や装置の負担が増加するので好ましくない。   In general, as a method for releasing carbon dioxide from the absorbing liquid and regenerating it, the absorbing liquid is heated to supply reaction heat. For this purpose, sensible heat required for increasing the temperature of the absorbing liquid, and It is also necessary to supply latent heat to compensate for heat loss due to moisture evaporation of the absorbing liquid. In order to reduce the heat supply, it is possible to suppress the evaporation of moisture in the absorption liquid by increasing the boiling point of the absorption liquid by pressurization. In this method, the carbon dioxide is released from the absorption liquid. The heating temperature is also increased, and the required amount of sensible heat is increased, which is not preferable because the deterioration of the absorbing solution and the burden on the apparatus increase.

吸収液からの水分蒸発は、再生工程から排出される回収ガスに二酸化炭素だけでなく湿分も含まれることに起因し、排出によって失われる分の水が新たに吸収液から蒸発するので、再生工程の吸収液から常に水分が気化して潜熱として失われる分のエネルギー供給が必要となる。このエネルギー供給が軽減できれば、吸収液に含まれる二酸化炭素量が増加しても、吸収液を十分に再生するための再生エネルギーの供給が負担とならずにすむ。そして、再生工程の吸収液を加圧する必要性が少なくなり、吸収液の加熱温度を低下させて吸収剤の品質劣化の抑制が可能となる。   Moisture evaporation from the absorption liquid is caused by the fact that the recovered gas discharged from the regeneration process contains not only carbon dioxide but also moisture. It is necessary to supply an amount of energy that is always vaporized from the absorption liquid in the process and lost as latent heat. If this energy supply can be reduced, even if the amount of carbon dioxide contained in the absorbent increases, supply of regenerative energy for sufficiently regenerating the absorbent does not have to be a burden. And the necessity for pressurizing the absorption liquid of a regeneration process decreases, and it becomes possible to reduce the heating temperature of an absorption liquid and to suppress the quality deterioration of an absorbent.

上述に従って、本発明では、再生工程の吸収液上の雰囲気に水蒸気を供給して、排出される回収ガスと共に失われる分の湿分を補充することによって、吸収液からの水の気化を抑制して潜熱ロスを低減させる。この際、供給する水蒸気は、再生される吸収液の温度を低下させなければ良いので、吸収液と同程度以上の温度であればよい。これにより、潜熱ロスが低減されて供給熱エネルギーが効率的に再生に利用されるので、吸収液の再生を十分且つ容易に進めることができる。吸収液からの気化を抑制する効果は、供給する水蒸気量の増加に従って増大し、雰囲気を飽和させる量以上の供給において非常に有効に作用する。   In accordance with the above, the present invention suppresses vaporization of water from the absorbing liquid by supplying water vapor to the atmosphere above the absorbing liquid in the regeneration process and replenishing the moisture lost with the recovered gas discharged. To reduce latent heat loss. At this time, the water vapor to be supplied may be at a temperature equal to or higher than that of the absorbing liquid because it does not have to lower the temperature of the absorbing liquid to be regenerated. Thereby, since the latent heat loss is reduced and the supplied heat energy is efficiently used for regeneration, the regeneration of the absorbing liquid can be sufficiently and easily advanced. The effect of suppressing vaporization from the absorbing liquid increases with an increase in the amount of water vapor to be supplied, and works very effectively in the supply exceeding the amount that saturates the atmosphere.

以下、本発明の二酸化炭素の回収方法及び回収装置について、図面を参照して詳細に説明する。   Hereinafter, the carbon dioxide recovery method and recovery apparatus of the present invention will be described in detail with reference to the drawings.

図1は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の第1の実施形態を示す。回収装置1は、二酸化炭素を含有するガスGを吸収液に接触させて、吸収液に二酸化炭素を吸収させる吸収塔10と、二酸化炭素を吸収した吸収液を加熱し、二酸化炭素を吸収液から放出させて吸収液を再生する再生塔20とを有する。更に、吸収塔10に供給されるガスGを二酸化炭素の吸収に適した低温に維持し易いように冷却塔30が設けられているので、燃焼排ガスやプロセス排ガスなどの様々なガスの取扱いが可能であり、回収装置に供給されるガスGについて特に制限はない。吸収塔10、再生塔20及び冷却塔30は、各々、向流型気液接触装置として構成され、接触面積を大きくするための充填材11,21,31を各々内部に保持している。充填材11,21,31は、概して、ステンレス鋼、炭素鋼等の鉄系金属材料製のものが用いられるが、特に限定されず、処理温度における耐久性及び耐腐食性を有する素材で、所望の接触面積を提供し得る形状のものを適宜選択するとよい。吸収液として、アルカノールアミン類等の二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。   FIG. 1 shows a first embodiment of a carbon dioxide recovery method and a recovery apparatus for carrying out the same according to the present invention. The recovery device 1 brings the gas G containing carbon dioxide into contact with the absorption liquid, heats the absorption tower 10 that absorbs the carbon dioxide in the absorption liquid, and the absorption liquid that has absorbed the carbon dioxide, and removes the carbon dioxide from the absorption liquid. And a regeneration tower 20 for regenerating the absorbent by discharging. Furthermore, since the cooling tower 30 is provided so that the gas G supplied to the absorption tower 10 can be easily maintained at a low temperature suitable for absorption of carbon dioxide, various gases such as combustion exhaust gas and process exhaust gas can be handled. The gas G supplied to the recovery device is not particularly limited. The absorption tower 10, the regeneration tower 20, and the cooling tower 30 are each configured as a countercurrent gas-liquid contact device, and hold fillers 11, 21, 31 for increasing the contact area. The fillers 11, 21, 31 are generally made of ferrous metal materials such as stainless steel and carbon steel, but are not particularly limited, and are materials having durability and corrosion resistance at the processing temperature. It is preferable to select a shape that can provide the contact area. As the absorbing liquid, an aqueous liquid containing a compound having an affinity for carbon dioxide such as alkanolamines as an absorbent is used.

冷却塔30底部から供給されるガスGは、塔内に保持される充填材31を通過し、冷却塔30の上部から供給される冷却水によって冷却された後に、吸収塔10に供給される。これにより、吸収塔10の温度がガスGに起因して上昇するのが防止される。ガスGを冷却することによって温度上昇した冷却水は、ポンプ32によって水冷式冷却器33に送られ、冷却された後に冷却塔30に還流される。   The gas G supplied from the bottom of the cooling tower 30 passes through the filler 31 held in the tower, is cooled by the cooling water supplied from the upper part of the cooling tower 30, and is then supplied to the absorption tower 10. This prevents the temperature of the absorption tower 10 from rising due to the gas G. The cooling water whose temperature has been increased by cooling the gas G is sent to the water-cooled cooler 33 by the pump 32, cooled, and then returned to the cooling tower 30.

冷却塔30を通過した二酸化炭素を含んだガスGは、吸収塔10の下部から逆止弁18を通じて供給され、吸収液は、吸収塔10の上部から供給され、ガスG及び吸収液が充填材11を通過する間に気液接触してガスG中の二酸化炭素が吸収液に吸収される。二酸化炭素を吸収した吸収液A1は、吸収塔10底部に貯溜され、ポンプ12によって、吸収塔10底部と再生塔20上部とを接続する供給路16を通じて再生塔20へ供給される。   The gas G containing carbon dioxide that has passed through the cooling tower 30 is supplied from the lower part of the absorption tower 10 through the check valve 18, the absorption liquid is supplied from the upper part of the absorption tower 10, and the gas G and the absorption liquid are filled with the filler. While passing through the gas 11, the carbon dioxide in the gas G comes into contact with the gas and liquid and is absorbed by the absorption liquid. The absorption liquid A1 that has absorbed carbon dioxide is stored at the bottom of the absorption tower 10 and is supplied to the regeneration tower 20 by a pump 12 through a supply path 16 that connects the bottom of the absorption tower 10 and the top of the regeneration tower 20.

二酸化炭素が除去されたガスG’は、吸収塔10頂部から排出される。この実施形態では、ガスG’は圧力調節弁19を通じて排出するように構成されるので、必要に応じて、吸収塔10内のガス圧力を圧力調節弁19によって調節でき、加圧状態に設定して気液接触を行うと、ガスGから吸収液への二酸化炭素の移行が促進され、ガス圧力の増加に従って吸収率が向上する。 The gas G ′ from which carbon dioxide has been removed is discharged from the top of the absorption tower 10. In this embodiment, the gas G ′ is configured to be discharged through the pressure control valve 19, so that the gas pressure in the absorption tower 10 can be adjusted by the pressure control valve 19 and set to a pressurized state as necessary. When the gas-liquid contact is performed, the transfer of carbon dioxide from the gas G to the absorbing liquid is promoted, and the absorption rate is improved as the gas pressure increases.

吸収液が二酸化炭素を吸収することによって発熱して液温が上昇するので、必要に応じて、ガスG’に含まれ得る水蒸気等を除去するための冷却凝縮部13を吸収塔10頂部に設けることができ、これにより、水蒸気等が塔外へ漏出するのをある程度抑制できる。これを更に確実にするためには、吸収塔外に付設される冷却器14と、凝縮水の一部(塔内のガスG’を含んでも良い)を冷却器14との間で循環させるポンプ15とを備え、冷却器14で冷却されて塔頂部に供給される凝縮水等は冷却凝縮部13を低温に維持し、冷却凝縮部13を通過するガスG’を確実に冷却する。又、充填材11に還流する凝縮水によって、塔内の吸収液の組成変動が補整される。塔外へ排出されるガスG’の温度は60℃程度以下が好ましく、より好ましくは45℃以下となるように冷却する。この実施形態の冷却器14は水冷式であるが、他の冷却方式であって良く、冷媒による冷凍サイクルを用いて冷却確度を高めてもよい。   Since the absorption liquid generates heat by absorbing carbon dioxide and the liquid temperature rises, a cooling condensing unit 13 for removing water vapor or the like that may be contained in the gas G ′ is provided at the top of the absorption tower 10 as necessary. Thus, the leakage of water vapor and the like to the outside of the tower can be suppressed to some extent. In order to further ensure this, a pump that circulates between the cooler 14 attached outside the absorption tower and a part of the condensed water (which may include the gas G ′ in the tower). 15, the condensed water or the like cooled by the cooler 14 and supplied to the top of the tower maintains the cooling condensing unit 13 at a low temperature and reliably cools the gas G ′ passing through the cooling condensing unit 13. Moreover, the composition fluctuation | variation of the absorption liquid in a tower is compensated by the condensed water which recirculate | refluxs to the filler 11. The temperature of the gas G ′ discharged to the outside of the tower is preferably about 60 ° C. or lower, more preferably 45 ° C. or lower. Although the cooler 14 of this embodiment is a water-cooling type, other cooling methods may be used, and the cooling accuracy may be increased by using a refrigerant refrigeration cycle.

吸収塔10の吸収液A1は、再生塔20の上部に供給され、充填材21上を流下して底部に貯溜される。再生塔20の底部には、リボイラーが付設される。即ち、吸収液を加熱するために再生塔20外に付設されるスチームヒーター22と、吸収液をスチームヒーター22を介して循環させる循環路22’とが付設され、塔底部の吸収液A2の一部が循環路22’を通してスチームヒーター22に分岐され、高温蒸気との熱交換によって加熱された後に塔内へ還流される。この加熱によって、底部の吸収液から二酸化炭素が放出され、又、充填材21も間接的に加熱されて充填材21上での気液接触による二酸化炭素の放出が促進される。   The absorption liquid A1 of the absorption tower 10 is supplied to the upper part of the regeneration tower 20, flows down on the filler 21, and is stored at the bottom. A reboiler is attached to the bottom of the regeneration tower 20. That is, a steam heater 22 provided outside the regeneration tower 20 for heating the absorption liquid and a circulation path 22 ′ for circulating the absorption liquid through the steam heater 22 are provided, and one of the absorption liquid A 2 at the bottom of the tower is provided. The part is branched to a steam heater 22 through a circulation path 22 ', heated by heat exchange with high-temperature steam, and then refluxed into the tower. By this heating, carbon dioxide is released from the absorption liquid at the bottom, and the filler 21 is also indirectly heated to promote the release of carbon dioxide by gas-liquid contact on the filler 21.

再生塔20で二酸化炭素を放出して再生された吸収液A2は、還流路17を通じてポンプ23によって吸収塔10に還流され、その間に、熱交換器24において、吸収塔10から再生塔20に供給される吸収液A1との間で熱交換して冷却され、更に、冷却水を用いた冷却器25によって、二酸化炭素の吸収に適した温度まで充分に冷却される。   The absorption liquid A2 regenerated by releasing carbon dioxide in the regeneration tower 20 is refluxed to the absorption tower 10 by the pump 23 through the reflux path 17, and is supplied from the absorption tower 10 to the regeneration tower 20 in the heat exchanger 24. It is cooled by exchanging heat with the absorbing liquid A1, and further cooled sufficiently to a temperature suitable for absorption of carbon dioxide by the cooler 25 using cooling water.

再生塔20における加熱で放出される二酸化炭素を含むガスは、回収ガスCとして、再生塔20上部の凝縮部26を通って頂部から排出される。凝縮部26は、ガスに含まれる水蒸気を凝縮させて過度の放出を抑制し、また、吸収剤の放出も抑制する。回収ガスCは、再生塔20の頂部から排気管34を通して、冷却水を用いた冷却器27によって充分に冷却されて、含まれる水蒸気を可能な限り凝縮した後、気液分離器28によって凝縮水を除去した後に回収される。回収ガスCに含まれる二酸化炭素は、例えば、地中又は油田中に注入することによって、地中での炭酸ガス固定及び再有機化が可能である。気液分離器28において分離された凝縮水は、適宜排出し、必要に応じて、吸収液の濃度調整用水又は水蒸気の供給源として利用できる。   The gas containing carbon dioxide released by heating in the regeneration tower 20 is discharged as a recovered gas C from the top through the condensing part 26 at the top of the regeneration tower 20. The condensing part 26 condenses the water vapor | steam contained in gas, suppresses excessive discharge | release, and also suppresses discharge | release of an absorber. The recovered gas C is sufficiently cooled by the cooler 27 using cooling water from the top of the regeneration tower 20 through the exhaust pipe 34 to condense the contained water vapor as much as possible, and then condensed by the gas-liquid separator 28. It is collected after removing. Carbon dioxide contained in the recovered gas C can be fixed and reorganized in the ground by, for example, injecting it into the ground or oil fields. The condensed water separated in the gas-liquid separator 28 is appropriately discharged and can be used as a supply source of water for adjusting the concentration of the absorbing liquid or water vapor as necessary.

再生塔20から排出される回収ガスCは、少なくとも気液分離器28で分離される凝縮水分の水蒸気を含んでいるので、少なくとも凝縮水相当分の水蒸気が再生塔20内の吸収液から気化することになるが、本発明においては、回収ガスCと共に放出される水蒸気を補うために再生塔20内に水蒸気Sを供給する水蒸気供給システム40を有し、再生塔20の底部に接続される配管35から水蒸気Sを供給する。再生塔20底部の吸収液A2上の雰囲気に水蒸気Sが供給されることによって、貯留する吸収液A2及びその近辺の吸収液からの水蒸気化が抑制され、気化に要する潜熱が吸収液から失われるのを抑制できる。従って、スチームヒーター22から供給する再生熱エネルギーを削減することができる。水蒸気供給システム40によって供給される水蒸気Sは、再生塔20内の吸収液を冷却しない温度であればよいので、吸収液A2の温度又はそれ以上であり、比較的低温のスチームが使用できる。水蒸気Sの供給は、吸収液の潜熱損失を抑制すると共に、吸収液の再生エネルギー(反応熱、顕熱)の供給にも寄与する。この点に関し、リボイラーとして吸収液A2を加熱するスチームヒーター22の水蒸気には、熱交換を可能とするための温度差が必要で、吸収液温度より少なくとも20℃程度以上高い水蒸気、実用的には200℃前後の高温の水蒸気を使用する必要があるため、熱供給効率としては、水蒸気Sによる供給より低い。従って、再生塔20に直接供給する水蒸気Sの熱エネルギーによって、スチームヒーター22からの供給エネルギーの一部が置換されることは、熱供給効率の点で好ましい。   Since the recovered gas C discharged from the regeneration tower 20 contains at least condensed water vapor separated by the gas-liquid separator 28, at least the water vapor equivalent to the condensed water is vaporized from the absorption liquid in the regeneration tower 20. However, in the present invention, a pipe having a water vapor supply system 40 for supplying water vapor S into the regeneration tower 20 to supplement the water vapor released together with the recovered gas C and connected to the bottom of the regeneration tower 20. Steam 35 is supplied from 35. By supplying the water vapor S to the atmosphere on the absorption liquid A2 at the bottom of the regeneration tower 20, vaporization from the stored absorption liquid A2 and the absorption liquid in the vicinity thereof is suppressed, and latent heat required for vaporization is lost from the absorption liquid. Can be suppressed. Therefore, the regenerative heat energy supplied from the steam heater 22 can be reduced. The steam S supplied by the steam supply system 40 may be at a temperature that does not cool the absorption liquid in the regeneration tower 20, and therefore is at or above the temperature of the absorption liquid A 2, and relatively low-temperature steam can be used. The supply of water vapor S suppresses the latent heat loss of the absorption liquid and contributes to the supply of regeneration energy (reaction heat, sensible heat) of the absorption liquid. In this regard, the steam of the steam heater 22 that heats the absorbing liquid A2 as a reboiler requires a temperature difference for enabling heat exchange, and is practically at least about 20 ° C. higher than the absorbing liquid temperature. Since it is necessary to use high-temperature steam at around 200 ° C., the heat supply efficiency is lower than the supply by steam S. Therefore, it is preferable in terms of heat supply efficiency that a part of the supply energy from the steam heater 22 is replaced by the heat energy of the steam S directly supplied to the regeneration tower 20.

再生塔20の吸収液A2の気化は、水蒸気Sの直接供給によって吸収液A2上の雰囲気が飽和すると好適に抑制されるが、過度の水蒸気Sが供給されると、再生塔20内で凝縮して吸収液の濃度を低下させる原因となる。従って、補充される水蒸気Sが適量になるように、水蒸気供給システム40は、回収ガスに含まれる水蒸気量を決定するための測定部41と、再生塔20に供給する水蒸気量を調節可能な調節弁42と、測定部41によって決定される水蒸気量に基づいて、再生塔20に供給する水蒸気量が回収ガスに含まれる水蒸気量と等しくなるように調節弁42を制御する制御部43とを有する。測定部41は、再生塔20頂部の排気管34を通るガスの流量、温度及び圧力を各々検出する流量計44,温度計45及び圧力計46を備え、これらは、コンピュータ等で構成される演算処理可能な制御部43と電気的に接続され、検出された流量、温度及び圧力のデータが制御部43に常時送られる。配管35には、水蒸気Sの流量を検出するための質量流量計47が設けられ、質量流量計47及び調節弁42は制御部43と電気的に接続されて、質量流量計47で検出される流量データが制御部43に常時送られる。制御部43は、測定部41から得られるガス温度から、その温度における飽和水蒸気圧を決定し、回収ガスのガス圧及び飽和水蒸気圧と、供給される水蒸気Sの流量とに基づいて、排出される回収ガスに含まれる飽和水蒸気量に対して適正比率の水蒸気Sが供給されるように調節弁42の開度を制御して水蒸気Sの供給速度を調節する。供給する水蒸気Sの量は、回収ガスの飽和水蒸気量に対して0.4倍程度以上、好ましくは0.5〜1.0倍程度となるように制御される。尚、図1の回収装置は、再生塔20の排気管34に圧力調整弁29が設けられ、必要に応じて再生塔20内を加圧して圧力を調節可能なように構成されているが、大気圧に設定する場合には省略して良い。   The vaporization of the absorption liquid A2 in the regeneration tower 20 is preferably suppressed when the atmosphere on the absorption liquid A2 is saturated by the direct supply of the water vapor S. However, if excessive water vapor S is supplied, it is condensed in the regeneration tower 20. This will cause the concentration of the absorbent to decrease. Therefore, the steam supply system 40 adjusts the measurement unit 41 for determining the amount of water vapor contained in the recovered gas and the amount of water vapor supplied to the regeneration tower 20 so that the replenished water vapor S becomes an appropriate amount. Based on the amount of water vapor determined by the valve 42 and the measurement unit 41, the control unit 43 controls the control valve 42 so that the amount of water vapor supplied to the regeneration tower 20 is equal to the amount of water vapor contained in the recovered gas. . The measurement unit 41 includes a flow meter 44, a thermometer 45, and a pressure gauge 46 that detect the flow rate, temperature, and pressure of the gas passing through the exhaust pipe 34 at the top of the regeneration tower 20, and these are operations configured by a computer or the like. It is electrically connected to the processable control unit 43, and the detected flow rate, temperature and pressure data are constantly sent to the control unit 43. The pipe 35 is provided with a mass flow meter 47 for detecting the flow rate of the water vapor S. The mass flow meter 47 and the control valve 42 are electrically connected to the control unit 43 and detected by the mass flow meter 47. The flow rate data is constantly sent to the control unit 43. The control unit 43 determines the saturated water vapor pressure at that temperature from the gas temperature obtained from the measuring unit 41, and is discharged based on the gas pressure and saturated water vapor pressure of the recovered gas and the flow rate of the supplied water vapor S. The feed rate of the water vapor S is adjusted by controlling the opening of the control valve 42 so that the water vapor S in an appropriate ratio with respect to the saturated water vapor amount contained in the recovered gas is supplied. The amount of water vapor S to be supplied is controlled to be about 0.4 times or more, preferably about 0.5 to 1.0 times the saturated water vapor amount of the recovered gas. 1 is provided with a pressure regulating valve 29 in the exhaust pipe 34 of the regeneration tower 20 so that the pressure can be adjusted by pressurizing the inside of the regeneration tower 20 as necessary. If the atmospheric pressure is set, it may be omitted.

図1の回収装置1において実施される回収方法について説明する。   A collection method implemented in the collection apparatus 1 of FIG. 1 will be described.

吸収塔10において、燃焼排ガスやプロセス排ガスなどの二酸化炭素を含有するガスGを底部から供給し、吸収液を上部から供給すると、充填材11上でガスGと吸収液とが気液接触し、吸収液に二酸化炭素が吸収される。二酸化炭素は、低温において良好に吸収されるので、概して50℃程度以下、好ましくは40℃以下となるように吸収液の液温又は吸収塔10(特に充填材11)の温度を調整する。吸収液は二酸化炭素の吸収によって発熱するので、これによる液温上昇を考慮し、液温が60℃を超えないように配慮することが望ましい。吸収塔10に供給されるガスGについても、上述を勘案して、冷却塔30によって適正な温度に調整する。吸収液として、二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。吸収塔10内のガス圧力は常圧に設定されるが、吸収液の二酸化炭素回収率を上げる必要がある場合には、圧力調節弁19によって、常圧を超える120kPaG程度以下、好ましくは10〜100kPaG程度の圧力範囲に調整するとよい。吸収剤としては、アルカノールアミン類やアルコール性水酸基を有するヒンダードアミン類などが挙げられ、具体的には、アルカノールアミンとして、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン等を例示することができ、アルコール性水酸基を有するヒンダードアミンとしては、2−アミノ−2−メチル−1−プロパノール(AMP)、2−(エチルアミノ)エタノール(EAE)、2−(メチルアミノ)エタノール(MAE)等を例示できる。通常、モノエタノールアミン(MEA)の使用が好まれ、これらを複数種混合しても良い。吸収液の吸収剤濃度は、処理対象とするガスに含まれる二酸化炭素量や処理速度等に応じて適宜設定することができ、吸収液の流動性や消耗損失抑制などの点を考慮すると、概して、10〜50質量%程度の濃度が適用され、例えば、二酸化炭素含有量20%程度のガスGの処理に対して、濃度30質量%程度の吸収液が好適に使用される。ガスG及び吸収液の供給速度は、ガスに含まれる二酸化炭素量及び気液接触効率等に応じて、吸収が充分に進行するように適宜設定される。   In the absorption tower 10, when the gas G containing carbon dioxide such as combustion exhaust gas and process exhaust gas is supplied from the bottom and the absorption liquid is supplied from the top, the gas G and the absorption liquid come into gas-liquid contact on the filler 11, Carbon dioxide is absorbed by the absorbing solution. Since carbon dioxide is well absorbed at low temperatures, the liquid temperature of the absorbent or the temperature of the absorption tower 10 (particularly the filler 11) is adjusted so that it is generally about 50 ° C. or lower, preferably 40 ° C. or lower. Since the absorbing liquid generates heat due to absorption of carbon dioxide, it is desirable to take into consideration the increase in liquid temperature caused by this, so that the liquid temperature does not exceed 60 ° C. The gas G supplied to the absorption tower 10 is also adjusted to an appropriate temperature by the cooling tower 30 in consideration of the above. An aqueous liquid containing a compound having affinity for carbon dioxide as an absorbent is used as the absorbent. Although the gas pressure in the absorption tower 10 is set to normal pressure, when it is necessary to increase the carbon dioxide recovery rate of the absorption liquid, the pressure control valve 19 causes the pressure to be about 120 kPaG or less, preferably 10 to less than normal pressure. It may be adjusted to a pressure range of about 100 kPaG. Examples of the absorbent include alkanolamines and hindered amines having an alcoholic hydroxyl group, and specific examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diisopropanolamine, and the like. Examples of the hindered amine having an alcoholic hydroxyl group include 2-amino-2-methyl-1-propanol (AMP), 2- (ethylamino) ethanol (EAE), and 2- (methylamino). ) Ethanol (MAE) and the like can be exemplified. Usually, the use of monoethanolamine (MEA) is preferred, and a plurality of these may be mixed. The absorbent concentration of the absorption liquid can be appropriately set according to the amount of carbon dioxide contained in the gas to be processed, the processing speed, etc. A concentration of about 10 to 50% by mass is applied. For example, an absorbent having a concentration of about 30% by mass is suitably used for the treatment of the gas G having a carbon dioxide content of about 20%. The supply rates of the gas G and the absorbing liquid are appropriately set so that the absorption proceeds sufficiently according to the amount of carbon dioxide contained in the gas, the gas-liquid contact efficiency, and the like.

二酸化炭素を吸収した吸収液A1は、再生塔20に供給されると、沸点近辺の高温度に加熱されるが、再生塔20に供給される前に熱交換器24において、再生塔20から還流する吸収液A2と熱交換されるので、吸収液A1は、再生塔20での加熱温度に近い温度に昇温されて二酸化炭素が放出され易い状態で再生塔20に投入される。この実施形態では、90〜115℃程度で再生塔20に投入される。更に、充填材21上での気液接触によって二酸化炭素の放出が促進されると共に、再生塔20底部での加熱によって更に昇温及び二酸化炭素の放出が進行する。底部に貯留される吸収液A2は、部分循環加熱によって沸点付近に加熱され、吸収液の沸点は組成(吸収剤濃度)及び再生塔20内の圧力に依存する。この際、吸収液から失う水の気化潜熱及び吸収液の顕熱の供給が必要であるが、気化を抑制するために加圧すると、沸点上昇により顕熱が増加するので、通常、これらのバランスを考慮して、再生塔20内を加圧して吸収液を120〜130℃に加熱することが必要となる。特に、吸収塔10内を加圧して吸収液の二酸化炭素吸収率を高めた場合には、吸収液の再生に十分な加熱が必要であるが、水蒸気Sの供給によって吸収液の気化が抑制されると、上述のような加圧昇温の必要性が薄れるので、本発明においては、再生塔20内のガス圧は、大気圧〜100kPaG程度の範囲で好適に設定することができ、吸収液の加熱温度は100℃から120℃未満の範囲に設定できる。回収ガスの飽和水蒸気量の0.4倍以上の水蒸気Sを大気圧の再生塔20に供給すると、水蒸気を供給せずに再生塔を100kPaGに加圧した場合と同等のエネルギー削減効果が得られる。二酸化炭素の回収効率の点からは、20〜85kPaG程度の加圧状態が好適且つ効率的であり、この範囲の圧力においては、回収ガスの飽和水蒸気量の0.2倍程度以上の水蒸気Sを供給することで、100kPaGに加圧した場合と同等になり、0.5倍以上、好ましくは0.8倍以上の水蒸気Sを供給すると、それによるエネルギー削減量は、100kPaGにおける水蒸気供給によるエネルギー削減量と同等以上になる。水蒸気供給によるエネルギー削減効果は、圧力が低いほど顕著であり、大気圧における水蒸気供給によるエネルギー削減量が加圧下におけるエネルギー削減量と同等以上になる水蒸気量は、回収ガスの飽和水蒸気量の1.5倍程度となる。これらを勘案すると、水蒸気Sの供給量は、回収ガスの飽和水蒸気量の1.5倍以上に設定する必要はなく、凝縮水による吸収液の希釈を避ける点から、回収ガスの飽和水蒸気量の0.4〜1.0倍程度を供給すると好適である。水蒸気Sの供給によって、吸収液の加熱温度自体を低めに設定できることによるエネルギー節減効果も得られ、吸収液に含まれる吸収剤の加熱劣化も軽減される。尚、吸収液の希釈又は濃縮が生じる場合は、必要に応じて、吸収液を抜き出して高濃度吸収液又は水を添加して濃度の調整を行うとよい。水蒸気Sの供給量を変更して調整することも可能である。   When the absorption liquid A1 that has absorbed carbon dioxide is supplied to the regeneration tower 20, it is heated to a high temperature near the boiling point, but before being supplied to the regeneration tower 20, the heat exchanger 24 recirculates from the regeneration tower 20. Therefore, the absorption liquid A1 is heated to a temperature close to the heating temperature in the regeneration tower 20 and charged into the regeneration tower 20 in a state where carbon dioxide is easily released. In this embodiment, the regeneration tower 20 is charged at about 90 to 115 ° C. Furthermore, the release of carbon dioxide is promoted by gas-liquid contact on the filler 21, and the temperature rise and the release of carbon dioxide further progress by heating at the bottom of the regeneration tower 20. The absorbent A2 stored in the bottom is heated to the vicinity of the boiling point by partial circulation heating, and the boiling point of the absorbent depends on the composition (absorbent concentration) and the pressure in the regeneration tower 20. At this time, it is necessary to supply the latent heat of vaporization of water lost from the absorbing solution and the sensible heat of the absorbing solution. However, when pressurization is performed to suppress vaporization, the sensible heat increases due to the rise in boiling point. In consideration of the above, it is necessary to pressurize the inside of the regeneration tower 20 and heat the absorbent to 120 to 130 ° C. In particular, when the inside of the absorption tower 10 is pressurized to increase the carbon dioxide absorption rate of the absorption liquid, sufficient heating for regeneration of the absorption liquid is necessary, but the vaporization of the absorption liquid is suppressed by the supply of the water vapor S. Then, since the necessity of the pressurization temperature raising as mentioned above is reduced, in the present invention, the gas pressure in the regeneration tower 20 can be suitably set in the range of about atmospheric pressure to 100 kPaG, and the absorbing liquid The heating temperature can be set in the range of 100 ° C. to less than 120 ° C. When steam S that is 0.4 times or more the saturated steam amount of the recovered gas is supplied to the regeneration tower 20 at atmospheric pressure, an energy reduction effect equivalent to that obtained when the regeneration tower is pressurized to 100 kPaG without supplying steam is obtained. . From the viewpoint of carbon dioxide recovery efficiency, a pressurized state of about 20 to 85 kPaG is suitable and efficient. At a pressure in this range, the water vapor S is about 0.2 times or more the saturated water vapor amount of the recovered gas. By supplying the same amount as when pressurized to 100 kPaG, when 0.5 times or more, preferably 0.8 times or more of the steam S is supplied, the energy reduction amount is reduced by the steam supply at 100 kPaG. It becomes equal to or more than the amount. The energy reduction effect due to the water vapor supply becomes more prominent as the pressure is lower. The amount of water vapor at which the energy reduction amount due to the water vapor supply at atmospheric pressure is equal to or greater than the energy reduction amount under pressure is 1. It will be about 5 times. Considering these, it is not necessary to set the supply amount of the water vapor S to 1.5 times or more of the saturated water vapor amount of the recovered gas, and from the point of avoiding dilution of the absorption liquid with condensed water, It is preferable to supply about 0.4 to 1.0 times. By supplying the water vapor S, an energy saving effect can be obtained because the heating temperature of the absorbing liquid itself can be set lower, and the heat deterioration of the absorbent contained in the absorbing liquid is also reduced. When dilution or concentration of the absorbing solution occurs, the concentration may be adjusted by extracting the absorbing solution and adding a high concentration absorbing solution or water as necessary. It is also possible to adjust by changing the supply amount of the water vapor S.

再生塔20に供給される水蒸気Sの温度は、吸収液の温度と同程度以上であれば良く、高い方が好ましいが、本発明では低品位排熱を利用できるので、この点を考慮すると、好ましくは0〜150℃程度高い温度、従って、100〜250℃程度がよい。再生塔20底部に供給される水蒸気Sは、底部に貯留される吸収液A2の液面上雰囲気の湿度を増加させ、吸収液A2液面の水の気化による熱損失及び温度低下が抑制されるので、上述のように、再生塔20の吸収液A2の加熱に要するスチームヒーター22のエネルギーを削減できる。   The temperature of the water vapor S supplied to the regeneration tower 20 may be equal to or higher than the temperature of the absorption liquid, and is preferably higher. However, in the present invention, low-grade exhaust heat can be used. The temperature is preferably about 0 to 150 ° C., and therefore about 100 to 250 ° C. is preferable. The water vapor S supplied to the bottom of the regeneration tower 20 increases the humidity of the atmosphere above the liquid surface of the absorbing liquid A2 stored in the bottom, and the heat loss and temperature decrease due to vaporization of water on the liquid surface of the absorbing liquid A2 are suppressed. Therefore, as described above, the energy of the steam heater 22 required for heating the absorption liquid A2 of the regeneration tower 20 can be reduced.

制御部43は、流量計44,温度計45及び圧力計46によって検出される回収ガスの物性値、つまり、排気管34のガス流量V[Nm/時]、ガス温度T[K]及びガス圧力P[kPa]と、配管35の質量流量計45によって検出される水蒸気Sの流量Vg[Nm/時]とに基づいて、再生塔20に供給される水蒸気Sの流量Pgが、回収ガスに含まれる水蒸気量と実質的に等しくなるように調節弁42の開度を制御する。制御における具体的手順としては、下記のTetensの式に従って、回収ガスの温度Tから回収ガスの飽和水蒸気圧Pwを決定し、回収ガスのガス圧力Pと飽和水蒸気圧Pwとの比が、回収ガスの流量と供給される水蒸気Sの流量Vgとの比に等しくなる水蒸気Sの流量Vg(=V×Pw/P)を算出すると、この流量Vgは回収ガスの飽和水蒸気量と等しくなる。従って、これを基準量として、前述に従って設定される倍率と基準量との積値を供給量と決定し、この量の水蒸気Sが供給される開度に調節弁42を制御する。 The control unit 43 uses the physical properties of the recovered gas detected by the flow meter 44, the thermometer 45, and the pressure gauge 46, that is, the gas flow rate V [Nm 3 / hour] of the exhaust pipe 34, the gas temperature T [K], and the gas Based on the pressure P [kPa] and the flow rate Vg [Nm 3 / hour] of the water vapor S detected by the mass flow meter 45 of the pipe 35, the flow rate Pg of the water vapor S supplied to the regeneration tower 20 is the recovered gas. The opening degree of the control valve 42 is controlled so as to be substantially equal to the amount of water vapor contained in. As a specific procedure in the control, the saturated water vapor pressure Pw of the recovered gas is determined from the temperature T of the recovered gas according to the following Tetens equation, and the ratio of the recovered gas gas pressure P to the saturated water vapor pressure Pw is determined as the recovered gas. When the flow rate Vg (= V × Pw / P) of the water vapor S that is equal to the ratio between the flow rate of the water vapor S and the flow rate Vg of the supplied water vapor S is calculated, the flow rate Vg becomes equal to the saturated water vapor amount of the recovered gas. Therefore, using this as the reference amount, the product value of the magnification set in accordance with the above and the reference amount is determined as the supply amount, and the control valve 42 is controlled to the opening at which this amount of water vapor S is supplied.

Pw=0.611×107.5T/(T+237.3) (Tetensの式) Pw = 0.611 × 10 7.5 T / (T + 237.3) (Tetens formula)

このように、回収ガスの飽和水蒸気圧に基づいて、調節弁42の制御により水蒸気の供給量を調整することで、再生塔20から排出される水蒸気量に応じて水蒸気Sが補われ、再生塔20内の吸収液から気化する水蒸気が減少する。冷却器27によって凝縮した水は、気液分離器35によって分離し、適宜排出される。   In this way, by adjusting the supply amount of water vapor by controlling the control valve 42 based on the saturated water vapor pressure of the recovered gas, the water vapor S is supplemented according to the amount of water vapor discharged from the regeneration tower 20, and the regeneration tower The water vapor evaporated from the absorption liquid in 20 decreases. The water condensed by the cooler 27 is separated by the gas-liquid separator 35 and is appropriately discharged.

このようにして、吸収液は、吸収塔10と再生塔20との間で循環し、吸収工程と再生工程とが交互に繰り返される。再生塔20への水蒸気Sの供給による潜熱ロスの抑制及び加熱温度の低下によって吸収液の再生エネルギーが削減されるので、吸収液の再生効率が向上し、吸収液の消耗及び装置の負担が軽減された二酸化の回収装置となる。又、吸収液の再生効率が良いので、吸収塔10内の加圧によって二酸化炭素の回収率を高めた場合にも効率よく吸収液を再生できる。   In this way, the absorption liquid circulates between the absorption tower 10 and the regeneration tower 20, and the absorption process and the regeneration process are alternately repeated. Since the regeneration energy of the absorbent is reduced by suppressing the latent heat loss by supplying the steam S to the regeneration tower 20 and the heating temperature is lowered, the regeneration efficiency of the absorbent is improved, and the consumption of the absorbent and the burden on the apparatus are reduced. It becomes the recovery device of the collected dioxide. Moreover, since the regeneration efficiency of the absorbing liquid is good, the absorbing liquid can be efficiently regenerated even when the carbon dioxide recovery rate is increased by pressurization in the absorption tower 10.

図2は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の第2の実施形態を示す。この回収装置2は、再生塔20に供給する水蒸気Sの流量を、気液分離器28に貯溜される凝縮水の水位に基づいて調節する点が第1の実施形態とは異なり、気液分離器28の水位変化から凝縮水の貯溜量を求め、この量を回収ガスと共に排出される水蒸気流量として、これに基づいて前述した倍率の流量の水蒸気Sを再生塔20に供給する。   FIG. 2 shows a second embodiment of the carbon dioxide recovery method of the present invention and a recovery apparatus for carrying out the method. Unlike the first embodiment, the recovery device 2 is different from the first embodiment in that the flow rate of the water vapor S supplied to the regeneration tower 20 is adjusted based on the water level of the condensed water stored in the gas-liquid separator 28. The amount of condensed water stored is determined from the change in the water level of the vessel 28, and this amount is used as the flow rate of water vapor discharged together with the recovered gas.

詳細には、この実施形態における水蒸気供給システム40’は、回収ガスに含まれる水蒸気量を決定するための物性値を測定する測定部として、気液分離器28中の凝縮水の水位を検出する水位計48が気液分離器28に付設され、制御部43’は、水位計48によって測定される水位に基づいて回収ガスに含まれる水蒸気の流量を算出し、この流量に従って前述の倍率で水蒸気Sが再生塔20に供給されるように、調節弁42の開度を制御して水蒸気Sの流量を調節する。水位計48は、制御部43’と電気的に接続され、水位計48で測定される水位データは制御部43’に常時送られ、水位増加から単位時間当たりの凝縮水の増加量が算出される。この増加量を、回収ガスに水蒸気として含まれる水分量、つまり、回収ガスの飽和水蒸気量と見なして、前述の倍率を積算して供給量を決定し、この量の水蒸気Sを再生塔20に供給する。   Specifically, the steam supply system 40 ′ in this embodiment detects the water level of the condensed water in the gas-liquid separator 28 as a measurement unit that measures a physical property value for determining the amount of water vapor contained in the recovered gas. A water level gauge 48 is attached to the gas-liquid separator 28, and the control unit 43 ′ calculates the flow rate of water vapor contained in the recovered gas based on the water level measured by the water level gauge 48, and in accordance with this flow rate the water vapor at the aforementioned magnification. The flow rate of the water vapor S is adjusted by controlling the opening of the control valve 42 so that S is supplied to the regeneration tower 20. The water level meter 48 is electrically connected to the control unit 43 ′, and the water level data measured by the water level meter 48 is constantly sent to the control unit 43 ′, and the amount of increase in condensed water per unit time is calculated from the water level increase. The The increased amount is regarded as the amount of water contained in the recovered gas as water vapor, that is, the saturated water vapor amount of the recovered gas, and the supply rate is determined by integrating the above-mentioned magnifications, and this amount of water vapor S is supplied to the regeneration tower 20. Supply.

この場合、気液分離器28を通過する回収ガスは若干の湿分を含むので、水位計48によって決定される凝縮水の増加量は、回収ガスと共に再生塔20から排出される水蒸気量より僅かに少なくなり得る。このような場合に補整するには、冷却器27の温度における飽和水蒸気圧Pw’及び回収ガスの排出流量Vを用いて、第1の実施形態と同様にして、不足分の水蒸気流量Vg’(=V×Pw’/P)を算出し、この量を、水位データに基づく水蒸気流量Vgに加えるように制御部43で予め設定することができる。気液分離器28中の凝縮水は、水位変化の測定を適時に行えるように適宜排出する。図2の回収装置2は、装置構成が簡易である利点がある。   In this case, since the recovered gas passing through the gas-liquid separator 28 contains some moisture, the amount of increase in condensed water determined by the water level gauge 48 is slightly smaller than the amount of water vapor discharged from the regeneration tower 20 together with the recovered gas. Can be less. In such a case, in order to compensate for this, using the saturated water vapor pressure Pw ′ at the temperature of the cooler 27 and the discharge flow rate V of the recovered gas, the deficient water vapor flow rate Vg ′ ( = V × Pw ′ / P), and this amount can be preset by the control unit 43 so as to be added to the water vapor flow rate Vg based on the water level data. The condensed water in the gas-liquid separator 28 is appropriately discharged so that the change in the water level can be measured in a timely manner. The recovery device 2 of FIG. 2 has an advantage that the device configuration is simple.

第2の実施形態において、上記の点以外は、第1の実施形態と同様に構成されているので、説明は省略する。   Since the second embodiment is configured in the same manner as the first embodiment except for the above points, the description thereof is omitted.

本発明の実施における水蒸気供給量と再生エネルギーとの関係を評価するために、第1の実施形態の回収装置1において、30質量%モノエタノールアミン水溶液を吸収液として用い、二酸化炭素の回収処理を行う際に再生塔20内の圧力を変化させて、回収率及び再生エネルギーを調べ(処理A1〜A4)、更に、再生塔20へ水蒸気Sを供給させて、回収率及び再生エネルギーの水蒸気供給量による変動を検討する(処理B1〜B4,C1〜C4,D1〜D4)と、表1のようになる。尚、この回収処理におけるガスGの供給速度は7Nm/Hr、吸収液の循環速度は42L/Hr、吸収塔10の温度は、40〜60℃、スチームヒーター22による再生塔20の吸収液の加熱温度は沸点、再生塔20に供給する水蒸気Sの温度は沸点と同温度とした。表1における「エネルギー削減量」は、処理A4(吸収塔圧力:0kPaG、再生塔圧力:100kPaG、水蒸気:なし)の再生エネルギーを基準(100%)として、これより削減される再生エネルギー量の百分率を示す。

Figure 0005724600
In order to evaluate the relationship between the steam supply amount and the regenerative energy in the implementation of the present invention, in the recovery apparatus 1 of the first embodiment, a 30% by mass monoethanolamine aqueous solution is used as an absorbing liquid, and carbon dioxide recovery processing is performed. When performing, the pressure in the regeneration tower 20 is changed to examine the recovery rate and the regeneration energy (processing A1 to A4), and further, the steam S is supplied to the regeneration tower 20 so that the steam supply amount of the recovery rate and the regeneration energy. Table 1 shows the variation due to the above (processing B1 to B4, C1 to C4, D1 to D4). In this recovery process, the gas G supply rate is 7 Nm 3 / Hr, the absorption liquid circulation rate is 42 L / Hr, the temperature of the absorption tower 10 is 40 to 60 ° C., and the absorption liquid of the regeneration tower 20 by the steam heater 22 is used. The heating temperature was the boiling point, and the temperature of the steam S supplied to the regeneration tower 20 was the same as the boiling point. “Energy reduction amount” in Table 1 is the percentage of the amount of regenerative energy reduced from the regenerative energy of treatment A4 (absorption tower pressure: 0 kPaG, regenerative tower pressure: 100 kPaG, water vapor: none) as a reference (100%). Indicates.
Figure 0005724600

表1の結果によれば、水蒸気の供給によって再生エネルギーを削減できることが明らかであるが、供給量によって再生エネルギーの削減傾向が異なる。具体的には、水蒸気を供給しない状態では、再生塔の圧力が低いと、再生エネルギーが増加するが、回収ガスの飽和量を超える水蒸気を供給すると、逆に、再生塔の圧力が高い方が再生エネルギーが大きく、大気圧でのエネルギー削減効果は加圧状態より著しい(処理D1〜D4)。水蒸気の供給量が回収ガスの飽和量に等しいと、再生塔の圧力に関係なく、ほぼ同程度にエネルギー削減が可能である(処理C1〜C4)。   According to the results in Table 1, it is clear that the renewable energy can be reduced by supplying water vapor, but the tendency of reducing the renewable energy differs depending on the supply amount. Specifically, in the state where steam is not supplied, if the pressure in the regeneration tower is low, the regeneration energy increases. However, if steam exceeding the saturation amount of the recovered gas is supplied, conversely, the pressure in the regeneration tower is higher. The regenerative energy is large, and the energy reduction effect at atmospheric pressure is more remarkable than the pressurized state (processing D1 to D4). When the supply amount of water vapor is equal to the saturation amount of the recovered gas, energy can be reduced to the same extent regardless of the pressure in the regeneration tower (processing C1 to C4).

表1の水蒸気の供給量と再生エネルギーの削減量との関係をグラフ化すれば、再生塔の圧力を大気圧に設定した時に、回収ガスの飽和水蒸気量の0.4倍程度以上の水蒸気を供給すれば、100kPaGの加圧による効果と同程度以上の再生エネルギー削減効果が得られることが解る。又、水蒸気の供給量が回収ガスの飽和水蒸気量の1.2±0.2倍程度である時、再生塔の圧力によって再生エネルギーの削減量が変動する幅が小さく、エネルギー供給の制御を簡便にする観点からは、1.2±0.2倍程度に設定すると良い。但し、水蒸気の凝縮による影響を考慮すると、上限を1.2倍量程度とすることが好適であり、好ましくは0.4〜1.0倍程度となる。実用的には、誤差等を勘案して0.4〜1.2倍程度の範囲で適宜設定するとよい。   If the relationship between the amount of steam supplied in Table 1 and the amount of reduction in regeneration energy is graphed, when the pressure in the regeneration tower is set to atmospheric pressure, steam that is about 0.4 times or more the saturated steam amount of the recovered gas It can be seen that, if supplied, a regenerative energy reduction effect equivalent to or higher than the effect of pressurization of 100 kPaG can be obtained. Moreover, when the supply amount of water vapor is about 1.2 ± 0.2 times the saturated water vapor amount of the recovered gas, the amount of reduction in the reduction amount of the regeneration energy due to the pressure of the regeneration tower is small, and the control of the energy supply is simple. From the viewpoint of making it, it is better to set it to about 1.2 ± 0.2 times. However, considering the influence of water vapor condensation, the upper limit is preferably about 1.2 times, and preferably about 0.4 to 1.0 times. Practically, it may be set as appropriate within a range of about 0.4 to 1.2 times in consideration of errors and the like.

下記の表2では、供給する水蒸気の温度による影響を評価しており、表1の処理C1における水蒸気温度を200℃に設定した処理C5を記載する。これによれば、水蒸気の温度によって二酸化炭素の回収率は実質的に変化しないが、水蒸気の温度を高くすると、熱エネルギーの直接供給によってエネルギー供給効率が向上して、エネルギー削減に寄与すると理解される。

Figure 0005724600
In Table 2 below, the influence of the temperature of the supplied steam is evaluated, and a process C5 in which the steam temperature in the process C1 of Table 1 is set to 200 ° C. is described. According to this, it is understood that the carbon dioxide recovery rate does not substantially change depending on the temperature of the water vapor, but if the temperature of the water vapor is increased, the energy supply efficiency is improved by the direct supply of thermal energy, thereby contributing to energy reduction. The
Figure 0005724600

水蒸気を供給しない場合、二酸化炭素の再生熱が4.0GJ/t-CO程度となる処理条件では、そのうちの1.2GJ/t-CO程度が吸収液A2から失われる蒸発潜熱に相当するが、水蒸気を供給する状態では、失われる蒸発潜熱が0.6GJ/t-CO程度以下に減少し、二酸化炭素の再生熱は3.4GJ/t-CO程度以下に軽減できる。 If not supplied steam, carbon dioxide regeneration heat in the processing conditions to be 4.0GJ / t-CO 2 mm, equivalent to the latent heat of vaporization of about 1.2GJ / t-CO 2 of which is lost from the absorption liquid A2 However, in the state where water vapor is supplied, the latent heat of vaporization lost is reduced to about 0.6 GJ / t-CO 2 or less, and the regeneration heat of carbon dioxide can be reduced to about 3.4 GJ / t-CO 2 or less.

再生塔20の圧力が低いと、吸収塔での二酸化炭素回収率が低下し、これは吸収液の再生率が低下するためと考えられるが、再生塔20に水蒸気を供給する場合では、再生塔20の圧力が低下しても再生エネルギーは増加せず、二酸化炭素の回収率は、水蒸気を供給しない場合どさほど変わらない。つまり、水蒸気自体には二酸化炭素を放出させる作用は見られないが、水蒸気の供給によって再生エネルギーの損失が抑制されて効率的に二酸化炭素が放出されると考えられる。従って、再生塔20に水蒸気を補充することによって、吸収液の再生に要する加熱温度及びエネルギーの低減が可能であると共に、再生におけるエネルギーの使用効率が向上して効率的に再生が進行し、その結果として、吸収塔10における吸収率の低下が防止される。   If the pressure in the regeneration tower 20 is low, the carbon dioxide recovery rate in the absorption tower is decreased, which is considered to be due to a decrease in the regeneration ratio of the absorption liquid. Even if the pressure of 20 decreases, the regenerative energy does not increase, and the carbon dioxide recovery rate does not change much when water vapor is not supplied. In other words, the steam itself does not have an action of releasing carbon dioxide, but it is considered that the supply of steam suppresses the loss of regeneration energy and releases carbon dioxide efficiently. Therefore, by replenishing the regeneration tower 20 with water vapor, it is possible to reduce the heating temperature and energy required for the regeneration of the absorbing liquid, improve the efficiency of use of energy in the regeneration, and promote the regeneration efficiently. As a result, a decrease in the absorption rate in the absorption tower 10 is prevented.

処理対象とする排ガスの内容によっては、さほど高い二酸化炭素回収率を必要としない状況もあり得る。その場合、操業コストや装置負担等を軽減するような処理条件の設定変更が容易である方が好ましい。吸収液の二酸化炭素回収率は、吸収液の循環速度や排ガスとの接触時間によって変化するが、上述によれば、再生塔20内の圧力によっても変化し、換言すれば、再生塔内の圧力制御によって対応可能でもある。この場合、適正な再生エネルギー供給を継続するためには、圧力の変更に伴う修正が少ない方が好ましく、水蒸気の供給量を回収ガスの飽和水蒸気量に対して1.0倍前後の量に設定することは、供給すべき再生エネルギーの修正が複雑化するのを避けられるので、リボイラーのようなエネルギー供給手段を採用する上で好ましい。   Depending on the content of the exhaust gas to be treated, there may be situations where a high carbon dioxide recovery rate is not required. In that case, it is preferable that it is easy to change the setting of the processing conditions so as to reduce the operation cost and the equipment burden. The carbon dioxide recovery rate of the absorption liquid changes depending on the circulation speed of the absorption liquid and the contact time with the exhaust gas. However, according to the above, it also changes depending on the pressure in the regeneration tower 20, in other words, the pressure in the regeneration tower. It can also be handled by control. In this case, in order to continue the proper supply of regenerative energy, it is preferable that the correction with a change in pressure is less, and the supply amount of water vapor is set to about 1.0 times the saturated water vapor amount of the recovered gas. This is preferable in adopting an energy supply means such as a reboiler because the correction of the regenerative energy to be supplied can be prevented from becoming complicated.

本発明は、火力発電所や製鉄所、ボイラーなどの設備から排出される二酸化炭素含有ガスの処理等において利用して、その二酸化炭素放出量や、環境に与える影響などの軽減に有用である。二酸化炭素の回収処理に要する費用が削減され、省エネルギー及び環境保護に貢献可能な二酸化炭素の回収装置を提供できる。   INDUSTRIAL APPLICABILITY The present invention is useful for reducing the amount of carbon dioxide released and its influence on the environment, for example, in the treatment of carbon dioxide-containing gas discharged from facilities such as thermal power plants, ironworks, and boilers. The cost required for the carbon dioxide recovery process can be reduced, and a carbon dioxide recovery device that can contribute to energy saving and environmental protection can be provided.

1,2:回収装置、 10:吸収塔、 20:再生塔、 30:冷却塔、
40,40’:水蒸気供給システム、 11,21,31:充填材、
12,15,23,32:ポンプ、 13:冷却凝縮部、
14,25,27,33:冷却器、 16:供給路、
17:還流路、 18:逆止弁、 19,29:圧力調節弁、
22:スチームヒーター、 22’:循環路、 24:熱交換器、
26:凝縮部、 28:気液分離器、 41:測定部、 42:調節弁、
43,43’:制御部、44:流量計、 45:温度計、
46:圧力計、 47:質量流量計、 48:水位計、
G、G’:ガス、 A1,A2:吸収液、 C:回収ガス。
1, 2: Recovery device, 10: Absorption tower, 20: Regeneration tower, 30: Cooling tower,
40, 40 ′: water vapor supply system, 11, 21, 31: filler,
12, 15, 23, 32: pump, 13: cooling condensing part,
14, 25, 27, 33: cooler, 16: supply path,
17: reflux path, 18: check valve, 19, 29: pressure regulating valve,
22: Steam heater, 22 ': Circuit, 24: Heat exchanger,
26: Condensing unit, 28: Gas-liquid separator, 41: Measuring unit, 42: Control valve,
43, 43 ′: control unit, 44: flow meter, 45: thermometer,
46: Pressure gauge, 47: Mass flow meter, 48: Water level gauge,
G, G ′: gas, A1, A2: absorbing liquid, C: recovered gas.

Claims (12)

二酸化炭素を含有するガスを吸収液に接触させて、前記吸収液に二酸化炭素を吸収させる吸収塔と、
前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生塔と、
前記再生塔から排出される二酸化炭素を含んだ回収ガスに含まれる水蒸気量を測定する測定部と、
前記測定部によって測定される前記回収ガスの水蒸気量を基準量として、前記回収ガスに含まれる水蒸気の流量の0.4〜1.0倍量の水蒸気を前記再生塔に供給する水蒸気供給システムと
を有する二酸化炭素の回収装置。
An absorption tower in which a gas containing carbon dioxide is brought into contact with an absorption liquid, and the absorption liquid absorbs carbon dioxide;
A regeneration tower for heating the absorption liquid that has absorbed carbon dioxide in the absorption tower to release carbon dioxide from the absorption liquid to regenerate the absorption liquid;
A measuring unit for measuring the amount of water vapor contained in the recovered gas containing carbon dioxide discharged from the regeneration tower;
A water vapor supply system for supplying the regeneration tower with water vapor in an amount 0.4 to 1.0 times the flow rate of water vapor contained in the recovered gas, using the amount of water vapor of the recovered gas measured by the measuring unit as a reference amount; A carbon dioxide recovery device.
前記水蒸気供給システムが供給する前記水蒸気の温度は、前記再生塔で加熱される吸収液の温度以上である請求項1に記載の二酸化炭素の回収装置。   The carbon dioxide recovery device according to claim 1, wherein the temperature of the water vapor supplied by the water vapor supply system is equal to or higher than the temperature of the absorbing liquid heated in the regeneration tower. 前記測定部は、前記回収ガスに含まれる水蒸気の流量を決定するための物性値を検出し、
前記水蒸気供給システムは、
前記再生塔に供給する水蒸気の流量を調節可能な調節弁と
前記再生塔に供給する水蒸気の流量を前記比率になるように調節するために、前記測定部で測定される物性値に基づいて前記調節弁を制御する制御部と
を有する請求項1又は2に記載の二酸化炭素の回収装置。
The measurement unit detects a physical property value for determining a flow rate of water vapor contained in the recovered gas,
The water vapor supply system includes:
In order to adjust the flow rate of the water vapor supplied to the regeneration tower to the ratio, the control valve capable of adjusting the flow rate of the water vapor supplied to the regeneration tower based on the physical property value measured by the measurement unit The carbon dioxide recovery device according to claim 1, further comprising: a control unit that controls the control valve.
更に、前記再生塔内を加圧状態に調整可能な圧力調節弁を有し、
前記測定部は、前記物性値として前記回収ガスの温度及び圧力を測定する温度計及び圧力計を有し、
前記制御部は、前記測定部で測定される前記回収ガスの温度及び圧力に基づいて前記回収ガスの飽和水蒸気圧を算出し前記飽和水蒸気圧を用いて前記再生塔に供給する水蒸気の流量を決定する請求項に記載の二酸化炭素の回収装置。
Furthermore, it has a pressure control valve capable of adjusting the inside of the regeneration tower to a pressurized state,
The measurement unit has a thermometer and a pressure gauge for measuring the temperature and pressure of the recovered gas as the physical property values,
Wherein, based on the temperature and pressure of the collected gas to be measured by the measuring unit, and calculates the saturated vapor pressure of the collected gas steam supplied before Symbol regenerator using the saturated vapor pressure The carbon dioxide recovery apparatus according to claim 3 , wherein the flow rate is determined.
前記測定部は、更に、前記回収ガスの流量を測定する流量計を有し、前記制御部は、前記回収ガスの流量と前記再生塔に供給する水蒸気の流量との比が、前記回収ガスの圧力と前記回収ガスの飽和水蒸気圧との比に等しくなるような前記水蒸気の流量を前記基準量として、前記比率の水蒸気を供給するように前記調節弁を制御する請求項に記載の二酸化炭素の回収装置。 The measuring unit further includes a flow meter for measuring the flow rate of the recovered gas, and the control unit is configured such that a ratio between the flow rate of the recovered gas and the flow rate of water vapor supplied to the regeneration tower is equal to that of the recovered gas. 5. The carbon dioxide according to claim 4 , wherein the control valve is controlled so as to supply water vapor at the ratio with the flow rate of the water vapor being equal to a ratio of a pressure and a saturated water vapor pressure of the recovered gas as the reference amount. Recovery equipment. 前記測定部は、前記物性値として前記回収ガスから分離される凝縮水の水位を測定する水位計を有し、
前記制御部は、前記測定部で測定される凝縮水の水位の変化に基づいて前記回収ガスに含まれる水蒸気の流量を算出し、算出された水蒸気の流量を基準量として、前記再生塔に供給する水蒸気の流量を決定する請求項に記載の二酸化炭素の回収装置。
The measurement unit has a water level meter that measures the water level of the condensed water separated from the recovered gas as the physical property value,
The control unit calculates a flow rate of water vapor contained in the recovered gas based on a change in the water level of the condensed water measured by the measurement unit, and supplies the calculated flow rate of water vapor as a reference amount to the regeneration tower. The carbon dioxide recovery device according to claim 3 , wherein the flow rate of the water vapor to be determined is determined.
二酸化炭素を含有するガスを加圧下で吸収液に接触させて、前記吸収液に二酸化炭素を吸収させる吸収工程と、
前記吸収工程で二酸化炭素を吸収した前記吸収液を加熱して二酸化炭素を前記吸収液から放出させて吸収液を再生する再生工程と、
前記再生工程から排出される二酸化炭素を含んだ回収ガスに含まれる水蒸気量を測定する測定工程と、
前記測定工程によって測定される前記回収ガスの水蒸気量を基準として、前記回収ガスに含まれる水蒸気の流量の0.4〜1.0倍量の水蒸気を前記再生塔に供給する水蒸気供給工程と
を有する二酸化炭素の回収方法。
An absorption step in which a gas containing carbon dioxide is brought into contact with an absorbing solution under pressure, and the absorbing solution absorbs carbon dioxide;
A regeneration step of regenerating the absorbing liquid by heating the absorbing liquid that has absorbed carbon dioxide in the absorbing step to release carbon dioxide from the absorbing liquid;
A measurement step of measuring the amount of water vapor contained in the recovered gas containing carbon dioxide discharged from the regeneration step;
A steam supply step of supplying the regeneration tower with water vapor in an amount 0.4 to 1.0 times the flow rate of water vapor contained in the recovered gas, based on the water vapor amount of the recovered gas measured in the measuring step. A method for recovering carbon dioxide.
前記水蒸気供給工程で供給する前記水蒸気の温度は、前記再生工程で加熱される吸収液の温度以上である請求項に記載の二酸化炭素の回収方法。 The method for recovering carbon dioxide according to claim 7 , wherein the temperature of the water vapor supplied in the water vapor supply step is equal to or higher than the temperature of the absorption liquid heated in the regeneration step. 前記測定工程において、回収ガスに含まれる水蒸気の流量を決定するための物性値を検出し、
前記水蒸気供給工程は、
前記再生工程に供給する水蒸気の流量を調節する調節工程と
前記測定工程で測定される物性値に基づいて前記調節工程における調節を流量が前記比率になるように制御する制御工程と
を有する請求項又はに記載の二酸化炭素の回収方法。
In the measurement step, a physical property value for determining the flow rate of water vapor contained in the recovered gas is detected,
The steam supply step includes
An adjustment step for adjusting a flow rate of water vapor supplied to the regeneration step, and a control step for controlling the adjustment in the adjustment step based on the physical property value measured in the measurement step so that the flow rate becomes the ratio. The method for recovering carbon dioxide according to 7 or 8 .
前記再生塔工程における圧力は、加圧状態に調整可能であり、
前記測定工程において、前記物性値として前記回収ガスの温度及び圧力を測定し、
前記制御工程において、前記測定工程で測定される前記回収ガスの温度及び圧力に基づいて前記回収ガスの飽和水蒸気圧を算出し前記飽和水蒸気圧を用いて前記再生工程に供給する水蒸気の流量を決定する請求項に記載の二酸化炭素の回収方法。
The pressure in the regeneration tower step can be adjusted to a pressurized state,
In the measurement step, the temperature and pressure of the recovered gas are measured as the physical property values,
In the control step, on the basis of the temperature and pressure of the collected gas to be measured in the measuring step, the steam supply before Symbol regeneration step using the saturated water vapor pressure and calculates the saturated vapor pressure of the collected gas The method for recovering carbon dioxide according to claim 9 , wherein the flow rate is determined.
前記測定工程において、更に、前記回収ガスの流量を測定し、前記制御工程において、前記回収ガスの流量と前記再生工程に供給する水蒸気の流量との比が、前記回収ガスの圧力と前記回収ガスの飽和水蒸気圧との比に等しくなるような前記水蒸気の流量を前記基準量として、前記比率の水蒸気を供給するように前記調節工程における流量の調節を制御する請求項10に記載の二酸化炭素の回収方法。 In the measurement step, the flow rate of the recovered gas is further measured, and in the control step, the ratio between the flow rate of the recovered gas and the flow rate of water vapor supplied to the regeneration step is the pressure of the recovered gas and the recovered gas. The flow rate of the carbon dioxide according to claim 10 , wherein the adjustment of the flow rate in the adjustment step is controlled so as to supply water vapor in the ratio, with the flow rate of the water vapor being equal to the ratio of the saturated water vapor pressure to the reference amount. Collection method. 前記測定工程において、前記物性値として前記回収ガスから分離される凝縮水の水位を測定し、
前記制御工程において、前記測定工程で測定される凝縮水の水位の変化に基づいて前記回収ガスに含まれる水蒸気の流量を算出し、算出された水蒸気の流量を前記基準量として、前記再生工程に供給する水蒸気の流量を決定する請求項に記載の二酸化炭素の回収方法。
In the measurement step, the water level of the condensed water separated from the recovered gas is measured as the physical property value,
In the control step, the flow rate of water vapor contained in the recovered gas is calculated based on the change in the water level of the condensed water measured in the measurement step, and the flow rate of the calculated water vapor is used as the reference amount for the regeneration step. The method for recovering carbon dioxide according to claim 9 , wherein a flow rate of water vapor to be supplied is determined.
JP2011105107A 2011-05-10 2011-05-10 Carbon dioxide recovery method and recovery apparatus Active JP5724600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105107A JP5724600B2 (en) 2011-05-10 2011-05-10 Carbon dioxide recovery method and recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105107A JP5724600B2 (en) 2011-05-10 2011-05-10 Carbon dioxide recovery method and recovery apparatus

Publications (2)

Publication Number Publication Date
JP2012236118A JP2012236118A (en) 2012-12-06
JP5724600B2 true JP5724600B2 (en) 2015-05-27

Family

ID=47459532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105107A Active JP5724600B2 (en) 2011-05-10 2011-05-10 Carbon dioxide recovery method and recovery apparatus

Country Status (1)

Country Link
JP (1) JP5724600B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817082B1 (en) * 2016-07-29 2018-01-11 주식회사 포스코건설 Apparatus and method of recycling steam condensate formed in carbon dioxide capturing apparatus
CN110090506A (en) * 2019-03-22 2019-08-06 深圳市亿众乐新能源科技有限公司 A kind of multi-functional exhaust treatment system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751537A (en) * 1993-06-30 1995-02-28 Mitsubishi Heavy Ind Ltd Removal of co2 in co2-containing gas
JP2008029976A (en) * 2006-07-31 2008-02-14 Petroleum Energy Center System for recovering carbon dioxide and method for recovering carbon dioxide
JP5331587B2 (en) * 2009-06-18 2013-10-30 株式会社東芝 Carbon dioxide recovery system

Also Published As

Publication number Publication date
JP2012236118A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
RU2558361C2 (en) Water flushing method and system for carbon dioxide trapping method
JP5655593B2 (en) Carbon dioxide recovery method and recovery apparatus
US10786781B2 (en) Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
US10173166B2 (en) Carbon dioxide recovering apparatus and method for operating the same
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
CA2851586C (en) Method of recovering carbon dioxide and recovery apparatus
JP5527095B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2015199007A (en) Carbon dioxide recovery device and amine recovery method
JP6847760B2 (en) How to operate the carbon dioxide capture system and the carbon dioxide capture system
JP5762253B2 (en) Control method for CO2 chemical absorption system
JP2017109884A (en) Carbon dioxide recovery system
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5522004B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5720463B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5724600B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6225572B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2012196603A (en) Method and device for recovering carbon dioxide
JP6248813B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6225574B2 (en) Carbon dioxide recovery method and recovery apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5724600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250