JP5706601B2 - 平坦な半極性窒化ガリウムの成長技術 - Google Patents
平坦な半極性窒化ガリウムの成長技術 Download PDFInfo
- Publication number
- JP5706601B2 JP5706601B2 JP2008500965A JP2008500965A JP5706601B2 JP 5706601 B2 JP5706601 B2 JP 5706601B2 JP 2008500965 A JP2008500965 A JP 2008500965A JP 2008500965 A JP2008500965 A JP 2008500965A JP 5706601 B2 JP5706601 B2 JP 5706601B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semipolar
- gan
- nitride thin
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002601 GaN Inorganic materials 0.000 title claims description 91
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 64
- 238000005516 engineering process Methods 0.000 title description 4
- 239000010409 thin film Substances 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 68
- 150000004767 nitrides Chemical class 0.000 claims description 66
- 239000000758 substrate Substances 0.000 claims description 43
- 230000010287 polarization Effects 0.000 claims description 27
- 229910052596 spinel Inorganic materials 0.000 claims description 24
- 239000011029 spinel Substances 0.000 claims description 24
- 229910052738 indium Inorganic materials 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 19
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 10
- 239000010980 sapphire Substances 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 9
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 9
- 229910002704 AlGaN Inorganic materials 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 150000004678 hydrides Chemical class 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000002019 doping agent Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 description 16
- 241000921519 Syrrhopodon sp. Species 0.000 description 14
- 229910052733 gallium Inorganic materials 0.000 description 11
- 230000008901 benefit Effects 0.000 description 9
- 230000005693 optoelectronics Effects 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000002269 spontaneous effect Effects 0.000 description 6
- 229910052984 zinc sulfide Inorganic materials 0.000 description 6
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000879 optical micrograph Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000001534 heteroepitaxy Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000005701 quantum confined stark effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- VLCQZHSMCYCDJL-UHFFFAOYSA-N tribenuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)N(C)C1=NC(C)=NC(OC)=N1 VLCQZHSMCYCDJL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/938—Lattice strain control or utilization
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
Description
本出願は米国特許法第119条(e)に基づいて、本発明の譲受人に譲渡された以下の同時係属の米国特許出願の優先権を主張するものである。
マイケル・イザ(Michael Iza)、トロイ・J.ベーカー、ベンジャミン・A.ハスケル、スティーブン・P.デンバースおよび中村修二による米国特許仮出願第60/715,491号、2005年9月9日出願、発明の名称「有機金属気相成長法による半極性(Al,In,Ga,B)Nの成長促進法(METHOD FOR ENHANCING GROWTH OF SEMIPOLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION)」、代理人整理番号30794,144−US−P1(2005−722)
ジョン・F.ケイディング(John F.Kaeding)、マイケル・イザ、トロイ・J.ベーカー、サトー・ヒトシ(Hitoshi Sato)、ベンジャミン・A.ハスケル、ジェームス・S.スペック、スティーブン・P.デンバースおよび中村修二による米国特許仮出願第60/760,739号、2006年1月20日出願、発明の名称「半極性(Al,In,Ga,B)Nの改良成長法(METHOD FOR IMPROVED GROWTH OF SEMIPOLAR (Al,In,Ga,B)N)」、代理人整理番号30794.150−US−P1(2006−126)
サトー・ヒトシ、ジョン・F.ケイディング、マイケル・イザ、トロイ・J.ベーカー(Troy J.Baker)、ベンジャミン・A.ハスケル、スティーブン・P.デンバースおよび中村修二による米国特許仮出願第60/760,628号、2006年1月20日出願、発明の名称「有機金属気相成長法による半極性(Al,In,Ga,B)Nの成長促進法(METHOD FOR ENHANCING GROWTH OF SEMIPOLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION)」、代理人整理番号30794.159−US−P1(2006−178)
ホン・ゾーン、ジョン・F.ケイディング、ラジャット・シャーマ、ジェームス・S.スペック、スティーブン・P.デンバースおよび中村修二による米国特許仮出願第60/774,467号、2006年2月17日出願、発明の名称「半極性(Al,In,Ga,B)N光電子デバイスの成長方法(METHODFOR GROWTH OF SEMIPOLAR (Al,In,Ga,B)N OPTOELECTRONICS DEVICES)」、代理人整理番号30794.173−US−P1(2006−422)
マイケル・D.クレイブン、ステーシア・ケラー、スティーブン・P.デンバース、タル・マーガリス、ジェームス・S.スペック、中村修二、ウメシュ・K.ミシュラによる米国特許出願第10/413,690、2003年4月15日出願、発明の名称「非極性(Al,B,In,Ga)N量子井戸とヘテロ構造材料及びデバイス(NON−POLAR (Al,B,In,Ga)NQUANTUMWELLANDHETEROSTRUCTUREMATERIALSANDDEVICES)」、代理人整理番号30794.101−US−U1(2002−301−2)。この出願は米国特許法第119条(e)に基づき、次の米国特許仮出願の優先権を主張している。マイケル・D.クレイブン、ステーシア・ケラー、スティーブン・P.デンバース、タル・マーガリス、ジェームス・S.スペック、中村修二、ウメシュ・K.ミシュラによる米国特許仮出願第60/372,909号、2002年4月15日出願、発明の名称「非極性窒化ガリウム系の薄膜およびヘテロ構造材料(NON−POLAR GALLIUM NITRIDE BASEDTHINFILMSANDHETEROSTRUCTUREMATERIALS)」、代理人整理番号30794.95−US−P1(2002−294/301/303)
マイケル・D.クレイブン、スティーブン・P.デンバースによる国際特許出願第PTC/US03/39355、2003年12月11日出願、発明の名称「非極性(Al,B,In,Ga)N量子井戸(NON−POLAR(Al,B,In,Ga)N QUANTUM WELLS)」、代理人整理番号30794.104−WO−01(2003−529−1)。この出願は上記特許出願PCT/US03/21918(30794.93−WO−U1),PCT/US03/21916(30794.94−WO−U1),10/413,691(30794.100−US−U1),10/413,690(30794.101−US−U1)、10/413,913(30794.102−US−U1)の一部継続出願である。
1.本発明の技術分野
本発明は平坦な半極性窒化ガリウムの成長技術に関するものである。
窒化ガリウム(GaN)およびアルミニウムとインジウムを組み込んだ窒化ガリウムの3元、4元化合物(AlGaN、InGaN、AlInGaN)の有用性は可視および紫外の光電子デバイスおよび高性能電子デバイスの作製に関して十分に確立している。これらのデバイスは通常は分子線エピタキシー(MBE)、有機金属気相成長法(MOCVD)、およびハイドライド気相成長法(HVPE)を含む成長技術を用いてエピタキシャルに成長される。
Nishizuka,K.,Applied Physics Letters,Vol.85,No.15,11 October,2004
例えばGaNの{10−11}、{10−13}、および{11−22}面のような半極性窒化物半導体の成長はウルツ鉱型構造III 族窒化物デバイス構造における分極効果を低減する手段を提供するものである。窒化物という半導体用語は(Ga,Al,In,B)Nと、これら半導体の全ての合金組成を指すものである。現行の窒化物デバイスは極性のある[0001]c方向に成長されているが、結果的に、垂直型のデバイスの、主に電流の流れる方向に沿って電荷分離が生じる。その結果生じる分極電界は現状の技術水準の光電子デバイスの性能にとって不利益となる。半極性方向に沿ってこれらのデバイスを成長すれば、電流の流れる方向に沿っての内蔵電界を低減することによってデバイス特性を著しく改善することが出来る。
本発明は、平坦な窒化物薄膜を成長するための方法を含み、そこでは大面積の半極性窒化物が基板表面に平行である。この例は{10−11}および{10−13}GaN薄膜である。この特定の実施例ではMgAl2 O4 スピネル基板が成長プロセスに用いられる。{10−11}GaNの成長のためには、スピネルが適切なる方向にミスカットされていることが決定的に重要である。軸上(on−axis)であり、<001>の方向へミスカットした{100}スピネル上に成長した{10−11}GaNはお互いに90°をなす2つのドメインを持つ。これは図1A(ミスカット無し)と図1B(<010>方向にミスカット)に示した(100)スピネル上のGaNの光学顕微鏡写真によって明らかである。
1)特定の方向(<001>、<010>および<011>)にミスカットした{100}スピネル上の{10−11}GaN
2){110}スピネル上の{10−13}GaN
3){1−100}サファイヤ上の{11−22}GaN
4){1−100}サファイヤ上の{10−13}GaN
これらの薄膜はカリフォルニア大学サンタ・バーバラ校の中村修二研究室内のHVPEシステムを用いて成長した。{10−11}と{10−13}の両者に対する成長パラメータの概要は、圧力が10torrから1,000torrの間であり、温度が900℃から1,200℃の間であるということである。このように圧力範囲が広いということは、特別の基板上に成長する場合、これらの面が非常に安定であることを示す。反応装置のタイプによらずにエピタキシャルの関係が正しく成立するはずである。しかしながら、このような面を成長するための反応装置の条件は個々の反応装置および成長方法(例えば、HVPE,MOCVD,およびMBE)に従って変化するだろう。
図2は本発明の好ましい実施形態の処理工程を示すフローチャートである。具体的には、この処理工程は大面積の平坦な半極性窒化物薄膜が基板表面に平行であるような、平坦な半極性窒化物薄膜を成長する方法を備えている。
可能な変更と変形
本発明の技術範囲がカバーするのは、引用した特定の実施例のみではない。この構想は全ての半極性面上の全ての窒化物に関係している。例えば、ミスカット(100)スピネル基板上に{10−11}AlN、InN、AlGaN、InGaNまたはAlInNを成長することが出来る。他の例としては、適当な基板が見つかれば{10−12}窒化物を成長させることが出来る。これらの例や他の可能性は尚、半極性薄膜の持つ全ての利点を保持している。
利点と改良点
現在の技術は表面がc面を持つGaNを成長するものである。この面は自発分極と圧電分極を持ち、これらはデバイス特性にとって有害である。c面窒化物薄膜に対して半極性面窒化物薄膜が有する利点は分極の低減であり、ある種のデバイスにおいてはそれと関係する内部量子効率の増加である。
デバイスにおける分極効果を完全に除去するために非極性面を用いることが考えられる。しかしながらこれらの面は成長が非常に困難であり、そのため非極性窒化物デバイスは今日生産されてはいない。非極性窒化物薄膜に対して半極性窒化物薄膜が有する利点は成長の容易さにある。半極性面は成長パラメータの幅が広いということが分かっている。例えば、非極性面は大気圧下では成長しないが、半極性面は62.5torrから760torrまでで成長することが実験的に証明されており、おそらくこれよりもさらに広い範囲で成長すると考えられる。{1−100}GaNは低圧で成長するが、他の条件は同じにして圧力を760torrに増加するとc面GaNが成長してしまう。これは多分2つの面に対する単位格子の輪郭に関係するものであろう。{11−20}GaNの更なる困難性はInGaNデバイスに必要なInを組み込むことである。Inの組み込みに関しては{10−11}GaNのほうがはるかに有利であることが実験結果より分かっている。
以下の参考文献は、参照として本明細書に組み込まれる。
[1]Takeuchi,Tetsuya,Japanese Journal of Applied Physics,Vol.39,(2000),pp.413−416.
この論文は半極性GaN薄膜の極性に関する理論研究である。
[2]Nishizuka,K.,Applied Physics Letters,Vol.85 No.15,11 October 2004.この論文はELO材料の{11−20}GaN側壁に関する研究である。
[3]T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck,and S.Nakamura,“Characterization of Planar Semipolar Gallium Niride Films on Spinel Substrates,”Japanese Journal of AppliedPhysics,Vol.44,No.29,(2005),L920.
[4]A.Chakraborty,T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck,S.P.Denbaars,S.Nakamura,and U.K.Mishra,“Milliwatt Power Blue InGaN/GaN Light−Emitting Diodes on Semipolar GaN Templates,”
[5]R.Sharma,P.M.Pattison,H.Masui,R.M.Farrell,T.J.Baker,B.A.Hasskell,F.Wu,S.P.Denbaars,J.S.Speck,and S.Nakamura,“Demonstration of a Semipolar(10−1−3)InGaN/GaN Green Light Emitting Diode,”Appl.Phys.Lett.87,231110(2005).
[6]T.J.Baker,B.A.Haskell,F.Wu,J.S.Speck, and S.Nakamura,“Characterization of Planar Semipolar Gallium Nitride Films on Sapphire Substrate,”Japanese Journal of Applied Physics,Vol.45,No.6,(2006),L154.
結論
これで本発明の好ましい実施形態の説明を終える。本発明の1つ以上の実施例に関する上記の記述は例示と記載のために示されたものである。本発明を開示した形態そのものによって包括または限定することを意図するものではない。多くの変更と変形が上記の教示に照らして可能である。本発明の範囲はこの詳細な説明に限定しようとするものではなく、添付の請求項によって限定しようとするものである。
Claims (20)
- (a)基板および該基板の表面の方位を、窒化物薄膜の所望の半極性方位に基づいて選択する工程と、
(b)前記基板を、酸素を除去するために排気され、一つ以上のガスで充填されるハイドライド気相成長法(HVPE)または有機金属気相成長法(MOCVD)反応装置の中に装着する工程と、
(c)前記反応装置を昇温する工程と、
(d)前記昇温する工程中に、前記基板の表面上にガスの組み合わせを流す工程であって、
(i)前記ガスの組み合わせがアンモニア、水素、および窒素のうち一つ以上からなり、
(ii)前記ガスの組み合わせが前記基板および前記窒化物薄膜の所望の半極性方位に基づいて選択されることを特徴とする工程と、
(e)成長温度に達したら10torrから1000torrの間の成長圧力および900℃以上1200℃以下の成長温度で、HVPEまたはMOCVDを用いて前記基板の表面上に半極性窒化物薄膜を成長する工程と、
(f)前記半極性窒化物薄膜を保護するためにガスの存在下で前記反応装置を降温する工程であって、
前記半極性窒化物薄膜が(Al,In,Ga,B)N薄膜であり、
前記半極性窒化物薄膜の成長表面が成長しても平坦で安定であり、
前記半極性窒化物薄膜の前記成長表面が前記基板の表面に平行で少なくとも10mm×10mmの表面積を有することを特徴とする工程とを備えることを特徴とする、窒化物薄膜を成長する方法。 - 少なくとも直径2インチの表面積を有する前記平坦な半極性窒化物薄膜の表面積が前記基板表面に平行であることを特徴とする請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜が<011>方向にミスカットした{100}スピネル基板上に成長した{10−11}窒化ガリウム (GaN)であることを特徴とする請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜がAlN、InN、AlGaN、InGaN、またはAlInNであることを特徴とする請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜が{110}スピネル基板上に成長した{10−13}窒化ガリウム (GaN)であることを特徴とする請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜が{1−100}サファイヤ基板上に成長した{11−22}窒化ガリウム (GaN)であることを特徴とする、請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜が{1−100}サファイヤ基板上に成長した{10−13}窒化ガリウム(GaN)であることを特徴とする、請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜が成長した後に、該平坦な半極性窒化物薄膜上に1つ以上のデバイス層を成長する工程をさらに備えることを特徴とする請求項1に記載の方法。
- 前記平坦な半極性窒化物薄膜上にデバイス層を成長する工程は、前記デバイス層にn型およびp型ドーパントをドーピングする工程と、再成長層に1つ以上の量子井戸を成長する工程とを含むことを特徴とする請求項8に記載の方法。
- 前記デバイス層から発光ダイオードを作製する工程をさらに備えることを特徴とする請求項9に記載の方法。
- 請求項1に記載の方法を用いて成長した平坦な半極性窒化物薄膜。
- 前記半極性窒化物膜が窒化ガリウム(GaN)膜であることを特徴とする請求項1に記載の方法。
- (f)前記基板がサファイヤで、前記表面が該サファイヤの{1−100}表面であり、
(i)前記ガス流が、{10−13}GaNである平坦な半極性GaN薄膜を得るために前記成長温度で前記アンモニアが流されるように前記反応装置を前記成長温度へ昇温しながら流される前記窒素および前記水素からなり、
(ii)前記ガス流が、{11−22}GaNである平坦な半極性GaN薄膜を得るために前記アンモニアが低温で流されるように前記反応装置を前記成長温度へ昇温しながら流される前記アンモニアからなり、
(g)前記基板がスピネル基板であり、前記表面が前記スピネルの{110}表面であるとき、{10−13}GaNである前記半極性GaN薄膜を得るために、窒化を促進する条件下で前記温度を上昇し、
(h)前記基板がスピネル基板であり、前記表面が<011>方向にミスカットされた前記スピネルの{100}表面であるとき、{10−11}GaNである平坦な半極性GaN膜を得るために、窒化を促進する条件下で前記温度を上昇することを特徴とする、請求項1に記載の方法。 - 前記半極性窒化物薄膜がc面窒化物構造のデバイス構造と比べて、圧電分極を含む分極の効果の合計が低減することを特徴とする、請求項1に記載の方法。
- 前記半極性窒化物薄膜が、c面極性窒化物薄膜上に成長されたデバイス層と比べて、前記半極性膜上に成長されたデバイス層における分極が低減し、該分極はデバイス層から生じ、前記膜は非同一組成である故に格子定数が異なることを特徴とする、請求項1に記載の方法。
- 前記半極性窒化物薄膜が単結晶であることを特徴とする、請求項1に記載の方法。
- 前記半極性窒化物薄膜が{20−21}窒化物薄膜であることを特徴とする、請求項1に記載の方法。
- 前記半極性窒化物薄膜が{10−14}窒化物薄膜であることを特徴とする、請求項1に記載の方法。
- 前記半極性窒化物薄膜が{10−12}窒化物薄膜であることを特徴とする、請求項1に記載の方法。
- 前記成長がハイドライド化学気相成長法であることを特徴とする、請求項1に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66028305P | 2005-03-10 | 2005-03-10 | |
US60/660,283 | 2005-03-10 | ||
PCT/US2006/008595 WO2006099138A2 (en) | 2005-03-10 | 2006-03-10 | Technique for the growth of planar semi-polar gallium nitride |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014163558A Division JP2014222780A (ja) | 2005-03-10 | 2014-08-11 | 平坦な半極性窒化ガリウムの成長技術 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008533723A JP2008533723A (ja) | 2008-08-21 |
JP5706601B2 true JP5706601B2 (ja) | 2015-04-22 |
Family
ID=36992267
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008500965A Active JP5706601B2 (ja) | 2005-03-10 | 2006-03-10 | 平坦な半極性窒化ガリウムの成長技術 |
JP2014163558A Pending JP2014222780A (ja) | 2005-03-10 | 2014-08-11 | 平坦な半極性窒化ガリウムの成長技術 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014163558A Pending JP2014222780A (ja) | 2005-03-10 | 2014-08-11 | 平坦な半極性窒化ガリウムの成長技術 |
Country Status (8)
Country | Link |
---|---|
US (4) | US7220324B2 (ja) |
EP (2) | EP2315253A1 (ja) |
JP (2) | JP5706601B2 (ja) |
KR (2) | KR101145755B1 (ja) |
CN (2) | CN101138091B (ja) |
HK (1) | HK1112109A1 (ja) |
TW (2) | TWI453813B (ja) |
WO (1) | WO2006099138A2 (ja) |
Families Citing this family (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7504274B2 (en) * | 2004-05-10 | 2009-03-17 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US9011598B2 (en) * | 2004-06-03 | 2015-04-21 | Soitec | Method for making a composite substrate and composite substrate according to the method |
US7858996B2 (en) * | 2006-02-17 | 2010-12-28 | The Regents Of The University Of California | Method for growth of semipolar (Al,In,Ga,B)N optoelectronic devices |
EP2315253A1 (en) | 2005-03-10 | 2011-04-27 | The Regents of the University of California | Technique for the growth of planar semi-polar gallium nitride |
JP5743127B2 (ja) | 2005-06-01 | 2015-07-01 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置 |
US8148713B2 (en) * | 2008-04-04 | 2012-04-03 | The Regents Of The University Of California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
US8148244B2 (en) * | 2005-07-13 | 2012-04-03 | The Regents Of The University Of California | Lateral growth method for defect reduction of semipolar nitride films |
JP5270348B2 (ja) * | 2005-09-09 | 2013-08-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 有機金属化学気相成長法による半極性(Al,In,Ga,B)Nの成長促進法 |
EP1982351A4 (en) | 2006-01-20 | 2010-10-20 | Univ California | PROCESS FOR IMPROVED GROWTH OF SEMIPOLARM (AL, IN, GA, B) N |
WO2007084783A2 (en) * | 2006-01-20 | 2007-07-26 | The Regents Of The University Of California | Method for enhancing growth of semipolar (ai,in,ga,b)n via metalorganic chemical vapor deposition |
US20120161287A1 (en) * | 2006-01-20 | 2012-06-28 | Japan Science And Technology Agency | METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION |
JP5684455B2 (ja) | 2006-02-10 | 2015-03-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法 |
