[go: up one dir, main page]

JP2013126858A - Arrangement structure of vehicle heat exchanger - Google Patents

Arrangement structure of vehicle heat exchanger Download PDF

Info

Publication number
JP2013126858A
JP2013126858A JP2012208065A JP2012208065A JP2013126858A JP 2013126858 A JP2013126858 A JP 2013126858A JP 2012208065 A JP2012208065 A JP 2012208065A JP 2012208065 A JP2012208065 A JP 2012208065A JP 2013126858 A JP2013126858 A JP 2013126858A
Authority
JP
Japan
Prior art keywords
heat exchanger
vehicle
cooling
arrangement structure
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012208065A
Other languages
Japanese (ja)
Inventor
Toshikatsu Suzuki
敏且 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012208065A priority Critical patent/JP2013126858A/en
Priority to CN201210437782.6A priority patent/CN103121393B/en
Publication of JP2013126858A publication Critical patent/JP2013126858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arrangement structure of a vehicle heat exchanger in which a low-water-temperature radiator for cooling electronic equipment such as an inverter is arranged upstream of a flowing direction of cooling air.SOLUTION: The arrangement structure of the vehicle heat exchanger includes: an outdoor heat exchanger (3) of a heat pump system of the vehicle air conditioner; and the low-water temperature radiator (12) for cooling a low-temperature heating element (11) including an inverter for a vehicle traveling motor in which the low-water temperature radiator (12) is arranged upstream of a flowing direction of cooling air relative to the outdoor heat exchanger (3).

Description

本発明は、ハイブリッド車両(HEV)、電気自動車(EV)、プラグインハイブリッド車両(PHEV)等において、空調装置のヒートポンプシステムのコンデンサ(以下、室外熱交換器という)に対して、冷却用空気流れ方向の上流側にインバータ等の電子機器冷却用の低水温ラジエータを配置した車両用熱交換器の配置構造に関する。   The present invention relates to a cooling air flow for a condenser (hereinafter referred to as an outdoor heat exchanger) of a heat pump system of an air conditioner in a hybrid vehicle (HEV), an electric vehicle (EV), a plug-in hybrid vehicle (PHEV), and the like. The present invention relates to an arrangement structure of a heat exchanger for a vehicle in which a low water temperature radiator for cooling an electronic device such as an inverter is arranged upstream in the direction.

特許文献1に見られるように、ハイブリッド車両(HEV、PHEV)には、エンジンと走行用モータとの2つの駆動源が設けられ、また車載された2次電池の直流電流を交流に変換して走行用モータに供給するインバータが搭載されている。こうしたハイブリッド車両では、エンジンの冷却に加え、ハイブリッドシステムの走行用モータやインバータの冷却も必要となる。そのため、ハイブリッド車両には、エンジン冷却用の冷却回路(エンジン冷却回路)とハイブリッドシステム用の冷却回路(ハイブリッド冷却回路)との2つの冷却回路が設けられ、各冷却回路に冷却水を循環させることでエンジンやハイブリッドシステムの冷却を行うようにしている。   As seen in Patent Document 1, a hybrid vehicle (HEV, PHEV) is provided with two drive sources, an engine and a travel motor, and converts the direct current of the on-board secondary battery into alternating current. An inverter that supplies the motor for travel is installed. In such a hybrid vehicle, in addition to cooling the engine, it is necessary to cool the driving motor and inverter of the hybrid system. Therefore, the hybrid vehicle is provided with two cooling circuits, that is, a cooling circuit for cooling the engine (engine cooling circuit) and a cooling circuit for the hybrid system (hybrid cooling circuit), and the cooling water is circulated through each cooling circuit. The engine and the hybrid system are cooled by this.

エンジン冷却回路とハイブリッド冷却回路とでは、冷却水の適温が異なっている。また許容可能な冷却水の最大温度も冷却回路間で異なっている。例えばエンジン冷却回路の冷却水(エンジン冷却水)は、エンジンの運転状況によっては100℃を超えることがあるが、ハイブリッド冷却回路の冷却水(ハイブリッド冷却水)は、それよりも大幅に低い温度(例えば65℃)以下に保つ必要がある。そのため、ハイブリッド車両では、エンジン冷却回路とハイブリッド冷却回路とを設けることが一般的となっている。   The appropriate cooling water temperature differs between the engine cooling circuit and the hybrid cooling circuit. Also, the maximum allowable cooling water temperature varies between cooling circuits. For example, the cooling water in the engine cooling circuit (engine cooling water) may exceed 100 ° C. depending on the operating state of the engine, but the cooling water in the hybrid cooling circuit (hybrid cooling water) has a significantly lower temperature ( For example, it is necessary to keep it at 65 ° C. or lower. Therefore, in a hybrid vehicle, it is common to provide an engine cooling circuit and a hybrid cooling circuit.

図1は、従来の一般的車両用熱交換器の配置構造を示す説明図である。ハイブリッド車両(HEV、PHEV)等において、空調装置のヒートポンプシステムの室外熱交換器3に対して、インバータ等の電子機器の冷却用の低水温ラジエータ12と、エンジン1を冷却する高水温ラジエータ2は、この順に冷却用空気流れの下流側に配置されている(なお、電気自動車(EV)の場合には、図1の想像線で描かれた高水温ラジエータ2が存在しない)。また、特許文献2においては、インバータ等の電子機器の冷却用の低水温ラジエータ12は、高水温ラジエータ2と一体に設けられているものの、従来の車両用熱交換器の配置構造と同様に、低水温ラジエータ12は、空調装置の室外熱交換器3に対して、冷却用空気流れの下流側に配置されている。   FIG. 1 is an explanatory view showing an arrangement structure of a conventional general vehicle heat exchanger. In a hybrid vehicle (HEV, PHEV) or the like, a low water temperature radiator 12 for cooling an electronic device such as an inverter and a high water temperature radiator 2 for cooling the engine 1 are provided for an outdoor heat exchanger 3 of a heat pump system of an air conditioner. In this order, they are arranged on the downstream side of the cooling air flow (in the case of an electric vehicle (EV), there is no high water temperature radiator 2 drawn by an imaginary line in FIG. 1). Moreover, in patent document 2, although the low water temperature radiator 12 for cooling electronic devices, such as an inverter, is provided integrally with the high water temperature radiator 2, similarly to the arrangement structure of the conventional vehicle heat exchanger, The low water temperature radiator 12 is disposed downstream of the cooling air flow with respect to the outdoor heat exchanger 3 of the air conditioner.

近年、ハイブリッド車両(HEV)、プラグインハイブリッド車両(PHEV)、電気自動車(EV)等において、走行距離を少しでも延長したいという要請が高まっており、暖房時のCOP(成績係数)が優れるヒートポンプ方式の採用が今後増加することが予想される。上述のような車両用熱交換器の配置構造で、ヒートポンプ方式を採用すると、低外気温時の暖房能力が不足し、また、着霜時にも能力が低下するといった問題点が発生してしまう。   In recent years, in hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV), electric vehicles (EV), etc., there is an increasing demand for extending the mileage as much as possible, and a heat pump system with excellent COP (coefficient of performance) during heating. The adoption of is expected to increase in the future. When the heat pump system is employed in the arrangement structure of the vehicle heat exchanger as described above, there is a problem that the heating capacity at a low outside air temperature is insufficient and the capacity is reduced even at the time of frost formation.

特開2011−98628号公報JP 2011-98628 A 特開2001−59420号公報JP 2001-59420 A

本発明は、上記問題に鑑み、空調装置のヒートポンプシステムの室外熱交換器に対して、冷却用空気流れ方向の上流側にインバータ等の電子機器冷却用の低水温ラジエータを配置した車両用熱交換器の配置構造を提供するものである。   In view of the above problems, the present invention is a vehicle heat exchange in which a low water temperature radiator for cooling an electronic device such as an inverter is arranged upstream of an outdoor heat exchanger of a heat pump system of an air conditioner in an air flow direction for cooling. The arrangement structure of the vessel is provided.

上記課題を解決するために、請求項1の発明は、車両用空調装置のヒートポンプシステムの室外熱交換器(3)と、車両走行モータ用のインバータを含む低温発熱体(11)を冷却する低水温ラジエータ(12)と、を具備する車両用熱交換器の配置構造であって、前記室外熱交換器(3)に対して、冷却用空気流れ方向の上流側に前記低水温ラジエータ(12)を配置した車両用熱交換器の配置構造である。   In order to solve the above-mentioned problems, the invention of claim 1 is a low-temperature cooling element (11) including an outdoor heat exchanger (3) of a heat pump system of a vehicle air conditioner and an inverter for a vehicle travel motor. A vehicle heat exchanger arrangement structure comprising a water temperature radiator (12), wherein the low water temperature radiator (12) is disposed upstream of the outdoor heat exchanger (3) in a cooling air flow direction. It is the arrangement structure of the heat exchanger for vehicles which has arranged.

これにより、暖房時において、低水温ラジエータを流れる冷却水の温度により、外気温が上昇し、ヒートポンプシステムの室外熱交換器を通過する空気の温度上昇が得られ、ヒートポンプシステムの能力が向上するとともに、着霜を防止することができる。また、着霜したとしても室外熱交換器の上流側の低水温ラジエータに着霜させることで、内側の室外熱交換器を極力着霜から保護することができる。一方、冷房時においても上流側に低水温ラジエータを設置するレイアウトであれば、冷房性能への影響は最小限で抑えることができる。さらに、低水温ラジエータに流入する冷却用空気温度が、冷房運転時室外熱交換器3による冷却用通過空気温度の上昇を防止できるため、従来と比べて冷却能力が小さいものにすることができ、小型化が可能で省スペース上の効果も得られる。   As a result, during heating, the temperature of the cooling water flowing through the low water temperature radiator increases the outside air temperature, increasing the temperature of the air passing through the outdoor heat exchanger of the heat pump system, and improving the capacity of the heat pump system , Frost formation can be prevented. Moreover, even if it forms frost, an inner side outdoor heat exchanger can be protected from frosting as much as possible by making it frost on the low water temperature radiator of the upstream of an outdoor heat exchanger. On the other hand, if the layout is such that a low water temperature radiator is installed on the upstream side even during cooling, the influence on cooling performance can be minimized. Furthermore, since the temperature of the cooling air flowing into the low water temperature radiator can prevent an increase in the temperature of the passing air for cooling by the outdoor heat exchanger 3 during the cooling operation, the cooling capacity can be reduced as compared with the conventional one. Miniaturization is possible and a space-saving effect is also obtained.

なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。   In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.

従来の車両用熱交換器の配置構造を示す説明図である。It is explanatory drawing which shows the arrangement structure of the conventional vehicle heat exchanger. 本発明の一実施形態の一例としての説明図である。It is explanatory drawing as an example of one Embodiment of this invention. 除霜時の水分吹き飛ばし機能を説明するフロー図である。It is a flowchart explaining the moisture blowing off function at the time of defrosting. 本発明の他の実施形態の室外熱交換器を傾斜させた場合の説明図である。It is explanatory drawing at the time of inclining the outdoor heat exchanger of other embodiment of this invention. 本発明の他の実施形態の水分が滴下しやすい室外熱交換器の説明図である。It is explanatory drawing of the outdoor heat exchanger with which the water | moisture content of other embodiment of this invention tends to drip.

以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted.

図2は、本発明の一実施形態の一例としての説明図である。本実施形態は、ハイブリッド車両(HEV、PHEV)に適用した場合の全体システムの一例である。電気自動車(EV)、燃料電池車などの場合には、図2の高水温ラジエータ2が存在しない。本発明の一実施形態は、必ずしも図2の場合に限定されるものではなく、その他のヒートポンプ方式の空調装置に適用しても良い。   FIG. 2 is an explanatory diagram as an example of an embodiment of the present invention. The present embodiment is an example of the entire system when applied to a hybrid vehicle (HEV, PHEV). In the case of an electric vehicle (EV), a fuel cell vehicle, etc., the high water temperature radiator 2 of FIG. 2 does not exist. One embodiment of the present invention is not necessarily limited to the case of FIG. 2, and may be applied to other heat pump type air conditioners.

20は空調装置室内ユニット部(HVAC)で、その一端側に室内送風機が配置されている。この室内送風機は遠心式送風ファン8と、駆動用モータ8’とを有し、送風ファン8は、送風ファンの吸入口から空気を吸入して送風する。吸入口から吸入される空気は内外気切替ドアにより内気と外気に切り替え可能になっていてもよい。空調装置室内ユニット部20には多くの変形例が存在し、本発明は必ずしも図2の実施形態に限定されるものではない。   Reference numeral 20 denotes an air conditioner indoor unit (HVAC), and an indoor fan is disposed on one end side thereof. This indoor blower has a centrifugal blower fan 8 and a drive motor 8 ', and the blower fan 8 sucks air from the suction port of the blower fan and blows air. The air sucked from the suction port may be switchable between inside air and outside air by an inside / outside air switching door. There are many modified examples of the air conditioner indoor unit 20, and the present invention is not necessarily limited to the embodiment of FIG.

5は送風ファン8の下流側に配置された室内蒸発器(エバポレータ)で、冷凍サイクルの低圧冷媒と送風空気との間で熱交換して送風空気を冷却する。4は空調装置室内ユニット部20において室内蒸発器5の下流側に配置された室内熱交換器(凝縮器)で、冷凍サイクルの電動コンプレッサ21から吐出される高圧冷媒と送風空気との間で熱交換して送風空気を加熱する。本実施形態のヒートポンプ方式の空調装置(ヒートポンプシステム)では、室内熱交換器として室内蒸発器5と室内熱交換器4とを用いている。   Reference numeral 5 denotes an indoor evaporator (evaporator) disposed on the downstream side of the blower fan 8 to cool the blown air by exchanging heat between the low-pressure refrigerant of the refrigeration cycle and the blown air. Reference numeral 4 denotes an indoor heat exchanger (condenser) disposed on the downstream side of the indoor evaporator 5 in the air conditioner indoor unit section 20, and heat is generated between the high-pressure refrigerant discharged from the electric compressor 21 of the refrigeration cycle and the blown air. Replace and heat the blown air. In the heat pump type air conditioner (heat pump system) of the present embodiment, the indoor evaporator 5 and the indoor heat exchanger 4 are used as the indoor heat exchanger.

通路切替ドア9(エアミックスドア)は、図2の点線と実線間で、室内熱交換器4に流れる空気流れ量と、それをバイパスして送風空気が流れるバイパス通路4’の空気流れ量割合を、空調用制御装置からの指令により適宜切り替え制御する。これらの下流には、車室内への吹出口であり複数の吹出口(フェイス吹出口、フット吹出口およびデフロスタ吹出口)が設けられ、各吹出モードドアにより開閉される。   The passage switching door 9 (air mix door) is between the dotted line and the solid line in FIG. 2 and the air flow rate flowing through the indoor heat exchanger 4 and the air flow rate ratio of the bypass passage 4 ′ through which the blown air flows. Are appropriately switched and controlled by a command from the air conditioning control device. Downstream of these, a plurality of air outlets (a face air outlet, a foot air outlet, and a defroster air outlet), which are air outlets into the vehicle compartment, are opened and closed by each air outlet mode door.

室外熱交換器3は冷媒と室外空気との間で熱交換を行う。エンジン冷却回路の冷却水(エンジン冷却水)は、高温側ラジエータ2で冷却され、室外熱交換器3に対して、冷却用空気流れ方向(車両走行風の流れ方向)に対して下流側に配置されている。また、インバータ等の電子機器冷却用の低水温ラジエータは、室外熱交換器3に対して、冷却用空気流れ方向(車両走行風の流れ方向)に対して上流側に配置されている。そして、高温側ラジエータ2の更に下流側に、吸い込み式の室外送風機6を配置し、この室外送風機6を駆動用モータにより回転駆動することにより、低温側ラジエータ12、室外熱交換器3、高温側ラジエータ2に、車外空気が冷却用空気流れ方向に送風される。   The outdoor heat exchanger 3 performs heat exchange between the refrigerant and the outdoor air. Cooling water (engine cooling water) of the engine cooling circuit is cooled by the high-temperature side radiator 2, and is disposed downstream of the outdoor heat exchanger 3 with respect to the cooling air flow direction (vehicle traveling wind flow direction). Has been. Moreover, the low water temperature radiator for cooling electronic devices such as an inverter is disposed upstream of the outdoor heat exchanger 3 with respect to the cooling air flow direction (vehicle traveling wind flow direction). A suction-type outdoor fan 6 is arranged further downstream of the high-temperature side radiator 2, and the outdoor fan 6 is rotationally driven by a driving motor, whereby the low-temperature side radiator 12, the outdoor heat exchanger 3, and the high-temperature side Air outside the vehicle is blown to the radiator 2 in the cooling air flow direction.

エンジン等の高温発熱体1に対して、高温側ラジエータ2で冷却するエンジン等冷却用の冷却回路が形成されている。また、インバータ等低温発熱体11に対して、低水温ラジエータ12で冷却するハイブリッドシステム等のための冷却回路が独立に形成されている。これらの冷却回路には冷却水循環用ポンプPが挿入されている。電気自動車(EV)、燃料電池車などの場合には、エンジン等冷却用の冷却回路(高水温ラジエータ2)が存在しない。本実施形態としては、高水温ラジエータ2が存在しない場合も、実施形態として含むものである。   A cooling circuit for cooling the engine or the like that is cooled by the high-temperature side radiator 2 is formed on the high-temperature heating element 1 such as the engine. In addition, a cooling circuit for a hybrid system or the like that is cooled by the low water temperature radiator 12 is formed independently of the low-temperature heating element 11 such as an inverter. A cooling water circulation pump P is inserted in these cooling circuits. In the case of an electric vehicle (EV), a fuel cell vehicle, etc., there is no cooling circuit (high water temperature radiator 2) for cooling the engine or the like. As this embodiment, the case where the high water temperature radiator 2 does not exist is included as an embodiment.

室外熱交換器3の冷媒出口は3方弁22で冷媒回路を切り替えられて、冷房の場合には、冷房用の膨張弁26(冷房用絞り)を経て室内蒸発器5の冷媒入口に接続される。
暖房の場合には、アキュムレータ24、電動コンプレッサ21、室内熱交換器4、暖房用の膨張弁25(暖房用絞り)を順に経て、室外熱交換器3の冷媒入口に戻る。室内熱交換器4の下流には、PTCヒータ7が設けられている。PTCヒータ7は、PTC素子(正特性サーミスタ)を有し、この素子に電力が供給されることによって発熱し、室内熱交換器4通過後の空気を加熱する補助暖房用の電気ヒータである。
The refrigerant circuit of the outdoor heat exchanger 3 is switched by a three-way valve 22 and the refrigerant circuit is connected to the refrigerant inlet of the indoor evaporator 5 via a cooling expansion valve 26 (cooling throttle) in the case of cooling. The
In the case of heating, the refrigerant passes through the accumulator 24, the electric compressor 21, the indoor heat exchanger 4, the heating expansion valve 25 (heating restriction) in this order, and returns to the refrigerant inlet of the outdoor heat exchanger 3. A PTC heater 7 is provided downstream of the indoor heat exchanger 4. The PTC heater 7 is an auxiliary heater for auxiliary heating that has a PTC element (positive characteristic thermistor), generates heat when electric power is supplied to the element, and heats air after passing through the indoor heat exchanger 4.

電磁弁23については、暖房の場合には、電磁弁23は閉となっており、冷房の場合には電磁弁23は開となる。冷房の場合に電磁弁23が開となれば、冷媒は、暖房用絞り25があるので電磁弁23のある側の流路を流れることになる。
24は電動コンプレッサ21の吸入側に配置されたアキュムレータで、サイクル内を循環する余剰冷媒を蓄えるとともに、内部に流入した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を電動コンプレッサ21に吸入させる。
As for the electromagnetic valve 23, the electromagnetic valve 23 is closed when heating, and the electromagnetic valve 23 is opened when cooling. If the electromagnetic valve 23 is opened in the case of cooling, the refrigerant flows through the flow path on the side where the electromagnetic valve 23 is present because of the heating throttle 25.
An accumulator 24 is arranged on the suction side of the electric compressor 21 and stores surplus refrigerant circulating in the cycle, and separates the refrigerant flowing into the gas phase refrigerant and liquid phase refrigerant to convert the gas phase refrigerant into the electric compressor. 21 inhale.

本実施形態では、従来とは異なり、インバータ等の電子機器冷却用の低水温ラジエータ12は、室外熱交換器3に対して、冷却用空気流れ方向(車両走行風の流れ方向)上流側に配置されている。低水温ラジエータ12を流れた冷却水は、インバータ等の電子機器や走行用モータなどの低温発熱体11を冷却する。   In the present embodiment, unlike the prior art, the low water temperature radiator 12 for cooling an electronic device such as an inverter is disposed upstream of the outdoor heat exchanger 3 in the cooling air flow direction (vehicle traveling wind flow direction). Has been. The cooling water that has flowed through the low water temperature radiator 12 cools the low-temperature heating element 11 such as an electronic device such as an inverter or a traveling motor.

ヒートポンプシステムでは、暖房運転時において低外気温時の暖房能力が不足し、また、着霜時にも能力が低下するといった問題点が知られていた。これまでの技術常識によれば、ヒートポンプシステムにおいて、冷房時の冷房性能の悪化を恐れて、室外熱交換器3に対して、冷却用空気流れ方向の上流側に、ラジエータを配置することはあり得なかった。しかしながら、上流側に高温ラジエータ2を設置するレイアウトでは、なるほど冷房性能が大幅に悪化する悪影響があるものの、上流側に低水温ラジエータ12を設置するレイアウトであれば、冷房性能への影響は最小限で抑えることができることに着眼した。そして、本実施形態では、室外熱交換器3に対して、冷却用空気流れ方向の上流側に、低水温ラジエータ12をあえて配置したものである。   In the heat pump system, there has been a known problem that the heating capacity at the low outside temperature is insufficient during the heating operation, and the capacity is reduced even at the time of frost formation. According to the conventional technical common knowledge, in a heat pump system, a radiator may be disposed upstream of the outdoor heat exchanger 3 in the cooling air flow direction in fear of deterioration in cooling performance during cooling. I didn't get it. However, in the layout in which the high-temperature radiator 2 is installed on the upstream side, there is an adverse effect that the cooling performance is greatly deteriorated. However, in the layout in which the low water temperature radiator 12 is installed on the upstream side, the influence on the cooling performance is minimal. I focused on being able to suppress it. In the present embodiment, the low water temperature radiator 12 is intentionally arranged on the upstream side in the cooling air flow direction with respect to the outdoor heat exchanger 3.

室外熱交換器3に対して、冷却用空気流れ方向の上流側に、低水温ラジエータ12を配置すれば、低水温ラジエータ12に流入する冷却用空気温度が、冷房運転時室外熱交換器3による冷却用通過空気温度の上昇を防止できるため、従来と比べて冷却能力が小さいものにすることができ、小型化が可能で省スペース上の効果も得られる。   If the low water temperature radiator 12 is disposed upstream of the outdoor heat exchanger 3 in the cooling air flow direction, the cooling air temperature flowing into the low water temperature radiator 12 is caused by the outdoor heat exchanger 3 during cooling operation. Since the cooling air temperature can be prevented from rising, the cooling capacity can be reduced as compared with the conventional case, the size can be reduced, and the space saving effect can be obtained.

このようにすれば、暖房運転時には、低水温ラジエータ12を流れる冷却水の温度により、外気温が上昇し、ヒートポンプシステムの室外熱交換器3を通過する空気の温度上昇が得られ、ヒートポンプシステムの能力が向上する。
外気条件が高湿度の場合の暖房運転時に、ヒートポンプシステムの室外熱交換器3に着霜すると、外部からの熱を取り込めず暖房性能が低下する。しかしながら、本実施形態では、低水温ラジエータ12を流れる冷却水の温度により、着霜を防止することができる。また、着霜したとしても室外熱交換器3の上流側の低水温ラジエータ12に着霜させることで、内側の室外熱交換器3を極力着霜から保護することができる。
In this way, during heating operation, the outside air temperature rises due to the temperature of the cooling water flowing through the low water temperature radiator 12, and the temperature rise of the air passing through the outdoor heat exchanger 3 of the heat pump system is obtained. Ability improves.
If the outdoor heat exchanger 3 of the heat pump system is frosted during the heating operation when the outside air condition is high humidity, heat from the outside cannot be taken in and the heating performance deteriorates. However, in this embodiment, frost formation can be prevented by the temperature of the cooling water flowing through the low water temperature radiator 12. Moreover, even if it forms frost, the inner side outdoor heat exchanger 3 can be protected from frost formation as much as possible by making the low water temperature radiator 12 of the upstream of the outdoor heat exchanger 3 frost.

本発明の他の実施形態として、除霜時の水分吹き飛ばし機能を付加させても良い。
図3は、除霜時の水分吹き飛ばし機能を説明するフロー図である。
室外熱交換器3に付着した霜を取り除くために、除霜運転を行うようにする。除霜運転時には、空調装置室内ユニット部20の通路切替ドア9で、室内熱交換器4に蓋をして通風を停止させる。この時、暖房用絞り25をバイパスさせるように、電磁弁(開閉弁)23を開にして室外熱交換器3にホットガスを通過させる。その他は、暖房時の回路構成と同じであり、室外熱交換器3を出た後、3方弁22を経てアキュムレータ24から電動コンプレッサ21に帰還する。室外熱交換器3には、サーミスタのような温度センサである着霜センサが設置されており、着霜センサは所定温度(例えば−1°C)以下か否かを検知する。
As another embodiment of the present invention, a function of blowing off moisture at the time of defrosting may be added.
FIG. 3 is a flowchart for explaining the function of blowing water during defrosting.
In order to remove the frost adhering to the outdoor heat exchanger 3, a defrosting operation is performed. During the defrosting operation, the indoor heat exchanger 4 is covered with the passage switching door 9 of the air conditioner indoor unit 20 to stop ventilation. At this time, the hot valve is passed through the outdoor heat exchanger 3 by opening the electromagnetic valve (open / close valve) 23 so as to bypass the heating throttle 25. Others are the same as the circuit configuration at the time of heating, and after returning from the outdoor heat exchanger 3, return to the electric compressor 21 from the accumulator 24 through the three-way valve 22. The outdoor heat exchanger 3 is provided with a frost sensor that is a temperature sensor such as a thermistor, and the frost sensor detects whether or not the temperature is equal to or lower than a predetermined temperature (for example, −1 ° C.).

図3を参照して、除霜時の水分吹き飛ばし機能を説明する。ステップ1で、着霜センサにより着霜判定する。この場合、所定温度以下か否かで判定するだけでなく、所定温度以下の継続時間を加味して判定しても良い。ステップ1の着霜判定で着霜していない(NO)と判定されれば、ステップ2に行き暖房運転となる。YESであれば、ステップ3で所定時間除霜運転を開始する。ステップ4で、除霜運転を終了し、ステップ5で、水分吹き飛ばし動作を開始する。この水分吹き飛ばし動作とは、電動ファン6をMax電圧(Maxでなくても相当高い電圧でもよい)で、複数回(2、3回〜7、8回程度まで)又は所定時間内において、ON/OFF作動(継続的な断続運転)させる。これにより、除霜運転で溶解した水を吹き飛ばすことができ、室外熱交換器3の付着水量を低減することができる。この場合、数回ON/OFF作動を繰り返すことが重要である。   With reference to FIG. 3, the moisture blowing function at the time of defrosting is demonstrated. In step 1, frost formation is determined by a frost sensor. In this case, the determination may be made not only by determining whether the temperature is equal to or lower than the predetermined temperature, but also by taking into account the duration time not higher than the predetermined temperature. If it is determined in step 1 that the frost is not formed (NO), the process goes to step 2 and the heating operation is performed. If YES, in step 3, the defrosting operation is started for a predetermined time. In step 4, the defrosting operation is terminated, and in step 5, the water blowing operation is started. This moisture blow-off operation means that the electric fan 6 is turned on / off within a predetermined time by Max voltage (not Max, but may be considerably high voltage) a plurality of times (up to about 2, 3 to 7, 8 times). Turn OFF (continuous intermittent operation). Thereby, the water melt | dissolved by the defrost operation can be blown off and the amount of adhesion water of the outdoor heat exchanger 3 can be reduced. In this case, it is important to repeat the ON / OFF operation several times.

除霜時の水分吹き飛ばし機能は、除霜運転の効果を確実なものとし、その後の暖房性能の低下防止に有効である。また、室外熱交換器3の設置面(両側タンクによって形成される面)を、水平方向に対して傾斜させて搭載することでも同様な効果は得られる。すなわち、図4に示すように、室外熱交換器3の設置面を、水平方向に対してθ傾斜させて搭載する。室外熱交換器3の設置面が水平方向に対して傾斜して、除霜時の水分が滴下し易くなる。両側タンク間に本来水平方向に掛け渡されたチューブが、水平方向に対して傾斜するので、フィンを伝わって垂下した水滴がチューブを伝わって流れ出し易くなる。その他、図5に見られるように、通常とは異なり、室外熱交換器3のタンクの方向を水平にして、チューブを鉛直にすれば、フィンから流れてきた水滴が、チューブを伝わって鉛直に流れ落ち易くなる。
なお、除霜時の水分吹き飛ばし機能は、本発明のような低水温ラジエータが、室外熱交換器3に対して、冷却用空気流れ方向の上流側に配置されている場合に必ずしも限定されることはなく、一般的な除霜運転において実施しても有効である。
The moisture blowing function at the time of defrosting ensures the effect of the defrosting operation and is effective in preventing the subsequent deterioration of the heating performance. Further, the same effect can be obtained by mounting the installation surface of the outdoor heat exchanger 3 (surface formed by the both-side tanks) inclined with respect to the horizontal direction. That is, as shown in FIG. 4, the installation surface of the outdoor heat exchanger 3 is mounted with an inclination of θ with respect to the horizontal direction. The installation surface of the outdoor heat exchanger 3 is inclined with respect to the horizontal direction, and moisture at the time of defrosting is easily dropped. Since the tube that is originally stretched horizontally between the tanks on both sides is inclined with respect to the horizontal direction, the water droplets that hang down along the fins can easily flow out of the tube. In addition, as seen in FIG. 5, unlike normal, if the direction of the tank of the outdoor heat exchanger 3 is horizontal and the tube is vertical, water droplets flowing from the fins are transmitted vertically through the tube. It becomes easy to flow down.
In addition, the water blowing function at the time of defrosting is necessarily limited when the low water temperature radiator like this invention is arrange | positioned with respect to the outdoor heat exchanger 3 in the upstream of the air flow direction for cooling. However, it is effective even when implemented in a general defrosting operation.

その他の実施形態として、図2の実施形態では、エンジン等の高温発熱体1を、高温側ラジエータ2で冷却するエンジン等冷却用の冷却回路と、インバータ等低温発熱体11を、低水温ラジエータ12で冷却するハイブリッドシステム用の冷却回路が、全く独立に形成されているが、必ずしも完全に独立して形成されている必要はなく、特許文献1、2のように、切替弁で一部回路を共有させても良い。   As another embodiment, in the embodiment of FIG. 2, a cooling circuit for cooling an engine or the like that cools the high-temperature heating element 1 such as an engine with a high-temperature side radiator 2, and a low-temperature heating element 11 such as an inverter or the like are used. Although the cooling circuit for the hybrid system that cools in the above is formed completely independently, it is not always necessary to form it completely independently. You may share.

1 エンジン
2 高水温ラジエータ
3 室外熱交換器
6 電動ファン
11 インバータ
12 低水温ラジエータ
1 Engine 2 High Water Temperature Radiator 3 Outdoor Heat Exchanger 6 Electric Fan 11 Inverter 12 Low Water Temperature Radiator

Claims (6)

車両用空調装置のヒートポンプシステムの室外熱交換器(3)と、車両走行モータ用のインバータを含む低温発熱体(11)を冷却する低水温ラジエータ(12)と、を具備する車両用熱交換器の配置構造であって、前記室外熱交換器(3)に対して、冷却用空気流れ方向の上流側に前記低水温ラジエータ(12)を配置した車両用熱交換器の配置構造。   A vehicle heat exchanger comprising: an outdoor heat exchanger (3) of a heat pump system for a vehicle air conditioner; and a low water temperature radiator (12) for cooling a low temperature heating element (11) including an inverter for a vehicle running motor. The vehicle heat exchanger arrangement structure in which the low water temperature radiator (12) is arranged upstream of the outdoor heat exchanger (3) in the cooling air flow direction. 前記車両用熱交換器の配置構造において、さらに、エンジン冷却水を冷却する高水温ラジエータ(2)を具備するハイブリッド車両の車両用熱交換器の配置構造であって、
冷却用空気流れ方向の上流側から、前記低水温ラジエータ(12)、前記室外熱交換器(3)、前記高水温ラジエータ(2)の順に配置したことを特徴とする請求項1に記載の車両用熱交換器の配置構造。
In the vehicle heat exchanger arrangement structure, the vehicle heat exchanger arrangement structure of a hybrid vehicle further comprising a high water temperature radiator (2) for cooling engine coolant,
The vehicle according to claim 1, wherein the low water temperature radiator (12), the outdoor heat exchanger (3), and the high water temperature radiator (2) are arranged in this order from the upstream side in the cooling air flow direction. Heat exchanger arrangement structure.
前記車両用熱交換器の配置構造において、さらに、吸込み式の室外送風機としての電動ファン(6)を具備する車両用熱交換器の配置構造であって、
着霜時に室外熱交換器(3)に付着した霜を取り除くための除霜運転を行い、かつ、溶解した水分を吹き飛ばすために除霜運転後に前記電動ファン(6)を高速で複数回又は所定時間内ON/OFF作動させたことを特徴とする請求項1又は2に記載の車両用熱交換器の配置構造。
In the vehicle heat exchanger arrangement structure, the vehicle heat exchanger arrangement structure further comprising an electric fan (6) as a suction-type outdoor fan,
A defrosting operation is performed to remove frost adhering to the outdoor heat exchanger (3) during frost formation, and the electric fan (6) is rotated at a high speed several times or predetermined after the defrosting operation in order to blow off the dissolved water. The arrangement structure of the heat exchanger for a vehicle according to claim 1 or 2, wherein the ON / OFF operation is performed within time.
前記室外熱交換器(3)の設置面を水平方向に対して傾斜させて車両に搭載したことを特徴とする請求項3に記載の車両用熱交換器の配置構造。   The vehicle heat exchanger arrangement structure according to claim 3, wherein the outdoor heat exchanger (3) is mounted on a vehicle with an installation surface inclined with respect to a horizontal direction. 前記室外熱交換器(3)は、両側に設けられたタンクと、該タンク間に掛け渡された複数のチューブと、該チューブ間に設けられたフィンを具備し、前記タンクが水平方向であり、チューブが鉛直方向であることを特徴とする請求項3に記載の車両用熱交換器の配置構造。   The outdoor heat exchanger (3) includes tanks provided on both sides, a plurality of tubes spanned between the tanks, and fins provided between the tubes, and the tank is in a horizontal direction. The arrangement of the vehicle heat exchanger according to claim 3, wherein the tubes are in a vertical direction. 前記ヒートポンプシステムは、コンプレッサ(21)、室内凝縮器(4)、絞り(25)、前記室外熱交換器(3)、アキュムレータ(24)、前記コンプレッサ(21)の順に配置されて冷媒が循環する冷媒回路を少なくとも具備し、該冷媒回路には、前記室内凝縮器(4)と前記室外熱交換器(3)の間で、前記絞り(25)をバイパスさせて電磁弁(23)を設置し、
前記除霜運転において、前記室内凝縮器(4)に通風を停止して、さらに、前記冷媒回路において前記電磁弁(23)を開にし、ホットガスにて前記室外熱交換器(3)に付着した霜を取り除いたことを特徴とする請求項3から5のいずれか1項に記載の車両用熱交換器の配置構造。
The heat pump system is arranged in the order of the compressor (21), the indoor condenser (4), the throttle (25), the outdoor heat exchanger (3), the accumulator (24), and the compressor (21), and the refrigerant circulates. At least a refrigerant circuit is provided, and in the refrigerant circuit, an electromagnetic valve (23) is installed between the indoor condenser (4) and the outdoor heat exchanger (3) by bypassing the throttle (25). ,
In the defrosting operation, the ventilation to the indoor condenser (4) is stopped, the electromagnetic valve (23) is further opened in the refrigerant circuit, and the hot air is attached to the outdoor heat exchanger (3). The arrangement structure of the heat exchanger for vehicles according to any one of claims 3 to 5, wherein frost which has been removed is removed.
JP2012208065A 2011-11-17 2012-09-21 Arrangement structure of vehicle heat exchanger Pending JP2013126858A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012208065A JP2013126858A (en) 2011-11-17 2012-09-21 Arrangement structure of vehicle heat exchanger
CN201210437782.6A CN103121393B (en) 2011-11-17 2012-11-06 Configuration of vehicle heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011251421 2011-11-17
JP2011251421 2011-11-17
JP2012208065A JP2013126858A (en) 2011-11-17 2012-09-21 Arrangement structure of vehicle heat exchanger

Publications (1)

Publication Number Publication Date
JP2013126858A true JP2013126858A (en) 2013-06-27

Family

ID=48777647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012208065A Pending JP2013126858A (en) 2011-11-17 2012-09-21 Arrangement structure of vehicle heat exchanger

Country Status (1)

Country Link
JP (1) JP2013126858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019611A1 (en) * 2013-08-09 2015-02-12 株式会社日本クライメイトシステムズ Vehicle air-conditioning device
KR20150079448A (en) * 2013-12-31 2015-07-08 한라비스테온공조 주식회사 Cooling module and Cooling System for Vehicles
JP2018095107A (en) * 2016-12-14 2018-06-21 株式会社デンソー Cooling system
WO2019135334A1 (en) * 2018-01-08 2019-07-11 株式会社デンソー Vehicle cooling apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190570A (en) * 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd Heat exchanger
JPH10160301A (en) * 1996-12-02 1998-06-19 Denso Corp Air conditioner for vehicle
JPH11115471A (en) * 1997-08-11 1999-04-27 Denso Corp Air conditioner
JP2000203249A (en) * 1999-01-13 2000-07-25 Denso Corp Air conditioner
JP2004243935A (en) * 2003-02-14 2004-09-02 Calsonic Kansei Corp Heat exchanger for vehicle
JP2004340442A (en) * 2003-05-14 2004-12-02 Calsonic Kansei Corp Complex heat exchanger
JP2005219531A (en) * 2004-02-03 2005-08-18 Denso Corp Heat exchanger cooling device for vehicle
JP2008126919A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Fuel cell vehicle
JP2011017474A (en) * 2009-07-08 2011-01-27 Denso Corp Air conditioning device for vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190570A (en) * 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd Heat exchanger
JPH10160301A (en) * 1996-12-02 1998-06-19 Denso Corp Air conditioner for vehicle
JPH11115471A (en) * 1997-08-11 1999-04-27 Denso Corp Air conditioner
JP2000203249A (en) * 1999-01-13 2000-07-25 Denso Corp Air conditioner
JP2004243935A (en) * 2003-02-14 2004-09-02 Calsonic Kansei Corp Heat exchanger for vehicle
JP2004340442A (en) * 2003-05-14 2004-12-02 Calsonic Kansei Corp Complex heat exchanger
JP2005219531A (en) * 2004-02-03 2005-08-18 Denso Corp Heat exchanger cooling device for vehicle
JP2008126919A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Fuel cell vehicle
JP2011017474A (en) * 2009-07-08 2011-01-27 Denso Corp Air conditioning device for vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033929A (en) * 2013-08-09 2015-02-19 株式会社日本クライメイトシステムズ Air conditioner for vehicle
CN105452026A (en) * 2013-08-09 2016-03-30 日本空调系统股份有限公司 Vehicle air-conditioning device
CN105452026B (en) * 2013-08-09 2017-05-24 日本空调系统股份有限公司 Vehicle air-conditioning device
WO2015019611A1 (en) * 2013-08-09 2015-02-12 株式会社日本クライメイトシステムズ Vehicle air-conditioning device
US10180277B2 (en) 2013-08-09 2019-01-15 Japan Climate Systems Corporation Vehicle air conditioner
KR102205848B1 (en) 2013-12-31 2021-01-21 한온시스템 주식회사 Cooling module and Cooling System for Vehicles
KR20150079448A (en) * 2013-12-31 2015-07-08 한라비스테온공조 주식회사 Cooling module and Cooling System for Vehicles
JP2016531035A (en) * 2013-12-31 2016-10-06 ハンオン システムズ Cooling module and vehicle cooling system
US10005354B2 (en) 2013-12-31 2018-06-26 Hanon Systems Cooling module and cooling system for vehicle
DE112014003060B4 (en) 2013-12-31 2024-02-08 Hanon Systems Cooling module and cooling system for vehicles
JP2018095107A (en) * 2016-12-14 2018-06-21 株式会社デンソー Cooling system
CN111556816A (en) * 2018-01-08 2020-08-18 株式会社电装 Cooling device for vehicle
JP2019119356A (en) * 2018-01-08 2019-07-22 株式会社デンソー Vehicular cooling apparatus
WO2019135334A1 (en) * 2018-01-08 2019-07-11 株式会社デンソー Vehicle cooling apparatus

Similar Documents

Publication Publication Date Title
CN103121393B (en) Configuration of vehicle heat exchanger
US10107545B2 (en) Air-conditioning apparatus for vehicle
CN111615464B (en) Air conditioner for vehicle
JP5297154B2 (en) Vehicle air conditioning system and operation control method thereof
JP5611072B2 (en) Heat pump air conditioner for vehicle and defrosting method thereof
JP5659925B2 (en) Air conditioner for vehicles
US10369866B2 (en) Thermal management system for vehicle
JP6269307B2 (en) Air conditioner for vehicles
WO2011086683A1 (en) Vehicle air-conditioning system and driving control method therefor
JP2019119437A (en) Vehicular cooling system
CN107614301B (en) Air conditioner for vehicle
US9517678B2 (en) High-voltage equipment cooling system for electric vehicle and high-voltage equipment cooling method for electric vehicle
CN112424006B (en) Air conditioner for vehicle
JP2015131597A (en) Vehicle thermal management system
CN105246719A (en) Vehicular air-conditioning device
JP2020191701A (en) Temperature adjuster of on-vehicle device and vehicle air conditioner including the same
JP6601122B2 (en) Thermal management system for vehicles
CN111051096B (en) Air conditioning device for vehicle
JP2011195021A (en) Heat pump device for vehicle
JP2012237499A (en) Heat storage defrosting device
JP2013193709A (en) Vehicular heat pump type air-conditioner, and method for controlling the same
JP2013126858A (en) Arrangement structure of vehicle heat exchanger
CN103017260A (en) Air dehumidification unit and process
US20160185184A1 (en) Vehicle air conditioning device, electric compressor, and vehicle air conditioning method
JP5693495B2 (en) Heat pump type air conditioner for vehicle and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220