[go: up one dir, main page]

JP6225572B2 - Carbon dioxide recovery method and recovery apparatus - Google Patents

Carbon dioxide recovery method and recovery apparatus Download PDF

Info

Publication number
JP6225572B2
JP6225572B2 JP2013184129A JP2013184129A JP6225572B2 JP 6225572 B2 JP6225572 B2 JP 6225572B2 JP 2013184129 A JP2013184129 A JP 2013184129A JP 2013184129 A JP2013184129 A JP 2013184129A JP 6225572 B2 JP6225572 B2 JP 6225572B2
Authority
JP
Japan
Prior art keywords
cooling
water
gas
temperature
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013184129A
Other languages
Japanese (ja)
Other versions
JP2015051382A (en
Inventor
至高 中村
至高 中村
山中 康朗
康朗 山中
健司 高野
健司 高野
真也 奥野
真也 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013184129A priority Critical patent/JP6225572B2/en
Publication of JP2015051382A publication Critical patent/JP2015051382A/en
Application granted granted Critical
Publication of JP6225572B2 publication Critical patent/JP6225572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、燃焼ガスなどの二酸化炭素を含むガスから二酸化炭素を分離回収し、清浄なガスを大気に還元するための二酸化炭素の回収方法及び回収装置に関する。   The present invention relates to a carbon dioxide recovery method and recovery device for separating and recovering carbon dioxide from a gas containing carbon dioxide such as combustion gas and reducing clean gas to the atmosphere.

火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物及び二酸化炭素は、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収・貯蔵を可能とするために、様々な研究が精力的に進められ、二酸化炭素の回収方法として、例えば、PSA(圧力スウィング)法、膜分離濃縮法や、塩基性化合物による反応吸収を利用する化学吸収法などが知られている。   Facilities such as thermal power plants, steelworks, and boilers use large amounts of fuel such as coal, heavy oil, and super heavy oil. Sulfur oxides, nitrogen oxides, and carbon dioxide emitted by the combustion of fuel are There is a need for quantitative and concentration restrictions on emissions from the perspective of air pollution prevention and global environmental protection. In recent years, carbon dioxide has been seen as a major cause of global warming, and movements to suppress emissions have become active worldwide. For this reason, in order to enable the recovery and storage of carbon dioxide from combustion exhaust gases and process exhaust gases without releasing them into the atmosphere, various researches have been vigorously advanced. As a carbon dioxide recovery method, for example, PSA ( Known are pressure swinging), membrane separation and concentration, and chemical absorption using reaction absorption by basic compounds.

化学吸収法においては、主にアルカノールアミン系の塩基性化合物を吸収剤として用い、その処理プロセスでは、概して、吸収剤を含む水性液を吸収液として、ガスに含まれる二酸化炭素を吸収液に吸収させる吸収工程と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する再生工程とを交互に繰り返すように吸収液を循環させる(例えば、下記特許文献1参照)。再生工程においては、二酸化炭素を放出させるための加熱が必要であり、二酸化炭素回収の操業費用を削減するために、再生時の加熱に要するエネルギーを低減するように回収装置の構成に工夫が施される。   In the chemical absorption method, mainly alkanolamine-based basic compounds are used as the absorbent. In the treatment process, an aqueous liquid containing the absorbent is generally used as the absorbent, and carbon dioxide contained in the gas is absorbed into the absorbent. The absorbing solution is circulated so as to alternately repeat the absorbing step to be performed and the regeneration step of regenerating the absorbing solution by releasing the absorbed carbon dioxide from the absorbing solution (see, for example, Patent Document 1 below). In the regeneration process, heating to release carbon dioxide is necessary, and in order to reduce the operating cost of carbon dioxide recovery, the recovery device configuration is devised to reduce the energy required for heating during regeneration. Is done.

二酸化炭素の回収装置においては、吸収塔内において吸収液による二酸化炭素の吸収が適正温度で良好に進行するように、吸収塔に導入される排ガスを適正温度に調節するための冷却器が設けられる。例えば、特許文献1に記載されるように、吸収塔の前段に排ガス冷却装置を設けて、吸収塔に導入される排ガスの入口温度が40℃前後になるように冷却する。吸収塔内に導入された排ガスは、吸収液が二酸化炭素を吸収する反応熱によって温度が上昇するので、二酸化炭素が除去されたガスを吸収塔からそのまま排出すると、多量の水蒸気が塔外に放出されて、塔内の吸収液から水分が奪われる。これを防止するためには、吸収塔から排出されるガスを冷却して水蒸気を凝縮させることが必要であり、特許文献1では、ガスの出口温度は40℃前後となるように冷却している。   In the carbon dioxide recovery device, a cooler is provided for adjusting the exhaust gas introduced into the absorption tower to an appropriate temperature so that the absorption of carbon dioxide by the absorbent proceeds well at the appropriate temperature in the absorption tower. . For example, as described in Patent Document 1, an exhaust gas cooling device is provided in the front stage of the absorption tower, and cooling is performed so that the inlet temperature of the exhaust gas introduced into the absorption tower is about 40 ° C. Since the temperature of the exhaust gas introduced into the absorption tower rises due to the reaction heat that the absorbing solution absorbs carbon dioxide, if the gas from which carbon dioxide has been removed is discharged directly from the absorption tower, a large amount of water vapor is released outside the tower. As a result, moisture is taken away from the absorption liquid in the tower. In order to prevent this, it is necessary to cool the gas discharged from the absorption tower to condense the water vapor, and in Patent Document 1, cooling is performed so that the gas outlet temperature is about 40 ° C. .

二酸化炭素の回収装置において使用される冷却器は、上述したものだけではなく、再生塔から吸収塔に還流される吸収液の温度を適正温度に調節するための冷却器や、再生塔から放出される高温の二酸化炭素ガスを冷却するための冷却器なども備えている。   The cooler used in the carbon dioxide recovery device is not limited to the one described above, but is discharged from a cooler for adjusting the temperature of the absorption liquid refluxed from the regeneration tower to the absorption tower, or from the regeneration tower. It also has a cooler to cool the hot carbon dioxide gas.

特開2011−526号公報JP2011-526A

二酸化炭素の回収装置において使用される冷却器は、一般的に、冷却水を冷媒とする熱交換によって冷却する。冷却器に求められる冷却温度は、設置される箇所によって異なるが、冷却水の流量によって冷却効率を調節することによって、同じ冷却水を用いて冷却器毎に異なる冷却温度に調整することができる。各冷却器において加熱された冷却水は、放熱器に回収して元の温度に低下させて再度使用し、通常、気化放熱器が利用される。   The cooler used in the carbon dioxide recovery device is generally cooled by heat exchange using cooling water as a refrigerant. Although the cooling temperature calculated | required by a cooler changes with installation locations, it can adjust to different cooling temperature for every cooler using the same cooling water by adjusting cooling efficiency with the flow volume of cooling water. The cooling water heated in each cooler is collected in a radiator, lowered to the original temperature, and reused. Usually, a vaporized radiator is used.

気化放熱器は、水分の蒸発によって放熱・冷却するので、放熱量に応じて冷却水が減少する。従って、水資源が豊富な地域では、支障はないが、水資源に乏しい地域では冷却水の気化量を削減できることが望ましく、つまり、放熱量の削減が望まれる。これを実現するには、二酸化炭素回収装置において使用される冷却器の冷却温度を可能な範囲で高く設定する必要がある。   Since the vaporization radiator dissipates and cools by evaporation of water, the cooling water decreases according to the amount of heat radiation. Accordingly, there is no problem in an area where water resources are abundant, but it is desirable that the amount of cooling water vaporized can be reduced in areas where water resources are scarce, that is, a reduction in heat dissipation is desired. In order to realize this, it is necessary to set the cooling temperature of the cooler used in the carbon dioxide recovery device as high as possible.

本発明の課題は、上述の問題を解決し、二酸化炭素の回収において使用される冷却器の冷媒である冷却水の気化放熱器における気化量の削減が可能で、水資源に乏しい地域における二酸化炭素の回収処理が従来に比べて実施し易い二酸化炭素の回収方法及び回収装置を提供することである。   An object of the present invention is to solve the above-mentioned problems and to reduce the amount of vaporization in a vaporization radiator of cooling water, which is a refrigerant of a cooler used in carbon dioxide recovery, and in a region where water resources are scarce. It is an object of the present invention to provide a carbon dioxide recovery method and a recovery apparatus that can easily perform the recovery process in comparison with the related art.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、二酸化炭素が除去されたガスを吸収塔から放出する出口温度を従来より高く設定しても水蒸気を装置外へ放出させないように構成可能であり、それにより、気化放熱器における冷却水の放熱量及び気化水量を削減可能であることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, even if the outlet temperature at which the gas from which carbon dioxide has been removed is discharged from the absorption tower is set higher than before, water vapor is released outside the apparatus. Thus, the present invention has been completed by finding that it is possible to reduce the heat radiation amount and the vaporized water amount of the cooling water in the vaporizer.

本発明の一態様によれば、二酸化炭素の回収装置は、水蒸気量が飽和したガスを予め適正温度に冷却する前処理塔と、前記前処理塔で冷却されたガスを吸収液と接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる気液接触部、及び、前記気液接触部を経た処理後ガスを冷却する冷却部を有する吸収塔と、前記吸収塔で二酸化炭素を吸収した吸収液を加熱し二酸化炭素を放出させて吸収液を再生する再生塔と、前記前処理塔で冷却によって前記ガスから生じる凝縮水、及び、前記吸収塔の前記冷却部で冷却によって前記処理後ガスから生じる凝縮水の合計量に相当する量の水を吸収液に供給する水供給システムとを有し、前記冷却部で冷却された前記処理後ガスの温度と、前記前処理塔で冷却される前のガスの温度との差が3℃以内になるように前記冷却部が設定されることを要旨とする。 According to one aspect of the present invention, a carbon dioxide recovery device includes a pretreatment tower that cools a gas saturated with water vapor to an appropriate temperature in advance, and a gas cooled in the pretreatment tower is brought into contact with an absorption liquid. An absorption tower having a gas-liquid contact part that absorbs carbon dioxide contained in the gas into the absorption liquid, a cooling part that cools the treated gas that has passed through the gas-liquid contact part, and absorbs carbon dioxide in the absorption tower. A regenerated tower that regenerates the absorbent by heating the absorbed liquid to release carbon dioxide, condensed water generated from the gas by cooling in the pretreatment tower, and after the treatment by cooling in the cooling section of the absorption tower A water supply system that supplies the absorption liquid with an amount of water corresponding to the total amount of condensed water generated from the gas, and the temperature of the post-treatment gas cooled by the cooling section and the pretreatment tower cooled by the pretreatment tower. The difference from the gas temperature before And summarized in that the cooling unit is set to be within.

又、本発明の一態様によれば、二酸化炭素の回収方法は、水蒸気量が飽和したガスを予め適正温度に冷却する前処理工程と、前記前処理工程で冷却されたガスを吸収液と接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる吸収工程と、前記吸収工程を経た処理後ガスを冷却する冷却工程と、前記吸収工程で二酸化炭素を吸収した吸収液を加熱し二酸化炭素を放出させて吸収液を再生する再生工程と、前記前処理工程で冷却によって前記ガスから生じる凝縮水、及び、前記冷却工程で前記処理後ガスから生じる凝縮水の合計量に相当する量の水を吸収液に供給する水供給工程とを有し、前記冷却工程で冷却された前記処理後ガスの温度と、前記前処理工程で冷却される前のガスの温度との差が3℃以内になるように前記冷却工程を調整することを要旨とする。 Moreover, according to one aspect of the present invention, a method for recovering carbon dioxide includes a pretreatment step in which a gas saturated with water vapor is cooled to an appropriate temperature in advance, and the gas cooled in the pretreatment step is brought into contact with an absorbing liquid. An absorption step of absorbing carbon dioxide contained in the gas into the absorption liquid, a cooling step of cooling the treated gas after the absorption step, and heating the absorption liquid that has absorbed the carbon dioxide in the absorption step. An amount corresponding to a total amount of condensed water generated from the gas by cooling in the pretreatment step, and condensed water generated from the post-treatment gas in the cooling step; A water supply step for supplying water to the absorbing solution, and a difference between the temperature of the treated gas cooled in the cooling step and the temperature of the gas before cooled in the pretreatment step is within 3 ° C The cooling work to be And summarized in that to adjust.

本発明によれば、ガスに含まれる二酸化炭素を回収するプロセスにおいて使用する冷却器で必要とされる冷熱量を削減することができるので、冷却器の冷媒である冷却水を所定の温度に維持するための気化放熱器における気化水量の削減が可能であり、水資源に乏しい地域において、燃焼排ガス等の二酸化炭素の回収処理の実施を促進する上で有利な二酸化炭素の回収方法及び回収装置が提供され、環境保護において有用である。特殊な装備や高価な装置を必要とせず、一般的な設備を利用して簡易に実施できるので、経済的に有利である。   According to the present invention, it is possible to reduce the amount of heat required for the cooler used in the process of recovering carbon dioxide contained in the gas, so that the cooling water as the coolant of the cooler is maintained at a predetermined temperature. It is possible to reduce the amount of vaporized water in the vaporizing radiator to perform, and in an area where water resources are scarce, there is a carbon dioxide recovery method and recovery device that are advantageous in promoting the implementation of carbon dioxide recovery processing such as combustion exhaust gas. Provided and useful in environmental protection. It is economically advantageous because it can be carried out easily using general equipment without requiring special equipment or expensive equipment.

本発明の第1の実施形態に係る二酸化炭素の回収装置を示す概略構成図。1 is a schematic configuration diagram showing a carbon dioxide recovery apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態に係る二酸化炭素の回収装置を示す概略構成図。The schematic block diagram which shows the collection | recovery apparatus of the carbon dioxide which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る二酸化炭素の回収装置を示す概略構成図。The schematic block diagram which shows the collection | recovery apparatus of the carbon dioxide which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る二酸化炭素の回収装置を示す概略構成図。The schematic block diagram which shows the collection | recovery apparatus of the carbon dioxide which concerns on the 4th Embodiment of this invention.

化学吸収法による二酸化炭素の回収プロセスは、排ガスに含まれる二酸化炭素を低温の吸収液に吸収させる吸収工程と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する高温の再生工程とを有し、これらを交互に繰り返すために、吸収工程を実施する吸収塔と再生工程を実施する再生塔との間で吸収液を循環させる。回収プロセスによって二酸化炭素を回収する排ガスの温度は、通常、50℃程度又はそれ以上であるが、吸収液への吸収効率の観点から吸収塔内の温度は低いことが好ましいので、屡々、排ガスの温度を吸収処理に適した温度に冷却するための前処理塔が設けられ、40℃程度以下に排ガスを冷却した後に吸収塔に導入する。又、吸収液は、二酸化炭素を吸収する際の反応熱により発熱するので、吸収塔内を通過するガスの温度も上昇する。従って、二酸化炭素を除去した後のガスをそのまま吸収塔から放出すると、ガスと共に水蒸気が放出され、吸収塔内の吸収液は濃縮される。これを防止するために、吸収塔内のガスを塔外へ放出する前に、排ガスを吸収塔へ導入する温度と同程度の40℃前後に冷却する必要があり、この冷却を含む回収装置全体で施される冷却に必要な冷熱量は多大になる。しかし、放出するガスの温度が高くても吸収液の濃縮を防止可能なように回収装置が構成されれば、冷却器での冷熱量の低減が可能であり、冷却に使用した水を気化放熱器において元の温度に低下させる際の気化水量を削減することができる。   The carbon dioxide recovery process by the chemical absorption method consists of an absorption process in which carbon dioxide contained in exhaust gas is absorbed by a low-temperature absorption liquid, and a high-temperature regeneration process in which the absorbed carbon dioxide is released from the absorption liquid to regenerate the absorption liquid. In order to repeat these alternately, the absorption liquid is circulated between the absorption tower for performing the absorption process and the regeneration tower for performing the regeneration process. The temperature of the exhaust gas for recovering carbon dioxide by the recovery process is usually about 50 ° C. or higher, but it is preferable that the temperature in the absorption tower is low from the viewpoint of absorption efficiency into the absorption liquid. A pretreatment tower for cooling the temperature to a temperature suitable for the absorption treatment is provided, and the exhaust gas is cooled to about 40 ° C. or less and then introduced into the absorption tower. Further, since the absorbing solution generates heat due to reaction heat when absorbing carbon dioxide, the temperature of the gas passing through the absorption tower also rises. Therefore, when the gas after removing carbon dioxide is released from the absorption tower as it is, water vapor is released together with the gas, and the absorption liquid in the absorption tower is concentrated. In order to prevent this, before discharging the gas in the absorption tower to the outside of the tower, it is necessary to cool it to around 40 ° C., which is the same as the temperature at which the exhaust gas is introduced into the absorption tower. The amount of heat required for the cooling applied in is great. However, if the recovery device is configured so that the absorption liquid can be prevented from concentrating even if the temperature of the released gas is high, the amount of cooling heat in the cooler can be reduced, and the water used for cooling can be evaporated and dissipated. It is possible to reduce the amount of vaporized water when the temperature is lowered to the original temperature.

本発明では、吸収塔からガスを放出する際の出口温度を、前処理塔で冷却される前の排ガスの温度、つまり、排ガスの初期温度に設定し、出口温度の上昇によって増加する放出水蒸気量の増加分に相当する水を前処理塔から補給できるように装置を構成して、吸収液の濃縮を防止する。換言すれば、ガスに含まれる水蒸気の管理範囲を吸収塔内から前処理塔を含む範囲まで拡大し、前処理塔で回収される凝縮水を利用することで冷熱量の削減を可能にする。以下に、上述のように構成された本発明の二酸化炭素の回収方法及び回収装置について、図面を参照して詳細に説明する。   In the present invention, the outlet temperature at the time of releasing the gas from the absorption tower is set to the temperature of the exhaust gas before being cooled in the pretreatment tower, that is, the initial temperature of the exhaust gas, and the amount of released water vapor increases as the outlet temperature increases. The apparatus is configured so that water corresponding to the increased amount of water can be replenished from the pretreatment tower to prevent the concentration of the absorbing solution. In other words, the management range of the water vapor contained in the gas is expanded from the absorption tower to the range including the pretreatment tower, and the amount of cold heat can be reduced by using the condensed water recovered in the pretreatment tower. The carbon dioxide recovery method and recovery apparatus of the present invention configured as described above will be described in detail below with reference to the drawings.

図1は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の第1の実施形態を示す。回収装置1は、二酸化炭素を含有するガスGを吸収液に接触させて二酸化炭素を吸収液に吸収させるための吸収塔10と、二酸化炭素を吸収した吸収液を加熱して二酸化炭素を吸収液から放出させ、吸収液を再生する再生塔20とを有する。更に、吸収塔10に供給されるガスGを予め冷却して二酸化炭素の吸収に適した適正温度に調整する冷却塔としての機能を有する前処理塔30が設けられ、これにより、高温の排ガスの処理にも対応可能である。回収装置1に供給されるガスGについて特に制限はなく、燃焼排ガスやプロセス排ガスなどの様々なガスの取扱いが可能である。吸収塔10、再生塔20及び前処理塔30は、各々、向流型気液接触装置として構成され、接触面積を大きくするための充填材で構成される気液接触部11,21,31を各々内部に保持している。気液接触部11,21,31を構成する充填材は、概して、ステンレス鋼、炭素鋼等の鉄系金属材料製のものが用いられるが、特に限定されず、処理温度における耐久性及び耐腐食性を有する素材で、所望の接触面積を提供し得る形状のものを適宜選択して使用できる。吸収液として、アルカノールアミン類等の二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。吸収液は、吸収塔10の気液接触部11上方に供給され、気液接触部11を通過する間にガスGとの気液接触でガスG中の二酸化炭素を吸収する。二酸化炭素を吸収した吸収液(リッチ液)A1は、吸収塔10底部に貯溜され、ポンプ12によって、吸収塔10底部と再生塔20上部とを接続する供給路16を通じて再生塔20へ供給される。再生塔20で再生された吸収液(リーン液)A2は、ポンプ23によって、再生塔20底部から還流路17を通じて吸収塔10の気液接触部11上方に還流される。つまり、供給路16、還流路17及びポンプ12,23によって吸収液を吸収塔と再生塔との間で循環させる循環システムが構築される。   FIG. 1 shows a first embodiment of a carbon dioxide recovery method and a recovery apparatus for carrying out the same according to the present invention. The recovery device 1 is configured to bring the gas G containing carbon dioxide into contact with the absorption liquid and to absorb the carbon dioxide in the absorption liquid and to heat the absorption liquid that has absorbed the carbon dioxide to absorb the carbon dioxide. And a regeneration tower 20 for regenerating the absorbent. Further, a pretreatment tower 30 having a function as a cooling tower for preliminarily cooling the gas G supplied to the absorption tower 10 and adjusting the gas G to an appropriate temperature suitable for carbon dioxide absorption is provided. It can also handle processing. There is no restriction | limiting in particular about the gas G supplied to the collection | recovery apparatus 1, Handling of various gas, such as combustion exhaust gas and process exhaust gas, is possible. The absorption tower 10, the regeneration tower 20 and the pretreatment tower 30 are each configured as a countercurrent gas-liquid contact device, and have gas-liquid contact portions 11, 21, 31 formed of a filler for increasing the contact area. Each is held inside. The fillers constituting the gas-liquid contact parts 11, 21, 31 are generally made of ferrous metal materials such as stainless steel and carbon steel, but are not particularly limited, and are durable and corrosion resistant at the processing temperature. A material having a property that can provide a desired contact area can be appropriately selected and used. As the absorbing liquid, an aqueous liquid containing a compound having an affinity for carbon dioxide such as alkanolamines as an absorbent is used. The absorption liquid is supplied above the gas-liquid contact part 11 of the absorption tower 10 and absorbs carbon dioxide in the gas G by gas-liquid contact with the gas G while passing through the gas-liquid contact part 11. The absorption liquid (rich liquid) A1 that has absorbed carbon dioxide is stored at the bottom of the absorption tower 10 and is supplied to the regeneration tower 20 by a pump 12 through a supply path 16 that connects the bottom of the absorption tower 10 and the top of the regeneration tower 20. . The absorption liquid (lean liquid) A2 regenerated in the regeneration tower 20 is refluxed by the pump 23 from the bottom of the regeneration tower 20 to the upper part of the gas-liquid contact portion 11 of the absorption tower 10 through the reflux path 17. That is, a circulation system that circulates the absorption liquid between the absorption tower and the regeneration tower by the supply path 16, the reflux path 17, and the pumps 12 and 23 is constructed.

前処理塔30には、気液接触部31を通過するガスGを冷却する冷却システムを構成するために、冷却水W1を搬送するためのポンプ32、水冷式の冷却器33及びこれらを接続する循環路34が外部に付設され、前処理塔30底部の冷却水W1は、ポンプ32の駆動によって循環路34を通じて冷却器33に供給され、冷却器33で冷却された冷却水W1は前処理塔30内の気液接触部31上方に還流する。前処理塔30下部から供給されるガスGは、気液接触部31を通過する間に、上部から供給される冷却水W1によって冷却された後に、微小液滴を除去するデミスタ35を通過して、前処理塔30頂部と吸収塔10底部とを接続する送気管18を通じて吸収塔10に供給される。二酸化炭素の回収処理を施すガスGの初期温度T0は、通常50℃程度であり、前処理塔30において40℃程度の温度T1に冷却されるので、ガスGは吸収処理に適正な温度T1で吸収塔10に導入され、ガスGの温度に起因する吸収塔10内の温度上昇は防止される。気液接触部31でガスGとの接触により温度が上昇した冷却水W1は、前処理塔30底部に流下して循環路34から冷却器33に供給される。   In order to constitute a cooling system for cooling the gas G passing through the gas-liquid contact part 31, the pretreatment tower 30 is connected with a pump 32 for transporting the cooling water W1, a water-cooled cooler 33, and these. A circulation path 34 is attached to the outside, and the cooling water W1 at the bottom of the pretreatment tower 30 is supplied to the cooler 33 through the circulation path 34 by driving the pump 32, and the cooling water W1 cooled by the cooler 33 is the pretreatment tower 30 It recirculates above the gas-liquid contact part 31 in 30. The gas G supplied from the lower part of the pretreatment tower 30 is cooled by the cooling water W1 supplied from the upper part while passing through the gas-liquid contact part 31, and then passes through the demister 35 for removing fine droplets. Then, the gas is supplied to the absorption tower 10 through the air supply pipe 18 connecting the top of the pretreatment tower 30 and the bottom of the absorption tower 10. The initial temperature T0 of the gas G subjected to the carbon dioxide recovery process is normally about 50 ° C., and is cooled to a temperature T1 of about 40 ° C. in the pretreatment tower 30, so that the gas G has a temperature T1 appropriate for the absorption process. The temperature rise in the absorption tower 10 caused by the temperature of the gas G introduced into the absorption tower 10 is prevented. The cooling water W <b> 1 whose temperature has increased due to contact with the gas G at the gas-liquid contact portion 31 flows down to the bottom of the pretreatment tower 30 and is supplied from the circulation path 34 to the cooler 33.

冷却水W1を循環させる循環路34には、循環する冷却水W1が所定量を超えた時に冷却水W1の超過分を分流するための分岐路36が設けられ、前処理塔30と冷却器33とを循環する冷却水W1の量が一定に保たれるように構成される。従って、気液接触部31での冷却によってガスGの水蒸気圧が温度T1での飽和水蒸気圧以下に低下して凝縮水が生じると、これが冷却水W1に加わって一体となり冷却水W1が増加するので、冷却水W1の増量分ΔW1(つまり凝縮水に相当する)が循環路34から分岐路36を通じて分流され、最終的には吸収液に添加される。この点に関し、図1の実施形態では、冷却水W1の増量分ΔW1は、吸収液に添加する前に吸収塔10上部に供給して冷却水として利用するように構成している(詳細は後述する)が、吸収液に直接加えるように分岐路36の接続先を供給路16等に変更することも可能である。増量分ΔW1が分岐路36によって分別された冷却水W1は、冷却器33によって冷却されて気液接触部31へ供給される。尚、送気管18に温度センサーを設けて、吸収塔10底部へ導入されるガスGの検出温度に応じてポンプ32の駆動を制御するように構成すると、ガスGの初期温度T0の変動等によって温度T1が上昇した時に、冷却水W1の循環流量を増加させて熱交換率を上げることによりガスGの温度T1を低下させて適正に維持することができる。   The circulation path 34 for circulating the cooling water W1 is provided with a branch path 36 for diverting the excess amount of the cooling water W1 when the circulating cooling water W1 exceeds a predetermined amount, and the pretreatment tower 30 and the cooler 33 are provided. The amount of the cooling water W1 that circulates is maintained constant. Therefore, when the water vapor pressure of the gas G decreases below the saturated water vapor pressure at the temperature T1 due to the cooling at the gas-liquid contact portion 31, and condensed water is generated, this is added to the cooling water W1 and becomes an integral unit, and the cooling water W1 increases. Therefore, the increased amount ΔW1 (that corresponds to condensed water) of the cooling water W1 is diverted from the circulation path 34 through the branch path 36, and finally added to the absorbing liquid. In this regard, in the embodiment of FIG. 1, the increased amount ΔW1 of the cooling water W1 is supplied to the upper part of the absorption tower 10 before being added to the absorption liquid and used as cooling water (details will be described later). However, it is also possible to change the connection destination of the branch path 36 to the supply path 16 or the like so as to be added directly to the absorbing liquid. The cooling water W1 from which the increased amount ΔW1 has been separated by the branch path 36 is cooled by the cooler 33 and supplied to the gas-liquid contact portion 31. If a temperature sensor is provided in the air supply pipe 18 and the drive of the pump 32 is controlled in accordance with the detected temperature of the gas G introduced into the bottom of the absorption tower 10, the fluctuation of the initial temperature T0 of the gas G is caused. When the temperature T1 rises, the temperature T1 of the gas G can be lowered and maintained properly by increasing the heat exchange rate by increasing the circulation flow rate of the cooling water W1.

前処理塔30を通過した二酸化炭素を含んだガスGは、吸収塔10の下部から供給される。ガスG及び吸収液が気液接触部11を向流通過する間に、気液接触によりガスG中の二酸化炭素が吸収液に吸収される。気液接触部11において、吸収液は二酸化炭素の吸収によって発熱して液温が上昇するので、吸収液から水分が蒸発して吸収液が濃縮され、二酸化炭素が除去されたガスG’も水蒸気量が増加し温度が上昇する。このため、ガスG’に含まれる水蒸気等を凝縮して回収するための冷却部13が、充填材を用いて気液接触部11の上方に形成され、気液接触部11で二酸化炭素を除去された処理後ガスG’は、冷却部13を通過する間に冷却されて水蒸気量が減少した後に、吸収塔10頂部から排出される。冷却部13における冷却形態は、前処理塔30の気液接触部31の形態と同様になるように構成される。具体的には、冷却システムを構成するために、冷却部13に冷却水W2を供給するためのポンプ15、冷却水W2を冷却するための水冷式の冷却器14、及び、これらを接続する循環路37が吸収塔10の外部に付設され、冷却部13の下方には区画部材19が設けられる。区画部材19は、水平環状板と、その中央穴周縁に立設される管状壁と、管状壁の上端穴の上方を覆う傘部とを有し、吸収塔10の内側壁と区画部材19の管状壁との間において水平環状板上に液溜まりが形成されるように構成され、気液接触部11と冷却部13との間を区画する。区画部材19とポンプ15及び冷却器14とは循環路37によって接続され、ポンプ15の駆動によって冷却水W2が区画部材19を介して冷却部13と冷却器14とを循環する。冷却部13を流下する冷却水W2は、区画部材19上に落下して液溜まりに収容され、循環路37を通じて冷却器14に送られて冷却され、再度冷却部13に供給される。循環路37は、前処理塔30の循環路34と同様に、冷却部13と冷却器14とを循環する冷却水W2の量が一定に保たれるように構成され、増加した冷却水W2の超過分は、循環路37から分岐する分岐路38によって分流される。気液接触部11から区画部材19の管状壁を通って冷却部13に到達した処理後ガスG’が冷却されると、凝縮水(吸収剤を含み得る)が生じ、冷却水W2と共に区画部材19上に落下して、液溜まりにおいて冷却水W2と一体になり、冷却水W2は増加する。更に、分岐路36の下流端が循環路37に接続されるので、前処理塔30の循環路34から分流される冷却水W1の増量分ΔW1も循環路37の冷却水W2に加わる。従って、前処理塔30の気液接触部31及び冷却部13で凝縮した凝縮水は冷却水として利用される。循環路37において冷却部13と冷却器14とを循環する冷却水W2の量は一定に保たれるので、増加した冷却水W2の増量分ΔW2、つまり、処理後ガスG’の冷却によって冷却部13で生じる凝縮水の量と、分岐路36から供給される冷却水W1の増量分ΔW1(気液接触部31での凝縮水に相当)の量との合計量の冷却水が、分岐路38によって分流されて、供給路16を流れる吸収液A1に添加される。これは、冷却部13で生じる凝縮水と前処理塔30で生じる凝縮水とが供給路16の吸収液A1に直接添加されることと実質的に同等である。分岐路38によって増量分ΔW2が分別された後の冷却水W2は、冷却器14に供給されて冷却され、冷却部13に供給される。   The gas G containing carbon dioxide that has passed through the pretreatment tower 30 is supplied from the lower part of the absorption tower 10. While the gas G and the absorption liquid pass counter-current through the gas-liquid contact portion 11, carbon dioxide in the gas G is absorbed by the absorption liquid by the gas-liquid contact. In the gas-liquid contact portion 11, the absorption liquid generates heat due to absorption of carbon dioxide and the liquid temperature rises. Therefore, moisture is evaporated from the absorption liquid, the absorption liquid is concentrated, and the gas G ′ from which carbon dioxide has been removed is also water vapor. The amount increases and the temperature rises. For this reason, the cooling part 13 for condensing and recovering water vapor or the like contained in the gas G ′ is formed above the gas-liquid contact part 11 using a filler, and carbon dioxide is removed by the gas-liquid contact part 11. The treated gas G ′ is cooled while passing through the cooling unit 13 to reduce the amount of water vapor, and then discharged from the top of the absorption tower 10. The cooling mode in the cooling unit 13 is configured to be the same as that of the gas-liquid contact unit 31 of the pretreatment tower 30. Specifically, in order to configure the cooling system, a pump 15 for supplying the cooling water W2 to the cooling unit 13, a water-cooled cooler 14 for cooling the cooling water W2, and a circulation connecting them. A passage 37 is attached to the outside of the absorption tower 10, and a partition member 19 is provided below the cooling unit 13. The partition member 19 has a horizontal annular plate, a tubular wall standing on the periphery of the center hole thereof, and an umbrella portion covering the upper end hole of the tubular wall, and the inner wall of the absorption tower 10 and the partition member 19 A liquid pool is formed on the horizontal annular plate between the tubular wall and partitions between the gas-liquid contact part 11 and the cooling part 13. The partition member 19 is connected to the pump 15 and the cooler 14 by a circulation path 37, and the cooling water W <b> 2 circulates between the cooling unit 13 and the cooler 14 through the partition member 19 by driving the pump 15. The cooling water W <b> 2 flowing down the cooling unit 13 falls on the partition member 19 and is stored in the liquid pool, is sent to the cooler 14 through the circulation path 37, is cooled, and is supplied to the cooling unit 13 again. Similarly to the circulation path 34 of the pretreatment tower 30, the circulation path 37 is configured such that the amount of the cooling water W2 circulating through the cooling unit 13 and the cooler 14 is kept constant, and the increased cooling water W2 The excess is diverted by a branch path 38 that branches from the circulation path 37. When the treated gas G ′ that has reached the cooling unit 13 from the gas-liquid contact unit 11 through the tubular wall of the partition member 19 is cooled, condensed water (which may include an absorbent) is generated and the partition member together with the cooling water W2. It falls on 19 and becomes integrated with the cooling water W2 in the liquid pool, and the cooling water W2 increases. Further, since the downstream end of the branch path 36 is connected to the circulation path 37, the increased amount ΔW 1 of the cooling water W 1 diverted from the circulation path 34 of the pretreatment tower 30 is also added to the cooling water W 2 of the circulation path 37. Therefore, the condensed water condensed in the gas-liquid contact part 31 and the cooling part 13 of the pretreatment tower 30 is used as cooling water. Since the amount of the cooling water W2 that circulates between the cooling unit 13 and the cooler 14 in the circulation path 37 is kept constant, the amount of increase ΔW2 of the increased cooling water W2, that is, the cooling unit is cooled by cooling the processed gas G ′. The total amount of cooling water of the amount of condensed water generated in 13 and the amount of increase ΔW1 of the cooling water W1 supplied from the branch path 36 (corresponding to the condensed water in the gas-liquid contact portion 31) is the branch path 38. And is added to the absorption liquid A1 flowing through the supply path 16. This is substantially equivalent to the fact that the condensed water generated in the cooling unit 13 and the condensed water generated in the pretreatment tower 30 are added directly to the absorbing liquid A1 in the supply path 16. The cooling water W <b> 2 after the increase ΔW <b> 2 is separated by the branch path 38 is supplied to the cooler 14, cooled, and supplied to the cooling unit 13.

吸収塔10下部から供給される温度T1のガスGは、塔内を上昇して気液接触部11を通過して二酸化炭素回収処理を経た後に、処理後ガスG’として、微小液滴を除去するデミスタ39及び区画部材19の管状壁内孔を通って冷却部13で冷却され、デミスタ40を経て外部へ放出される。本発明においては、冷却部13で冷却された処理後ガスG’の温度T2を、前処理塔30においてガスGが冷却される前の温度である初期温度T0に実質的に等しい温度(実用的にはT0±3℃以内、好ましくはT0±2℃以内)に設定する。これにより、前処理塔30に導入されるガスGに含まれる水蒸気量と、吸収塔10から放出される処理後ガスG’に含まれる水蒸気量とが等しくなる。前処理塔30内及び吸収塔10内でガスG,G’から生じる凝縮水に等しい量の水が吸収液に補給されるので、気液接触部11において濃縮された吸収液A1の濃度は元の濃度に希釈され、吸収塔10内での吸収液の濃縮は解消される。つまり、処理後ガスG’を放出する温度を上げても、導入ガスと放出ガスとは水蒸気含有量が同じであり、吸収液の濃縮は防止される。従って、冷却部13での冷却温度T2を吸収塔10のガス入口温度(T1)より高く設定することによる冷却器14での冷熱量の削減を実現できる。更に、前処理塔30から吸収塔10へ導入するガスGの温度T1よりも処理後ガスG’の出口温度T2、つまり、冷却部13で冷却する温度の方が高いので、前処理塔30の冷却水W1は、冷却部13の冷媒として利用可能であり(T1<T2)、上記構成においては、前処理塔30で凝縮する水(又はそれに等しい量の水)は、循環路37での冷却水としての利用を経由して間接的に供給路16の吸収液A1に添加され、吸収塔10の冷却部13で凝縮する水(又はそれに等しい量の水)については、供給路16の吸収液に直接添加される。このように、循環路34から分流される水を、吸収液に添加する前に循環路37を経由させることによって、更に冷却器14における冷熱量を削減できる。   The gas G at the temperature T1 supplied from the lower part of the absorption tower 10 goes up through the tower, passes through the gas-liquid contact section 11, undergoes carbon dioxide recovery processing, and then removes fine droplets as post-treatment gas G ′. The demister 39 and the tubular wall inner hole of the partition member 19 are cooled by the cooling unit 13 and discharged to the outside through the demister 40. In the present invention, the temperature T2 of the treated gas G ′ cooled by the cooling unit 13 is set to a temperature substantially equal to the initial temperature T0 that is the temperature before the gas G is cooled in the pretreatment tower 30 (practical). Is set within T0 ± 3 ° C., preferably within T0 ± 2 ° C.). As a result, the amount of water vapor contained in the gas G introduced into the pretreatment tower 30 is equal to the amount of water vapor contained in the post-treatment gas G ′ released from the absorption tower 10. Since the amount of water equal to the condensed water generated from the gases G and G ′ in the pretreatment tower 30 and the absorption tower 10 is replenished to the absorption liquid, the concentration of the absorption liquid A1 concentrated in the gas-liquid contact section 11 is the original. The concentration of the absorbing solution in the absorption tower 10 is eliminated. That is, even if the temperature at which the treated gas G ′ is released is increased, the introduction gas and the discharge gas have the same water vapor content, and the concentration of the absorbing solution is prevented. Therefore, it is possible to achieve a reduction in the amount of heat in the cooler 14 by setting the cooling temperature T2 in the cooling unit 13 higher than the gas inlet temperature (T1) of the absorption tower 10. Furthermore, since the outlet temperature T2 of the treated gas G ′, that is, the temperature cooled by the cooling unit 13, is higher than the temperature T1 of the gas G introduced from the pretreatment tower 30 to the absorption tower 10, the temperature of the pretreatment tower 30 The cooling water W1 can be used as a refrigerant of the cooling unit 13 (T1 <T2), and in the above configuration, water condensed in the pretreatment tower 30 (or an amount of water equivalent thereto) is cooled in the circulation path 37. For water (or an amount of water equal to the amount of water) that is indirectly added to the absorption liquid A1 of the supply path 16 through use as water and condensed in the cooling unit 13 of the absorption tower 10, the absorption liquid in the supply path 16 Added directly. In this manner, the amount of cold heat in the cooler 14 can be further reduced by passing the water diverted from the circulation path 34 through the circulation path 37 before being added to the absorbent.

吸収塔10底部の吸収液A1は、供給路16上で分岐路38から添加される水によって元の濃度に回復し、再生塔20の上部に供給され、気液接触部21の充填材上を流下して底部に貯溜される。再生塔20の底部には、リボイラーが付設される。即ち、吸収液を加熱するために再生塔20外に付設されるスチームヒーター22と、吸収液をスチームヒーター22を介して循環させる循環路22’とが付設され、塔底部の吸収液A2の一部が循環路22’を通してスチームヒーター22に分流され、高温蒸気との熱交換によって加熱された後に塔内へ還流される。この加熱によって、底部の吸収液から二酸化炭素が放出され、又、気液接触部21の充填材も間接的に加熱され、充填材上での気液接触により吸収液からの二酸化炭素の放出が促進される。   The absorption liquid A1 at the bottom of the absorption tower 10 is restored to its original concentration by the water added from the branch path 38 on the supply path 16 and is supplied to the upper part of the regeneration tower 20 and passes over the filler in the gas-liquid contact section 21. It flows down and is stored at the bottom. A reboiler is attached to the bottom of the regeneration tower 20. That is, a steam heater 22 provided outside the regeneration tower 20 for heating the absorption liquid and a circulation path 22 ′ for circulating the absorption liquid through the steam heater 22 are provided, and one of the absorption liquid A 2 at the bottom of the tower is provided. The part is divided into a steam heater 22 through a circulation path 22 ', heated by heat exchange with high-temperature steam, and then refluxed into the tower. Due to this heating, carbon dioxide is released from the absorption liquid at the bottom, and the filler in the gas-liquid contact portion 21 is also indirectly heated, and carbon dioxide is released from the absorption liquid by gas-liquid contact on the filler. Promoted.

再生塔20で二酸化炭素を放出して再生された吸収液(リーン液)A2は、還流路17を通じてポンプ23によって吸収塔10に還流される。供給路16と還流路17との間で熱交換を行う熱交換器24が設けられており、吸収塔10から再生塔20に供給される供給路16の吸収液A1は、再生塔20から還流する吸収液A2によって加熱され、吸収液A2は逆に冷却される。還流路17の吸収液A2は、更に、水冷式の冷却器25によって、二酸化炭素の吸収に適した温度(T1程度)まで充分に冷却される。熱交換器には、スパイラル式、プレート式、二重管式、多重円筒式、多重円管式、渦巻管式、渦巻板式、タンクコイル式、タンクジャケット式、直接接触液式等、様々な種類があり、本発明における熱交換器24として何れのタイプを使用しても良いが、装置の簡素化及び清掃分解の容易さの点ではプレート式が優れている。   The absorption liquid (lean liquid) A2 regenerated by releasing carbon dioxide in the regeneration tower 20 is refluxed to the absorption tower 10 by the pump 23 through the reflux path 17. A heat exchanger 24 that performs heat exchange between the supply path 16 and the reflux path 17 is provided, and the absorbent A1 in the supply path 16 that is supplied from the absorption tower 10 to the regeneration tower 20 is refluxed from the regeneration tower 20. The absorbing liquid A2 is heated, and the absorbing liquid A2 is cooled on the contrary. Further, the absorption liquid A2 in the reflux path 17 is sufficiently cooled by the water-cooled cooler 25 to a temperature suitable for carbon dioxide absorption (about T1). Various types of heat exchangers such as spiral type, plate type, double pipe type, multiple cylinder type, multiple circular pipe type, spiral tube type, spiral plate type, tank coil type, tank jacket type, direct contact liquid type, etc. Any type may be used as the heat exchanger 24 in the present invention, but the plate type is superior in terms of simplification of the apparatus and ease of cleaning and disassembly.

再生塔20における加熱で放出される二酸化炭素を含むガスは、回収ガスCとして再生塔20上部の凝縮部26を通って頂部から排出される。凝縮部26は、回収ガスCに含まれる水蒸気を凝縮させて過度の放出を抑制し、また、吸収剤の放出も抑制する。再生塔20の外部には、回収ガスCを冷却するための水冷式の冷却器27、気液分離器28及び調圧弁29が設けられ、再生塔20の頂部のデミスタ41を通って放出される回収ガスCは、排気管42を通って冷却器27で充分に冷却され、含まれる水蒸気等が可能な限り凝縮される。凝縮した水等は、気液分離器28において分離され、ポンプ43によって流路44から再生塔20の凝縮部26上へ供給され、冷却水として使用される。排気管42から排出される回収ガスCに含まれる二酸化炭素は、例えば、地中又は油田中に注入することによって、地中での炭酸ガス固定及び再有機化が可能である。尚、気液分離器28の気体排出側に設けられる調圧弁29は、再生塔20内の圧力調節等に利用可能であり、加圧状態での再生処理が可能になるが、省略してもよい。   The gas containing carbon dioxide released by heating in the regeneration tower 20 is discharged as a recovered gas C from the top through the condensing part 26 at the top of the regeneration tower 20. The condensing unit 26 condenses the water vapor contained in the recovered gas C to suppress excessive release, and also suppresses the release of the absorbent. Outside the regeneration tower 20, a water-cooled cooler 27, a gas-liquid separator 28 and a pressure regulating valve 29 for cooling the recovered gas C are provided and discharged through a demister 41 at the top of the regeneration tower 20. The recovered gas C is sufficiently cooled by the cooler 27 through the exhaust pipe 42, and the contained water vapor is condensed as much as possible. Condensed water and the like are separated in the gas-liquid separator 28 and supplied from the flow path 44 onto the condensing unit 26 of the regeneration tower 20 by the pump 43 and used as cooling water. Carbon dioxide contained in the recovered gas C discharged from the exhaust pipe 42 can be fixed and reorganized in the ground by injecting it into the ground or an oil field, for example. The pressure regulating valve 29 provided on the gas discharge side of the gas-liquid separator 28 can be used for adjusting the pressure in the regeneration tower 20 and can be regenerated in a pressurized state. Good.

図1の回収装置1において実施される回収方法について説明する。   A collection method implemented in the collection apparatus 1 of FIG. 1 will be described.

前処理塔30において、燃焼排ガスやプロセス排ガスなどの二酸化炭素を含有するガスGを底部から供給すると、前処理工程として、ガスGは、気液接触部31において、循環路34を循環する冷却水W1によって初期の温度T0から温度T1へ冷却され、飽和水蒸気圧の低下によりガスGから凝縮水が生じる。凝縮水によって増加した冷却水W1のうちの凝縮水に相当する増量分ΔW1が、分岐路36から吸収塔10の循環路37へ供給される。温度T1は、冷却水W1の水温及び気液接触部31への供給流量の調節によって30〜40℃程度の範囲に設定される。温度T1に冷却されたガスGは、吸収塔10へ導入される。冷却水W1の水温は、冷却器33の冷却効率(つまり冷却水(冷媒)の流量)によって調整される。   When the gas G containing carbon dioxide such as combustion exhaust gas and process exhaust gas is supplied from the bottom in the pretreatment tower 30, the gas G is cooled in the gas-liquid contact part 31 as cooling water circulating in the circulation path 34 as a pretreatment step. The temperature is cooled from the initial temperature T0 to the temperature T1 by W1, and condensed water is generated from the gas G due to a decrease in the saturated water vapor pressure. An increase ΔW1 corresponding to the condensed water in the cooling water W1 increased by the condensed water is supplied from the branch path 36 to the circulation path 37 of the absorption tower 10. The temperature T1 is set in a range of about 30 to 40 ° C. by adjusting the water temperature of the cooling water W1 and the supply flow rate to the gas-liquid contact portion 31. The gas G cooled to the temperature T1 is introduced into the absorption tower 10. The water temperature of the cooling water W1 is adjusted by the cooling efficiency of the cooler 33 (that is, the flow rate of the cooling water (refrigerant)).

吸収塔10において、ガスGを底部から供給し、吸収液を上部から供給すると、気液接触部11上でガスGと吸収液とが気液接触し、吸収液に二酸化炭素が吸収される。二酸化炭素は、低温において良好に吸収されるので、吸収液の液温又は吸収塔10(特に気液接触部11)の温度が40℃程度以下となるように温度を管理することが好ましい。吸収液は二酸化炭素の吸収によって発熱するので、これによる液温上昇を考慮し、液温が60℃を超えないように配慮することが望ましい。吸収液として、二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。吸収剤としては、アルカノールアミン類やアルコール性水酸基を有するヒンダードアミン類などが挙げられ、具体的には、アルカノールアミンとして、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン等を例示することができ、アルコール性水酸基を有するヒンダードアミンとしては、2−アミノ−2−メチル−1−プロパノール(AMP)、2−(エチルアミノ)エタノール(EAE)、2−(メチルアミノ)エタノール(MAE)等を例示できる。通常、モノエタノールアミン(MEA)の使用が好まれ、上記のような化合物の複数種を混合使用しても良い。吸収液の吸収剤濃度は、処理対象とするガスに含まれる二酸化炭素量や処理速度等に応じて適宜設定することができ、吸収液の流動性や消耗損失抑制などの点を考慮すると、概して、10〜50質量%程度の濃度が適用され、例えば、二酸化炭素含有量が20%程度のガスGの処理に対して、濃度が30質量%程度の吸収液が好適に使用される。ガスG及び吸収液の供給速度は、ガスに含まれる二酸化炭素量及び気液接触効率等に応じて、吸収が充分に進行するように適宜設定される。   When the gas G is supplied from the bottom and the absorption liquid is supplied from the top in the absorption tower 10, the gas G and the absorption liquid come into gas-liquid contact on the gas-liquid contact portion 11, and carbon dioxide is absorbed by the absorption liquid. Since carbon dioxide is well absorbed at low temperatures, it is preferable to control the temperature so that the liquid temperature of the absorbing liquid or the temperature of the absorption tower 10 (particularly the gas-liquid contact portion 11) is about 40 ° C. or lower. Since the absorbing liquid generates heat due to absorption of carbon dioxide, it is desirable to take into consideration the increase in liquid temperature caused by this, so that the liquid temperature does not exceed 60 ° C. An aqueous liquid containing a compound having affinity for carbon dioxide as an absorbent is used as the absorbent. Examples of the absorbent include alkanolamines and hindered amines having an alcoholic hydroxyl group. Specific examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diisopropanol. Examples of the hindered amine having an alcoholic hydroxyl group include 2-amino-2-methyl-1-propanol (AMP), 2- (ethylamino) ethanol (EAE), and 2- (methylamino). ) Ethanol (MAE) and the like can be exemplified. Usually, the use of monoethanolamine (MEA) is preferred, and a plurality of the above compounds may be used in combination. The absorbent concentration of the absorption liquid can be appropriately set according to the amount of carbon dioxide contained in the gas to be processed, the processing speed, etc. The concentration of about 10 to 50% by mass is applied. For example, for the treatment of the gas G having a carbon dioxide content of about 20%, an absorbing solution having a concentration of about 30% by mass is preferably used. The supply rates of the gas G and the absorbing liquid are appropriately set so that the absorption proceeds sufficiently according to the amount of carbon dioxide contained in the gas, the gas-liquid contact efficiency, and the like.

気液接触部11において二酸化炭素が除去された処理後ガスG’は、反応熱による温度上昇に伴って水蒸気量が増加するが、冷却部13を通過する間に冷却水W2によって温度T2に冷却されて水蒸気量が減少した後に、吸収塔10頂部から排出される。前処理塔30に導入されるガスGに含まれる水蒸気量と、吸収塔10から放出される処理後ガスG’に含まれる水蒸気量とが実質的に等しくなるように、冷却部13で冷却される処理後ガスG’の温度T2は、前処理塔30によってガスGが冷却される前の温度である初期温度T0に実質的に等しい温度(実用的にはT0±3℃以内、好ましくはT0±2℃以内)に設定する。温度T2の設定は、冷却水W2の水温及び冷却部13への供給流量によって調節できる。冷却部13において生じる凝縮水は、冷却水W2と共に下方の区画部材19に貯留され、ポンプ15によって区画部材19から冷却器14を介して循環路37を循環する。その間に、前処理塔30から分岐路36を通じて供給される冷却水ΔW1が添加されるので、増加した冷却水W2の増量分ΔW2[つまり、処理後ガスG’の冷却によって冷却部13で生じる凝縮水の量と、分岐路36から供給される冷却水ΔW1(気液接触部31の凝縮水に相当)の量との合計分]は、循環している吸収液A1に分岐路38を通じて添加される。つまり、気液接触部11において吸収液から気化した水分は、分岐路38から添加される水によって補充され、濃縮された吸収液A1を希釈して元の濃度に回復する水供給工程が行われる。従って、処理後ガスG’の出口温度をT1からT2へ上昇させても、この上昇による冷却部13での凝縮水の減少分は、前処理塔30における凝縮水によって補填される。   The post-treatment gas G ′ from which carbon dioxide has been removed in the gas-liquid contact portion 11 increases in water vapor amount as the temperature rises due to reaction heat, but is cooled to the temperature T2 by the cooling water W2 while passing through the cooling portion 13. After the amount of water vapor is reduced, the water is discharged from the top of the absorption tower 10. Cooled by the cooling unit 13 so that the amount of water vapor contained in the gas G introduced into the pretreatment tower 30 and the amount of water vapor contained in the treated gas G ′ released from the absorption tower 10 are substantially equal. The temperature T2 of the treated gas G ′ is substantially equal to the initial temperature T0 that is the temperature before the gas G is cooled by the pretreatment tower 30 (practically within T0 ± 3 ° C., preferably T0 Set within ± 2 ℃. The setting of the temperature T2 can be adjusted by the water temperature of the cooling water W2 and the supply flow rate to the cooling unit 13. The condensed water generated in the cooling unit 13 is stored in the lower partition member 19 together with the cooling water W2, and circulates in the circulation path 37 from the partition member 19 via the cooler 14 by the pump 15. In the meantime, since the cooling water ΔW1 supplied from the pretreatment tower 30 through the branch path 36 is added, the increased amount ΔW2 of the increased cooling water W2 [that is, the condensation generated in the cooling unit 13 due to the cooling of the treated gas G ′. The total amount of water and the amount of cooling water ΔW1 (corresponding to condensed water in the gas-liquid contact portion 31) supplied from the branch path 36 is added to the circulating absorbent liquid A1 through the branch path 38. The In other words, the water vaporized from the absorption liquid in the gas-liquid contact portion 11 is supplemented with water added from the branch path 38, and a water supply step is performed in which the concentrated absorption liquid A1 is diluted to recover the original concentration. . Therefore, even if the outlet temperature of the treated gas G ′ is increased from T1 to T2, the reduced amount of condensed water in the cooling unit 13 due to this increase is compensated by the condensed water in the pretreatment tower 30.

吸収塔10で二酸化炭素を吸収した吸収液A1は、供給路16を通じてポンプ12の駆動力によって再生塔20へ供給される。その間に、熱交換器24において、吸収液A1は、再生塔20から還流する吸収液A2と熱交換される。熱交換器24における吸収液A1の出口温度と吸収液A2の入口温度との差は10℃程度以下となるように構成可能であり、吸収液A1は、再生塔20での加熱温度に近い温度に昇温される。再生塔20における吸収液A2の加熱温度は、使用する吸収液組成や再生条件によって異なるが、概して100〜130℃程度に設定され、これに基づけば、熱交換において吸収液A1の熱交換器出口温度は95〜125℃程度に上昇可能である。   The absorbing liquid A1 that has absorbed carbon dioxide in the absorption tower 10 is supplied to the regeneration tower 20 through the supply path 16 by the driving force of the pump 12. Meanwhile, in the heat exchanger 24, the absorption liquid A1 is heat-exchanged with the absorption liquid A2 refluxed from the regeneration tower 20. The difference between the outlet temperature of the absorbing liquid A1 and the inlet temperature of the absorbing liquid A2 in the heat exchanger 24 can be configured to be about 10 ° C. or less. The absorbing liquid A1 is a temperature close to the heating temperature in the regeneration tower 20. The temperature is increased. The heating temperature of the absorbing liquid A2 in the regeneration tower 20 varies depending on the absorbing liquid composition used and the regeneration conditions, but is generally set to about 100 to 130 ° C. Based on this, the heat exchanger outlet of the absorbing liquid A1 in heat exchange The temperature can be raised to about 95-125 ° C.

高温で再生塔20に供給される吸収液A1は、気液接触部21を流下しつつ二酸化炭素を放出する。気液接触部21の充填材上での気液接触によって二酸化炭素の放出が促進されると共に、再生塔20底部での加熱によって更に昇温及び二酸化炭素の放出が進行する。底部に貯留される吸収液A2は、部分循環加熱によって沸点付近に加熱され、吸収液の沸点は組成(吸収剤濃度)及び再生塔20内の圧力に依存する。この際、吸収液から失われる水の気化潜熱及び吸収液の顕熱の供給が必要であり、加圧によって気化を抑制すると、沸点上昇により顕熱が増加するので、これらのバランスを考慮して、再生塔20内を100kPaG程度に加圧し、吸収液を120〜130℃に加熱する条件設定を用いると、エネルギー効率上有効である。再生塔20内の加圧は、排気管42の出口に設けられる調圧弁29の制御によって調整可能である。   The absorbing liquid A1 supplied to the regeneration tower 20 at a high temperature releases carbon dioxide while flowing down the gas-liquid contact portion 21. The release of carbon dioxide is promoted by the gas-liquid contact on the filler of the gas-liquid contact portion 21, and the temperature rise and the release of carbon dioxide further progress by heating at the bottom of the regeneration tower 20. The absorbent A2 stored in the bottom is heated to the vicinity of the boiling point by partial circulation heating, and the boiling point of the absorbent depends on the composition (absorbent concentration) and the pressure in the regeneration tower 20. At this time, it is necessary to supply the latent heat of vaporization of water lost from the absorption liquid and the sensible heat of the absorption liquid.Suppressing the vaporization by pressurization increases the sensible heat due to the rise in boiling point. If the condition setting in which the inside of the regeneration tower 20 is pressurized to about 100 kPaG and the absorbing solution is heated to 120 to 130 ° C. is used, it is effective in terms of energy efficiency. The pressurization in the regeneration tower 20 can be adjusted by controlling the pressure regulating valve 29 provided at the outlet of the exhaust pipe 42.

再生塔20の上部の温度は、投入される吸収液A1の温度に近くなるため、凝縮部26を通過した回収ガスを冷却器27において冷却水(冷媒)により十分に冷却する。回収ガスCから凝縮する水分及び吸収剤は気液分離器28において回収ガスCから分離され、これを凝縮部26に供給することによって、凝縮部26を冷却すると共に、再生塔20における吸収液の濃度上昇及び吸収剤の気化放散を抑制する。   Since the temperature of the upper part of the regeneration tower 20 is close to the temperature of the absorption liquid A1 to be charged, the recovered gas that has passed through the condensing unit 26 is sufficiently cooled by the cooling water (refrigerant) in the cooler 27. Moisture and absorbent condensing from the recovered gas C are separated from the recovered gas C in the gas-liquid separator 28, and by supplying this to the condensing unit 26, the condensing unit 26 is cooled, and the absorption liquid in the regenerator 20 Suppresses increase in concentration and evaporation of absorbent.

再生塔20で再生された吸収液A2は、還流路17を通じて吸収塔10に還流され、その間に熱交換器24及び冷却器25によって冷却される。このようにして、吸収液は吸収塔10と再生塔20との間で循環して、吸収工程と再生工程とが交互に繰り返される。尚、図1の回収装置では、再生塔20の排気管42に調圧弁29が設けられ、必要に応じて再生塔20内を加圧して圧力を調節可能なように構成されている。又、吸収塔10内のガス圧力は大気圧に設定されているが、再生塔20と同様にして圧力調節弁を用いて圧力を調節可能に構成してもよく、吸収液の二酸化炭素回収率を上げる必要がある場合には、常圧を超える120kPaG程度以下、好ましくは10〜100kPaG程度の圧力範囲に調整するとよい。   The absorbent A2 regenerated in the regeneration tower 20 is refluxed to the absorption tower 10 through the reflux path 17 and is cooled by the heat exchanger 24 and the cooler 25 during that time. In this way, the absorption liquid circulates between the absorption tower 10 and the regeneration tower 20, and the absorption process and the regeneration process are alternately repeated. 1 is provided with a pressure regulating valve 29 in the exhaust pipe 42 of the regeneration tower 20 so that the pressure can be adjusted by pressurizing the interior of the regeneration tower 20 as necessary. Further, although the gas pressure in the absorption tower 10 is set to atmospheric pressure, it may be configured so that the pressure can be adjusted using a pressure control valve in the same manner as the regeneration tower 20, and the carbon dioxide recovery rate of the absorption liquid When it is necessary to increase the pressure, the pressure may be adjusted to a pressure range of about 120 kPaG or less exceeding normal pressure, preferably about 10 to 100 kPaG.

回収装置1において、4つの冷却器14,25,27,33が使用され、各冷却器において必要とされる冷却効率(つまり冷却温度)に応じて、冷媒とする冷却水の流量が適宜調節される。これらの冷却器14,25,27,33で使用された冷却水は、気化放熱器(図示省略)に回収されて水の気化による放熱によって冷却した後に各冷却器に還流される。本発明においては、吸収塔10の処理後ガスG’の出口温度T2をガスGの入口温度T1より高く設定することによって冷却器14における冷熱量が減少するので、気化放熱器において気化する水量を削減でき、加えて、前処理塔30の凝縮水を冷却部13の冷却水W2として利用することによって冷却器14における冷熱量が更に減少する。シミュレーションによる計算では、図1の構成において、約0.5GJ/t−COの冷熱量(全冷熱量の11%程度)の削減が可能となる。従って、本発明は、気化放熱器における気化水量の削減に有効であり、水資源に乏しい地域での実施において有利である。 In the recovery device 1, four coolers 14, 25, 27, and 33 are used, and the flow rate of cooling water as a refrigerant is appropriately adjusted according to the cooling efficiency (that is, the cooling temperature) required in each cooler. The The cooling water used in these coolers 14, 25, 27, and 33 is collected by a vaporizing radiator (not shown), cooled by heat radiation by vaporization of water, and then returned to each cooling device. In the present invention, by setting the outlet temperature T2 of the treated gas G ′ of the absorption tower 10 higher than the inlet temperature T1 of the gas G, the amount of cold in the cooler 14 is reduced, so the amount of water vaporized in the vaporizing radiator is reduced. In addition, by using the condensed water of the pretreatment tower 30 as the cooling water W2 of the cooling unit 13, the amount of cold heat in the cooler 14 is further reduced. In the calculation by simulation, in the configuration of FIG. 1, it is possible to reduce the amount of cold heat (about 11% of the total amount of cold heat) of about 0.5 GJ / t-CO 2 . Therefore, the present invention is effective in reducing the amount of vaporized water in the vaporizer and is advantageous in implementation in an area where water resources are scarce.

図2は、本発明の二酸化炭素の回収方法を実施する回収装置の第2の実施形態を示す。図2の実施形態は、図1の回収装置1の前処理塔30を、ガスGの冷却だけでなく、脱硫処理も行うように変更した前処理塔30Aを有し、それ以外の点は回収装置1と同様であるので、その説明は以下において省略する。   FIG. 2 shows a second embodiment of a recovery apparatus that implements the carbon dioxide recovery method of the present invention. The embodiment of FIG. 2 has a pretreatment tower 30A in which the pretreatment tower 30 of the recovery apparatus 1 of FIG. 1 is changed not only to cool the gas G but also to perform a desulfurization treatment. Since it is the same as the apparatus 1, the description thereof will be omitted below.

図2の回収装置2において、前処理塔30Aは、回収装置1と同様に、充填材によって構成される気液接触部31を有するが、更に、脱硫処理を行うための脱硫部として作用する気液接触部50が、気液接触部31の下方に設けられ、これらの間を仕切る区画部材51が設けられる。区画部材51は、吸収塔10内の区画部材19と同じ構造であり、水平環状板、管状壁及び傘部によって構成され、前処理塔30Aの内壁と区画部材51の管状壁との間において水平環状板上に液溜まりが形成される。ポンプ32の駆動によって、区画部材51上の冷却水W1が循環路34Aを通って冷却器33へ供給され、冷却された後に気液接触部31の上方に供給される。前処理塔30Aの底部には、水酸化ナトリウム等の塩基を含むアルカリ水Bが貯留され、これを気液接触部50に供給するためのポンプ52及び循環路53が前処理塔30Aの外部に付設される。   In the recovery device 2 of FIG. 2, the pretreatment tower 30A has a gas-liquid contact portion 31 composed of a filler as in the recovery device 1, but further, a gas that acts as a desulfurization portion for performing a desulfurization process. The liquid contact part 50 is provided under the gas-liquid contact part 31, and the partition member 51 which partitions between these is provided. The partition member 51 has the same structure as the partition member 19 in the absorption tower 10, and is configured by a horizontal annular plate, a tubular wall, and an umbrella part, and is horizontally between the inner wall of the pretreatment tower 30 </ b> A and the tubular wall of the partition member 51. A liquid pool is formed on the annular plate. By driving the pump 32, the cooling water W <b> 1 on the partition member 51 is supplied to the cooler 33 through the circulation path 34 </ b> A, and is supplied above the gas-liquid contact portion 31 after being cooled. Alkaline water B containing a base such as sodium hydroxide is stored at the bottom of the pretreatment tower 30A, and a pump 52 and a circulation path 53 for supplying the alkaline water B to the gas-liquid contact section 50 are provided outside the pretreatment tower 30A. It is attached.

前処理塔30Aの底部に供給される二酸化炭素を含んだガスG(初期温度T0)は、気液接触部50を通過する間にアルカリ水と接触して、ガスGに含まれる二酸化硫黄等の硫黄酸化物がアルカリ水によって除去され、硫黄酸化物より酸性度が低い二酸化炭素は気液接触部50を通過する。気液接触部50からデミスタ54及び区画部材51を通過するガスG(温度T0’)は、図1の実施形態と同様に、気液接触部31において冷却水W1によって冷却され、ガスGから生じる凝縮水が冷却水W1と共に区画部材51の液溜まりに貯留されて一体になり、ポンプ32によって冷却器33を通じて循環路34Aを循環する。循環路34Aにおいて、増加した冷却水W1の増量分ΔW1、つまり、ガスGの冷却によって気液接触部31で生じる凝縮水に相当する量の冷却水は、分岐路36Aによって分流され、循環路37を循環する冷却水W2に添加される。気液接触部31で冷却されたガスG(温度T1)は、デミスタ35によって微小液滴が除去された後に前処理塔30Aから吸収塔10へ供給される。   The gas G containing carbon dioxide (initial temperature T0) supplied to the bottom of the pretreatment tower 30A comes into contact with the alkaline water while passing through the gas-liquid contact section 50, and the sulfur dioxide contained in the gas G or the like. Sulfur oxide is removed by alkaline water, and carbon dioxide having a lower acidity than sulfur oxide passes through the gas-liquid contact portion 50. The gas G (temperature T0 ′) passing through the demister 54 and the partition member 51 from the gas-liquid contact portion 50 is cooled by the cooling water W1 in the gas-liquid contact portion 31 and is generated from the gas G, as in the embodiment of FIG. The condensed water is stored in the liquid pool of the partition member 51 together with the cooling water W <b> 1 to be integrated, and is circulated through the circulation path 34 </ b> A through the cooler 33 by the pump 32. In the circulation path 34A, the increased amount ΔW1 of the increased cooling water W1, that is, an amount of cooling water corresponding to the condensed water generated in the gas-liquid contact portion 31 due to the cooling of the gas G is diverted by the branch path 36A. Is added to the cooling water W2. The gas G (temperature T1) cooled by the gas-liquid contact portion 31 is supplied from the pretreatment tower 30A to the absorption tower 10 after the fine droplets are removed by the demister 35.

吸収塔10へ導入されたガスGは、気液接触部11において吸収液と接触する。気液接触部11において二酸化炭素が除去された処理後ガスG’は、デミスタ39及び区画部材19を通って冷却部13において冷却され、図1の実施形態と同様に処理後ガスG’から凝縮水が生じて、冷却水W2と共に区画部材19の液溜まりに貯留される。循環路37を循環する冷却水W2の増量分ΔW2、つまり、冷却部13で処理後ガスG’から生じる凝縮水の量と、分岐路36Aから供給される冷却水ΔW1(気液接触部31の凝縮水に相当)の量との合計分は、分岐路38を通じて、供給路16を循環する吸収液A1に添加される。気液接触部11において吸収液から気化した水分は、分岐路38から添加される水によって補填され、濃縮された吸収液A1は希釈されて元の濃度に回復する。   The gas G introduced into the absorption tower 10 comes into contact with the absorbing liquid at the gas-liquid contact portion 11. The treated gas G ′ from which carbon dioxide has been removed in the gas-liquid contact section 11 is cooled in the cooling section 13 through the demister 39 and the partition member 19, and condensed from the treated gas G ′ in the same manner as in the embodiment of FIG. Water is generated and stored in the pool of the partition member 19 together with the cooling water W2. The amount of increase ΔW2 of the cooling water W2 circulating in the circulation path 37, that is, the amount of condensed water generated from the gas G ′ treated in the cooling section 13, and the cooling water ΔW1 supplied from the branch path 36A (of the gas-liquid contact section 31). The total amount with the amount of the condensed water is added to the absorption liquid A1 circulating through the supply path 16 through the branch path 38. The water vaporized from the absorption liquid in the gas-liquid contact portion 11 is supplemented by the water added from the branch path 38, and the concentrated absorption liquid A1 is diluted and recovered to the original concentration.

この実施形態においては、冷却部13で冷却された処理後ガスG’の出口温度T2は、ガスGが前処理塔30Aの気液接触部31によって冷却される前の温度T0’に実質的に等しい温度(実用的にはT0’±3℃以内、好ましくはT0’±2℃以内)になるように冷却器14の冷却効率が設定される。ガスGとアルカリ水Bとの接触においては、硫黄酸化物と塩基との反応熱による温度上昇を生じるが、アルカリ水Bによる冷却効果もあるので、ガスGの初期温度T0と気液接触部50通過後の温度T0’との差はさほど大きくなく、概して1℃程度以下であるので、ガスGの温度T0’は初期温度T0と見なしても良い。従って、図2の回収装置2においても、処理後ガスG’の出口温度をT2(T0又はT0’)に設定することによる冷却部13での凝縮水の減少分は、前処理塔30における凝縮水によって補填される。   In this embodiment, the outlet temperature T2 of the processed gas G ′ cooled by the cooling unit 13 is substantially equal to the temperature T0 ′ before the gas G is cooled by the gas-liquid contact unit 31 of the preprocessing tower 30A. The cooling efficiency of the cooler 14 is set so that the temperatures are equal (practically within T0 ′ ± 3 ° C., preferably within T0 ′ ± 2 ° C.). In the contact between the gas G and the alkaline water B, the temperature rises due to the heat of reaction between the sulfur oxide and the base, but since there is also a cooling effect by the alkaline water B, the initial temperature T0 of the gas G and the gas-liquid contact part 50 The difference from the temperature T0 ′ after passing is not so large and is generally about 1 ° C. or less, so the temperature T0 ′ of the gas G may be regarded as the initial temperature T0. Therefore, also in the recovery device 2 of FIG. 2, the reduced amount of condensed water in the cooling unit 13 by setting the outlet temperature of the treated gas G ′ to T2 (T0 or T0 ′) is the condensation in the pretreatment tower 30. Supplemented with water.

図3は、本発明の二酸化炭素の回収方法を実施する回収装置の第3の実施形態を示す。回収装置3は、図2の回収装置2に変更を加えて、吸収塔10Aの気液接触部11と冷却部13との間に追加の冷却部60を設けて、二酸化炭素を除去した処理後ガスG’の冷却を、上流側の冷却部60と下流側の冷却部13の2段階で行い、両方の冷却部で凝縮水を回収するようにしたもので、それ以外の点は回収装置2と同様であるので、その説明は以下において省略する。   FIG. 3 shows a third embodiment of a recovery apparatus that implements the carbon dioxide recovery method of the present invention. The recovery device 3 is a modification of the recovery device 2 of FIG. 2 and is provided with an additional cooling unit 60 between the gas-liquid contact unit 11 and the cooling unit 13 of the absorption tower 10A to remove carbon dioxide. The gas G ′ is cooled in two stages of the upstream side cooling unit 60 and the downstream side cooling unit 13, and the condensed water is recovered in both cooling units. The description thereof will be omitted below.

回収装置3の前処理塔30Aは、回収装置2のものと同一であり、ガスGは、気液接触部50における脱硫処理、及び、気液接触部31における冷却を経て、温度T1のガスGが吸収塔10の底部に導入される。循環路34Aを循環する冷却水W1が、気液接触部31で生じる凝縮水によって増加すると、冷却水W1の増加分ΔW1は、分岐路36Aを通って吸収塔10Aの循環路37の冷却水W2に添加され、冷却水W2は、冷却部13と冷却器14との間を循環する。   The pretreatment tower 30A of the recovery device 3 is the same as that of the recovery device 2, and the gas G undergoes the desulfurization process in the gas-liquid contact part 50 and the cooling in the gas-liquid contact part 31, and then the gas G at the temperature T1. Is introduced into the bottom of the absorption tower 10. When the cooling water W1 circulating in the circulation path 34A is increased by the condensed water generated in the gas-liquid contact portion 31, the increase ΔW1 of the cooling water W1 passes through the branch path 36A and the cooling water W2 of the circulation path 37 of the absorption tower 10A. The cooling water W2 circulates between the cooling unit 13 and the cooler 14.

吸収塔10Aの気液接触部11と冷却部13との間には、追加の冷却部60が充填材を用いて形成され、冷却部60の下方に配置される区画部材61によって気液接触部11と区切られる。気液接触部11で二酸化炭素が除去された処理後ガスG’は、冷却部60及び冷却部13を通過して水蒸気量が減少した後に吸収塔10頂部から排出される。冷却部60における冷却形態は、前処理塔30の気液接触部31及び冷却部13の形態と同様になるように構成される。具体的には、冷却部60に冷却水W3を供給するためのポンプ62、及び、冷却水W3を冷却するための水冷式の冷却器63が吸収塔10の外部に付設される。区画部材61は、区画部材19と同様に、水平環状板と、その中央穴周縁に立設される管状壁と、管状壁の上端穴の上方を覆う傘部とを有し、吸収塔10の内側壁と区画部材61の管状壁との間において水平環状板上に液溜まりが形成されるように構成される。区画部材61は、循環路64によってポンプ62及び冷却器63と接続され、ポンプ62の駆動によって冷却水W3が区画部材61を介して冷却部60と冷却器63とを循環する。冷却部60を流下する冷却水W3は、区画部材61上に落下して液溜まりに収容され、循環路64を通じて冷却器63に送られて冷却され、再度冷却部60に供給される。循環路64は、前処理塔30Aの循環路34A及び吸収塔10Aの循環路37と同様に、冷却部60と冷却器63とを循環する冷却水W3の量が所定量に保たれるように構成され、冷却水W3の超過分ΔW3は、循環路64から分岐する分岐路65によって分流される。   Between the gas-liquid contact part 11 and the cooling part 13 of the absorption tower 10 </ b> A, an additional cooling part 60 is formed using a filler, and the gas-liquid contact part is formed by a partition member 61 disposed below the cooling part 60. 11. The treated gas G ′ from which carbon dioxide has been removed in the gas-liquid contact part 11 passes through the cooling part 60 and the cooling part 13 and is discharged from the top of the absorption tower 10 after the amount of water vapor is reduced. The cooling mode in the cooling unit 60 is configured to be the same as the modes of the gas-liquid contact unit 31 and the cooling unit 13 of the pretreatment tower 30. Specifically, a pump 62 for supplying the cooling water W3 to the cooling unit 60 and a water-cooled cooler 63 for cooling the cooling water W3 are attached to the outside of the absorption tower 10. Similarly to the partition member 19, the partition member 61 includes a horizontal annular plate, a tubular wall standing on the periphery of the center hole thereof, and an umbrella portion covering the upper end hole of the tubular wall. A liquid pool is formed on the horizontal annular plate between the inner wall and the tubular wall of the partition member 61. The partition member 61 is connected to the pump 62 and the cooler 63 by a circulation path 64, and the cooling water W <b> 3 circulates between the cooling unit 60 and the cooler 63 through the partition member 61 by driving the pump 62. The cooling water W <b> 3 flowing down the cooling unit 60 falls onto the partition member 61 and is stored in the liquid pool, is sent to the cooler 63 through the circulation path 64, is cooled, and is supplied to the cooling unit 60 again. As with the circulation path 34A of the pretreatment tower 30A and the circulation path 37 of the absorption tower 10A, the circulation path 64 is such that the amount of the cooling water W3 circulating through the cooling unit 60 and the cooler 63 is maintained at a predetermined amount. The excess ΔW3 of the cooling water W3 is divided by the branch path 65 that branches from the circulation path 64.

気液接触部11からデミスタ66及び区画部材61の管状壁を通った処理後ガスG’が上流側の冷却部60に到達して冷却されると、凝縮水(吸収剤を含み得る)が生じて、冷却水W3と共に区画部材61上に落下して液溜まりにおいて冷却水W3と一体になり、冷却水W3は増加する。処理後ガスG’は、更に、デミスタ39及び区画部材19の管状壁を通り、下流側の冷却部13に到達して冷却水W2により冷却されて凝縮水が生じ、冷却水W2と共に区画部材19上に落下して液溜まりにおいて冷却水W2と一体になり、冷却水W2は増加する。   When the treated gas G ′ passing through the demister 66 and the tubular wall of the partition member 61 from the gas-liquid contact portion 11 reaches the cooling portion 60 on the upstream side and is cooled, condensed water (which may include an absorbent) is generated. Then, it falls onto the partition member 61 together with the cooling water W3 and becomes integrated with the cooling water W3 in the liquid pool, and the cooling water W3 increases. The treated gas G ′ further passes through the demister 39 and the tubular wall of the partition member 19, reaches the cooling unit 13 on the downstream side, and is cooled by the cooling water W <b> 2 to generate condensed water, and the partition member 19 together with the cooling water W <b> 2. The liquid falls and becomes integrated with the cooling water W2 in the liquid pool, and the cooling water W2 increases.

前処理塔30Aの循環路34Aから分岐する分岐路36Aの下流端は、循環路37に接続され、前処理塔30の循環路34Aから分流される冷却水ΔW1も循環路37の冷却水W2に添加されて冷却水W2は増加する。循環路37は、循環する冷却水W2の量を一定に保つので、増加した冷却水W2の増量分ΔW2[つまり、処理後ガスG’の冷却によって冷却部13で生じる凝縮水の量と、分岐路36Aから供給される冷却水W1の増量分ΔW1(気液接触部31の凝縮水に相当)の量との合計分]の冷却水が、分岐路38Aによって分流される。分岐路38Aの下流端は、循環路64に接続され、冷却水W2の増量分ΔW2は、循環路64の冷却水W3に添加される。循環路64は、冷却部60と冷却器63とを循環する冷却水W3の量を一定に維持するので、増加した冷却水W3の増量分ΔW3[つまり、処理後ガスG’の冷却によって冷却部13及び冷却部60で生じる凝縮水の量と、分岐路36Aから供給される冷却水W1の増量分ΔW1(気液接触部31の凝縮水に相当)の量との合計分]の冷却水が、分岐路65によって分流される。分岐路65の下流端は、供給路16に接続され、冷却水W3の増量分ΔW3は、供給路16を流れる吸収液A1に添加される。これは、冷却部13及び冷却部60で生じる凝縮水と前処理塔30で生じる凝縮水とが供給路16の吸収液A1に添加されることと実質的に同等である。そして、前処理塔30Aの気液接触部31、冷却部13及び冷却部60で凝縮した凝縮水は、冷却水として利用される。   The downstream end of the branch path 36A branched from the circulation path 34A of the pretreatment tower 30A is connected to the circulation path 37, and the cooling water ΔW1 diverted from the circulation path 34A of the pretreatment tower 30 is also converted into the cooling water W2 of the circulation path 37. As a result, the cooling water W2 increases. Since the circulation path 37 keeps the amount of the circulating cooling water W2 constant, the increase amount ΔW2 of the increased cooling water W2 [that is, the amount of condensed water generated in the cooling unit 13 by the cooling of the treated gas G ′, and the branching Cooling water of the amount of increase ΔW1 (corresponding to the amount of condensed water in the gas-liquid contact portion 31) of the cooling water W1 supplied from the path 36A is diverted by the branch path 38A. The downstream end of the branch path 38A is connected to the circulation path 64, and the increased amount ΔW2 of the cooling water W2 is added to the cooling water W3 of the circulation path 64. The circulation path 64 maintains a constant amount of the cooling water W3 that circulates between the cooling unit 60 and the cooler 63. Therefore, the increase amount ΔW3 of the increased cooling water W3 [that is, the cooling unit is cooled by cooling the treated gas G ′. 13 and the amount of the condensed water generated in the cooling unit 60 and the total amount of the increased amount ΔW1 of the cooling water W1 supplied from the branch path 36A (corresponding to the condensed water in the gas-liquid contact unit 31). The current is diverted by the branch path 65. The downstream end of the branch path 65 is connected to the supply path 16, and the increased amount ΔW3 of the cooling water W3 is added to the absorbing liquid A1 flowing through the supply path 16. This is substantially equivalent to the addition of the condensed water generated in the cooling unit 13 and the cooling unit 60 and the condensed water generated in the pretreatment tower 30 to the absorbing liquid A1 in the supply path 16. And the condensed water condensed in the gas-liquid contact part 31, the cooling part 13, and the cooling part 60 of 30 A of pretreatment towers is utilized as cooling water.

前処理塔30Aから吸収塔10Aの底部に供給される二酸化炭素を含んだガスG(温度T1)が気液接触部11を通過すると、二酸化炭素が除去された処理後ガスG’は、温度が上昇して水蒸気量が増加するが、区画部材61を介して冷却部60を通過する間に冷却水W3によって温度T3に冷却されて水蒸気量が減少し、更に、区画部材19を介して冷却部13を通過する間に冷却水W2によって温度T2に冷却され(T3>T2)、その後、吸収塔10頂部から排出される。温度T3の設定についても、温度T1,T2の設定と同様に、冷却水W3の水温及び冷却部60への供給流量によって調節できる。前処理塔30Aの気液接触部31に導入されるガスGに含まれる水蒸気量と、吸収塔10Aから放出される処理後ガスG’に含まれる水蒸気量とが実質的に等しくなるように、冷却部13で冷却された処理後ガスG’の出口温度T2は、前処理塔30AによってガスGが冷却される前の温度T0’に実質的に等しい温度(実用的にはT0’±3℃以内、好ましくはT0’±2℃以内)に設定する。処理後ガスG’は、気液接触部11から冷却部60及び冷却部13を通過する間に段階的に温度T2へ冷却され、気液接触部11において吸収液から気化した水分は、気液接触部31及び冷却部13,60において凝縮回収される水(又はそれに相当する量の水)を分岐路65を通じて供給することによって補填され、濃縮された吸収液A1の濃度は希釈されて元の濃度に回復する。つまり、処理後ガスG’の出口温度をT2へ上昇させても、この上昇による冷却部13での凝縮水の減少分は、前処理塔30における凝縮水によって補填される。尚、前処理塔30Aにおいて発生する凝縮水は、吸収剤であるアミン化合物を含まない点で冷却部60における凝縮水と異なるので、前処理塔30Aの冷却水W1を吸収塔10Aの冷却部13において使用することによって、処理後ガスG’からアミン化合物を除去する洗浄作用を期待できる。   When the gas G containing carbon dioxide (temperature T1) supplied from the pretreatment tower 30A to the bottom of the absorption tower 10A passes through the gas-liquid contact section 11, the post-treatment gas G ′ from which carbon dioxide has been removed has a temperature of The amount of water vapor increases and the amount of water vapor increases, but while passing through the cooling unit 60 via the partition member 61, the water is cooled to the temperature T3 by the cooling water W <b> 3, and the amount of water vapor decreases. 13 is cooled to the temperature T2 by the cooling water W2 while passing through (T3> T2), and then discharged from the top of the absorption tower 10. The setting of the temperature T3 can also be adjusted by the water temperature of the cooling water W3 and the supply flow rate to the cooling unit 60, similarly to the setting of the temperatures T1 and T2. The amount of water vapor contained in the gas G introduced into the gas-liquid contact part 31 of the pretreatment tower 30A is substantially equal to the amount of water vapor contained in the post-treatment gas G ′ released from the absorption tower 10A. The outlet temperature T2 of the treated gas G ′ cooled by the cooling unit 13 is substantially equal to the temperature T0 ′ before the gas G is cooled by the pretreatment tower 30A (practically T0 ′ ± 3 ° C.). Or less, preferably within T0 ′ ± 2 ° C.). The treated gas G ′ is gradually cooled to the temperature T2 from the gas-liquid contact part 11 through the cooling part 60 and the cooling part 13, and the water vaporized from the absorption liquid in the gas-liquid contact part 11 is gas-liquid. The concentration of the concentrated absorption liquid A1 is compensated by supplying water that is condensed and recovered in the contact portion 31 and the cooling portions 13 and 60 (or an amount of water equivalent thereto) through the branch 65, and is diluted to the original concentration. Restores concentration. That is, even if the outlet temperature of the post-treatment gas G ′ is increased to T <b> 2, the decrease in the condensed water in the cooling unit 13 due to this increase is compensated by the condensed water in the pretreatment tower 30. The condensed water generated in the pretreatment tower 30A is different from the condensed water in the cooling section 60 in that it does not contain an amine compound as an absorbent, so the cooling water W1 in the pretreatment tower 30A is used as the cooling section 13 in the absorption tower 10A. By using in the above, a cleaning action for removing the amine compound from the treated gas G ′ can be expected.

回収装置3においては、5つの冷却器14,25,27,33,63が使用されるが、冷却器14における冷熱量と冷却器63における冷熱量の合計は、回収装置1,2の冷却器14における冷熱量と等しくなるので、冷却器14,25,27,33,63で使用された冷却水を元の温度に冷却するために気化放熱器で気化する水量は、回収装置1,2の場合と同様である。冷却器14及び冷却器63の何れか一方を省略することも可能であり、その場合、残りの冷却器の冷却効率を高めて、処理後ガスG’の出口温度がT2(=T0’)となるように調節する。   In the recovery device 3, five coolers 14, 25, 27, 33, and 63 are used. The total amount of cold heat in the cooler 14 and the cooler amount in the cooler 63 is the cooler of the recovery devices 1 and 2. 14, the amount of water vaporized by the vaporizing radiator to cool the cooling water used in the coolers 14, 25, 27, 33, 63 to the original temperature is equal to that of the recovery devices 1, 2. Same as the case. Either the cooler 14 or the cooler 63 may be omitted. In this case, the cooling efficiency of the remaining coolers is increased, and the outlet temperature of the treated gas G ′ is T2 (= T0 ′). Adjust so that

図3の回収装置3においては、吸収塔10A内を上昇する処理後ガスG’の温度は段階的に出口温度まで低下する(T3>T2)が、使用する吸収液を構成する吸収剤が、処理後ガスG’に随伴され易い成分(例えば比較的低沸点である、共弗性又は揮発性を有する等)を含む場合には、上流側の冷却部60における冷却効率を高めて(つまり冷却温度を下げて)吸収剤の放出抑制を強化することが可能である。但し、この場合、冷却部60を通過した処理後ガスG’の温度は、出口温度T2より低くなるので、下流側の冷却部13及び冷却水W2は冷却手段として作用せず、むしろ加熱手段及び熱媒体として作用する。以下においては、上述したように追加の冷却部60の冷却効率を高めた実施形態に係る回収装置4について図4を参照して説明する。この回収装置4においては、図3の冷却部13及び冷却水W2と同一の構成物について、その働きに基づいて温度調整部13’及び温度調整水W2’と称するが、冷却部60及び温度調整部13’は、全体としては、処理後ガスG’を出口温度T2に冷却するように作用する。   In the recovery device 3 of FIG. 3, the temperature of the treated gas G ′ rising in the absorption tower 10A gradually decreases to the outlet temperature (T3> T2), but the absorbent that constitutes the absorption liquid to be used is When a component that is likely to accompany the post-treatment gas G ′ (for example, has a relatively low boiling point, has fluorination or volatility, etc.), the cooling efficiency in the cooling unit 60 on the upstream side is increased (that is, cooling is performed). It is possible to reduce the release of the absorbent (by reducing the temperature). However, in this case, since the temperature of the treated gas G ′ that has passed through the cooling unit 60 becomes lower than the outlet temperature T2, the cooling unit 13 and the cooling water W2 on the downstream side do not act as cooling units, but rather heating units and Acts as a heating medium. Below, the collection | recovery apparatus 4 which concerns on embodiment which raised the cooling efficiency of the additional cooling part 60 as mentioned above is demonstrated with reference to FIG. In the recovery device 4, the same components as the cooling unit 13 and the cooling water W2 in FIG. 3 are referred to as a temperature adjustment unit 13 ′ and a temperature adjustment water W2 ′ based on their functions. The part 13 ′ acts as a whole to cool the treated gas G ′ to the outlet temperature T2.

図4の回収装置4は、回収装置3における吸収塔10Aを以下のように変更した吸収塔10Bを有する。即ち、吸収塔10Aの循環路37上の冷却器14を省略して、還流路17の熱交換器24と冷却器25との間に熱交換器71を設け、循環路37の温度調整水W2’の一部(又は全部)を分流して(又は迂回させて)熱交換器71を経由して還流するように循環路37から分岐・合流するバイパス路70を形成するように変更して吸収塔10Bを構成している。吸収塔10Bにおける冷却器63の冷却効率(冷却温度)は、吸収塔10Aとは異なる様に設定されるが、上述の点以外は回収装置3と構造的に同様であり、図2,3と同一の前処理塔30A及び図1〜3と同一の再生塔20を有する。従って、回収装置4の前処理塔30Aに導入されるガスGは、図2,3と同様に気液接触部50における脱硫処理及び気液接触部31における冷却を経て、温度T1で吸収塔10Bに導入され、図1〜3と同様に吸収液による二酸化炭素の吸収、吸収液の再生及び循環が行われる。前処理塔30Aの気液接触部31で生じる凝縮水によって増加した冷却水W1の増量分ΔW1は、分岐路36Aを通じて循環路37の温度調整水W2’へ供給される。この時の冷却水W1の増量分ΔW1の温度は、ガスGとの接触によってT1近くに上昇している。   The recovery device 4 of FIG. 4 has an absorption tower 10B in which the absorption tower 10A in the recovery device 3 is changed as follows. That is, the cooler 14 on the circulation path 37 of the absorption tower 10A is omitted, the heat exchanger 71 is provided between the heat exchanger 24 and the cooler 25 in the reflux path 17, and the temperature adjustment water W2 in the circulation path 37 is provided. Absorbed by changing to form a bypass path 70 that branches and joins from the circulation path 37 so that a part (or all) of 'is diverted (or detoured) through the heat exchanger 71. The tower 10B is configured. The cooling efficiency (cooling temperature) of the cooler 63 in the absorption tower 10B is set to be different from that of the absorption tower 10A, but is structurally similar to the recovery device 3 except for the points described above. The same pretreatment tower 30A and the same regeneration tower 20 as FIGS. Therefore, the gas G introduced into the pretreatment tower 30A of the recovery device 4 undergoes the desulfurization process in the gas-liquid contact part 50 and the cooling in the gas-liquid contact part 31 as in FIGS. In the same manner as in FIGS. 1 to 3, absorption of carbon dioxide by the absorbing liquid, regeneration and circulation of the absorbing liquid are performed. The increased amount ΔW1 of the cooling water W1 increased by the condensed water generated in the gas-liquid contact portion 31 of the pretreatment tower 30A is supplied to the temperature adjustment water W2 ′ of the circulation path 37 through the branch path 36A. At this time, the temperature of the increased amount ΔW1 of the cooling water W1 is increased near T1 due to contact with the gas G.

この実施形態の吸収塔10Bにおいては、気液接触部11において二酸化炭素が除去された処理後ガスG’が冷却部60において冷却水W3によって冷却される際に、冷却された処理後ガスG’の温度T4が出口温度T2以下、好ましくはT2より5〜20℃程度低い温度となるように、冷却器63の冷却効率が高く設定される。従って、冷却部60において出口温度T2より低い温度T4に冷却された処理後ガスG’は、温度調整部13’において温度調整水W2’によって温度T2に加温される。これに関し、温度調整水W2’に添加される冷却水W1の温度はT1近くである(T1<T2)ので、上記の加温は、循環路37の温度調整水W2’と還流路17の吸収液A2との熱交換によって実現される。具体的には、循環路37の温度調整水W2’の一部又は全部は、バイパス路70を通じて熱交換器71に供給され、熱交換器71において吸収液A2を冷却する冷却水として機能すると共に加熱されて、温度調整部13’に供給される。吸収液A2の温度は概して55〜70℃程度であり、温度調整水W2’の温度は、熱交換器71の熱交換率によって調整できるので、T2以上の温度になるように調整される。これにより、温度調整部13’において処理後ガスG’は加温されて温度T2に調整される。このように、冷却部60における処理後ガスG’の冷却温度T4を出口温度T2(つまりT0’)より低く設定して、温度調整水W2’によって処理後ガスG’の温度をT4からT2へ上げることにより、冷却部60における冷却効率を高めて吸収剤の放出抑制を強化しつつ、吸収液の濃度を一定に保つことが可能である。   In the absorption tower 10B of this embodiment, when the treated gas G ′ from which carbon dioxide has been removed in the gas-liquid contact section 11 is cooled by the cooling water W3 in the cooling section 60, the cooled treated gas G ′. The cooling efficiency of the cooler 63 is set to be high so that the temperature T4 is equal to or lower than the outlet temperature T2, preferably about 5 to 20 ° C. lower than T2. Therefore, the treated gas G ′ cooled to the temperature T4 lower than the outlet temperature T2 in the cooling unit 60 is heated to the temperature T2 by the temperature adjustment water W2 ′ in the temperature adjustment unit 13 ′. In this regard, since the temperature of the cooling water W1 added to the temperature adjustment water W2 ′ is close to T1 (T1 <T2), the above heating is absorbed by the temperature adjustment water W2 ′ of the circulation path 37 and the return path 17. This is realized by heat exchange with the liquid A2. Specifically, a part or all of the temperature adjustment water W2 ′ in the circulation path 37 is supplied to the heat exchanger 71 through the bypass path 70, and functions as cooling water for cooling the absorbing liquid A2 in the heat exchanger 71. It is heated and supplied to the temperature adjustment unit 13 ′. The temperature of the absorbing liquid A2 is generally about 55 to 70 ° C., and the temperature of the temperature adjustment water W2 ′ can be adjusted by the heat exchange rate of the heat exchanger 71, so that the temperature is adjusted to be equal to or higher than T2. As a result, the processed gas G ′ is heated in the temperature adjusting unit 13 ′ and adjusted to the temperature T <b> 2. In this way, the cooling temperature T4 of the treated gas G ′ in the cooling unit 60 is set lower than the outlet temperature T2 (that is, T0 ′), and the temperature of the treated gas G ′ is changed from T4 to T2 by the temperature adjustment water W2 ′. By increasing the cooling efficiency, it is possible to keep the concentration of the absorbing liquid constant while enhancing the cooling efficiency in the cooling unit 60 and strengthening the suppression of the release of the absorbent.

上述の構成において、吸収塔10Bの冷却部60で処理後ガスG’から生じる凝縮水の量は、図3の吸収塔10Aにおいて冷却部13及び冷却部60で各々生じる凝縮水の合計量以上になる。他方、温度調整部13’においては、処理後ガスG’は冷却されないので凝縮水は生じず、むしろ加温(T4<T2)によって処理後ガスG’は加湿される。循環路37を循環する温度調整水W2’の量は一定に維持されるように構成されるので、循環路37の温度調整水W2’から分岐路38Aを通じて循環路64へ分流される増量分ΔW2’は、分岐路36Aから供給される冷却水W1の増量分ΔW1に比べて加湿による気化分だけ減少する。循環路64を循環する冷却水W3の量も一定に維持されるように構成され、分岐路38Aから供給される温度調整水W2’の増量分ΔW2’と、冷却部60で生じる凝縮水の量との合計に相当する量の冷却水W3が、増量分ΔW3として分岐路65から供給路16の吸収液A1に添加される。処理後ガスG’の出口温度T2は、図3の実施形態と同じであるので、冷却部60における冷却温度の低下による凝縮水の増加量は、温度調整部13’における温度調整水W2’の気化量と図3の冷却部13での凝縮水量との合計に等しくなり、供給路16の吸収液A1に添加される冷却水W3の増量分ΔW3は、図3の実施形態と同じ量になる。   In the above-described configuration, the amount of condensed water generated from the treated gas G ′ in the cooling section 60 of the absorption tower 10B is greater than or equal to the total amount of condensed water generated in each of the cooling section 13 and the cooling section 60 in the absorption tower 10A of FIG. Become. On the other hand, in the temperature adjusting unit 13 ′, the treated gas G ′ is not cooled, so condensed water is not generated. Rather, the treated gas G ′ is humidified by heating (T 4 <T 2). Since the amount of the temperature adjustment water W2 ′ circulating through the circulation path 37 is configured to be kept constant, the increase ΔW2 that is diverted from the temperature adjustment water W2 ′ of the circulation path 37 to the circulation path 64 through the branch path 38A. 'Decreases by the amount of vaporization due to humidification, compared with the amount of increase ΔW1 of the cooling water W1 supplied from the branch path 36A. The amount of the cooling water W3 that circulates in the circulation path 64 is also maintained constant, and the increased amount ΔW2 ′ of the temperature adjustment water W2 ′ supplied from the branch path 38A and the amount of condensed water generated in the cooling unit 60 The amount of cooling water W3 corresponding to the sum of the above is added from the branch path 65 to the absorbing liquid A1 in the supply path 16 as an increased amount ΔW3. Since the outlet temperature T2 of the treated gas G ′ is the same as that in the embodiment of FIG. 3, the increase amount of the condensed water due to the decrease in the cooling temperature in the cooling unit 60 is the amount of the temperature adjusted water W2 ′ in the temperature adjusting unit 13 ′. The amount of vaporization and the amount of condensed water in the cooling unit 13 in FIG. 3 are equal to each other, and the amount of increase ΔW3 of the cooling water W3 added to the absorption liquid A1 in the supply path 16 is the same as in the embodiment in FIG. .

図4の実施形態では、冷却部60における冷却効率を高めるために、冷却器63における冷熱量が増大し、その冷熱量は、図3における冷却器14及び冷却器63の冷熱量の合計以上であるが、温度調整水W2’を吸収液A2の冷却に利用することによって冷却器25における冷熱量が削減される。従って、回収装置4全体としては、図1〜3の回収装置1〜3における冷熱量と同様であり、冷却器25,27,33,63で使用される冷却水を気化放熱器で放熱・冷却するための気化水量を削減できる。   In the embodiment of FIG. 4, in order to increase the cooling efficiency in the cooling unit 60, the amount of cold heat in the cooler 63 increases, and the amount of cold heat is equal to or greater than the sum of the cold heat amounts of the cooler 14 and the cooler 63 in FIG. 3. However, the amount of cold heat in the cooler 25 is reduced by using the temperature-adjusted water W2 ′ for cooling the absorbing liquid A2. Accordingly, the entire recovery device 4 is the same as the amount of cold heat in the recovery devices 1 to 3 in FIGS. 1 to 3, and the cooling water used in the coolers 25, 27, 33, and 63 is radiated and cooled by the vaporization radiator. To reduce the amount of vaporized water.

図2〜4の回収装置2〜4においても、図1の回収装置1の説明で記載したような変更が可能であり、気液接触部31及び冷却部13,60で生じる凝縮水に相当する量の水を、冷却水として使用せずに直接吸収液に添加したり、凝縮水そのものを吸収液に添加可能な冷却形態を採用することが可能である。   2 to 4 can also be changed as described in the description of the recovery device 1 in FIG. 1 and corresponds to the condensed water generated in the gas-liquid contact portion 31 and the cooling portions 13 and 60. It is possible to add a quantity of water directly to the absorption liquid without using it as cooling water, or to adopt a cooling mode in which condensed water itself can be added to the absorption liquid.

尚、図1〜4の実施形態において、循環する冷却水W1〜W3及び温度調整水W2’の各々の量について設定される「所定量」は同一である必要はなく、装置形状及び寸法等の設計に応じて各部に適した量が適宜設定される。   In the embodiment of FIGS. 1 to 4, the “predetermined amount” set for each of the circulating cooling waters W1 to W3 and the temperature adjustment water W2 ′ need not be the same, such as the device shape and dimensions. The amount suitable for each part is appropriately set according to the design.

本発明は、火力発電所や製鉄所、ボイラーなどの設備から排出される二酸化炭素含有ガスの処理等に利用して、その二酸化炭素放出量や環境に与える影響などの軽減に有効である。特に、二酸化炭素の回収処理において使用する冷却水による冷熱量が削減可能な回収装置が提供され、水資源に乏しい地域における二酸化炭素の回収処理の実施促進に寄与し、環境保護に貢献することができる。   INDUSTRIAL APPLICABILITY The present invention is effective for reducing the amount of carbon dioxide released and its influence on the environment by using it for the treatment of carbon dioxide-containing gas discharged from facilities such as thermal power plants, steelworks, and boilers. In particular, a recovery device that can reduce the amount of heat generated by cooling water used in carbon dioxide recovery processing is provided, contributing to the promotion of carbon dioxide recovery processing in areas where water resources are scarce and contributing to environmental protection. it can.

1,2,3,4 回収装置、 10,10A,10B 吸収塔、 20 再生塔、
30、30A 前処理塔、 11,21,31,50 気液接触部、
12,15,23,32,43,52,62 ポンプ、
13,60 冷却部、 13’ 温度調整部、
14,25,27,33,63 冷却器、 16 供給路、
17 還流路、 18 送気管、 19,51,61 区画部材、
22 スチームヒーター、 22’,34,34A,37,53,64 循環路、
24,71 熱交換器、 26 凝縮部、 28 気液分離器、 29 調圧弁、
35,39,40,41,54,66 デミスタ、
36,36A,38,38A,65 分岐路、 70 バイパス路、
G、G’ ガス、 A1,A2 吸収液、 B アルカリ水、 C 回収ガス、
W1,W2,W3 冷却水、 W2’ 温度調整水。
1, 2, 3, 4 recovery device, 10, 10A, 10B absorption tower, 20 regeneration tower,
30, 30A pretreatment tower, 11, 21, 31, 50 gas-liquid contact part,
12, 15, 23, 32, 43, 52, 62 pump,
13, 60 cooling section, 13 'temperature adjustment section,
14, 25, 27, 33, 63 cooler, 16 supply path,
17 reflux path, 18 air pipe, 19, 51, 61 partition member,
22 steam heater, 22 ', 34, 34A, 37, 53, 64 circuit,
24,71 heat exchanger, 26 condenser, 28 gas-liquid separator, 29 pressure regulating valve,
35, 39, 40, 41, 54, 66 demister,
36, 36A, 38, 38A, 65 branch path, 70 bypass path,
G, G ′ gas, A1, A2 absorbing liquid, B alkaline water, C recovered gas,
W1, W2, W3 Cooling water, W2 'Temperature adjustment water.

Claims (12)

水蒸気量が飽和したガスを予め適正温度に冷却する前処理塔と、
前記前処理塔で冷却されたガスを吸収液と接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる気液接触部、及び、前記気液接触部を経た処理後ガスを冷却する冷却部を有する吸収塔と、
前記吸収塔で二酸化炭素を吸収した吸収液を加熱し二酸化炭素を放出させて吸収液を再生する再生塔と、
前記前処理塔で冷却によって前記ガスから生じる凝縮水、及び、前記吸収塔の前記冷却部で冷却によって前記処理後ガスから生じる凝縮水の合計量に相当する量の水を吸収液に供給する水供給システムと
を有し、前記冷却部で冷却された前記処理後ガスの温度と、前記前処理塔で冷却される前のガスの温度との差が3℃以内になるように前記冷却部が設定される二酸化炭素の回収装置。
A pretreatment tower for precooling the gas saturated with water vapor to an appropriate temperature;
The gas cooled in the pretreatment tower is brought into contact with an absorption liquid, and the gas-liquid contact part that absorbs carbon dioxide contained in the gas into the absorption liquid, and the gas that has been processed through the gas-liquid contact part is cooled. An absorption tower having a cooling section;
A regeneration tower that regenerates the absorption liquid by heating the absorption liquid that has absorbed carbon dioxide in the absorption tower to release carbon dioxide;
Water that supplies condensed water generated from the gas by cooling in the pretreatment tower and an amount of water corresponding to the total amount of condensed water generated from the post-treatment gas by cooling in the cooling section of the absorption tower to the absorption liquid A cooling system, and the cooling unit is configured so that a difference between a temperature of the treated gas cooled by the cooling unit and a temperature of the gas before cooled by the pretreatment tower is within 3 ° C. Carbon dioxide recovery device set.
更に、前記吸収塔と前記再生塔との間で前記吸収液を循環させる循環システムを有し、前記水供給システムは、前記循環システムによって前記吸収塔から前記再生塔へ供給される吸収液に、前記凝縮水の合計量に相当する量の水を供給する請求項1に記載の二酸化炭素の回収装置。   Furthermore, it has a circulation system that circulates the absorption liquid between the absorption tower and the regeneration tower, and the water supply system supplies the absorption liquid supplied from the absorption tower to the regeneration tower by the circulation system, The carbon dioxide recovery device according to claim 1, wherein an amount of water corresponding to a total amount of the condensed water is supplied. 前記前処理塔の冷媒としての第1冷却水と、前記吸収塔の冷却部の冷媒としての第2冷却水とを有する冷却システムを有し、
前記水供給システムは、前記冷却システムから前記凝縮水の合計量に相当する量の冷却水を吸収液に供給する請求項1又は2に記載の二酸化炭素の回収装置。
A cooling system having a first cooling water as a refrigerant of the pretreatment tower and a second cooling water as a refrigerant of a cooling section of the absorption tower;
The carbon dioxide recovery device according to claim 1 or 2, wherein the water supply system supplies an amount of cooling water corresponding to a total amount of the condensed water from the cooling system to the absorption liquid.
前記冷却システムは、前記第1冷却水及び前記第2冷却水の各々について、所定量を超える超過分の冷却水が分別されるように構成され、
前記水供給システムは、前記冷却システムにおいて前記第1冷却水及び前記第2冷却水から分別される前記超過分の冷却水を吸収液に供給する供給路を有する請求項3に記載の二酸化炭素の回収装置。
The cooling system is configured to separate excess cooling water exceeding a predetermined amount for each of the first cooling water and the second cooling water,
The carbon dioxide supply system according to claim 3, wherein the water supply system has a supply path for supplying the excess cooling water separated from the first cooling water and the second cooling water to the absorption liquid in the cooling system. Recovery device.
前記冷却システムにおいて、前記第1冷却水及び前記第2冷却水は前記凝縮水の発生によって増加し、それによって前記凝縮水に相当する量の冷却水が前記超過分として前記第1冷却水及び前記第2冷却水から分別される請求項4に記載の二酸化炭素の回収装置。   In the cooling system, the first cooling water and the second cooling water increase due to the generation of the condensed water, whereby an amount of cooling water corresponding to the condensed water is the excess, and the first cooling water and the The carbon dioxide recovery device according to claim 4, wherein the carbon dioxide recovery device is separated from the second cooling water. 前記水供給システムは、前記前処理塔において生じる凝縮水に相当する量の前記第1冷却水を前記吸収塔の前記第2冷却水に添加する供給路を有し、前記凝縮水の合計量に相当する量の第2冷却水を吸収液に供給する請求項3〜5の何れか1項に記載の二酸化炭素の回収装置。   The water supply system has a supply path for adding the first cooling water in an amount corresponding to the condensed water generated in the pretreatment tower to the second cooling water in the absorption tower, and the total amount of the condensed water is The carbon dioxide recovery apparatus according to any one of claims 3 to 5, wherein a corresponding amount of the second cooling water is supplied to the absorption liquid. 前記吸収塔の冷却部は、前記処理後ガスについて上流側の冷却部と下流側の冷却部とによって構成され、
前記冷却システムの第2冷却水は、前記上流側の冷却部の冷媒としての上流側冷却水と、前記下流側の冷却部の冷媒としての下流側冷却水とを有し、前記上流側冷却水及び前記下流側冷却水の各々について、所定量を超える超過分の冷却水が分別されるように構成され、
前記水供給システムは、前記第1冷却水から分別される前記超過分の冷却水を前記下流側冷却水に添加する供給路と、前記下流側冷却水から分別される前記超過分の冷却水を前記上流側冷却水に添加する供給路と、前記上流側冷却水から分別される前記超過分の冷却水を吸収液に供給する供給路とを有する請求項3に記載の二酸化炭素の回収装置。
The cooling section of the absorption tower is composed of an upstream cooling section and a downstream cooling section for the treated gas,
The second cooling water of the cooling system has upstream cooling water as a refrigerant of the upstream cooling unit and downstream cooling water as a refrigerant of the downstream cooling unit, and the upstream cooling water And for each of the cooling water on the downstream side, an excess amount of cooling water exceeding a predetermined amount is separated,
The water supply system includes: a supply path for adding the excess cooling water separated from the first cooling water to the downstream cooling water; and the excess cooling water separated from the downstream cooling water. The carbon dioxide recovery device according to claim 3, further comprising: a supply path for adding to the upstream side cooling water; and a supply path for supplying the excess amount of cooling water separated from the upstream side cooling water to the absorption liquid.
前記冷却システムは、前記処理後ガスが前記上流側の冷却部及び前記下流側の冷却部を経るに従って、前記処理後ガスの温度が段階的に低下するように設定される請求項7に記載の二酸化炭素の回収装置。   The said cooling system is set so that the temperature of the said processed gas may fall in steps as the said processed gas passes through the said upstream cooling part and the said downstream cooling part. Carbon dioxide recovery device. 前記吸収塔の冷却部は、前記処理後ガスについて上流側の冷却部と下流側の温度調整部とによって構成され、
前記冷却システムの第2冷却水は、前記上流側の冷却部の冷媒としての上流側冷却水と、前記下流側の温度調整部の媒体としての温度調整水とを有し、前記上流側冷却水及び前記温度調整水の各々について、所定量を超える超過分の水が分別されるように構成され、
前記水供給システムは、前記第1冷却水から分別される前記超過分の冷却水を前記温度調整水に添加する供給路と、前記温度調整水から分別される前記超過分の水を前記上流側冷却水に添加する供給路と、前記上流側冷却水から分別される前記超過分の水を吸収液に供給する供給路とを有する請求項3に記載の二酸化炭素の回収装置。
The cooling section of the absorption tower is composed of an upstream cooling section and a downstream temperature adjusting section for the treated gas,
The second cooling water of the cooling system includes upstream cooling water as a refrigerant of the upstream cooling unit and temperature adjustment water as a medium of the downstream temperature adjustment unit, and the upstream cooling water And for each of the temperature-adjusted water, it is configured so that excess water exceeding a predetermined amount is separated,
The water supply system includes: a supply path for adding the excess cooling water separated from the first cooling water to the temperature adjustment water; and the excess water separated from the temperature adjustment water on the upstream side The carbon dioxide recovery apparatus according to claim 3, further comprising: a supply path for adding cooling water; and a supply path for supplying the excess water separated from the upstream side cooling water to the absorption liquid.
前記冷却システムは、前記上流側の冷却部を経た前記処理後ガスの温度が、前記温度調整部を経た前記処理後ガスの温度より低くなるように設定される請求項9に記載の二酸化炭素の回収装置。   10. The carbon dioxide gas according to claim 9, wherein the cooling system is set so that a temperature of the processed gas that has passed through the upstream cooling unit is lower than a temperature of the processed gas that has passed through the temperature adjusting unit. Recovery device. 前記前処理塔は、更に、冷却する前の前記ガスから硫黄酸化物を除去するための脱硫部を有し、前記前処理塔で冷却される前のガスの温度は、前記脱硫部を通過後のガスの温度である請求項1〜10の何れか1項に記載の二酸化炭素の回収装置。 The pretreatment column is further have a desulfurization section for removing sulfur oxides from the gas prior to cooling, the temperature of the front of the gas to be cooled by the pre-treatment column, after passing through the desulfurizing unit The carbon dioxide recovery apparatus according to any one of claims 1 to 10, wherein the temperature is the temperature of the gas . 水蒸気量が飽和したガスを予め適正温度に冷却する前処理工程と、
前記前処理工程で冷却されたガスを吸収液と接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる吸収工程と、
前記吸収工程を経た処理後ガスを冷却する冷却工程と、
前記吸収工程で二酸化炭素を吸収した吸収液を加熱し二酸化炭素を放出させて吸収液を再生する再生工程と、
前記前処理工程で冷却によって前記ガスから生じる凝縮水、及び、前記冷却工程で前記処理後ガスから生じる凝縮水の合計量に相当する量の水を吸収液に供給する水供給工程と
を有し、前記冷却工程で冷却された前記処理後ガスの温度と、前記前処理工程で冷却される前のガスの温度との差が3℃以内になるように前記冷却工程を調整する二酸化炭素の回収方法。
A pretreatment step for cooling the gas saturated with water vapor to an appropriate temperature in advance;
An absorption step in which the gas cooled in the pretreatment step is brought into contact with an absorption liquid and carbon dioxide contained in the gas is absorbed into the absorption liquid;
A cooling step for cooling the gas after treatment through the absorption step;
A regeneration step of regenerating the absorbing liquid by heating the absorbing liquid that has absorbed carbon dioxide in the absorbing step to release carbon dioxide;
A water supply step of supplying condensed water generated from the gas by cooling in the pretreatment step and an amount of water corresponding to a total amount of condensed water generated from the post-treatment gas in the cooling step to the absorption liquid. The carbon dioxide recovery for adjusting the cooling step so that the difference between the temperature of the post-treatment gas cooled in the cooling step and the temperature of the gas before cooling in the pre-treatment step is within 3 ° C. Method.
JP2013184129A 2013-09-05 2013-09-05 Carbon dioxide recovery method and recovery apparatus Active JP6225572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013184129A JP6225572B2 (en) 2013-09-05 2013-09-05 Carbon dioxide recovery method and recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184129A JP6225572B2 (en) 2013-09-05 2013-09-05 Carbon dioxide recovery method and recovery apparatus

Publications (2)

Publication Number Publication Date
JP2015051382A JP2015051382A (en) 2015-03-19
JP6225572B2 true JP6225572B2 (en) 2017-11-08

Family

ID=52700829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184129A Active JP6225572B2 (en) 2013-09-05 2013-09-05 Carbon dioxide recovery method and recovery apparatus

Country Status (1)

Country Link
JP (1) JP6225572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210271A1 (en) 2020-04-15 2021-10-21 三菱重工エンジニアリング株式会社 Carbon dioxide capturing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639918B2 (en) 2016-01-14 2020-02-05 三菱重工エンジニアリング株式会社 CO2 recovery device and recovery method
KR101767140B1 (en) * 2016-05-19 2017-08-24 한국에너지기술연구원 Dry sorbent CO2 capturing system including function of supplying water using energy in system and operation method thereof
JP7568674B2 (en) 2022-04-27 2024-10-16 三菱重工業株式会社 Carbon Dioxide Capture System

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194292A (en) * 2010-03-18 2011-10-06 Babcock Hitachi Kk Method and apparatus for treating exhaust gas
EP2740527B1 (en) * 2011-07-13 2016-11-30 IHI Corporation Method and device for recovering carbon dioxide
JP2013059726A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Co2 recovery device and co2 recovery method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210271A1 (en) 2020-04-15 2021-10-21 三菱重工エンジニアリング株式会社 Carbon dioxide capturing device
US11628391B2 (en) * 2020-04-15 2023-04-18 Mitsubishi Heavy Industries Engineering, Ltd. Carbon dioxide recovery apparatus

Also Published As

Publication number Publication date
JP2015051382A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
US9375676B2 (en) Method of recovering carbon dioxide and recovery apparatus
US9399939B2 (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
JP5402842B2 (en) Carbon dioxide recovery method and recovery apparatus
CA2902309C (en) Recovery method and recovery apparatus of carbon dioxide
JP5821531B2 (en) Carbon dioxide recovery method and recovery apparatus
US10005032B2 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6064770B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5966565B2 (en) Carbon dioxide recovery method and recovery apparatus
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
JP2011240321A (en) Exhaust gas treatment system having carbon dioxide removal device
JP6225572B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2013059727A (en) Co2 recovery device and co2 recovery method
US20130340623A1 (en) Co2 recovery device
JP5720463B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6248813B2 (en) Carbon dioxide recovery method and recovery apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R151 Written notification of patent or utility model registration

Ref document number: 6225572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151