EP2087507A4 (en) * | 2006-11-15 | 2010-07-07 | Univ California | METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE |
US8193020B2 (en) | 2006-11-15 | 2012-06-05 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition |
US9064706B2 (en) * | 2006-11-17 | 2015-06-23 | Sumitomo Electric Industries, Ltd. | Composite of III-nitride crystal on laterally stacked substrates |
TWI533351B (zh) * | 2006-12-11 | 2016-05-11 | 美國加利福尼亞大學董事會 | 高效能非極性第三族氮化物光學裝置之金屬有機化學氣相沈積生長 |
JP2010512660A (ja) * | 2006-12-11 | 2010-04-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 無極性および半極性の発光デバイス |
WO2008100504A1 (en) * | 2007-02-12 | 2008-08-21 | The Regents Of The University Of California | Cleaved facet (ga,al,in)n edge-emitting laser diodes grown on semipolar {11-2n} bulk gallium nitride substrates |
US8211723B2 (en) * | 2007-02-12 | 2012-07-03 | The Regents Of The University Of California | Al(x)Ga(1-x)N-cladding-free nonpolar III-nitride based laser diodes and light emitting diodes |
JP4462289B2 (ja) | 2007-05-18 | 2010-05-12 | ソニー株式会社 | 半導体層の成長方法および半導体発光素子の製造方法 |
US20080314311A1 (en) * | 2007-06-24 | 2008-12-25 | Burrows Brian H | Hvpe showerhead design |
CN100583475C (zh) * | 2007-07-19 | 2010-01-20 | 富士迈半导体精密工业(上海)有限公司 | 氮化物半导体发光元件及其制作方法 |
EP2176878A4 (en) * | 2007-08-08 | 2010-11-17 | Univ California | PLANAR NON-POLAR PLAN M GROUP III NITRIDE FILMS THAT ARE GROWN ON CUTTING ANGLE SUBSTRATES |
JP2010539732A (ja) * | 2007-09-19 | 2010-12-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 無極性および半極性の窒化物基板の面積を増加させる方法 |
US20090149008A1 (en) * | 2007-10-05 | 2009-06-11 | Applied Materials, Inc. | Method for depositing group iii/v compounds |
KR100972977B1 (ko) * | 2007-12-14 | 2010-07-29 | 삼성엘이디 주식회사 | 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법 |
JP2011511462A (ja) | 2008-02-01 | 2011-04-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | ウエハの軸外カットによる窒化物発光ダイオードの偏光の向上 |
KR101488452B1 (ko) * | 2008-05-28 | 2015-02-02 | 서울반도체 주식회사 | 편광 광원, 그것을 채택한 백라이트 유닛 및 액정디스플레이 모듈 |
JP2011517099A (ja) * | 2008-04-04 | 2011-05-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | プレーナー半極性(Al,In,Ga,B)Nベースの発光ダイオード向けMOCVD成長技術 |
TW200950162A (en) | 2008-04-04 | 2009-12-01 | Univ California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
US8847249B2 (en) * | 2008-06-16 | 2014-09-30 | Soraa, Inc. | Solid-state optical device having enhanced indium content in active regions |
US20100006873A1 (en) * | 2008-06-25 | 2010-01-14 | Soraa, Inc. | HIGHLY POLARIZED WHITE LIGHT SOURCE BY COMBINING BLUE LED ON SEMIPOLAR OR NONPOLAR GaN WITH YELLOW LED ON SEMIPOLAR OR NONPOLAR GaN |
US8259769B1 (en) | 2008-07-14 | 2012-09-04 | Soraa, Inc. | Integrated total internal reflectors for high-gain laser diodes with high quality cleaved facets on nonpolar/semipolar GaN substrates |
US8805134B1 (en) | 2012-02-17 | 2014-08-12 | Soraa Laser Diode, Inc. | Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices |
US8673074B2 (en) * | 2008-07-16 | 2014-03-18 | Ostendo Technologies, Inc. | Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE) |
JP5252061B2 (ja) * | 2008-10-07 | 2013-07-31 | 住友電気工業株式会社 | 窒化ガリウム系レーザダイオード |
US8795430B2 (en) | 2009-03-02 | 2014-08-05 | The Regents Of The University Of California | Method of improving surface morphology of (Ga,Al,In,B)N thin films and devices grown on nonpolar or semipolar (Ga,Al,In,B)N substrates |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
US8252662B1 (en) | 2009-03-28 | 2012-08-28 | Soraa, Inc. | Method and structure for manufacture of light emitting diode devices using bulk GaN |
US8299473B1 (en) | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
US8183132B2 (en) * | 2009-04-10 | 2012-05-22 | Applied Materials, Inc. | Methods for fabricating group III nitride structures with a cluster tool |
US8568529B2 (en) | 2009-04-10 | 2013-10-29 | Applied Materials, Inc. | HVPE chamber hardware |
US8634442B1 (en) | 2009-04-13 | 2014-01-21 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates for laser applications |
US8254425B1 (en) | 2009-04-17 | 2012-08-28 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8242522B1 (en) | 2009-05-12 | 2012-08-14 | Soraa, Inc. | Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm |
US8294179B1 (en) | 2009-04-17 | 2012-10-23 | Soraa, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
US8837545B2 (en) | 2009-04-13 | 2014-09-16 | Soraa Laser Diode, Inc. | Optical device structure using GaN substrates and growth structures for laser applications |
DE112010001615T5 (de) | 2009-04-13 | 2012-08-02 | Soraa, Inc. | Stuktur eines optischen Elements unter Verwendung von GaN-Substraten für Laseranwendungen |
US8416825B1 (en) | 2009-04-17 | 2013-04-09 | Soraa, Inc. | Optical device structure using GaN substrates and growth structure for laser applications |
CN102449743A (zh) * | 2009-04-24 | 2012-05-09 | 应用材料公司 | 用于后续高温第三族沉积的基材预处理 |
US8110889B2 (en) * | 2009-04-28 | 2012-02-07 | Applied Materials, Inc. | MOCVD single chamber split process for LED manufacturing |
TW201039381A (en) * | 2009-04-29 | 2010-11-01 | Applied Materials Inc | Method of forming in-situ pre-GaN deposition layer in HVPE |
US8427590B2 (en) | 2009-05-29 | 2013-04-23 | Soraa, Inc. | Laser based display method and system |
US8247887B1 (en) | 2009-05-29 | 2012-08-21 | Soraa, Inc. | Method and surface morphology of non-polar gallium nitride containing substrates |
CN102449550B (zh) * | 2009-05-29 | 2016-06-08 | 天空激光二极管有限公司 | 一种投影系统 |
US9250044B1 (en) | 2009-05-29 | 2016-02-02 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser diode dazzling devices and methods of use |
US8509275B1 (en) | 2009-05-29 | 2013-08-13 | Soraa, Inc. | Gallium nitride based laser dazzling device and method |
US10108079B2 (en) | 2009-05-29 | 2018-10-23 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US9829780B2 (en) | 2009-05-29 | 2017-11-28 | Soraa Laser Diode, Inc. | Laser light source for a vehicle |
US9800017B1 (en) | 2009-05-29 | 2017-10-24 | Soraa Laser Diode, Inc. | Laser device and method for a vehicle |
WO2010141943A1 (en) * | 2009-06-05 | 2010-12-09 | The Regents Of The University Of California | LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES |
JP5446622B2 (ja) * | 2009-06-29 | 2014-03-19 | 住友電気工業株式会社 | Iii族窒化物結晶およびその製造方法 |
JP4905514B2 (ja) * | 2009-07-15 | 2012-03-28 | 住友電気工業株式会社 | 窒化物系半導体発光素子 |
JP4978667B2 (ja) * | 2009-07-15 | 2012-07-18 | 住友電気工業株式会社 | 窒化ガリウム系半導体レーザダイオード |
US8153475B1 (en) | 2009-08-18 | 2012-04-10 | Sorra, Inc. | Back-end processes for substrates re-use |
EP2467877A4 (en) * | 2009-08-21 | 2013-10-09 | Univ California | CONTROL OF ANISOTROPIC BURDEN IN HALF-POLAR NITRIDE QUANTUM DRILLING HOLES THROUGH PARTIAL OR COMPLETELY LAYERED ALUMINUM INDIUM GALLIUM NITRIDE LAYERS WITH SLIDING SHIFT |
WO2011022730A1 (en) | 2009-08-21 | 2011-02-24 | The Regents Of The University Of California | Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations |
US20110056429A1 (en) * | 2009-08-21 | 2011-03-10 | Soraa, Inc. | Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices |
US9000466B1 (en) | 2010-08-23 | 2015-04-07 | Soraa, Inc. | Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening |
KR101173072B1 (ko) * | 2009-08-27 | 2012-08-13 | 한국산업기술대학교산학협력단 | 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법 |
US8575471B2 (en) * | 2009-08-31 | 2013-11-05 | Alliance For Sustainable Energy, Llc | Lattice matched semiconductor growth on crystalline metallic substrates |
US8961687B2 (en) * | 2009-08-31 | 2015-02-24 | Alliance For Sustainable Energy, Llc | Lattice matched crystalline substrates for cubic nitride semiconductor growth |
US8207554B2 (en) * | 2009-09-11 | 2012-06-26 | Soraa, Inc. | System and method for LED packaging |
US8314429B1 (en) | 2009-09-14 | 2012-11-20 | Soraa, Inc. | Multi color active regions for white light emitting diode |
US8750342B1 (en) | 2011-09-09 | 2014-06-10 | Soraa Laser Diode, Inc. | Laser diodes with scribe structures |
US8355418B2 (en) | 2009-09-17 | 2013-01-15 | Soraa, Inc. | Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates |
US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
US20130313516A1 (en) | 2012-05-04 | 2013-11-28 | Soraa, Inc. | Led lamps with improved quality of light |
WO2011035265A1 (en) | 2009-09-18 | 2011-03-24 | Soraa, Inc. | Power light emitting diode and method with current density operation |
US9293667B2 (en) | 2010-08-19 | 2016-03-22 | Soraa, Inc. | System and method for selected pump LEDs with multiple phosphors |
US20110186887A1 (en) * | 2009-09-21 | 2011-08-04 | Soraa, Inc. | Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials |
US8575642B1 (en) | 2009-10-30 | 2013-11-05 | Soraa, Inc. | Optical devices having reflection mode wavelength material |
US8269245B1 (en) | 2009-10-30 | 2012-09-18 | Soraa, Inc. | Optical device with wavelength selective reflector |
US8629065B2 (en) | 2009-11-06 | 2014-01-14 | Ostendo Technologies, Inc. | Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE) |
JP4856792B2 (ja) * | 2009-11-12 | 2012-01-18 | パナソニック株式会社 | 窒化物半導体素子の製造方法 |
US8507365B2 (en) * | 2009-12-21 | 2013-08-13 | Alliance For Sustainable Energy, Llc | Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates |
US8740413B1 (en) | 2010-02-03 | 2014-06-03 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US20110215348A1 (en) | 2010-02-03 | 2011-09-08 | Soraa, Inc. | Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials |
US20110186874A1 (en) | 2010-02-03 | 2011-08-04 | Soraa, Inc. | White Light Apparatus and Method |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8445890B2 (en) * | 2010-03-09 | 2013-05-21 | Micron Technology, Inc. | Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing |
DE102010011895B4 (de) | 2010-03-18 | 2013-07-25 | Freiberger Compound Materials Gmbh | Verfahren zur Herstellung eines semipolaren Gruppe III-Nitrid-Kristalls, Substrat, freistehendes semipolares Substrat und Verwendung der Substrate |
US9927611B2 (en) | 2010-03-29 | 2018-03-27 | Soraa Laser Diode, Inc. | Wearable laser based display method and system |
US20110256692A1 (en) | 2010-04-14 | 2011-10-20 | Applied Materials, Inc. | Multiple precursor concentric delivery showerhead |
US8451876B1 (en) | 2010-05-17 | 2013-05-28 | Soraa, Inc. | Method and system for providing bidirectional light sources with broad spectrum |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8293551B2 (en) | 2010-06-18 | 2012-10-23 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US8803452B2 (en) | 2010-10-08 | 2014-08-12 | Soraa, Inc. | High intensity light source |
US8816319B1 (en) | 2010-11-05 | 2014-08-26 | Soraa Laser Diode, Inc. | Method of strain engineering and related optical device using a gallium and nitrogen containing active region |
KR101105868B1 (ko) * | 2010-11-08 | 2012-01-16 | 한국광기술원 | 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법 |
US8975615B2 (en) | 2010-11-09 | 2015-03-10 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material |
US9048170B2 (en) | 2010-11-09 | 2015-06-02 | Soraa Laser Diode, Inc. | Method of fabricating optical devices using laser treatment |
US8541951B1 (en) | 2010-11-17 | 2013-09-24 | Soraa, Inc. | High temperature LED system using an AC power source |
US8896235B1 (en) | 2010-11-17 | 2014-11-25 | Soraa, Inc. | High temperature LED system using an AC power source |
US9425249B2 (en) | 2010-12-01 | 2016-08-23 | Alliance For Sustainable Energy, Llc | Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers |
US9041027B2 (en) | 2010-12-01 | 2015-05-26 | Alliance For Sustainable Energy, Llc | Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates |
US9595813B2 (en) | 2011-01-24 | 2017-03-14 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a substrate member |
US9318875B1 (en) | 2011-01-24 | 2016-04-19 | Soraa Laser Diode, Inc. | Color converting element for laser diode |
US9025635B2 (en) | 2011-01-24 | 2015-05-05 | Soraa Laser Diode, Inc. | Laser package having multiple emitters configured on a support member |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
US9093820B1 (en) | 2011-01-25 | 2015-07-28 | Soraa Laser Diode, Inc. | Method and structure for laser devices using optical blocking regions |
US8643257B2 (en) | 2011-02-11 | 2014-02-04 | Soraa, Inc. | Illumination source with reduced inner core size |
US8324835B2 (en) * | 2011-02-11 | 2012-12-04 | Soraa, Inc. | Modular LED lamp and manufacturing methods |
US10036544B1 (en) | 2011-02-11 | 2018-07-31 | Soraa, Inc. | Illumination source with reduced weight |
US8525396B2 (en) * | 2011-02-11 | 2013-09-03 | Soraa, Inc. | Illumination source with direct die placement |
US8618742B2 (en) * | 2011-02-11 | 2013-12-31 | Soraa, Inc. | Illumination source and manufacturing methods |
TWI534291B (zh) | 2011-03-18 | 2016-05-21 | 應用材料股份有限公司 | 噴淋頭組件 |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
US8884517B1 (en) | 2011-10-17 | 2014-11-11 | Soraa, Inc. | Illumination sources with thermally-isolated electronics |
US8912025B2 (en) | 2011-11-23 | 2014-12-16 | Soraa, Inc. | Method for manufacture of bright GaN LEDs using a selective removal process |
JP2012109624A (ja) * | 2012-03-06 | 2012-06-07 | Sumitomo Electric Ind Ltd | Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法 |
US8992684B1 (en) | 2012-06-15 | 2015-03-31 | Ostendo Technologies, Inc. | Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials |
US9023673B1 (en) | 2012-06-15 | 2015-05-05 | Ostendo Technologies, Inc. | Free HCL used during pretreatment and AlGaN growth to control growth layer orientation and inclusions |
US9577143B1 (en) | 2012-06-15 | 2017-02-21 | Ostendo Technologies, Inc. | Backflow reactor liner for protection of growth surfaces and for balancing flow in the growth liner |
TWI476953B (zh) | 2012-08-10 | 2015-03-11 | Univ Nat Taiwan | 半導體發光元件及其製作方法 |
US20140183579A1 (en) * | 2013-01-02 | 2014-07-03 | Japan Science And Technology Agency | Miscut semipolar optoelectronic device |
TWI620340B (zh) | 2013-03-15 | 2018-04-01 | 傲思丹度科技公司 | 增強效能主動式像素陣列及用於達成其之磊晶成長方法 |
US9166372B1 (en) | 2013-06-28 | 2015-10-20 | Soraa Laser Diode, Inc. | Gallium nitride containing laser device configured on a patterned substrate |
US9379525B2 (en) | 2014-02-10 | 2016-06-28 | Soraa Laser Diode, Inc. | Manufacturable laser diode |
US9368939B2 (en) | 2013-10-18 | 2016-06-14 | Soraa Laser Diode, Inc. | Manufacturable laser diode formed on C-plane gallium and nitrogen material |
US9520695B2 (en) | 2013-10-18 | 2016-12-13 | Soraa Laser Diode, Inc. | Gallium and nitrogen containing laser device having confinement region |
US9362715B2 (en) | 2014-02-10 | 2016-06-07 | Soraa Laser Diode, Inc | Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material |
EP3103144A1 (en) | 2014-02-05 | 2016-12-14 | Soraa, Inc. | High-performance led fabrication |
US9209596B1 (en) | 2014-02-07 | 2015-12-08 | Soraa Laser Diode, Inc. | Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates |
US9871350B2 (en) | 2014-02-10 | 2018-01-16 | Soraa Laser Diode, Inc. | Manufacturable RGB laser diode source |
US9520697B2 (en) | 2014-02-10 | 2016-12-13 | Soraa Laser Diode, Inc. | Manufacturable multi-emitter laser diode |
CN104112803B (zh) * | 2014-04-14 | 2016-08-17 | 中国科学院半导体研究所 | 半极性面氮化镓基发光二极管及其制备方法 |
US9564736B1 (en) | 2014-06-26 | 2017-02-07 | Soraa Laser Diode, Inc. | Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode |
US12126143B2 (en) | 2014-11-06 | 2024-10-22 | Kyocera Sld Laser, Inc. | Method of manufacture for an ultraviolet emitting optoelectronic device |
US9246311B1 (en) | 2014-11-06 | 2016-01-26 | Soraa Laser Diode, Inc. | Method of manufacture for an ultraviolet laser diode |
US9666677B1 (en) | 2014-12-23 | 2017-05-30 | Soraa Laser Diode, Inc. | Manufacturable thin film gallium and nitrogen containing devices |
US9653642B1 (en) | 2014-12-23 | 2017-05-16 | Soraa Laser Diode, Inc. | Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes |
US11437775B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | Integrated light source using a laser diode |
US10938182B2 (en) | 2015-08-19 | 2021-03-02 | Soraa Laser Diode, Inc. | Specialized integrated light source using a laser diode |
US10879673B2 (en) | 2015-08-19 | 2020-12-29 | Soraa Laser Diode, Inc. | Integrated white light source using a laser diode and a phosphor in a surface mount device package |
US11437774B2 (en) | 2015-08-19 | 2022-09-06 | Kyocera Sld Laser, Inc. | High-luminous flux laser-based white light source |
US9787963B2 (en) | 2015-10-08 | 2017-10-10 | Soraa Laser Diode, Inc. | Laser lighting having selective resolution |
US11287563B2 (en) * | 2016-12-01 | 2022-03-29 | Ostendo Technologies, Inc. | Polarized light emission from micro-pixel displays and methods of fabrication thereof |
US10771155B2 (en) | 2017-09-28 | 2020-09-08 | Soraa Laser Diode, Inc. | Intelligent visible light with a gallium and nitrogen containing laser source |
US10222474B1 (en) | 2017-12-13 | 2019-03-05 | Soraa Laser Diode, Inc. | Lidar systems including a gallium and nitrogen containing laser light source |
US10551728B1 (en) | 2018-04-10 | 2020-02-04 | Soraa Laser Diode, Inc. | Structured phosphors for dynamic lighting |
US11239637B2 (en) | 2018-12-21 | 2022-02-01 | Kyocera Sld Laser, Inc. | Fiber delivered laser induced white light system |
US11421843B2 (en) | 2018-12-21 | 2022-08-23 | Kyocera Sld Laser, Inc. | Fiber-delivered laser-induced dynamic light system |
US11884202B2 (en) | 2019-01-18 | 2024-01-30 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system |
TWI698915B (zh) * | 2019-01-18 | 2020-07-11 | 國立交通大學 | 雲母片上異質磊晶半導體材料之製程方法 |
US12000552B2 (en) | 2019-01-18 | 2024-06-04 | Kyocera Sld Laser, Inc. | Laser-based fiber-coupled white light system for a vehicle |
US12152742B2 (en) | 2019-01-18 | 2024-11-26 | Kyocera Sld Laser, Inc. | Laser-based light guide-coupled wide-spectrum light system |
US10903623B2 (en) | 2019-05-14 | 2021-01-26 | Soraa Laser Diode, Inc. | Method and structure for manufacturable large area gallium and nitrogen containing substrate |
US11228158B2 (en) | 2019-05-14 | 2022-01-18 | Kyocera Sld Laser, Inc. | Manufacturable laser diodes on a large area gallium and nitrogen containing substrate |
US12191626B1 (en) | 2020-07-31 | 2025-01-07 | Kyocera Sld Laser, Inc. | Vertically emitting laser devices and chip-scale-package laser devices and laser-based, white light emitting devices |
TWI725908B (zh) * | 2020-08-18 | 2021-04-21 | 合晶科技股份有限公司 | 半極性氮化鎵的製作方法 |
US12224344B2 (en) * | 2021-04-08 | 2025-02-11 | Semiconductor Components Industries, Llc | Method and system for control of sidewall orientation in vertical gallium nitride field effect transistors |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2704181B2 (ja) * | 1989-02-13 | 1998-01-26 | 日本電信電話株式会社 | 化合物半導体単結晶薄膜の成長方法 |
US6440823B1 (en) * | 1994-01-27 | 2002-08-27 | Advanced Technology Materials, Inc. | Low defect density (Ga, Al, In)N and HVPE process for making same |
JP3548654B2 (ja) * | 1996-09-08 | 2004-07-28 | 豊田合成株式会社 | 半導体発光素子 |
EP0942459B1 (en) * | 1997-04-11 | 2012-03-21 | Nichia Corporation | Method of growing nitride semiconductors |
JP3119200B2 (ja) | 1997-06-09 | 2000-12-18 | 日本電気株式会社 | 窒化物系化合物半導体の結晶成長方法および窒化ガリウム系発光素子 |
US6218280B1 (en) * | 1998-06-18 | 2001-04-17 | University Of Florida | Method and apparatus for producing group-III nitrides |
JP2000156544A (ja) * | 1998-09-17 | 2000-06-06 | Matsushita Electric Ind Co Ltd | 窒化物半導体素子の製造方法 |
JP3592553B2 (ja) * | 1998-10-15 | 2004-11-24 | 株式会社東芝 | 窒化ガリウム系半導体装置 |
WO2000033388A1 (en) * | 1998-11-24 | 2000-06-08 | Massachusetts Institute Of Technology | METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES |
JP2000216497A (ja) * | 1999-01-22 | 2000-08-04 | Sanyo Electric Co Ltd | 半導体素子およびその製造方法 |
US6403451B1 (en) * | 2000-02-09 | 2002-06-11 | Noerh Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts |
JP3946427B2 (ja) | 2000-03-29 | 2007-07-18 | 株式会社東芝 | エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法 |
US6586819B2 (en) * | 2000-08-14 | 2003-07-01 | Nippon Telegraph And Telephone Corporation | Sapphire substrate, semiconductor device, electronic component, and crystal growing method |
US7053413B2 (en) * | 2000-10-23 | 2006-05-30 | General Electric Company | Homoepitaxial gallium-nitride-based light emitting device and method for producing |
US6635901B2 (en) * | 2000-12-15 | 2003-10-21 | Nobuhiko Sawaki | Semiconductor device including an InGaAIN layer |
US6599362B2 (en) * | 2001-01-03 | 2003-07-29 | Sandia Corporation | Cantilever epitaxial process |
US7501023B2 (en) * | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
US20030015708A1 (en) * | 2001-07-23 | 2003-01-23 | Primit Parikh | Gallium nitride based diodes with low forward voltage and low reverse current operation |
US7105865B2 (en) * | 2001-09-19 | 2006-09-12 | Sumitomo Electric Industries, Ltd. | AlxInyGa1−x−yN mixture crystal substrate |
JP4031628B2 (ja) * | 2001-10-03 | 2008-01-09 | 松下電器産業株式会社 | 半導体多層膜結晶、およびそれを用いた発光素子、ならびに当該半導体多層膜結晶の成長方法 |
CA2464083C (en) | 2001-10-26 | 2011-08-02 | Ammono Sp. Z O.O. | Substrate for epitaxy |
WO2003036771A1 (fr) * | 2001-10-26 | 2003-05-01 | Ammono Sp.Zo.O. | Laser a semi-conducteurs a base de nitrure et procede de production de ce laser |
JP4307113B2 (ja) * | 2002-03-19 | 2009-08-05 | 宣彦 澤木 | 半導体発光素子およびその製造方法 |
AU2003230876A1 (en) | 2002-04-15 | 2003-11-03 | The Regents Of The University Of California | Dislocation reduction in non-polar gallium nitride thin films |
US20060138431A1 (en) | 2002-05-17 | 2006-06-29 | Robert Dwilinski | Light emitting device structure having nitride bulk single crystal layer |
JP4201541B2 (ja) | 2002-07-19 | 2008-12-24 | 豊田合成株式会社 | 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法 |
US7427555B2 (en) * | 2002-12-16 | 2008-09-23 | The Regents Of The University Of California | Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy |
US7186302B2 (en) * | 2002-12-16 | 2007-03-06 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US6847057B1 (en) * | 2003-08-01 | 2005-01-25 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices |
US7009215B2 (en) * | 2003-10-24 | 2006-03-07 | General Electric Company | Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates |
US7504274B2 (en) * | 2004-05-10 | 2009-03-17 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
US7432142B2 (en) * | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
US7858996B2 (en) * | 2006-02-17 | 2010-12-28 | The Regents Of The University Of California | Method for growth of semipolar (Al,In,Ga,B)N optoelectronic devices |
US20080163814A1 (en) * | 2006-12-12 | 2008-07-10 | The Regents Of The University Of California | CRYSTAL GROWTH OF M-PLANE AND SEMIPOLAR PLANES OF (Al, In, Ga, B)N ON VARIOUS SUBSTRATES |
US9011598B2 (en) * | 2004-06-03 | 2015-04-21 | Soitec | Method for making a composite substrate and composite substrate according to the method |
EP2315253A1 (en) * | 2005-03-10 | 2011-04-27 | The Regents of the University of California | Technique for the growth of planar semi-polar gallium nitride |
TW200703463A (en) * | 2005-05-31 | 2007-01-16 | Univ California | Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO) |
JP5743127B2 (ja) * | 2005-06-01 | 2015-07-01 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置 |
US8148713B2 (en) * | 2008-04-04 | 2012-04-03 | The Regents Of The University Of California | Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes |
JP5270348B2 (ja) * | 2005-09-09 | 2013-08-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 有機金属化学気相成長法による半極性(Al,In,Ga,B)Nの成長促進法 |
EP1982351A4 (en) * | 2006-01-20 | 2010-10-20 | Univ California | PROCESS FOR IMPROVED GROWTH OF SEMIPOLARM (AL, IN, GA, B) N |
JP5684455B2 (ja) * | 2006-02-10 | 2015-03-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法 |
CN101553701B (zh) * | 2006-03-30 | 2011-04-06 | 康奈尔研究基金会股份有限公司 | 在快速冷却小型生物学样品中提高冷却速度的系统和方法 |
US7568863B2 (en) * | 2006-07-13 | 2009-08-04 | Denardo Joseph N | Panel forms |
JP2010512660A (ja) * | 2006-12-11 | 2010-04-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 無極性および半極性の発光デバイス |
US20080224268A1 (en) * | 2007-03-13 | 2008-09-18 | Covalent Materials Corporation | Nitride semiconductor single crystal substrate |
JP2008235804A (ja) * | 2007-03-23 | 2008-10-02 | Rohm Co Ltd | 発光素子 |
WO2009035648A1 (en) * | 2007-09-14 | 2009-03-19 | Kyma Technologies, Inc. | Non-polar and semi-polar gan substrates, devices, and methods for making them |
US7915802B2 (en) * | 2007-11-12 | 2011-03-29 | Rohm Co., Ltd. | Surface light emitting device and polarization light source |
JP2009130364A (ja) * | 2007-11-23 | 2009-06-11 | Samsung Electro-Mechanics Co Ltd | 窒化物半導体発光素子及びその製造方法 |
US7851825B2 (en) * | 2007-12-10 | 2010-12-14 | Transphorm Inc. | Insulated gate e-mode transistors |
KR100972977B1 (ko) * | 2007-12-14 | 2010-07-29 | 삼성엘이디 주식회사 | 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법 |
-
2006
- 2006-03-10 EP EP10014011A patent/EP2315253A1/en not_active Withdrawn
- 2006-03-10 JP JP2008500965A patent/JP5706601B2/ja active Active
- 2006-03-10 WO PCT/US2006/008595 patent/WO2006099138A2/en active Application Filing
- 2006-03-10 CN CN2006800076945A patent/CN101138091B/zh active Active
- 2006-03-10 KR KR1020077023104A patent/KR101145755B1/ko active IP Right Grant
- 2006-03-10 US US11/372,914 patent/US7220324B2/en active Active
- 2006-03-10 TW TW095108150A patent/TWI453813B/zh active
- 2006-03-10 EP EP06737745A patent/EP1869707B1/en active Active
- 2006-03-10 TW TW103127367A patent/TW201443990A/zh unknown
- 2006-03-10 KR KR1020117007416A patent/KR101145753B1/ko active IP Right Grant
- 2006-03-10 CN CN201010111379A patent/CN101845670A/zh active Pending
-
2007
- 2007-01-09 US US11/621,482 patent/US7704331B2/en active Active
-
2008
- 2008-06-11 HK HK08106432.5A patent/HK1112109A1/xx not_active IP Right Cessation
-
2010
- 2010-02-01 US US12/697,961 patent/US8128756B2/en active Active
-
2012
- 2012-01-24 US US13/357,432 patent/US8524012B2/en active Active
-
2014
- 2014-08-11 JP JP2014163558A patent/JP2014222780A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP1869707A2 (en) | 2007-12-26 |
KR101145755B1 (ko) | 2012-05-16 |
EP2315253A1 (en) | 2011-04-27 |
US7704331B2 (en) | 2010-04-27 |
CN101138091A (zh) | 2008-03-05 |
CN101138091B (zh) | 2010-05-19 |
US8524012B2 (en) | 2013-09-03 |
US20120119222A1 (en) | 2012-05-17 |
TW200735203A (en) | 2007-09-16 |
WO2006099138A3 (en) | 2006-11-23 |
US8128756B2 (en) | 2012-03-06 |
JP2014222780A (ja) | 2014-11-27 |
TWI453813B (zh) | 2014-09-21 |
KR20110044332A (ko) | 2011-04-28 |
US20060205199A1 (en) | 2006-09-14 |
US7220324B2 (en) | 2007-05-22 |
TW201443990A (zh) | 2014-11-16 |
KR20070120982A (ko) | 2007-12-26 |
WO2006099138A2 (en) | 2006-09-21 |
KR101145753B1 (ko) | 2012-05-16 |
CN101845670A (zh) | 2010-09-29 |
EP1869707A4 (en) | 2009-02-25 |
JP2008533723A (ja) | 2008-08-21 |
HK1112109A1 (en) | 2008-08-22 |
EP1869707B1 (en) | 2012-06-13 |
US20070111531A1 (en) | 2007-05-17 |
US20100133663A1 (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5706601B2 (ja) | 平坦な半極性窒化ガリウムの成長技術 | |
JP5838523B2 (ja) | 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶 | |
JP5645887B2 (ja) | 半極性窒化物を備え、窒化物核生成層又はバッファ層に特徴を有するデバイス構造 | |
US8405128B2 (en) | Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition | |
US20140183579A1 (en) | Miscut semipolar optoelectronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080916 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111018 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120106 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120116 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120213 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130405 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5706601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |