[go: up one dir, main page]

JP5693495B2 - Heat pump type air conditioner for vehicle and operation method thereof - Google Patents

Heat pump type air conditioner for vehicle and operation method thereof Download PDF

Info

Publication number
JP5693495B2
JP5693495B2 JP2012042239A JP2012042239A JP5693495B2 JP 5693495 B2 JP5693495 B2 JP 5693495B2 JP 2012042239 A JP2012042239 A JP 2012042239A JP 2012042239 A JP2012042239 A JP 2012042239A JP 5693495 B2 JP5693495 B2 JP 5693495B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature
defrosting operation
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012042239A
Other languages
Japanese (ja)
Other versions
JP2013178032A (en
Inventor
松尾 毅
毅 松尾
昌俊 森下
昌俊 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012042239A priority Critical patent/JP5693495B2/en
Publication of JP2013178032A publication Critical patent/JP2013178032A/en
Application granted granted Critical
Publication of JP5693495B2 publication Critical patent/JP5693495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、電気自動車に搭載するのに好適な車両用ヒートポンプ式空調機及びその運転方法に関するものである。   The present invention relates to a heat pump air conditioner for a vehicle suitable for being mounted on an electric vehicle and an operation method thereof.

例えば、ガソリンエンジン,ディーゼルエンジン,ガスエンジンなどの原動機を備えない電気自動車の車両用空調機として、図9に示すようなものが実用化されている。
つまり、図9に示すように、この車両用空調機は、冷媒回路100と温水回路110とを備えている。冷媒回路100は、圧縮機101と、凝縮器(外部熱交換器、いわゆる、室外機)103と、膨張弁104と、蒸発器(内部熱交換器、いわゆる、室内機)105とをこの順で、冷媒回路100内に備えている。温水回路110は、リザーバタンク111と、温水ポンプ112と、温水PTCヒータ113と、ヒータコア114とをこの順で備えている。車室内には、蒸発器105及びヒータコア114の背面から送風する送風機121が室内機として装備される。
For example, a vehicle air conditioner for an electric vehicle that does not include a prime mover such as a gasoline engine, a diesel engine, or a gas engine has been put to practical use as shown in FIG.
That is, as shown in FIG. 9, the vehicle air conditioner includes a refrigerant circuit 100 and a hot water circuit 110. The refrigerant circuit 100 includes a compressor 101, a condenser (external heat exchanger, so-called outdoor unit) 103, an expansion valve 104, and an evaporator (internal heat exchanger, so-called indoor unit) 105 in this order. In the refrigerant circuit 100. The hot water circuit 110 includes a reservoir tank 111, a hot water pump 112, a hot water PTC heater 113, and a heater core 114 in this order. A blower 121 that blows air from the back of the evaporator 105 and the heater core 114 is provided as an indoor unit in the vehicle interior.

冷房運転時には、温水回路110の作動を停止して、圧縮機101を作動させて、冷媒回路100内で、圧縮機101,凝縮器(室外機)103,膨張弁104,蒸発器(室内機)105の順で冷媒を循環させる。これにより、圧縮機101で圧縮され高温,高圧になった冷媒は凝縮器103において熱を放出して冷却され凝縮される。凝縮された冷媒は膨張弁104において断熱膨張することにより冷却され、その後、蒸発器105において送風機121から送風される空気の熱を奪い冷却して、自身はその分だけ温度上昇して再び圧縮器101に進む。このような冷媒の循環(冷凍サイクル)によって、車室内が冷房される。   During the cooling operation, the operation of the hot water circuit 110 is stopped, the compressor 101 is operated, and the compressor 101, the condenser (outdoor unit) 103, the expansion valve 104, the evaporator (indoor unit) in the refrigerant circuit 100. The refrigerant is circulated in the order of 105. As a result, the refrigerant compressed to high temperature and high pressure by the compressor 101 releases heat in the condenser 103 and is cooled and condensed. The condensed refrigerant is cooled by adiabatic expansion at the expansion valve 104, and then cooled by taking away the heat of the air blown from the blower 121 in the evaporator 105. Proceed to 101. The passenger compartment is cooled by the circulation (refrigeration cycle) of the refrigerant.

暖房運転時には、冷媒回路100を停止して、温水ポンプ112を作動させて、温水回路110内で、リザーバタンク111,温水ポンプ112,温水PTCヒータ113,ヒータコア114の順で水を循環させる。これにより、温水PTCヒータ113において水が温められてヒータコア114に送られて、ヒータコア114において送風機121から送風される空気を加温し、自身はその分だけ温度低下して再びリザーバタンク111に進む。このような温水の循環によって、車室内が暖房される。   During the heating operation, the refrigerant circuit 100 is stopped, the hot water pump 112 is operated, and the water is circulated in the order of the reservoir tank 111, the hot water pump 112, the hot water PTC heater 113, and the heater core 114 in the hot water circuit 110. As a result, water is warmed in the hot water PTC heater 113 and sent to the heater core 114, and the air blown from the blower 121 is heated in the heater core 114. . The interior of the vehicle is heated by such warm water circulation.

なお、このように暖房時の熱源として温水PTCヒータ113を使用するのは、ガソリンエンジン、ディーゼルエンジン、ガスエンジンなどの原動機を備えない電気自動車の場合、エンジンの排熱を利用できないためであり、この代わりに温水PTCヒータを使用しているのである。
また、このような装置構成では、電気自動車に搭載された走行用の大容量のモータ/ジェネレータ(電動発電機、以下、単にモータという)130及び図示しないバッテリケース内のバッテリを冷却する冷却装置として、水冷式の冷却回路140が装備されている。この水冷式冷却回路140は、リザーバタンク141と、ラジエータ(放熱器)142と、ポンプ143とをこの順で備え、冷水ポンプ143とリザーバタンク141との間の冷却水流路に、モータ130及び図示しないバッテリケースが備えられる。
In addition, the reason why the hot water PTC heater 113 is used as a heat source at the time of heating is that in the case of an electric vehicle that does not include a prime mover such as a gasoline engine, a diesel engine, or a gas engine, the exhaust heat of the engine cannot be used. Instead, a hot water PTC heater is used.
Moreover, in such a device configuration, as a cooling device that cools a large capacity motor / generator (motor generator, hereinafter simply referred to as a motor) 130 and a battery in a battery case (not shown) mounted on an electric vehicle. A water-cooled cooling circuit 140 is provided. The water-cooled cooling circuit 140 includes a reservoir tank 141, a radiator (heat radiator) 142, and a pump 143 in this order, and a motor 130 and an illustration are provided in a cooling water flow path between the cold water pump 143 and the reservoir tank 141. A battery case is provided.

ラジエータ142は冷媒回路100の凝縮器103と共に、冷却ファン150によって外気を利用して冷却される。これにより、ラジエータ142で放熱されて冷やされた冷却水はモータ130やバッテリケースに送られて、モータ130やバッテリケース内のバッテリを冷却する。この冷却時の熱交換によって加熱された冷却水は、再びラジエータ142に進んで冷やされる。   The radiator 142 is cooled by the cooling fan 150 together with the condenser 103 of the refrigerant circuit 100 using the outside air. As a result, the cooling water radiated and cooled by the radiator 142 is sent to the motor 130 and the battery case to cool the motor 130 and the battery in the battery case. The cooling water heated by this heat exchange during cooling proceeds to the radiator 142 again and is cooled.

しかし、温水PTCヒータ113は電力を利用する電気ヒータであるため、電気自動車の場合、この温水PTCヒータ113の電力消費分だけバッテリの充電電力量が低下する。このため、暖房運転を行うと車両の航続距離が低下することが課題となる。
また、冷房時に用いる冷媒回路(冷凍サイクル)100と、暖房時に用いる温水回路(温水サイクル)110の2系統が、空調装置として必要になるのでコスト高となる。
However, since the hot water PTC heater 113 is an electric heater that uses electric power, in the case of an electric vehicle, the charging electric energy of the battery is reduced by the amount of electric power consumed by the hot water PTC heater 113. For this reason, when heating operation is performed, it becomes a subject that the cruising range of a vehicle falls.
In addition, two systems of a refrigerant circuit (refrigeration cycle) 100 used during cooling and a hot water circuit (hot water cycle) 110 used during heating are required as an air conditioner, resulting in high costs.

また、モータやバッテリを水冷式で冷却しており、冷却対象のバッテリ(特に、リチウムイオン電池)は水に対する潜在的な発熱リスクを持つので、水を使用しない代替冷却方法が望ましい。
ところで、ヒートポンプ式空調機は、冷房運転と暖房運転とを切り替えることができ、家庭用や業務用の建物用のエアコン(いわゆる、ヒートポンプエアコン)として広く普及している。
In addition, the motor and the battery are cooled by a water cooling method, and the battery to be cooled (particularly, a lithium ion battery) has a potential heat generation risk for water, so an alternative cooling method that does not use water is desirable.
By the way, the heat pump type air conditioner can switch between a cooling operation and a heating operation, and is widely used as an air conditioner for home use or business use (so-called heat pump air conditioner).

ただし、外気温度が極端に低下(例えば、−10℃以下)すると、外部熱交換器である蒸発器に霜が付着して、次第に氷結(フロスト)が進むと、暖房能力が低下するだけでなく、着霜量が多いと継続運転が不可能となる。
建物用の空調機では、このような着霜,氷結が蒸発器に発生したら、室内機の送風を停止して、暖房と逆サイクル運転(即ち、冷凍サイクル運転)をする除霜運転をすることによって、着氷,氷結した蒸発器(外部熱交換器)に高温の冷媒を流すことで解氷し、暖房を間欠的に実施(デフロスト運転)することで暖房運転を継続することを可能としている。
However, when the outside air temperature is extremely lowered (for example, −10 ° C. or lower), when frost adheres to the evaporator, which is an external heat exchanger, and frosting gradually progresses, not only the heating capacity decreases. If the amount of frost formation is large, continuous operation becomes impossible.
In a building air conditioner, if such frosting or icing occurs in the evaporator, stop the ventilation of the indoor unit and perform a defrosting operation that performs heating and reverse cycle operation (that is, refrigeration cycle operation). Makes it possible to melt the ice by flowing a high-temperature refrigerant through the icing and icing evaporator (external heat exchanger) and to continue heating operation by intermittently performing heating (defrost operation) .

例えば特許文献1には、車両用空調機に関するものではないが、水回路を流れる水を加熱する通常運転と、この通常運転の逆サイクルとなる除霜運転とを、循環する冷媒を用いて行なう、ヒートポンプ装置が記載されている。このヒートポンプ装置の室外機は、除霜運転時に、圧縮器から吐出された冷媒の一部を、バイパスさせる回路を備え、制御装置が、このバイパス回路の設けられた弁を水熱交換器の水入口及び水出口の各水温度に基づいて開閉制御して、除霜運転時にこの弁が開の場合、水熱交換器の冷媒入口及び冷媒出口の各冷媒温度に基づいてバイパス回路の第3膨張弁の開度を調整する。これにより、水熱交換器を用いて高効率で除霜運転を実施できるとしている。   For example, Patent Document 1 does not relate to a vehicle air conditioner, but performs a normal operation of heating water flowing in a water circuit and a defrosting operation that is a reverse cycle of the normal operation using a circulating refrigerant. A heat pump device is described. The outdoor unit of the heat pump device includes a circuit that bypasses a part of the refrigerant discharged from the compressor during the defrosting operation, and the control device connects the valve provided with the bypass circuit to the water of the water heat exchanger. When this valve is opened during defrosting operation by controlling the opening and closing based on the water temperature at the inlet and the water outlet, the third expansion of the bypass circuit is performed based on the refrigerant temperature at the refrigerant inlet and the refrigerant outlet of the water heat exchanger. Adjust the opening of the valve. Thereby, it is supposed that a defrosting operation can be carried out with high efficiency using a water heat exchanger.

国際公開第2011/092802号International Publication No. 2011/092802

ところで、特許文献1には車両用空調機に適用することは記載されていないが、車両用空調機においても、ヒートポンプ式空調機を適用して、冷凍サイクルを用いて、冷媒が流れる方向を逆として、ヒートポンプサイクルを構成することで、1系統の回路のみで空調装置を実現することができる。
しかしながら、車両用空調機の場合、厳寒時の起動時において、車外側にある熱交換器に着霜が生じている可能性がある。ヒートポンプ式空調機の場合には、着霜が生じた場合には、除霜運転を実施して除霜することができる。この除霜時には、除霜運転から暖房運転に適切に切り換える必要がある。このため、除霜運転によって除霜が完了したことをどのように認識して、適切に除霜運転を制御するかが課題となる。
By the way, although it is not described in Patent Document 1 that it is applied to a vehicle air conditioner, a heat pump type air conditioner is also applied to a vehicle air conditioner, and the refrigerant flow direction is reversed using a refrigeration cycle. As a heat pump cycle, an air conditioner can be realized with only one circuit.
However, in the case of a vehicle air conditioner, there is a possibility that frost formation has occurred in the heat exchanger on the outside of the vehicle at the time of start-up in severe cold. In the case of a heat pump type air conditioner, when frost formation occurs, it can be defrosted by performing a defrosting operation. At the time of the defrosting, it is necessary to appropriately switch from the defrosting operation to the heating operation. For this reason, it becomes a subject how to recognize that defrosting was completed by defrosting operation, and to control defrosting operation appropriately.

本発明は、かかる課題に鑑み創案されたもので、車両用空調機にヒートポンプ式空調機を適用して、ヒートポンプ回路のみで冷房及び暖房を実施できるようにしたものにおいて、車外に配置される外部熱交換器への着霜の有無を簡便な手法で適切に判定して、特に、始動時に着霜状態での暖房運転を回避して除霜完了後に支障なく暖房運転を開始することができるようにした、車両用ヒートポンプ式空調機及びその制御方法を提供することを目的とする。   The present invention has been devised in view of such a problem, and applies a heat pump type air conditioner to a vehicle air conditioner so that cooling and heating can be performed only by a heat pump circuit. Appropriate determination of the presence or absence of frost on the heat exchanger can be made with a simple method, and in particular, the heating operation in the frosted state can be avoided at the start so that the heating operation can be started without any trouble after the defrosting is completed. It is an object of the present invention to provide a vehicle heat pump air conditioner and a control method thereof.

(1)上記目的を達成するために、本発明の車両用ヒートポンプ式空調機は、冷媒回路内に、圧縮機,外部熱交換器,膨張弁,内部熱交換器をそなえた車両用ヒートポンプ式空調機であって、前記圧縮機,前記内部熱交換器,前記膨張弁,前記外部熱交換器の順に冷媒を流通させる暖房運転時に、温度低下前の冷媒を前記外部熱交換器に供給して除霜する除霜運転を行なう除霜運転回路と、前記暖房運転と前記除霜運転とを切り替える切替手段と、前記除霜運転時に前記外部熱交換器の冷媒入口温度を検出する第1冷媒温度検出手段と、前記除霜運転時に前記外部熱交換器の冷媒出口温度を検出する第2冷媒温度検出手段と、前記車両の始動時に、予め設定された除霜運転開始条件が成立すると前記暖房運転に入る前に前記除霜運転を実施し、前記第1及び第2冷媒温度検出手段により検出された前記冷媒入口温度と前記冷媒出口温度との差が予め設定された閾値未満になったら前記除霜運転から前記暖房運転に切り換え可能とする制御装置とを備えることを特徴としている。   (1) In order to achieve the above object, a vehicle heat pump air conditioner according to the present invention includes a compressor, an external heat exchanger, an expansion valve, and an internal heat exchanger in a refrigerant circuit. A heating operation in which the refrigerant is circulated in the order of the compressor, the internal heat exchanger, the expansion valve, and the external heat exchanger. A defrosting operation circuit for performing a defrosting operation for frosting, switching means for switching between the heating operation and the defrosting operation, and a first refrigerant temperature detection for detecting a refrigerant inlet temperature of the external heat exchanger during the defrosting operation Means, a second refrigerant temperature detecting means for detecting a refrigerant outlet temperature of the external heat exchanger during the defrosting operation, and the heating operation when a preset defrosting operation start condition is satisfied at the start of the vehicle. Before entering, perform the defrosting operation. Control enabling switching from the defrosting operation to the heating operation when the difference between the refrigerant inlet temperature and the refrigerant outlet temperature detected by the first and second refrigerant temperature detecting means is less than a preset threshold value. And a device.

(2)この場合、外気温度を検出する外気温度検出手段をそなえ、前記外気温度検出手段により前記暖房運転始動時に検出された或いは前記暖房運転始動前の直近に検出され記憶された前記外気温度が予め設定された基準温度以下であることを、前記除霜運転開始条件とすることが好ましい。
(3)前記車両は走行用モータ及び前記走行用モータに接続されたバッテリを備えた電気自動車である場合、前記走行用モータ及び前記バッテリの少なくともいずれかを冷却する冷却装置を有し、前記暖房運転時又は前記除霜運転時に、前記外部熱交換器に進入する前の低温冷媒を前記冷却装置に供給する第1供給路と、前記冷却装置の通過後の加温冷媒を前記外部熱交換器の上流に戻す第1戻り路とを有していることが好ましい。
(2) In this case, the outside air temperature detecting means for detecting the outside air temperature is provided, and the outside air temperature detected by the outside air temperature detecting means at the time of starting the heating operation or detected and stored immediately before the heating operation is started is stored. It is preferable that the defrosting operation start condition is not more than a preset reference temperature.
(3) When the vehicle is an electric vehicle including a traveling motor and a battery connected to the traveling motor, the vehicle includes a cooling device that cools at least one of the traveling motor and the battery, and the heating A first supply path for supplying low-temperature refrigerant before entering the external heat exchanger to the cooling device during operation or defrosting operation, and warmed refrigerant after passing through the cooling device as the external heat exchanger It is preferable to have the 1st return path which returns to upstream.

(4)前記車両は走行用モータ及び前記走行用モータに接続されたバッテリを備えた電気自動車である場合、前記走行用モータ及び前記バッテリの少なくともいずれかを冷却する冷却装置を有し、冷房運転時に、前記内部熱交換器に進入する前の冷媒を前記冷却装置に供給する第2供給路と、前記冷却装置の通過後の加温冷媒を前記内部熱交換器の下流に戻す第2戻り路とを有していることが好ましい。   (4) When the vehicle is an electric vehicle including a travel motor and a battery connected to the travel motor, the vehicle includes a cooling device that cools at least one of the travel motor and the battery, and performs a cooling operation. Sometimes, a second supply path for supplying the refrigerant before entering the internal heat exchanger to the cooling device, and a second return path for returning the warmed refrigerant after passing through the cooling device to the downstream of the internal heat exchanger It is preferable to have.

(5)本発明の車両用ヒートポンプ式空調機の運転方法は、冷媒回路内に、圧縮機,外部熱交換器,膨張弁,内部熱交換器をそなえた車両用ヒートポンプ式空調機であって、前記圧縮機,前記内部熱交換器,前記膨張弁,前記外部熱交換器の順に冷媒を流通させる暖房運転時に、温度低下前の冷媒を前記外部熱交換器に供給して除霜する除霜運転を行なう除霜運転回路と、前記暖房運転と前記除霜運転とを切り替える切替手段と、をそなえた、車両用ヒートポンプ式空調機の運転方法であって、前記車両の始動時に、予め設定された除霜運転開始条件が成立すると前記暖房運転に入る前に前記除霜運転を実施し、除霜運転時における前記外部熱交換器の冷媒入口温度冷媒出口温度との差が予め設定された閾値未満になったら前記除霜運転から前記暖房運転に切り換え可能とすることを特徴としている。   (5) The operation method of the vehicle heat pump air conditioner of the present invention is a vehicle heat pump air conditioner having a compressor, an external heat exchanger, an expansion valve, and an internal heat exchanger in a refrigerant circuit, Defrosting operation in which the refrigerant before temperature reduction is defrosted by supplying the refrigerant to the external heat exchanger during the heating operation in which the refrigerant flows in the order of the compressor, the internal heat exchanger, the expansion valve, and the external heat exchanger. And a switching means for switching between the heating operation and the defrosting operation, the operation method of the heat pump air conditioner for a vehicle, which is set in advance at the start of the vehicle When the defrosting operation start condition is satisfied, the defrosting operation is performed before entering the heating operation, and the difference between the refrigerant inlet temperature and the refrigerant outlet temperature of the external heat exchanger during the defrosting operation is less than a preset threshold value. From the above defrosting operation It is characterized in that to enable switching to serial heating operation.

(6)この場合も、外気温度が予め設定された基準温度以下であることを、前記除霜運転開始条件とすることが好ましい。   (6) In this case as well, it is preferable that the defrosting operation start condition is that the outside air temperature is equal to or lower than a preset reference temperature.

本発明の車両用ヒートポンプ式空調機によれば、車両用空調機にヒートポンプ式空調機を適用して、温水回路なしに冷凍サイクルのみで冷房運転及び暖房運転を実施できるようになる。また、始動時に、車外に配置される外部熱交換器への着霜があれば、除霜運転を行うことによって外部熱交換器に着霜した状態からの暖房運転の始動を回避することができる。また、外部熱交換器の出入口温度差から簡便な手法で適切に除霜完了条件を判定して、暖房運転を適切に開始することができる。したがって、電気自動車に適用すれば、外部熱交換器への着霜対策を施した車両用ヒートポンプ式空調機を低コストで実現することができる。   According to the vehicle heat pump type air conditioner of the present invention, the heat pump type air conditioner can be applied to the vehicle air conditioner, and the cooling operation and the heating operation can be performed only by the refrigeration cycle without the hot water circuit. In addition, if there is frost formation on the external heat exchanger disposed outside the vehicle at the time of starting, the start of the heating operation from the state where the external heat exchanger is frosted can be avoided by performing the defrosting operation. . In addition, it is possible to appropriately determine the defrosting completion condition by a simple method from the inlet / outlet temperature difference of the external heat exchanger and appropriately start the heating operation. Therefore, when applied to an electric vehicle, it is possible to realize a heat pump type air conditioner for a vehicle that takes measures against frost formation on an external heat exchanger at a low cost.

本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の構成図であって、(a)は暖房運転時の状態を示し、(b)は冷房運転時の状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the heat pump type | formula air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention, Comprising: (a) shows the state at the time of heating operation, (b) shows the state at the time of cooling operation. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の外部熱交換器の構成を示す正面図である。It is a front view which shows the structure of the external heat exchanger of the heat pump type | formula air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の外部熱交換器の要部構成の第1例を示す斜視図である。It is a perspective view showing the 1st example of the principal part composition of the external heat exchanger of the heat pump type air conditioner for vehicles of the electric car concerning one embodiment of the present invention. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の外部熱交換器の要部構成の第2例を示す斜視図である。It is a perspective view which shows the 2nd example of the principal part structure of the external heat exchanger of the heat pump air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の外部熱交換器の要部構成の第1例とその変形例を示す断面図であり、(a)は第1例を示し、(b)はその変形例を示す。It is sectional drawing which shows the 1st example of the principal part structure of the external heat exchanger of the heat pump type | formula air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention, and its modification, (a) shows a 1st example. , (B) shows a modification thereof. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の外部熱交換器の要部構成の第3例とその変形例を示す断面図であり、(a)は第3例を示し、(b)はその変形例を示す。It is sectional drawing which shows the 3rd example of the principal part structure of the external heat exchanger of the heat pump air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention, and its modification, (a) shows a 3rd example. , (B) shows a modification thereof. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の外部熱交換器の要部構成の第4例とその変形例を示す断面図であり、(a)は第4例を示し、(b)はその変形例を示す。It is sectional drawing which shows the 4th example of the principal part structure of the external heat exchanger of the heat pump type | formula air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention, and its modification, (a) shows a 4th example. , (B) shows a modification thereof. 本発明の一実施形態にかかる電気自動車の車両用ヒートポンプ式空調機の運転方法を説明するフローチャートである。It is a flowchart explaining the operating method of the heat pump type | formula air conditioner for vehicles of the electric vehicle concerning one Embodiment of this invention. 背景技術にかかる車両用ヒートポンプ式空調機の構成図である。It is a block diagram of the heat pump type air conditioner for vehicles concerning a background art.

以下、図面により本発明の実施の形態にかかる車両用ヒートポンプ式空調機を説明する。
図1は本実施形態にかかる車両用ヒートポンプ式空調機の構成を示す図、図2〜図7は本実施形態にかかる車両用ヒートポンプ式空調機の外部熱交換器の構成を示す図、図8は本実施形態にかかる車両用ヒートポンプ式空調機の運転方法を説明する図である。各図を用いて順に説明する。なお、本実施形態にかかる車両は走行用モータ及び走行用モータに接続されたバッテリを備えた電気自動車であるものとする。
Hereinafter, the heat pump type air conditioner for vehicles concerning an embodiment of the invention is explained with a drawing.
1 is a diagram showing a configuration of a vehicle heat pump air conditioner according to the present embodiment, FIGS. 2 to 7 are diagrams showing a configuration of an external heat exchanger of the vehicle heat pump air conditioner according to the present embodiment, and FIG. These are figures explaining the operating method of the heat pump type air conditioner for vehicles concerning this embodiment. This will be described in order with reference to the drawings. In addition, the vehicle concerning this embodiment shall be an electric vehicle provided with the battery connected to the motor for driving and the motor for driving.

まず、本実施形態にかかる車両用ヒートポンプ式空調機(以下、カーエアコンともいう)を説明する。
図1(a),(b)に示すように、このカーエアコンは、圧縮機1と、切替弁2と、外部熱交換器(室外機)3と、膨張弁4と、内部熱交換器(室内機)5とをこの順で、冷媒回路10内に備えている。圧縮機1にアキュムレータ6が付設され、圧縮機1の吐出圧が安定化されるようになっている。内部熱交換器5にはファン5aが付設されて室内機が構成され、車両の内部の空気(内気)又は外部の空気(外気)を内部熱交換器5に通過させて冷却又は加熱して車室内に送風するようになっている。また、外部熱交換器3には、外気を導入するためのファン7が付設されている。
First, a heat pump type air conditioner for a vehicle according to the present embodiment (hereinafter also referred to as a car air conditioner) will be described.
As shown in FIGS. 1A and 1B, this car air conditioner includes a compressor 1, a switching valve 2, an external heat exchanger (outdoor unit) 3, an expansion valve 4, an internal heat exchanger ( Indoor unit) 5 are provided in the refrigerant circuit 10 in this order. An accumulator 6 is attached to the compressor 1 so that the discharge pressure of the compressor 1 is stabilized. The internal heat exchanger 5 is provided with a fan 5a to form an indoor unit, and the vehicle internal air (inside air) or outside air (outside air) is passed through the internal heat exchanger 5 to be cooled or heated to It is designed to blow air indoors. Further, the external heat exchanger 3 is provided with a fan 7 for introducing outside air.

また、カーエアコンの各部を自動制御するために、制御装置としてエアコンECU(Electric Control Unit,電子制御装置〕50が装備されている。エアコンECU50は、マイクロプロセッサやROM,RAM等を集積したLSIデバイスである。エアコンECU50は、例えば、エアコンの自動運転時には、設定温度、内気温度(車室内の気温)及び外気温度の各センサ検出値に基づいて、切替弁2について自動で制御する。また、エアコン操作スイッチの指令情報に基づいても各部を制御する。   In order to automatically control each part of the car air conditioner, an air conditioner ECU (Electric Control Unit) 50 is provided as a control device, which is an LSI device in which a microprocessor, ROM, RAM, etc. are integrated. For example, during the automatic operation of the air conditioner, the air conditioner ECU 50 automatically controls the switching valve 2 based on the detected values of the set temperature, the inside air temperature (the temperature inside the vehicle interior), and the outside air temperature. Each part is controlled also based on the command information of the operation switch.

冷媒回路10は、圧縮機1と切替弁2との間の流路11と、切替弁2と外部熱交換器3との間の流路12と、外部熱交換器3と膨張弁4との間の流路13と、膨張弁4と内部熱交換器5との間の流路14と、内部熱交換器5と圧縮機1との間の流路15と、切替弁2とアキュムレータ6との間の流路16と、アキュムレータ6と圧縮機1との間の流路17と、を備えて構成される。   The refrigerant circuit 10 includes a flow path 11 between the compressor 1 and the switching valve 2, a flow path 12 between the switching valve 2 and the external heat exchanger 3, and the external heat exchanger 3 and the expansion valve 4. A flow path 13 between the expansion valve 4 and the internal heat exchanger 5, a flow path 15 between the internal heat exchanger 5 and the compressor 1, a switching valve 2 and an accumulator 6. And a flow path 17 between the accumulator 6 and the compressor 1.

また、内部熱交換器5と圧縮機1との間の流路15と、膨張弁4と外部熱交換器3との間の流路13とを連絡し、膨張弁4及び内部熱交換器5を迂回するように、除霜運転回路を構成するバイパス流路19が介装されている。流路15の内部熱交換器5側には開閉弁20が、バイパス流路19側には開閉弁21が、それぞれ設けられている。なお、除霜運転のためには、圧縮機1の直下流から外部熱交換器3に送る冷媒は、比較的高温であるので大流量の冷媒を要さない。したがって、バイパス流路19には、冷媒回路10の他の流路11〜17に較べて比較的細い菅を適用でき、軽量化及び低コスト化に寄与する。   Further, the flow path 15 between the internal heat exchanger 5 and the compressor 1 and the flow path 13 between the expansion valve 4 and the external heat exchanger 3 are connected, and the expansion valve 4 and the internal heat exchanger 5 are connected. The bypass flow path 19 which comprises a defrost operation circuit is interposed so that it may detour. An opening / closing valve 20 is provided on the internal heat exchanger 5 side of the flow path 15, and an opening / closing valve 21 is provided on the bypass flow path 19 side. For the defrosting operation, the refrigerant sent from the downstream side of the compressor 1 to the external heat exchanger 3 has a relatively high temperature and does not require a large flow rate refrigerant. Therefore, a relatively narrow gutter can be applied to the bypass channel 19 as compared with the other channels 11 to 17 of the refrigerant circuit 10, which contributes to weight reduction and cost reduction.

暖房運転時に、開閉弁20を閉鎖し開閉弁21を開放すると、圧縮機11で圧縮され高温,高圧になった冷媒の一部がバイパス流路19を経て外部熱交換器3に流入し、外部熱交換器3を加熱して除霜できる除霜運転となる。また、暖房運転時や冷房運転時には、開閉弁20を開放し開閉弁21を閉鎖する。これらの切り換え制御には、エアコンECU50が外気温や外部熱交換器3の入口冷媒温度と出口冷媒温度との差に基づいて実施する。   During the heating operation, when the on-off valve 20 is closed and the on-off valve 21 is opened, a part of the refrigerant that has been compressed by the compressor 11 and has become high temperature and high pressure flows into the external heat exchanger 3 through the bypass flow path 19, It becomes a defrost operation which can heat the heat exchanger 3 and defrost. Further, at the time of heating operation or cooling operation, the on-off valve 20 is opened and the on-off valve 21 is closed. These switching controls are performed by the air conditioner ECU 50 based on the outside air temperature or the difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the external heat exchanger 3.

つまり、エアコンECU50は、車両の始動後、図示しない外気温センサ(外気温度検出手段)によってこの時点で検出された外気温、或いは、始動前の直近の所定時間に検出された外気温の履歴或いは平均値に基づいた外気温が、予め設定された基準温度以下である場合に、除霜運転開始条件が成立したとして、除霜運転を開始する。
通常、外気温が−10℃以下に下がると、外部熱交換器3に着霜があるものと推定でき、基準温度は例えば−10℃とすることができる。
That is, the air conditioner ECU 50 detects the outside air temperature detected at this time by an outside air temperature sensor (outside air temperature detecting means) (not shown) after starting the vehicle, or the history of the outside air temperature detected at the nearest predetermined time before starting or When the outside air temperature based on the average value is equal to or lower than a preset reference temperature, the defrosting operation is started assuming that the defrosting operation start condition is satisfied.
Usually, when the outside air temperature falls to −10 ° C. or lower, it can be estimated that the external heat exchanger 3 has frost formation, and the reference temperature can be set to −10 ° C., for example.

また、外部熱交換器3の冷媒入口3Aにこの冷媒入口3Aを通過する冷媒の温度(冷媒入口温度)を検出する第1温度センサ(第1冷媒温度検出手段)41が設けられ、部熱交換器3の冷媒口3Bにこの冷媒出口3Bを通過する冷媒の温度(冷媒出口温度)を検出する第2温度センサ(第2冷媒温度検出手段)42が設けられている。
エアコンECU50は、除霜運転中には、第1及び第2温度センサにより検出された冷媒入口温度T1と冷媒出口温度T2との差(T1−T2、出入口温度差)が予め設定された閾値T0未満になったら除霜運転から暖房運転に切り換え可能とする。この「切り換え可能」とは、「暖房指令があったら切り換えを許可する」という意味である。
The refrigerant inlet 3A of the external heat exchanger 3 is provided with a first temperature sensor (first refrigerant temperature detecting means) 41 for detecting the temperature of the refrigerant passing through the refrigerant inlet 3A (refrigerant inlet temperature), and partial heat exchange is performed. a second temperature sensor (second refrigerant temperature detecting means) 42 for detecting the vessel 3 of the refrigerant exit 3B to the temperature of the refrigerant passing through the refrigerant outlet 3B (coolant outlet temperature) is provided.
During the defrosting operation, the air conditioner ECU 50 sets the difference between the refrigerant inlet temperature T1 and the refrigerant outlet temperature T2 detected by the first and second temperature sensors (T1-T2, the inlet / outlet temperature difference) as a preset threshold T0. When it becomes less, it is possible to switch from defrosting operation to heating operation. This “switchable” means “permit switching if there is a heating command”.

除霜運転中には、冷媒が除霜のために熱を奪われるため、冷媒入口温度Tよりも冷媒出口温度Tの方が温度低下するが、除霜が進むにしたがって、この温度低下は小さくなるので、出入口温度差(T−T)は小さくなり、試験等によって閾値Tを適切に設定すれば、除霜が完了した状態を推定することができる。
さらに、本車両には、何れも図示しないが、走行用モータ及びバッテリを冷却する冷却装置を備えており、この冷却装置には、暖房運転時又は除霜運転時に、外部熱交換器3に進入する前の冷媒を冷却装置に供給する第1供給路22と、冷却装置の通過後の加温冷媒を外部熱交換器3の上流に戻す第1戻り路23とを有しても良い(図1(a)参照)。
During the defrosting operation, in accordance with the refrigerant is deprived of heat for defrosting, but towards the coolant outlet temperature T 2 than the refrigerant inlet temperature T 1 is lowered temperature, proceeds defrosting, the temperature drop Therefore, the inlet / outlet temperature difference (T 1 −T 2 ) becomes small, and if the threshold value T 0 is appropriately set by a test or the like, the state where the defrosting is completed can be estimated.
Further, the vehicle is provided with a cooling device that cools the running motor and the battery (not shown). The cooling device enters the external heat exchanger 3 during heating operation or defrosting operation. A first supply path 22 for supplying the refrigerant before the cooling to the cooling device, and a first return path 23 for returning the warmed refrigerant after passing through the cooling device to the upstream of the external heat exchanger 3 (see FIG. 1 (a)).

また、本車両には、さらに、上記冷却装置には、冷房運転時に、内部熱交換器5に進入する前の低温冷媒を前記冷却装置に供給する第2供給路24と、前記冷却装置の通過後の加温冷媒を内部熱交換器5の下流に戻す第2戻り路25とを有しても良い(図1(b)参照)。
また、外部熱交換器3は、図2に示すように、内部に冷媒が流通するチューブ31が曲折しながら通っており、チューブ31の周囲にはフィン32が設けられている。図2には、これらの詳細形状は図示しないが、冷媒は冷媒入口3Aからチューブ31に流入し、チューブ31内を流通する間にフィン32を介して外気との熱交換によって吸熱又は放熱して冷媒出口3Bから流出していく。
The vehicle further includes a second supply path 24 that supplies the cooling device with the low-temperature refrigerant before entering the internal heat exchanger 5 during the cooling operation, and the passage of the cooling device. You may have the 2nd return path 25 which returns the subsequent heating refrigerant | coolant to the downstream of the internal heat exchanger 5 (refer FIG.1 (b)).
Further, as shown in FIG. 2, the external heat exchanger 3 has a tube 31 through which a refrigerant circulates while being bent, and fins 32 are provided around the tube 31. Although these detailed shapes are not shown in FIG. 2, the refrigerant flows into the tube 31 from the refrigerant inlet 3 </ b> A and absorbs or dissipates heat through heat exchange with the outside air through the fins 32 while flowing through the tube 31. It flows out from the refrigerant outlet 3B.

本実施形態では、外部熱交換器3の正面視において、チューブ31の主要部(屈曲部を除いた部分)は縦方向(鉛直方向)に、各フィン32は横方向(水平方向)に延在しているが、熱交換器の態様としてはチューブ31の主要部(屈曲部を除いた部分)は横方向(水平方向)に、各フィン32は縦方向(鉛直方向)に延在するものもあり、これについては後述する。   In the present embodiment, in the front view of the external heat exchanger 3, the main portion (portion excluding the bent portion) of the tube 31 extends in the vertical direction (vertical direction), and each fin 32 extends in the horizontal direction (horizontal direction). However, as an aspect of the heat exchanger, the main portion (excluding the bent portion) of the tube 31 extends in the horizontal direction (horizontal direction), and each fin 32 extends in the vertical direction (vertical direction). There will be described later.

また、図2では、チューブ31を模式的に記載しており、もっと密な本数に曲折していても良く、もっと粗く曲折していても良い。
なお、チューブ31は、図3に示すように、断面が長円の扁平形状に形成され、フィン32はチューブ31の主要部(屈曲部を除いた部分)の扁平面の相互間に固設されている。また、本実施形態では、フィン32もチューブ31と同様に曲折しながらチューブ31の扁平面の間に介在し、チューブ31と接合する部分と、チューブ31の扁平面の相互間に介在する部分とに分けることができ、チューブ31の扁平面の相互間に介在する部分については、後述するように特徴的な構造が適用されている。
もちろん、チューブ31やフィン32の全体構造はこのような曲折構造に限るものではなく、後述する特徴的な構成を部分的に有していれば、全体構造はこの限りではない。
ここで、本外部熱交換器3の特徴的な点を説明する。
Moreover, in FIG. 2, the tube 31 is described typically, and it may be bent to a denser number or may be bent more roughly.
As shown in FIG. 3, the tube 31 is formed in a flat shape with an oval cross section, and the fins 32 are fixed between flat surfaces of main portions (portions excluding bent portions) of the tube 31. ing. Further, in the present embodiment, the fin 32 is also bent between the flat surfaces of the tube 31 while being bent in the same manner as the tube 31, a portion joined to the tube 31, and a portion interposed between the flat surfaces of the tube 31, A characteristic structure is applied to the portion interposed between the flat surfaces of the tube 31 as described later.
Of course, the entire structure of the tube 31 and the fin 32 is not limited to such a bent structure, and the entire structure is not limited to this as long as it has a characteristic configuration to be described later.
Here, the characteristic point of this external heat exchanger 3 is demonstrated.

図3に示すように、本外部熱交換器3のフィン32は、何れも表面(少なくとも上面)に、撥水性能を持つコート層が設けられている。このコート層として、例えばテフロン(登録商標)等のフッ素樹脂の溶射による加工が考えられる。このコート層により、フィン32の表面に水が付着し難いので、その分だけフィン32表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。   As shown in FIG. 3, each of the fins 32 of the external heat exchanger 3 is provided with a coat layer having water repellency on the surface (at least the upper surface). As this coat layer, for example, processing by thermal spraying of a fluororesin such as Teflon (registered trademark) can be considered. Due to this coat layer, water hardly adheres to the surface of the fin 32, and accordingly, frost formation on the surface of the fin 32 hardly occurs, and icing on the surface of the fin 32 hardly occurs.

なお、このコート層は、フィン32の全面及びチューブ31の全面に加工することが外部熱交換器3全体への水が付着防止に有効であるが、フィン32及びチューブ31の各面のうち、最も水が付着し易い一つの面のみにコート層を加工するだけでも有効である。最も水が付着し易い面とは、一般的には鉛直上方を向いた面(傾斜して上方を向いた面を含む)となるが、走行方向を向いた面(傾斜して走行方向を向いた面を含む)も水が付着し易い面といえる。   In addition, although this coat layer is effective for preventing water from adhering to the entire external heat exchanger 3 to be processed on the entire surface of the fin 32 and the entire surface of the tube 31, among the surfaces of the fin 32 and the tube 31, It is also effective to process the coat layer only on one surface where water is most likely to adhere. The surface to which water is most likely to adhere is generally a surface facing vertically upward (including a surface inclined and facing upward), but a surface facing the traveling direction (inclined and facing the traveling direction). It can also be said that water is easily attached to the surface.

そして、各フィン32は、正面視においては図2に示すように横方向(水平方向)に延在しているが、側面視においては図3,図5に示すように、熱交換をする外気(フレッシュエア)の流れ(水平方向とする)に対して傾斜して設けられている。図3,図5に示す第1例及び図4に示す第2例では、外気の流れ方向下流側を上昇させるように外気に向かって前傾斜させているが、図6に示す第3例や、図7に示す第4例のように、外気の流れ方向下流側を下降させるように外気に向かって後傾斜させてもよい。このような傾斜によって、フィン32の表面に水が付着しても速やかに滴下するので、その分だけフィン32表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。   Each fin 32 extends in the lateral direction (horizontal direction) as shown in FIG. 2 in the front view, but outside air that exchanges heat as shown in FIGS. 3 and 5 in the side view. It is inclined with respect to the flow (fresh direction) of (fresh air). In the first example shown in FIG. 3 and FIG. 5 and the second example shown in FIG. 4, it is inclined forward toward the outside air so as to raise the downstream side in the flow direction of the outside air, but the third example shown in FIG. Further, as in the fourth example shown in FIG. 7, it may be inclined rearward toward the outside air so as to lower the downstream side in the flow direction of the outside air. Due to such an inclination, even if water adheres to the surface of the fin 32, it quickly drops, so that frost formation on the surface of the fin 32 is less likely to occur, and icing on the surface of the fin 32 is less likely to occur.

また、ここでは、各フィン32は、傾斜するフィン本体32a〜32cに、切り込みが入れられて、折り曲げ片部33a〜33cが折り曲げ形成されている。フィン本体32a〜32cには、この折り曲げ片部33a〜33cの形成によって、穴34a〜34cが形成されている。折り曲げ片部33a〜33cは、進入する外気との接触面積を増大させながら、穴34a〜34cによってフィン32表面にある水滴等も速やかに滴下され、この点からも、フィン32表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。   In addition, here, each fin 32 is cut into the inclined fin bodies 32a to 32c, and the bent piece portions 33a to 33c are bent. Holes 34a to 34c are formed in the fin bodies 32a to 32c by forming the bent pieces 33a to 33c. The bent pieces 33a to 33c increase the contact area with the entering outside air, and water droplets and the like on the surface of the fin 32 are also quickly dropped by the holes 34a to 34c. From this point also, frost formation on the surface of the fin 32 In addition, icing on the surface of the fin 32 hardly occurs.

折り曲げ片部33a〜33cは、図3,図5に示す第1例や図6に示す第3例のように、フィン32の両側のチューブ31相互間を結ぶ方向に折り目を形成し、折り曲げ片部33a,33cの先端が上下するように折り曲げたり、図4に示す第2例や図7に示す第4例のように、フィン32の傾斜方向に沿って折り目を形成し、折り曲げ片部33bの先端が上下するように折り曲げたり、いくつものバリエーションが考えられる。   As shown in FIGS. 3 and 5 and the third example shown in FIG. 6, the bent pieces 33 a to 33 c are formed by forming creases in the direction connecting the tubes 31 on both sides of the fin 32. Bends are formed so that the tips of the portions 33a and 33c are moved up and down, or a crease is formed along the inclination direction of the fin 32 as in the second example shown in FIG. 4 and the fourth example shown in FIG. It can be bent so that its tip moves up and down, and many variations are possible.

フィン32の前傾斜や後傾斜、折り曲げ片部33a〜33cの形態によって、水滴等の滴下性能も異なるが、この点は後述する。
なお図3〜図7の例ではフィン32を傾斜させているが、これに限定せず、外部熱交換器3全体を後傾状態又は前傾状態に傾斜させることにより、フィン32を水平面に対して後傾斜又は前傾斜させてもよい。この場合、フィン32をチューブ31に対して傾斜させずにチューブ31の主要部の延在方向と直交する方向に向けて形成しても、外部熱交換器3全体を傾斜させることによってフィン32も傾斜することになる。
The dropping performance of water droplets and the like varies depending on the front and rear inclinations of the fins 32 and the shape of the bent pieces 33a to 33c, which will be described later.
3 to 7, the fins 32 are inclined. However, the present invention is not limited to this. By tilting the entire external heat exchanger 3 in the backward inclined state or the forward inclined state, the fins 32 are inclined with respect to the horizontal plane. May be tilted backward or forward. In this case, even if the fin 32 is formed in a direction orthogonal to the extending direction of the main part of the tube 31 without being inclined with respect to the tube 31, the fin 32 is also formed by inclining the entire external heat exchanger 3. Will be inclined.

本発明の一実施形態にかかる車両用ヒートポンプ式空調機は、上述のように構成されているので、以下のように冷房運転や暖房運転が実施される。
まず、冷房運転時には、図1(b)に示すように、エアコンECU50の制御により切替弁2が暖房運転時とは逆方向の流れを生成して、冷媒回路10内で、圧縮機1,外部熱交換器3,膨張弁4,内部熱交換器5の順で冷媒を循環させる。また、この時には、開閉弁20は開放され、開閉弁21は閉鎖され、除霜運転回路を構成するバイパス流路19には冷媒は流通しない。したがって、外部熱交換器3を利用して冷房運転が行なわれる。
Since the vehicle heat pump air conditioner according to the embodiment of the present invention is configured as described above, the cooling operation and the heating operation are performed as follows.
First, at the time of cooling operation, as shown in FIG. 1B, the switching valve 2 generates a flow in the opposite direction to that at the time of heating operation by the control of the air conditioner ECU 50. The refrigerant is circulated in the order of the heat exchanger 3, the expansion valve 4, and the internal heat exchanger 5. At this time, the on-off valve 20 is opened, the on-off valve 21 is closed, and the refrigerant does not flow through the bypass flow path 19 constituting the defrosting operation circuit. Therefore, the cooling operation is performed using the external heat exchanger 3.

これにより、圧縮機1で圧縮され高温,高圧になった冷媒は外部熱交換器3において走行風等による外気によって熱を放出して冷却され凝縮される。この際、外部熱交換器3は凝縮器(コンデンサ)として機能する。凝縮された冷媒は膨張弁4において断熱膨張することにより冷却され、その後、内部熱交換器5において周囲の空気の熱を奪い、自身はその分だけ温度上昇して圧縮器1に進む。この際、内部熱交換器5は蒸発器(エバポレータ)として機能する。このような冷媒の循環(冷凍サイクル)によって、内部熱交換器5の設置された車室内が冷房される。   As a result, the refrigerant that has been compressed by the compressor 1 and has become high temperature and high pressure is cooled and condensed in the external heat exchanger 3 by releasing heat by the outside air such as traveling wind. At this time, the external heat exchanger 3 functions as a condenser (condenser). The condensed refrigerant is cooled by adiabatic expansion in the expansion valve 4, and then takes the heat of the surrounding air in the internal heat exchanger 5, and the temperature rises by that amount and proceeds to the compressor 1. At this time, the internal heat exchanger 5 functions as an evaporator (evaporator). The vehicle interior in which the internal heat exchanger 5 is installed is cooled by the circulation (refrigeration cycle) of the refrigerant.

一方、暖房運転時には、図1(a)に示すように、エアコンECU50の制御により切替弁2が冷房運転時とは逆方向の流れを生成して、冷媒回路10内で、圧縮機1,内部熱交換器5,膨張弁4,外部熱交換器3の順で冷媒を循環させる。
これにより、圧縮機1で圧縮され高温,高圧になった冷媒は内部熱交換器5において熱を放出して冷却され凝縮される。この際、内部熱交換器5は凝縮器(コンデンサ)として機能する。凝縮された冷媒は膨張弁4において断熱膨張することにより冷却され、その後、外部熱交換器3において周囲の空気の熱を奪い、自身はその分だけ温度上昇して圧縮器1に進む。この際、外部熱交換器3は蒸発器(エバポレータ)として機能する。このような冷媒の循環(ヒートポンプサイクル)によって、内部熱交換器5の設置された室内が暖房される。
On the other hand, during the heating operation, as shown in FIG. 1 (a), the switching valve 2 generates a flow in the opposite direction to that during the cooling operation under the control of the air conditioner ECU 50. The refrigerant is circulated in the order of the heat exchanger 5, the expansion valve 4, and the external heat exchanger 3.
As a result, the refrigerant that has been compressed by the compressor 1 and has reached a high temperature and a high pressure releases heat in the internal heat exchanger 5 and is cooled and condensed. At this time, the internal heat exchanger 5 functions as a condenser (condenser). The condensed refrigerant is cooled by adiabatic expansion in the expansion valve 4, and then takes the heat of surrounding air in the external heat exchanger 3, and the temperature rises by that amount and proceeds to the compressor 1. At this time, the external heat exchanger 3 functions as an evaporator. The room in which the internal heat exchanger 5 is installed is heated by such refrigerant circulation (heat pump cycle).

また、この時に、外部熱交換器3で着霜した或いは着霜の可能性の高い場合は、開閉弁20を閉鎖し開閉弁21を開放して除霜運転回路を構成するバイパス流路19に冷媒を流通させ、除霜運転をする。
特に、本空調機では、車両の始動時には、図8のフローチャートに示すように除霜運転が実施される。なお、図8において、「F」は除霜運転時には「1」、その他の場合には「0」とする制御フラグである。図8のフローチャートは始動後所定周期で繰り返される。
At this time, if the external heat exchanger 3 is frosted or has a high possibility of frosting, the on-off valve 20 is closed and the on-off valve 21 is opened to form a defrosting operation circuit 19. Circulate refrigerant and perform defrosting operation.
In particular, in this air conditioner, when the vehicle is started, the defrosting operation is performed as shown in the flowchart of FIG. In FIG. 8, “F” is a control flag that is “1” during the defrosting operation and “0” in other cases. The flowchart of FIG. 8 is repeated at a predetermined cycle after startup.

図8に示すように、まず、制御フラグFが0であるか否かを判定し(ステップS10)、制御フラグFが0であれば、図示しない外気温センサ(外気温度検出手段)によってこの時点で検出された外気温、或いは、始動前の直近の所定時間に検出された外気温の履歴或いは平均値に基づいた外気温が、予め設定された基準温度以下であるか否かを判定する(ステップS20)。   As shown in FIG. 8, first, it is determined whether or not the control flag F is 0 (step S10). If the control flag F is 0, this time is detected by an outside air temperature sensor (outside air temperature detecting means) (not shown). It is determined whether or not the outside air temperature detected in step 1 or the outside air temperature based on the history or average value of the outside air temperature detected during the most recent predetermined time before the start is equal to or lower than a preset reference temperature ( Step S20).

ここで、外気温が基準温度以下であれば、着霜が生じていると判断して除霜運転開始条件が成立し、除霜運転を実施する(ステップS30)。そして、制御フラグFを1にセットする(ステップS40)。一方、外気温が基準温度よりも高ければ、着霜が生じていないとして除霜運転開始条件は成立せず、暖房指令があれば暖房運転を実施する(ステップS50)。そして、制御フラグFを0にセットする(ステップS60)。   Here, if the outside air temperature is equal to or lower than the reference temperature, it is determined that frost formation has occurred, the defrosting operation start condition is established, and the defrosting operation is performed (step S30). Then, the control flag F is set to 1 (step S40). On the other hand, if the outside air temperature is higher than the reference temperature, the defrosting operation start condition is not satisfied because frost formation has not occurred, and if there is a heating command, the heating operation is performed (step S50). Then, the control flag F is set to 0 (step S60).

除霜運転を実施すると、次周期では、ステップS10からステップS70に進み、冷媒入口温度T1と冷媒出口温度T2との差(|T1−T2|、出入口温度差)が予め設定された閾値T0未満であるか判定して、出入口温度差(|T1−T2|)閾値T0未満になったら除霜運転から暖房運転に切り換える(ステップS50)。そして、制御フラグFを0にセットする(ステップS60)。 When the defrosting operation is performed, in the next cycle, the process proceeds from step S10 to step S70, and the difference between the refrigerant inlet temperature T1 and the refrigerant outlet temperature T2 (| T1-T2 |, inlet / outlet temperature difference) is less than a preset threshold value T0. When the inlet / outlet temperature difference (| T1-T2 |) is less than the threshold value T0, the defrosting operation is switched to the heating operation (step S50). Then, the control flag F is set to 0 (step S60).

したがって、本車両用ヒートポンプ式空調機によれば、車両用空調機にヒートポンプ式空調機を適用して、ヒートポンプ回路のみで冷房及び暖房を実施できるようになる。この反面、外部熱交換器3への着霜があると暖房運転に支障を来たし、特に、寒冷地の極低温時には、車両の始動時に外部熱交換器3に着霜が生じやすくなる。この点、始動時に、車外に配置される外部熱交換器3への着霜があるかどうかを外気温から適正に判断し、除霜運転を行なうことによって始動時に着霜した状態での暖房運転の開始を回避することができる。また、外部熱交換器3の出入口温度差から簡便な手法で適切に除霜完了を判定して、暖房運転を開始することができる。   Therefore, according to the vehicle heat pump air conditioner, the heat pump air conditioner can be applied to the vehicle air conditioner, and cooling and heating can be performed only by the heat pump circuit. On the other hand, if the external heat exchanger 3 is frosted, the heating operation is hindered. In particular, when the vehicle is started at a very low temperature in a cold region, the external heat exchanger 3 is likely to be frosted. In this regard, at the time of start-up, the external heat exchanger 3 disposed outside the vehicle is appropriately judged from the outside air temperature to determine whether there is frost formation, and by performing the defrost operation, the heating operation in a state where the frost is formed at the start-up Can be avoided. Moreover, the completion of defrosting can be appropriately determined by a simple method from the inlet / outlet temperature difference of the external heat exchanger 3, and the heating operation can be started.

さらに、走行用モータ及びバッテリを冷却する冷却装置には、暖房運転時又は除霜運転時には、第1供給路22及び第1戻り路23を利用して、また、冷房運転時に、第2供給路24及び第2戻り路25を利用して、密封性の高い冷媒を供給して、走行用モータ及びバッテリを冷却することができる。このため、バッテリとして一般的なリチウムイオン電池を用いた車両において、水を使用することによる潜在的な発熱リスクを回避することができる。   Further, the cooling device that cools the traveling motor and the battery uses the first supply path 22 and the first return path 23 during the heating operation or the defrosting operation, and also uses the second supply path during the cooling operation. 24 and the second return path 25 can be used to supply a coolant with high sealing performance to cool the traveling motor and the battery. For this reason, in the vehicle using a general lithium ion battery as a battery, the potential heat generation risk by using water can be avoided.

暖房運転時又は除霜運転時には、走行用モータ及びバッテリを冷却すると同時に、温度上昇させたい冷媒の温度を上昇させることができ効果的である。
また、本外部熱交換器3のフィン32は、表面(少なくとも上面)に、撥水性能を持つコート層が設けられているので、このコート層により、フィン32の表面に水が付着し難いので、その分だけフィン32表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。
At the time of heating operation or defrosting operation, the temperature of the refrigerant to be increased in temperature can be increased at the same time as the traveling motor and the battery are cooled, which is effective.
In addition, since the fin 32 of the external heat exchanger 3 is provided with a coating layer having water repellency on the surface (at least the upper surface), it is difficult for water to adhere to the surface of the fin 32 by this coating layer. As much as that, frost formation on the surface of the fin 32 hardly occurs, and icing on the surface of the fin 32 hardly occurs.

また、各フィン32は、走行風やファン7によって形成される外気の流れ方向に向かって後傾斜或いは前傾斜しているので、フィン32の表面に水が付着し難く、また、付着した水滴もフィン32の後縁又は前縁から速やかに滴下しやすい。このような傾斜によって、フィン32の表面に水が付着し難いので、その分だけフィン32表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。図3,図5に示すように、熱交換をする外気(フレッシュエア)の流れ(水平方向とする)に対して傾斜して設けられている。図3,図5に示す第1例や図4に示す第2例では、外気の流れ方向下流側を上昇させるように外気に向かって前傾斜させているが、図6に示す第3例や、図7に示す第4例のように、外気の流れ方向下流側を下降させるように外気に向かって後傾斜させてもよい。このような傾斜によって、進入する外気が直接当たる面積を増大させるため熱交換性能が向上し、フィン32の表面に水が付着し難いので、その分だけフィン32の表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。   Further, since each fin 32 is inclined backward or forward in the direction of the flow of outside air formed by the traveling wind or the fan 7, water hardly adheres to the surface of the fin 32, and adhering water droplets are also present. It is easy to drip quickly from the rear or front edge of the fin 32. Due to such an inclination, water hardly adheres to the surface of the fin 32, and accordingly, frost formation on the surface of the fin 32 hardly occurs, and icing on the surface of the fin 32 hardly occurs. As shown in FIG. 3 and FIG. 5, it is provided so as to be inclined with respect to the flow (fresh direction) of outside air (fresh air) for heat exchange. In the first example shown in FIG. 3 and FIG. 5 and the second example shown in FIG. 4, it is inclined forward toward the outside air so as to raise the downstream side in the flow direction of the outside air, but the third example shown in FIG. Further, as in the fourth example shown in FIG. 7, it may be inclined rearward toward the outside air so as to lower the downstream side in the flow direction of the outside air. Such an inclination increases the area directly exposed to the incoming outside air, thereby improving the heat exchange performance and preventing water from adhering to the surface of the fin 32. Therefore, frost formation on the surface of the fin 32 is less likely to occur. , Freezing on the surface of the fin 32 hardly occurs.

また、傾斜するフィン本体32a〜32cに、折り曲げ片部33a〜33cが折り曲げ形成され、穴34a〜34cが形成されているので、折り曲げ片部33a〜33cは、進入する外気との接触面積を増大させるため熱交換性能が向上し、穴34a〜34cによってフィン32表面に乗った水滴等も速やかに滴下され、この点からも、フィン32の表面に水が付着し難いので、その分だけフィン32表面での着霜も生じ難く、フィン32表面での氷結も起こり難い。   In addition, since the bent pieces 33a to 33c are formed by bending the inclined fin bodies 32a to 32c and the holes 34a to 34c are formed, the bent pieces 33a to 33c increase the contact area with the incoming outside air. Therefore, the heat exchange performance is improved, and water droplets and the like on the surface of the fin 32 are quickly dripped by the holes 34a to 34c. Also from this point, water hardly adheres to the surface of the fin 32. Frosting on the surface hardly occurs, and icing on the surface of the fin 32 hardly occurs.

図5〜図7に、走行風を白抜きの矢印で示し、フィン32の上に乗った水滴を白丸で示し、その動きを矢印で示しているが、走行風を利用して、水滴を除去する点では、フィン32も折り曲げ片部33も、走行風(外気)に向かって後傾斜している方が、水滴を速やかに除去でき、しかも、走行風に直接あたる面積も増大するので、効果的である。この点からは、図6に示す第3例が最も効果的といえる。
なお、図5(b),図6(b)に示すように、折り曲げ片部33は各フィン32に複数(各変形例では2つ)設けてもよい。
5-7, the running wind is indicated by a white arrow, the water drop on the fin 32 is indicated by a white circle, and the movement is indicated by an arrow. The movement wind is used to remove the water drop. In that respect, if both the fin 32 and the bent piece 33 are inclined rearward toward the traveling wind (outside air), water droplets can be removed more quickly, and the area directly hitting the traveling wind is increased. Is. From this point, it can be said that the third example shown in FIG. 6 is most effective.
In addition, as shown in FIG.5 (b) and FIG.6 (b), you may provide the bending piece part 33 with two or more in each fin 32 (two in each modification).

〔その他〕
以上、本発明の実施形態を説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、上記実施形態を適宜変更して実施することができる。
[Others]
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, In the range which does not deviate from the meaning of this invention, the said embodiment can be changed suitably and can be implemented.

例えば上記の実施形態では室外機入口および出口に設置した温度センサ、図示しない外気温度センサを用いて除霜運転開始条件の判定を行っているが、制御ロジックを密に行なうために、バイパス流路などに温度センサを追加しても良く、これを制御ロジックの判定条件に用いても良い。
また、切替手段としての開閉弁20,21は単に全閉もしくは全開のみ行なうオンオフ制御でなく、開閉弁の中間開度を用いたPIC制御などを適用しても良い。
For example, in the above embodiment, the defrosting operation start condition is determined using the temperature sensors installed at the inlet and outlet of the outdoor unit and the outside air temperature sensor (not shown). For example, a temperature sensor may be added, and this may be used as a determination condition of the control logic.
Further, the on-off valves 20 and 21 as switching means may be applied with PIC control using an intermediate opening degree of the on-off valve, instead of the on-off control that is merely fully closed or fully opened.

また、チューブもしくはフィンは、折り曲げ片部や穴がなくても良く、傾斜も必須ではない。折り曲げ片部も実施形態のように平板でなくても良い。
さらに、上記の実施形態では、熱交換器の正面視において、チューブ31を縦方向(鉛直方向)に、フィン32を横方向(水平方向)に配向しているが、本発明にかかるチューブ及びフィンの配向方向はこれに限定されるものではない。チューブが横方向(水平方向)、フィンが縦方向(鉛直方向)でも良い。
Further, the tube or fin may not have a bent piece or a hole, and the inclination is not essential. The bent piece may not be a flat plate as in the embodiment.
Further, in the above embodiment, the tube 31 is oriented in the vertical direction (vertical direction) and the fins 32 are oriented in the horizontal direction (horizontal direction) in the front view of the heat exchanger. The orientation direction is not limited to this. The tube may be in the horizontal direction (horizontal direction), and the fin may be in the vertical direction (vertical direction).

この場合、チューブの主要部(屈曲部以外)の扁平面を走行風に対して前傾斜又は後傾斜させることが好ましい。また、外部熱交換器全体を後傾状態又は前傾状態に傾斜させることにより、チューブの扁平面を水平面に対して後傾斜又は前傾斜させてもよい。この場合、チューブの主要部の扁平面をフィンに対して傾斜させずにフィンの延在方向と直交する方向に向けて形成しても、外部熱交換器全体を傾斜させることによってチューブの扁平面も傾斜することになる。   In this case, it is preferable that the flat surface of the main part (other than the bent part) of the tube is inclined forward or backward with respect to the traveling wind. Further, the flat surface of the tube may be inclined backward or forward with respect to the horizontal plane by inclining the entire external heat exchanger in the backward inclined state or the forward inclined state. In this case, even if the flat surface of the main part of the tube is formed in a direction perpendicular to the extending direction of the fin without being inclined with respect to the fin, the flat surface of the tube is formed by inclining the entire external heat exchanger. Will also be inclined.

また、実施形態では、水滴の付着を防止するため、撥水性能を持つコート層を、フィンの少なくとも1面(特に上向き面)に設けているが、チューブの少なくとも1面(特に上向き面)に設けても良い。特に、チューブが横方向(水平方向)に延在している場合には、チューブの扁平面の上向き面等への水滴の付着を防止するために有効になる。   In the embodiment, a coat layer having water repellency is provided on at least one surface (especially the upward surface) of the fin in order to prevent water droplets from adhering, but at least one surface (especially the upward surface) of the tube. It may be provided. In particular, when the tube extends in the lateral direction (horizontal direction), this is effective for preventing the adhesion of water drops to the upward surface of the flat surface of the tube.

1 圧縮機
2 切替弁
3 外部熱交換器(室外機)
3A 冷媒入口
3B 冷媒出口
4 膨張弁
5 内部熱交換器(室内機)
5a ファン
6 アキュムレータ
7 ファン
10 冷媒回路
11〜17 冷媒回路の流路
19 バイパス流路(除霜運転回路)
20,21 切替手段としての開閉弁
22 第1供給路
23 第1戻り路
24 第2供給路
25 第2戻り路
31チューブ
32 フィン
32a〜32c フィン本体
33a〜33c 折り曲げ片部
34a〜34c 穴
41 第1温度センサ(第1冷媒温度検出手段)
42 第2温度センサ(第2冷媒温度検出手段)
50 制御装置としてのエアコンECU
1 Compressor 2 Switching valve 3 External heat exchanger (outdoor unit)
3A Refrigerant inlet 3B Refrigerant outlet 4 Expansion valve 5 Internal heat exchanger (indoor unit)
5a Fan 6 Accumulator 7 Fan 10 Refrigerant circuit 11-17 Flow path of refrigerant circuit 19 Bypass flow path (defrosting operation circuit)
20, 21 On-off valve as switching means 22 First supply path 23 First return path 24 Second supply path 25 Second return path 31 Tube 32 Fin 32a-32c Fin body 33a-33c Bending piece 34a-34c Hole 41 First 1 temperature sensor (first refrigerant temperature detecting means)
42 2nd temperature sensor (2nd refrigerant temperature detection means)
50 Air conditioner ECU as control device

Claims (6)

冷媒回路内に、圧縮機,外部熱交換器,膨張弁,内部熱交換器をそなえた車両用ヒートポンプ式空調機であって、
前記圧縮機,前記内部熱交換器,前記膨張弁,前記外部熱交換器の順に冷媒を流通させる暖房運転時に、温度低下前の冷媒を前記外部熱交換器に供給して除霜する除霜運転を行なう除霜運転回路と、
前記暖房運転と前記除霜運転とを切り替える切替手段と、
前記除霜運転時に前記外部熱交換器の冷媒入口温度を検出する第1冷媒温度検出手段と、
前記除霜運転時に前記外部熱交換器の冷媒出口温度を検出する第2冷媒温度検出手段と、
前記車両の始動時に、予め設定された除霜運転開始条件が成立すると前記暖房運転に入る前に前記除霜運転を実施し、前記第1及び第2冷媒温度検出手段により検出された前記冷媒入口温度と前記冷媒出口温度との差が予め設定された閾値未満になったら前記除霜運転から前記暖房運転に切り換え可能とする制御装置とを備える
ことを特徴とする、車両用ヒートポンプ式空調機。
A heat pump air conditioner for a vehicle having a compressor, an external heat exchanger, an expansion valve, and an internal heat exchanger in the refrigerant circuit,
Defrosting operation in which the refrigerant before temperature reduction is defrosted by supplying the refrigerant to the external heat exchanger during the heating operation in which the refrigerant flows in the order of the compressor, the internal heat exchanger, the expansion valve, and the external heat exchanger. A defrosting operation circuit for performing
Switching means for switching between the heating operation and the defrosting operation;
First refrigerant temperature detection means for detecting a refrigerant inlet temperature of the external heat exchanger during the defrosting operation;
Second refrigerant temperature detection means for detecting a refrigerant outlet temperature of the external heat exchanger during the defrosting operation;
When the vehicle is started, if a preset defrosting operation start condition is satisfied, the defrosting operation is performed before entering the heating operation, and the refrigerant inlet detected by the first and second refrigerant temperature detecting means A heat pump air conditioner for a vehicle, comprising: a control device capable of switching from the defrosting operation to the heating operation when the difference between the temperature and the refrigerant outlet temperature is less than a preset threshold value.
外気温度を検出する外気温度検出手段をそなえ、
前記外気温度検出手段により前記暖房運転始動時に検出された或いは前記暖房運転始動前の直近に検出され記憶された前記外気温度が予め設定された基準温度以下であることを、前記除霜運転開始条件とする
ことを特徴とする、請求項1記載の車両用ヒートポンプ式空調機。
An outside temperature detecting means for detecting the outside temperature is provided,
The defrosting operation start condition is that the outside temperature detected at the start of the heating operation by the outside air temperature detection means or detected and stored immediately before the start of the heating operation is equal to or lower than a preset reference temperature. The heat pump air conditioner for a vehicle according to claim 1, wherein:
前記車両は走行用モータ及び前記走行用モータに接続されたバッテリを備えた電気自動車であって、
前記走行用モータ及び前記バッテリの少なくともいずれかを冷却する冷却装置を有し、
前記暖房運転時又は前記除霜運転時に、前記外部熱交換器に進入する前の低温冷媒を前記冷却装置に供給する第1供給路と、前記冷却装置の通過後の加温冷媒を前記外部熱交換器の上流に戻す第1戻り路とを有している
ことを特徴とする、請求項1又は2記載の車両用ヒートポンプ式空調機。
The vehicle is an electric vehicle including a traveling motor and a battery connected to the traveling motor,
A cooling device that cools at least one of the traveling motor and the battery;
During the heating operation or the defrosting operation, a first supply path for supplying the cooling device with the low-temperature refrigerant before entering the external heat exchanger, and the heated refrigerant after passing through the cooling device with the external heat The vehicle heat pump air conditioner according to claim 1, further comprising a first return path that returns to the upstream side of the exchanger.
前記車両は走行用モータ及び前記走行用モータに接続されたバッテリを備えた電気自動車であって、
前記走行用モータ及び前記バッテリの少なくともいずれかを冷却する冷却装置を有し、
冷房運転時に、前記内部熱交換器に進入する前の冷媒を前記冷却装置に供給する第2供給路と、前記冷却装置の通過後の加温冷媒を前記内部熱交換器の下流に戻す第2戻り路とを有している
ことを特徴とする、請求項1〜3の何れか1項に記載の車両用ヒートポンプ式空調機。
The vehicle is an electric vehicle including a traveling motor and a battery connected to the traveling motor,
A cooling device that cools at least one of the traveling motor and the battery;
A second supply path for supplying the refrigerant before entering the internal heat exchanger to the cooling device during cooling operation; and a second supply channel for returning the heated refrigerant after passing through the cooling device to the downstream of the internal heat exchanger. It has a return path, The heat pump type air conditioner for vehicles given in any 1 paragraph of Claims 1-3 characterized by the above-mentioned.
冷媒回路内に、圧縮機,外部熱交換器,膨張弁,内部熱交換器をそなえた車両用ヒートポンプ式空調機であって、
前記圧縮機,前記内部熱交換器,前記膨張弁,前記外部熱交換器の順に冷媒を流通させる暖房運転時に、温度低下前の冷媒を前記外部熱交換器に供給して除霜する除霜運転を行なう除霜運転回路と、
前記暖房運転と前記除霜運転とを切り替える切替手段と、
をそなえた、車両用ヒートポンプ式空調機の運転方法であって、
前記車両の始動時に、予め設定された除霜運転開始条件が成立すると前記暖房運転に入る前に前記除霜運転を実施し、除霜運転時における前記外部熱交換器の冷媒入口温度冷媒出口温度との差が予め設定された閾値未満になったら前記除霜運転から前記暖房運転に切り換え可能とする
ことを特徴とする、車両用ヒートポンプ式空調機の運転方法。
A heat pump air conditioner for a vehicle having a compressor, an external heat exchanger, an expansion valve, and an internal heat exchanger in the refrigerant circuit,
Defrosting operation in which the refrigerant before temperature reduction is defrosted by supplying the refrigerant to the external heat exchanger during the heating operation in which the refrigerant flows in the order of the compressor, the internal heat exchanger, the expansion valve, and the external heat exchanger. A defrosting operation circuit for performing
Switching means for switching between the heating operation and the defrosting operation;
The operation method of the heat pump type air conditioner for vehicles with
When a predetermined defrosting operation start condition is satisfied at the start of the vehicle, the defrosting operation is performed before entering the heating operation, and the refrigerant inlet temperature and the refrigerant outlet temperature of the external heat exchanger during the defrosting operation are performed. A method for operating a heat pump air conditioner for a vehicle, wherein the defrosting operation can be switched to the heating operation when a difference between the defrosting operation and the difference becomes less than a preset threshold value.
外気温度が予め設定された基準温度以下であることを、前記除霜運転開始条件とする
ことを特徴とする、請求項5記載の車両用ヒートポンプ式空調機の運転方法。
6. The operation method of a vehicle heat pump air conditioner according to claim 5, wherein the defrosting operation start condition is that the outside air temperature is equal to or lower than a preset reference temperature.
JP2012042239A 2012-02-28 2012-02-28 Heat pump type air conditioner for vehicle and operation method thereof Expired - Fee Related JP5693495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042239A JP5693495B2 (en) 2012-02-28 2012-02-28 Heat pump type air conditioner for vehicle and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042239A JP5693495B2 (en) 2012-02-28 2012-02-28 Heat pump type air conditioner for vehicle and operation method thereof

Publications (2)

Publication Number Publication Date
JP2013178032A JP2013178032A (en) 2013-09-09
JP5693495B2 true JP5693495B2 (en) 2015-04-01

Family

ID=49269828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042239A Expired - Fee Related JP5693495B2 (en) 2012-02-28 2012-02-28 Heat pump type air conditioner for vehicle and operation method thereof

Country Status (1)

Country Link
JP (1) JP5693495B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931694A (en) * 2017-04-12 2017-07-07 广东美的暖通设备有限公司 Method, device, heat pump and air-conditioning for defrost
JP2020139686A (en) * 2019-02-28 2020-09-03 株式会社デンソー Refrigeration cycle equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284028B2 (en) * 2014-05-29 2018-02-28 三菱自動車工業株式会社 vehicle
KR102084193B1 (en) * 2014-09-30 2020-03-04 한온시스템 주식회사 Heat pump system for automotive vehicles
CN111189166B (en) * 2018-11-14 2022-04-19 青岛海尔空调器有限总公司 An air conditioner and a control method for preventing freezing
CN116674348A (en) * 2023-08-02 2023-09-01 江铃汽车股份有限公司 Defrosting method and system for external heat exchanger of heat pump air conditioner and computer equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399442A (en) * 1986-10-15 1988-04-30 Hitachi Ltd Defrosting controller of air conditioner
JPH0689966B2 (en) * 1988-09-13 1994-11-14 ダイキン工業株式会社 Defrost operation control device for refrigeration equipment
US4903500A (en) * 1989-06-12 1990-02-27 Thermo King Corporation Methods and apparatus for detecting the need to defrost an evaporator coil
JP4006782B2 (en) * 1997-07-01 2007-11-14 株式会社デンソー Air conditioner having a cooler for heat generating equipment
JP2000062446A (en) * 1998-08-20 2000-02-29 Zexel Corp Air conditioner for vehicle
JP4134433B2 (en) * 1999-03-30 2008-08-20 株式会社デンソー Heat pump air conditioner
US6237357B1 (en) * 1999-06-07 2001-05-29 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner using heat pump
JP2004224109A (en) * 2003-01-21 2004-08-12 Denso Corp Heat pump device
FR2884058B1 (en) * 2005-04-05 2016-07-15 Valeo Systemes Thermiques Branche Thermique Habitacle DEVICE FOR HOLDING AT A SET TEMPERATURE OF A BATTERY OF A MOTORIZED MOTORIZED VEHICLE BY A COOLANT FLUID
JP2007069733A (en) * 2005-09-07 2007-03-22 Valeo Thermal Systems Japan Corp Heating element cooling system using air conditioner for vehicle
JP4949926B2 (en) * 2007-05-18 2012-06-13 三菱重工業株式会社 Air conditioner for vehicles
JP2008308080A (en) * 2007-06-15 2008-12-25 Hitachi Ltd Heat absorption and radiation system for automobile, and control method thereof
JP2010111222A (en) * 2008-11-05 2010-05-20 Denso Corp Air-conditioner for vehicle
JP5563904B2 (en) * 2010-06-25 2014-07-30 株式会社日本クライメイトシステムズ Air conditioner for vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931694A (en) * 2017-04-12 2017-07-07 广东美的暖通设备有限公司 Method, device, heat pump and air-conditioning for defrost
CN106931694B (en) * 2017-04-12 2019-04-30 广东美的暖通设备有限公司 For the method, apparatus of defrost, heat pump and air-conditioning
JP2020139686A (en) * 2019-02-28 2020-09-03 株式会社デンソー Refrigeration cycle equipment
JP7059966B2 (en) 2019-02-28 2022-04-26 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2013178032A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US10703169B2 (en) Vehicle air conditioner
CN102734867B (en) Air-conditioning device for vehicle
CN103121393B (en) Configuration of vehicle heat exchanger
JP6909890B2 (en) Heat pump system for electric vehicles and its control method
JP5693495B2 (en) Heat pump type air conditioner for vehicle and operation method thereof
US9797641B2 (en) Vehicular air-conditioning device
CN106461253B (en) Air conditioner and defrosting operation method thereof
JP6233009B2 (en) Air conditioner for vehicles
CN105246718B (en) Air conditioner for motor vehicle
US20160201960A1 (en) Vehicle air conditioner
US20140298838A1 (en) Air-conditioning apparatus for vehicle
WO2021171803A1 (en) Vehicle air-conditioning device
JP6997567B2 (en) Vehicle air conditioner
US12151538B2 (en) Vehicle air conditioner
JPH08197937A (en) Air conditioner for vehicle
CN106457968A (en) Air-conditioning device for vehicle
JP5178771B2 (en) Freezer refrigerator
CN106369877A (en) Heat pump system and defrosting control method thereof
CN102059930B (en) Heat-recovery vehicle air conditioner
KR102047749B1 (en) Heat pump system for vehicle
JP2015123828A (en) Air conditioner for vehicles
WO2014115509A1 (en) Vehicular air conditioning device
JP6888904B2 (en) Refrigeration cycle system
US20240149640A1 (en) Vehicle air conditioning system and vehicle air conditioning method
JP2013126858A (en) Arrangement structure of vehicle heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R151 Written notification of patent or utility model registration

Ref document number: 5693495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees