[go: up one dir, main page]

JP5601659B2 - Dry gas refining equipment and coal gasification combined power generation equipment - Google Patents

Dry gas refining equipment and coal gasification combined power generation equipment Download PDF

Info

Publication number
JP5601659B2
JP5601659B2 JP2009064840A JP2009064840A JP5601659B2 JP 5601659 B2 JP5601659 B2 JP 5601659B2 JP 2009064840 A JP2009064840 A JP 2009064840A JP 2009064840 A JP2009064840 A JP 2009064840A JP 5601659 B2 JP5601659 B2 JP 5601659B2
Authority
JP
Japan
Prior art keywords
coal gasification
gas
gasification gas
dry
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009064840A
Other languages
Japanese (ja)
Other versions
JP2010215802A (en
Inventor
誠 小林
茂男 伊藤
信 布川
広幸 秋保
靖 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009064840A priority Critical patent/JP5601659B2/en
Publication of JP2010215802A publication Critical patent/JP2010215802A/en
Application granted granted Critical
Publication of JP5601659B2 publication Critical patent/JP5601659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)
  • Industrial Gases (AREA)

Description

本発明は、乾式ガス精製設備及び石炭ガス化複合発電設備に関する。   The present invention relates to a dry gas purification facility and a coal gasification combined power generation facility.

石炭は世界の広い地域に存在し、可採埋蔵量が多く、価格が安定しているため、供給安定性が高く発熱量あたりの価格が低廉である。かかる石炭を燃料とする火力発電の一つの方式として、石炭ガス化複合発電(IGCC:Integrated coal Gasfication Combined Cycle)が知られている。石炭ガス化複合発電では、石炭ガス化ガスを燃料としてガスタービンを駆動して電力を得ると共に、ガスタービンの排気熱を回収して蒸気を発生させ、発生した蒸気により蒸気タービンを駆動して電力を得ている(例えば、特許文献1参照)。   Coal exists in a large area of the world, has a large recoverable reserve, and has a stable price, so it has a high supply stability and a low price per calorific value. As one method of thermal power generation using coal as a fuel, an integrated coal gasfication combined cycle (IGCC) is known. In coal gasification combined cycle power generation, electric power is obtained by driving a gas turbine using coal gasification gas as fuel, exhaust gas from the gas turbine is recovered to generate steam, and the generated steam drives the steam turbine to generate electric power. (See, for example, Patent Document 1).

石炭ガス化炉で発生する石炭ガス化ガスには硫黄分化合物(硫化物)等の不純物や後続機器に対して影響を与える不純物、微量成分が含まれるため、ガス精製設備により石炭ガス化ガスの不純物を除去して燃料ガスとしている。   The coal gasification gas generated in the coal gasifier contains impurities such as sulfur compounds (sulfides), impurities that affect the following equipment, and trace components. Impurities are removed to make fuel gas.

ガス精製設備として、水洗塔やCOS転換器等が設置された湿式ガス精製設備が広く用いられている。湿式ガス精製設備は、石炭ガス化ガス中の微量成分等の精密除去が可能であり、ガスタービン等の後続機器への影響に配慮された設備となっている。しかし、湿式ガス精製設備は、水分の蒸発や凝縮に起因する潜熱の損失が大きいため、石炭ガス化複合発電に用いた場合には、高効率化に限度があるのが現状である。   As gas purification equipment, wet gas purification equipment in which a water washing tower, a COS converter, and the like are installed is widely used. The wet gas purification equipment is capable of precision removal of trace components in the coal gasification gas, and is an equipment that takes into account the influence on subsequent equipment such as a gas turbine. However, since the wet gas purification equipment has a large loss of latent heat due to evaporation and condensation of moisture, there is a limit to increasing the efficiency when it is used for coal gasification combined power generation.

これに対し、温度や圧力の昇降を抑制し、主に硫化物を除去して、高温の石炭ガス化ガスを精製する乾式ガス精製設備が種々検討されている。乾式で石炭ガス化ガスを精製することで石炭ガス化ガスを高温のまま精製することができるので、温度や圧力の昇降を抑えて燃料ガスを得ることができる。   On the other hand, various dry-type gas refining facilities that suppress the rise and fall of temperature and pressure, mainly remove sulfides, and purify high-temperature coal gasification gas have been studied. By refine | purifying coal gasification gas by dry type, since coal gasification gas can be refine | purified with high temperature, the raise and lower of temperature and pressure can be suppressed, and fuel gas can be obtained.

乾式ガス精製設備では、温度や圧力を維持して(圧力損失を抑制して)燃料ガスを得ることができるが、後続機器に影響を与える不純物や微量成分を確実に除去するには至っていないのが現状である。このため、温度や圧力の維持を考慮したり、後続機器への影響を考慮した状態で、種々の不純物に対する除去剤の運用等を確立する必要があり、実用化に至っていないのが実情である。   In dry gas purification equipment, fuel gas can be obtained while maintaining temperature and pressure (suppressing pressure loss), but impurities and trace components that affect subsequent equipment have not been reliably removed. Is the current situation. For this reason, it is necessary to establish the operation of a remover for various impurities in consideration of the maintenance of temperature and pressure and the influence on subsequent equipment, and the actual situation is that it has not been put into practical use. .

石炭ガス化ガスを精製する乾式ガス精製設備において、温度や圧力の維持を考慮したり、後続機器への影響を配慮することは、発電設備に対する燃料ガス精製に限らず、化学合成用の燃料ガス精製においても同様に存在する課題となっている。   In dry gas refining equipment that purifies coal gasification gas, considering the maintenance of temperature and pressure, and taking into consideration the effects on subsequent equipment are not limited to fuel gas purification for power generation equipment, but also fuel gas for chemical synthesis The same problem exists in purification.

特開2005―171148号公報JP 2005-171148 A

本発明は上記状況に鑑みてなされたもので、温度や圧力の昇降に対する影響、後続機器への影響を配慮して石炭ガス化ガスを乾式で精製することができる乾式ガス精製設備を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a dry gas purification facility capable of purifying coal gasification gas in a dry manner in consideration of the influence on the rise and fall of temperature and pressure and the influence on subsequent equipment. With the goal.

また、本発明は上記状況に鑑みてなされたもので、温度や圧力の昇降に対する影響、後続機器への影響を配慮して石炭ガス化ガスを乾式で精製することができる乾式ガス精製設備を備えた石炭ガス化複合発電設備を提供することを目的とする。   In addition, the present invention has been made in view of the above situation, and includes a dry gas purification facility capable of purifying coal gasification gas in a dry manner in consideration of the influence on the rise and fall of temperature and pressure and the influence on subsequent equipment. The purpose is to provide a combined coal gasification combined power generation facility.

上記目的を達成するための請求項1に係る本発明の乾式ガス精製設備は、石炭ガス化炉で生成された石炭ガス化ガスを450℃の温度に維持して運転する乾式法によりハロゲン化物を除去するハロゲン化物除去装置と、前記ハロゲン化物除去装置によりハロゲン化物が除去された石炭ガス化ガスが導入され、石炭ガス化ガスを450℃の温度に維持して運転する乾式法により硫化物を除去する脱硫装置と、前記脱硫装置により硫化物が除去された石炭ガス化ガスが導入され、石炭ガス化ガスを400℃の温度に維持して運転する乾式法によりアンモニア成分を乾式法により分解するアンモニア分解装置と、前記アンモニア分解装置によりアンモニア成分が分解された石炭ガス化ガスが導入され、石炭ガス化ガスを180℃に降温する熱交換装置と、前記熱交換装置で180℃に降温された石炭ガス化ガスが導入され、石炭ガス化ガスを180℃の温度に維持して運転する乾式法により水銀を除去する水銀除去装置と、前記水銀除去装置により水銀が除去された石炭ガス化ガスが導入され、石炭ガス化ガスを180℃の温度に維持して石炭ガス化ガスに含まれる不純物を物理的な濾過により除去することで燃料ガスを得る物理的濾過装置とを備え、前記物理的濾過装置により不純物が除去された燃料ガスが前記熱交換装置に送られ、石炭ガス化ガスが熱媒とされて前記燃料ガスが400℃から450℃に昇温されることを特徴とする。 Dry gas purification equipment of the present invention according to claim 1 for achieving the above object, a halide by a dry method to operate while maintaining the coal gasification gas produced in the coal gasification furnace 4 50 ° C. of temperature A halide removing device for removing slag and a coal gasification gas from which the halide has been removed by the halide removing device is introduced, and the sulfide is removed by a dry process in which the coal gasification gas is maintained at a temperature of 450 ° C. A desulfurization apparatus that removes sulfur, and a coal gasification gas from which sulfides have been removed by the desulfurization apparatus, and a dry process in which the coal gasification gas is maintained at a temperature of 400 ° C. An ammonia decomposing apparatus for decomposing, and a heat exchange in which the coal gasified gas whose ammonia component is decomposed by the ammonia decomposing apparatus is introduced and the temperature of the coal gasified gas is lowered to 180 ° C. A device, the heat exchanger 1 80 coal gasification gas is cooled to ° C. is introduced in a mercury removal apparatus for removing mercury by a dry method to operate while maintaining the coal gasification gas to a temperature of 1 80 ° C. The coal gasification gas from which mercury has been removed by the mercury removal device is introduced, and the coal gasification gas is maintained at a temperature of 180 ° C. to remove impurities contained in the coal gasification gas by physical filtration. The fuel gas from which impurities are removed by the physical filtration device is sent to the heat exchange device, the coal gasification gas is used as a heat medium, and the fuel gas is 4 characterized in that it is heated to 00 ° C. or et 4 50 ° C..

請求項1に係る本発明では、石炭ガス化炉で生成された石炭ガス化ガスのハロゲン化物がハロゲン化物除去装置で乾式により除去され、ハロゲン化物が除去された石炭ガス化ガスの硫化物が脱硫装置により乾式で除去される。   In the present invention according to claim 1, the halide of the coal gasification gas generated in the coal gasification furnace is removed by a dry method using a halide removal device, and the sulfide of the coal gasification gas from which the halide has been removed is desulfurized. It is removed dry by the device.

このため、高温状態を維持して石炭ガス化ガスのハロゲン化合物及び硫化物を除去することができ、温度や圧力の昇降に対する影響、後続機器へのハロゲン化物に起因する腐食等の影響を配慮して石炭ガス化ガスを乾式で精製することが可能になる。   For this reason, it is possible to remove the halogen compounds and sulfides of the coal gasification gas while maintaining a high temperature state, taking into consideration the influence on the rise and fall of temperature and pressure, and the influence of corrosion caused by the halide on the subsequent equipment. Coal gasification gas can be refined dry.

また、石炭ガス化ガスのアンモニア成分がアンモニア分解装置により乾式で分解され、アンモニア成分を抑制した燃料ガスを得ることができる。これにより、後続機器から排出される排気ガス中の窒素酸化物も抑制され、例えば、後続設備の排煙脱硝機器の負荷を低減することが可能になる。
また、水銀除去装置により石炭ガス化ガスに含まれる水銀を乾式により除去することができる。
また、最下流部で、固体析出物、微粒子、粉体を含む不純物を物理的な濾過により石炭ガス化ガスから除去することができる。
Moreover, the ammonia component of coal gasification gas is decomposed | disassembled by a dry type with an ammonia decomposition apparatus, and the fuel gas which suppressed the ammonia component can be obtained. As a result, nitrogen oxides in the exhaust gas discharged from the subsequent equipment are also suppressed, and for example, it is possible to reduce the load of the flue gas denitration equipment of the subsequent equipment.
Further, mercury contained in the coal gasification gas can be removed by a dry method by the mercury removing device.
Further, at the most downstream portion, impurities including solid precipitates, fine particles, and powder can be removed from the coal gasification gas by physical filtration.

水銀除去装置で用いられる水銀除去剤としては、銅を主体として水銀を吸収することで水銀を除去する銅系吸収剤を用いることが好ましい。また、水銀除去剤としては、化学反応性を有する成分を担持させ水銀との化学反応により生成した塩を吸着することで水銀を除去する添着活性炭を用いることが好ましい。 The mercury removing agent used in the mercury removing apparatus, it is preferable to use a copper-based absorbent to remove mercury by absorbing mercury mainly of copper. Further, as the mercury removing agent, it is preferable to use an impregnated activated carbon that removes mercury by supporting a chemically reactive component and adsorbing a salt generated by a chemical reaction with mercury.

銅系吸収剤や添着活性炭は、低い温度で吸収性能を発揮するため、水銀除去装置に導入される石炭ガス化ガスの温度は、熱交換手段により水銀除去剤の運転に適した温度に降温制御される。熱交換手段は、水銀除去装置に導入される石炭ガス化ガスの顕熱により物理的濾過装置からの燃料ガスを昇温させるものであり、水銀除去装置に導入される石炭ガス化ガスの温度を水銀除去剤の運転温度に降温制御することができる。   Because copper-based absorbents and impregnated activated carbon exhibit absorption performance at low temperatures, the temperature of the coal gasification gas introduced into the mercury removal equipment is controlled to a temperature suitable for the operation of the mercury removal agent by means of heat exchange. Is done. The heat exchange means raises the temperature of the fuel gas from the physical filtration device by the sensible heat of the coal gasification gas introduced into the mercury removal device, and the temperature of the coal gasification gas introduced into the mercury removal device. The temperature drop can be controlled to the operation temperature of the mercury removing agent.

このため、水銀除去装置に導入される石炭ガス化ガスの温度を制御するための顕熱が燃料ガスを昇温させるために回収され、低い運転温度の水銀除去剤を適用した場合であっても、水銀除去装置の運転温度に対する温度制御と燃料ガスの高温維持を熱エネルギーの損失を最小限に抑えて両立させることができる。   For this reason, even when sensible heat for controlling the temperature of the coal gasification gas introduced into the mercury removal apparatus is recovered to raise the temperature of the fuel gas, and a mercury removal agent with a low operating temperature is applied. In addition, it is possible to achieve both temperature control with respect to the operating temperature of the mercury removal apparatus and high temperature maintenance of the fuel gas with a minimum loss of heat energy.

理的濾過装置としては、導入される石炭ガス化ガスの温度に応じて、セラミックフィルターやバグフィルター等を適用することができる。 Things as the physical filtration device, in accordance with the temperature of the coal gasification gas to be introduced, it is possible to apply the ceramic filter or a bag filter or the like.

また、請求項2に係る本発明の乾式ガス精製設備は、請求項1に記載の乾式ガス精製設備において、前記ハロゲン化物除去装置は、ペレット状に成形されたアルカリ系のハロゲン化物吸収剤が石炭ガス化ガスの導入方向に沿って配され、前記導入方向に交差する方向で石炭ガス化ガスが前記ハロゲン化物吸収剤を流通し、前記脱硫装置は、ハニカム形状化された酸化亜鉛系の脱硫剤が複数の反応塔に充填され、前記複数の反応塔は、脱硫処理が実施される前記反応塔、前記ハロゲン化合物が除去された石炭ガス化ガスの一部により前記脱硫剤の還元処理が実施される前記反応塔、還元処理された前記脱硫剤から硫黄成分の放出処理が実施される前記反応塔が並設され、前記脱硫処理、前記還元処理、前記放出処理が順次切換えられ、前記放出処理で放出された硫黄成分を回収する硫黄成分回収手段が備えられていることを特徴とする。 The dry gas purification facility of the present invention according to claim 2 is the dry gas purification facility according to claim 1, wherein the halide removing device is made of an alkaline halide absorbent formed into a pellet and made of coal. The coal gasification gas is distributed along the gasification gas introduction direction, the coal gasification gas circulates the halide absorbent in a direction crossing the introduction direction, and the desulfurization device is a honeycomb-shaped zinc oxide-based desulfurization agent. Are packed in a plurality of reaction towers, the reaction towers in which the desulfurization treatment is performed, the desulfurization agent is reduced by a part of the coal gasification gas from which the halogen compound has been removed. The reaction tower, the reaction tower for performing a sulfur component release process from the reduced desulfurizing agent, are arranged in parallel, and the desulfurization process, the reduction process, and the release process are sequentially switched, and the release is performed. Wherein the sulfur component recovery means for recovering the released sulfur components in management are provided.

請求項2に係る本発明では、ペレット状に成形されたアルカリ系、好ましくは、ナトリウム系のハロゲン化物吸収剤を用い、石炭ガス化ガスの導入方向に交差する方向に石炭ガス化ガスをハロゲン化物吸収剤に流通させるので、いわゆる、ラジアルフロー形式により石炭ガス化ガスをハロゲン化物吸収剤に流通させることができる。このため、石炭ガス化ガスの圧力損失を最小限に抑制した状態で石炭ガス化ガスをハロゲン化物吸収剤の広い面積に接触させ、ハロゲン化物を確実に除去することができる。 In the present invention according to claim 2 , an alkali-based, preferably sodium-based halide absorbent formed into pellets is used, and the coal gasification gas is converted into a halide in a direction crossing the coal gasification gas introduction direction. Since it distribute | circulates to an absorber, coal gasification gas can be distribute | circulated to a halide absorber by what is called a radial flow format. For this reason, in the state which suppressed the pressure loss of coal gasification gas to the minimum, coal gasification gas can be made to contact the wide area of a halide absorber, and a halide can be removed reliably.

また、脱硫装置では、脱硫処理を行うと同時に、脱硫剤の再生である還元処理及び放出処理をオンラインで実施し、脱硫剤を再利用することができ、放出された硫黄成分を回収することができる。また、脱硫剤がハニカム形状化されているため、圧力損失を抑えた状態で大容量のガス処理能力が得られ、脱硫剤の再利用により廃棄物を大幅に低減することができる。硫黄成分回収手段は、硫黄そのものとして回収する手段や、石灰・石膏法により硫黄分を石膏として回収する手段を適用することができる。 In addition, in the desulfurization apparatus, at the same time as performing the desulfurization process, the reduction process and the release process, which are regeneration of the desulfurization agent, can be performed online, and the desulfurization agent can be reused, and the released sulfur component can be recovered. it can. Further, since the desulfurizing agent has a honeycomb shape, a large capacity gas processing capability can be obtained in a state where pressure loss is suppressed, and waste can be greatly reduced by reusing the desulfurizing agent. As the sulfur component recovery means, means for recovering as sulfur itself or means for recovering sulfur as gypsum by the lime / gypsum method can be applied.

上記目的を達成するための請求項3に係る本発明の石炭ガス化複合発電設備は、石炭及び酸化剤の反応により石炭ガス化ガスを生成する石炭ガス化炉と、前記石炭ガス化炉で生成された石炭ガス化ガスを精製して燃料ガスを得る請求項1もしくは請求項2に記載の乾式ガス精製設備と、前記乾式ガス精製設備で得られた燃料ガスを燃焼させる燃焼手段と、前記燃焼手段からの燃焼ガスを膨張することで動力を得るガスタービンと、前記ガスタービンの排気ガスの熱を回収して得られた蒸気を膨張することで動力を得る蒸気タービンとを備えたことを特徴とする。 In order to achieve the above object, a combined coal gasification combined cycle facility according to the present invention according to claim 3 is produced by a coal gasification furnace that generates coal gasification gas by a reaction of coal and an oxidant, and the coal gasification furnace. 3. A dry gas refining facility according to claim 1 or 2 , wherein said coal gasification gas is purified to obtain a fuel gas, combustion means for burning the fuel gas obtained by said dry gas refining facility, and said combustion A gas turbine that obtains power by expanding the combustion gas from the means, and a steam turbine that obtains power by expanding the steam obtained by recovering the heat of the exhaust gas of the gas turbine. And

請求項3に係る本発明では、石炭ガス化ガスを乾式ガス精製設備で精製して得られた燃料ガスをガスタービンの燃料とし、ガスタービンと蒸気タービンにより複合発電が行われる。石炭ガス化炉ではガスタービン側の高圧空気の一部が酸化剤として使用され、蒸気タービンでは石炭ガス化ガスの顕熱で発生した蒸気が出力源の一部として使用される。 In the present invention according to claim 3 , combined power generation is performed by a gas turbine and a steam turbine using fuel gas obtained by refining coal gasification gas in a dry gas purification facility as fuel for the gas turbine. In the coal gasification furnace, a part of the high-pressure air on the gas turbine side is used as an oxidizing agent, and in the steam turbine, the steam generated by the sensible heat of the coal gasification gas is used as a part of the output source.

このため、温度や圧力の昇降に対する影響、後続機器への影響を配慮して石炭ガス化ガスを乾式で精製することができる乾式ガス精製設備を備えた石炭ガス化複合発電設備とすることができる。   For this reason, it can be set as the coal gasification combined cycle power generation equipment provided with the dry-type gas purification equipment which can refine the coal gasification gas by the dry type in consideration of the influence on the rise and fall of temperature and pressure and the influence on the subsequent equipment. .

本発明の乾式ガス精製設備は、温度や圧力の昇降に対する影響、後続機器への影響を配慮して石炭ガス化ガスを乾式で精製することが可能になる。   The dry gas purification equipment of the present invention can refine coal gasification gas in a dry manner in consideration of the influence on the rise and fall of temperature and pressure and the influence on the subsequent equipment.

また、本発明の石炭ガス化複合発電設備は、温度や圧力の昇降に対する影響、後続機器への影響を配慮して石炭ガス化ガスを乾式で精製することができる乾式ガス精製設備を備えた石炭ガス化複合発電設備とすることが可能になる。   Further, the coal gasification combined power generation facility of the present invention is a coal equipped with a dry gas purification facility capable of purifying coal gasification gas in a dry manner in consideration of the influence on the rise and fall of temperature and pressure and the influence on the subsequent equipment. It becomes possible to use a combined gasification power generation facility.

本発明の一実施例に係る石炭ガス化複合発電設備の全体構成図である。1 is an overall configuration diagram of a combined coal gasification combined cycle facility according to an embodiment of the present invention. 本発明の第1参考例に係る乾式ガス精製設備4の概略系統図である。It is a schematic system diagram of the dry gas purification equipment 4 according to the first reference example of the present invention. 本発明の第2参考例に係る乾式ガス精製設備4の概略系統図である。It is a schematic system diagram of the dry gas purification equipment 4 according to the second reference example of the present invention. 本発明の第3参考例に係る乾式ガス精製設備4の概略系統図である。It is a schematic system diagram of the dry gas purification equipment 4 according to the third reference example of the present invention. 本発明の第4参考例に係る乾式ガス精製設備4の概略系統図である。It is a general | schematic systematic diagram of the dry-type gas purification equipment 4 which concerns on the 4th reference example of this invention. 本発明の第5参考例に係る乾式ガス精製設備4の概略系統図である。It is a general | schematic systematic diagram of the dry-type gas purification equipment 4 which concerns on the 5th reference example of this invention. 本発明の一実施例に係る乾式ガス精製設備4の概略系統図である。 1 is a schematic system diagram of a dry gas purification facility 4 according to an embodiment of the present invention. 乾式ガス精製設備の具体的な構成系統図である。It is a specific block diagram of a dry gas purification facility.

図1に基づいて石炭ガス化複合発電設備を説明する。   The coal gasification combined power generation facility will be described with reference to FIG.

図1には乾式ガス精製設備を備えた本発明の一実施例に係る石炭ガス化複合発電設備の全体の構成を説明するための概略系統を示してある。   FIG. 1 shows a schematic system for explaining the overall configuration of a combined coal gasification combined power generation facility according to an embodiment of the present invention equipped with a dry gas purification facility.

図に示した石炭ガス化複合発電設備1は、石炭ガス化炉2を備え、石炭ガス化炉2では石炭と酸化剤(酸素、空気)の反応により石炭ガス化ガスgが生成される。石炭ガス化ガスgは図示しない除塵手段により除塵されて熱交換器3で所定の温度に調整され、乾式ガス精製設備4で不純物が除去されて精製され、燃料ガスfとされる。   The combined coal gasification combined power generation facility 1 shown in the figure includes a coal gasification furnace 2, and a coal gasification gas g is generated in the coal gasification furnace 2 by a reaction between coal and an oxidizing agent (oxygen, air). The coal gasification gas g is dedusted by a dust removing means (not shown), adjusted to a predetermined temperature by the heat exchanger 3, impurities are removed by the dry gas refining equipment 4, and the fuel gas f is obtained.

燃料ガスfはタービン設備5の燃焼器6に送られる。即ち、タービン設備5は圧縮機16及びガスタービン7を備え、圧縮機16で圧縮された圧縮空気と燃料ガスfが燃焼器6に送られる。燃焼器6では燃料ガスfが燃焼され、燃焼ガスがガスタービン7に送られて膨張されて動力が得られる。ガスタービン7の排気ガスは排熱回収ボイラー8で熱回収され、排煙脱硝装置9で窒素酸化物が除去された後、煙突10から大気に放出される。   The fuel gas f is sent to the combustor 6 of the turbine equipment 5. That is, the turbine equipment 5 includes a compressor 16 and a gas turbine 7, and compressed air and fuel gas f compressed by the compressor 16 are sent to the combustor 6. In the combustor 6, the fuel gas f is combusted, and the combustion gas is sent to the gas turbine 7 and expanded to obtain power. The exhaust gas from the gas turbine 7 is heat recovered by the exhaust heat recovery boiler 8, and after nitrogen oxides are removed by the flue gas denitration device 9, the exhaust gas is discharged from the chimney 10 to the atmosphere.

一方、圧縮機16及びガスタービン7と蒸気タービン11が同軸状態で接続され、蒸気タービン11には発電機12が接続されている。排熱回収ボイラー8には、蒸気タービン11の排気蒸気を図示しない復水器で凝縮した復水が給水され、排熱回収ボイラー8ではガスタービン7の排気ガスにより蒸気を発生させる。排熱回収ボイラー8で発生した蒸気は蒸気タービン11に送られて動力が得られる。   On the other hand, the compressor 16 and the gas turbine 7 and the steam turbine 11 are connected in a coaxial state, and the generator 12 is connected to the steam turbine 11. The exhaust heat recovery boiler 8 is supplied with condensate obtained by condensing the exhaust steam of the steam turbine 11 with a condenser (not shown), and the exhaust heat recovery boiler 8 generates steam by the exhaust gas of the gas turbine 7. The steam generated in the exhaust heat recovery boiler 8 is sent to the steam turbine 11 to obtain power.

直列に接続されたガスタービン7及び蒸気タービン11の動力により発電機12が駆動され、ガスタービン7と蒸気タービン11による複合発電が行われる。   The generator 12 is driven by the power of the gas turbine 7 and the steam turbine 11 connected in series, and combined power generation by the gas turbine 7 and the steam turbine 11 is performed.

上述した石炭ガス化複合発電設備1では、石炭ガス化炉2の酸化剤として圧縮機16の圧縮空気が抽気されて供給される(A)。熱交換器3には、排熱回収ボイラー8に送られる復水の一部が給水され(B)、石炭ガス化ガスとの熱交換により蒸気を発生させ、発生した蒸気は蒸気タービン11に送られる(C)。このため、タービン設備5の圧縮空気の一部を酸化剤として使用し、排熱回収ボイラー8及び熱交換器3からの発生蒸気で蒸気タービン11の出力を得ることができる。   In the coal gasification combined power generation facility 1 described above, the compressed air of the compressor 16 is extracted and supplied as the oxidant of the coal gasification furnace 2 (A). A part of the condensate sent to the exhaust heat recovery boiler 8 is supplied to the heat exchanger 3 (B), steam is generated by heat exchange with the coal gasification gas, and the generated steam is sent to the steam turbine 11. (C). For this reason, a part of the compressed air of the turbine equipment 5 is used as an oxidant, and the output of the steam turbine 11 can be obtained with the steam generated from the exhaust heat recovery boiler 8 and the heat exchanger 3.

上記構成の石炭ガス化複合発電設備1では、乾式ガス精製設備4により石炭ガス化ガスgが乾式精製により精製されて燃料ガスfを得ている。   In the combined coal gasification combined power generation facility 1 having the above-described configuration, the coal gasification gas g is purified by the dry gas refining facility 4 by dry refining to obtain the fuel gas f.

図2から図7に基づいて乾式ガス精製設備4を説明する。   The dry gas purification equipment 4 will be described with reference to FIGS.

図2から図6には、本発明の参考とする第1参考例から第5参考例に係る乾式ガス精製設備4の概略系統、図7には本発明の一実施例に係る乾式ガス精製設備4の概略系統を示してある。尚、図1に示した部材と同一部材、第1参考例から第5参考例、一実施例までの共通部材には同一符号を付してある。また、第1参考例から第5参考例、一実施例の構成は異なるが、図1に示した乾式ガス精製設備4に対応しているため、第1参考例から第5参考例、一実施例では乾式ガス精製設備4として説明してある。 FIGS. 2 to 6 show schematic systems of the dry gas purification equipment 4 according to the first to fifth reference examples as references for the present invention, and FIG. 7 shows the dry gas purification equipment according to one embodiment of the present invention. 4 schematic systems are shown. The same members as those shown in FIG. 1, common members from the first reference example to the fifth reference example, and one embodiment are denoted by the same reference numerals. Further, although the configurations of the first reference example to the fifth reference example and one embodiment are different, they correspond to the dry gas purification equipment 4 shown in FIG. In the example, the dry gas purification equipment 4 is described.

図2に基づいて第1参考例を説明する。 A first reference example will be described with reference to FIG.

図に示すように、第1参考例の乾式ガス精製設備4は、石炭ガス化炉2で生成された石炭ガス化ガスgを約450℃(露点を上回る運転温度)でハロゲン化物を除去するハロゲン化物除去装置21と、ハロゲン化物除去装置21によりハロゲン化物が除去された石炭ガス化ガスgが導入され、石炭ガス化ガスgを約450℃(露点を上回る運転温度)で硫化物を除去する脱硫装置22が備えられている。脱硫装置22で硫化物が除去されて燃料ガスfが得られ、高温状態(例えば、約450℃)の燃料ガスfはタービン設備5の燃焼器6(図1参照)に送られる。 As shown in the figure, the dry gas refining equipment 4 of the first reference example is a halogen that removes halide from the coal gasification gas g produced in the coal gasification furnace 2 at about 450 ° C. (operating temperature above the dew point). Desulfurization that removes sulfide at a temperature of about 450 ° C. (operating temperature above the dew point) with the removal of halide 21 and the coal gasification gas g from which the halide has been removed by the halide removal device 21. A device 22 is provided. The sulfide is removed by the desulfurization device 22 to obtain the fuel gas f, and the fuel gas f in a high temperature state (for example, about 450 ° C.) is sent to the combustor 6 (see FIG. 1) of the turbine equipment 5.

ハロゲン化物除去装置21では、アルカリ系としてナトリウム系のハロゲン化物吸収剤であるアルミン酸ナトリウム(NaAlO)がペレット状に成形されて使用され、ハロゲン化物である塩化水素(HCl)及びフッ化水素(HF)が同時に除去される。 In the halide removing device 21, sodium aluminate (NaAlO 2 ), which is a sodium-based halide absorbent, is used as an alkali-based material in the form of pellets, and halides such as hydrogen chloride (HCl) and hydrogen fluoride ( HF) is removed simultaneously.

脱硫装置22では、酸化亜鉛系の脱硫剤である亜鉛フェライト脱硫剤がハニカム形状化されて使用され、亜鉛フェライト脱硫剤に石炭ガス化ガスgを接触させることで、硫化硫黄(HS)や硫化カルボニル(COS)等が極低濃度まで除去される。亜鉛フェライト脱硫剤自体が水素化触媒の機能を持つため、硫化カルボニル(COS)をはじめとする有機硫黄化合物にも性能を発揮することができる。 In the desulfurization apparatus 22, a zinc ferrite desulfurization agent, which is a zinc oxide-based desulfurization agent, is used after being formed into a honeycomb shape, and by bringing the coal gasification gas g into contact with the zinc ferrite desulfurization agent, sulfur sulfide (H 2 S) or Carbonyl sulfide (COS) and the like are removed to a very low concentration. Since the zinc ferrite desulfurizing agent itself has the function of a hydrogenation catalyst, the performance can be exerted on organic sulfur compounds including carbonyl sulfide (COS).

第1参考例では、石炭ガス化炉2で生成された石炭ガス化ガスgのハロゲン化物がハロゲン化物除去装置21で乾式により除去され、ハロゲン化物が除去された石炭ガス化ガスgの硫化物が脱硫装置22により乾式で除去され、高温状態(例えば、約450℃)の燃料ガスfを得ることができる。このため、温度や圧力の昇降に対する影響、後続機器へのハロゲン化物及び硫化物の影響を配慮して石炭ガス化ガスgを乾式で精製することが可能になる。 In the first reference example , the halide of the coal gasification gas g generated in the coal gasification furnace 2 is removed by the dry method using the halide removal device 21, and the sulfide of the coal gasification gas g from which the halide has been removed is obtained. The fuel gas f in a high temperature state (for example, about 450 ° C.) can be obtained by being removed dry by the desulfurization device 22. For this reason, it becomes possible to refine | purify the coal gasification gas g by a dry type in consideration of the influence with respect to raising / lowering of a temperature or a pressure, and the influence of the halide and sulfide to a subsequent apparatus.

図3に基づいて第2参考例を説明する。 A second reference example will be described with reference to FIG.

第2参考例の乾式ガス精製設備4は、第1参考例に対し脱硫装置22の下流にアンモニア分解装置23を備えた構成とされている。アンモニア分解装置23には、脱硫装置22で硫化物が除去された石炭ガス化ガスgが導入され、石炭ガス化ガスgを約400℃(露点を上回る運転温度)でアンモニア成分を分解し、その際の発熱反応により高温状態(例えば、約500℃)の燃料ガスfを得ている。 The dry gas purification equipment 4 of the second reference example is configured to include an ammonia decomposition device 23 downstream of the desulfurization device 22 with respect to the first reference example . The gasification gas g from which the sulfide has been removed by the desulfurization device 22 is introduced into the ammonia decomposition device 23, which decomposes the ammonia component at about 400 ° C. (operating temperature above the dew point). Due to the exothermic reaction, the fuel gas f in a high temperature state (for example, about 500 ° C.) is obtained.

アンモニア分解装置23では、Ni/Al触媒がペレット状に成形されて使用され、石炭ガス化ガスgに含まれるアンモニア成分が窒素(N)に分解される。このため、アンモニア成分を抑制した燃料ガスfを得ることができ、ガスタービン7(図1参照)の排気ガス中の窒素酸化物が抑制されて排煙脱硝装置9(図1参照)の負荷を低減することが可能になる。 In the ammonia decomposing apparatus 23, the Ni / Al 2 O 3 catalyst is used in the form of pellets, and the ammonia component contained in the coal gasification gas g is decomposed into nitrogen (N 2 ). For this reason, the fuel gas f which suppressed the ammonia component can be obtained, the nitrogen oxide in the exhaust gas of the gas turbine 7 (refer FIG. 1) is suppressed, and the load of the flue gas denitration apparatus 9 (refer FIG. 1) is reduced. It becomes possible to reduce.

図4に基づいて第3参考例を説明する。 A third reference example will be described with reference to FIG.

第3参考例の乾式ガス精製設備4は、第1参考例に対し脱硫装置22の下流(最下流部)に物理的濾過装置として高温フィルター(例えば、セラミックフィルター)24を備えた構成とされている。高温フィルター24には、脱硫装置22で硫化物が除去された石炭ガス化ガスgが導入され、石炭ガス化ガスgに含まれる固体析出物、微粒子、粉体を含む不純物が物理的に濾過され、高温状態(例えば、約450℃)の燃料ガスfを得ている。このため、最下流部で不純物を物理的な濾過により石炭ガス化ガスgから除去して燃料ガスfを得ることができる。 The dry gas purification equipment 4 of the third reference example is configured to include a high-temperature filter (for example, a ceramic filter) 24 as a physical filtration device downstream of the desulfurization device 22 (most downstream portion) with respect to the first reference example. Yes. The high-temperature filter 24 is introduced with the coal gasification gas g from which the sulfide has been removed by the desulfurization device 22, and the impurities including solid precipitates, fine particles, and powder contained in the coal gasification gas g are physically filtered. The fuel gas f in a high temperature state (for example, about 450 ° C.) is obtained. Therefore, the fuel gas f can be obtained by removing impurities from the coal gasification gas g by physical filtration at the most downstream portion.

図5に基づいて第4参考例を説明する。 A fourth reference example will be described with reference to FIG.

第4参考例の乾式ガス精製設備4は、第1参考例に対し脱硫装置22の下流にアンモニア分解装置23を備え、アンモニア分解装置23の下流(最下流部)に高温フィルター(例えば、セラミックフィルター)24を備えた構成とされている。このため、石炭ガス化ガスgのアンモニア成分が抑制され、更に、最下流部で不純物が物理的な濾過により除去された高温状態(例えば、約500℃)の燃料ガスfを得ることができる。 The dry gas purification equipment 4 of the fourth reference example is provided with an ammonia decomposition device 23 downstream of the desulfurization device 22 with respect to the first reference example, and a high-temperature filter (for example, a ceramic filter) downstream of the ammonia decomposition device 23 (most downstream part). ) 24. For this reason, the ammonia component of the coal gasification gas g is suppressed, and furthermore, a fuel gas f in a high temperature state (for example, about 500 ° C.) from which impurities are removed by physical filtration at the most downstream portion can be obtained.

図6に基づいて第5参考例を説明する。 A fifth reference example will be described with reference to FIG.

図に示すように、第5参考例の乾式ガス精製設備4は、石炭ガス化炉2で生成された石炭ガス化ガスgを約450℃(露点を上回る運転温度)でハロゲン化物を除去するハロゲン化物除去装置21と、ハロゲン化物除去装置21によりハロゲン化物が除去された石炭ガス化ガスgが導入され、石炭ガス化ガスgを約450℃(露点を上回る運転温度)で硫化物を除去する脱硫装置22が備えられている。 As shown in the figure, the dry gas refining facility 4 of the fifth reference example is a halogen that removes halide from the coal gasification gas g produced in the coal gasification furnace 2 at about 450 ° C. (operating temperature above the dew point). Desulfurization that removes sulfide at a temperature of about 450 ° C. (operating temperature above the dew point) with the removal of halide 21 and the coal gasification gas g from which the halide has been removed by the halide removal device 21. A device 22 is provided.

脱硫装置22の下流には熱交換装置25が備えられ、硫化物が除去された石炭ガス化ガスgは、熱交換装置25で、例えば、約180℃に温度が下げられる。熱交換装置25の下流には水銀除去装置26が備えられ、水銀除去装置26では石炭ガス化ガスgに含まれる水銀が約180℃の運転温度で除去される。   A heat exchange device 25 is provided downstream of the desulfurization device 22, and the temperature of the coal gasification gas g from which the sulfide has been removed is lowered to, for example, about 180 ° C. by the heat exchange device 25. A mercury removing device 26 is provided downstream of the heat exchange device 25, and the mercury removing device 26 removes mercury contained in the coal gasification gas g at an operating temperature of about 180 ° C.

水銀除去装置26の下流(最下流部)には物理的濾過手段としてのバグフィルター27が備えられ、水銀除去装置26で水銀が除去された石炭ガス化ガスgに含まれる固体析出物、微粒子、粉体を含む不純物がバグフィルター27で濾過される。石炭ガス化ガスgはバグフィルター27で不純物が濾過されて燃料ガスfとされ、脱硫装置22から送られる石炭ガス化ガスgの顕熱により熱交換装置25で昇温されて高温(例えば、約400℃から約450℃)の燃料ガスfとされる。   A bag filter 27 as a physical filtration means is provided downstream (most downstream portion) of the mercury removing device 26, and solid precipitates, fine particles, and the like contained in the coal gasification gas g from which mercury has been removed by the mercury removing device 26. Impurities including powder are filtered by the bag filter 27. The coal gasified gas g is filtered into the fuel gas f by impurities being filtered by the bag filter 27, and is heated by the heat exchange device 25 by the sensible heat of the coal gasified gas g sent from the desulfurization device 22 to a high temperature (for example, about The fuel gas f is 400 ° C. to about 450 ° C.).

水銀除去装置26では、銅を主体として水銀を吸収する銅系吸収剤が使用され、銅系吸収剤に石炭ガス化ガスgを接触させることで水銀を吸収させて除去する。銅系吸収剤の反応に適した温度は、例えば、約180℃であるので、硫化物が除去された高温(約450℃)の石炭ガス化ガスgは、熱交換装置25で約180℃に降温される。   In the mercury removal apparatus 26, a copper-based absorbent that absorbs mercury mainly using copper is used, and the mercury gas is absorbed and removed by bringing the coal gasification gas g into contact with the copper-based absorbent. Since the temperature suitable for the reaction of the copper-based absorbent is, for example, about 180 ° C., the high-temperature (about 450 ° C.) coal gasified gas g from which sulfide has been removed is heated to about 180 ° C. by the heat exchange device 25. The temperature is lowered.

熱交換装置25の冷却媒体は、バグフィルター27で不純物が濾過されて熱交換装置25で昇温される低温(約180℃)の燃料ガスfであるので、水銀除去装置26に送られる前の高温(約450℃)の石炭ガス化ガスgの顕熱を低温(約180℃)の燃料ガスfの昇温に使用して熱エネルギーを系内で回収することができる。   The cooling medium of the heat exchange device 25 is a low-temperature (about 180 ° C.) fuel gas f in which impurities are filtered by the bag filter 27 and the temperature is raised by the heat exchange device 25. The sensible heat of the coal gasification gas g at a high temperature (about 450 ° C.) can be used to raise the temperature of the fuel gas f at a low temperature (about 180 ° C.) to recover thermal energy in the system.

このため、水銀除去装置26に導入される石炭ガス化ガスgの温度を制御するための顕熱が燃料ガスfを昇温させるために回収され、低い運転温度の銅系吸収剤を適用した場合であっても、水銀除去装置26の運転温度に対する温度制御と燃料ガスfの高温維持を熱エネルギーの損失を最小限に抑えて両立させることができる。   For this reason, when the sensible heat for controlling the temperature of the coal gasification gas g introduced into the mercury removing device 26 is recovered to raise the temperature of the fuel gas f, and a copper-based absorbent having a low operating temperature is applied Even so, it is possible to achieve both temperature control with respect to the operating temperature of the mercury removing device 26 and high temperature maintenance of the fuel gas f with a minimum loss of heat energy.

図7に基づいて本発明の一実施例に係る乾式ガス精製設備4を説明する。 Based on FIG. 7, the dry-type gas purification equipment 4 which concerns on one Example of this invention is demonstrated .

本発明の一実施例に係る乾式ガス精製設備は、第5参考例で説明した設備に対し、脱硫装置22の下流にアンモニア分解装置23を備え、熱交換装置25で昇温される前に石炭ガス化ガスgのアンモニア成分が抑制される構成とされている。このため、ハロゲン化物、硫化物の除去、アンモニア成分の抑制、水銀、不純物の除去を乾式で行うことができ、熱エネルギーの損失を最小限に抑えて、種々の不純物を乾式で除去し、高温に維持された燃料ガスfを得ることができる。 The dry gas purification facility according to one embodiment of the present invention is provided with an ammonia decomposition device 23 downstream of the desulfurization device 22 with respect to the facility described in the fifth reference example. The ammonia component of the gasification gas g is suppressed. Therefore, removal of halides and sulfides, suppression of ammonia components, removal of mercury and impurities can be performed dry, minimizing heat energy loss, removing various impurities dry, and high temperature The fuel gas f maintained at can be obtained.

従って、上述した一実施例の乾式ガス精製設備4は、第1参考例から第5参考例の特徴を備え、熱エネルギーの損失を抑制して温度や圧力の昇降に対する影響に配慮し、種々の不純物を除去して後続機器への影響を配慮した状態で、石炭ガス化ガスgを乾式で精製して高温に維持された燃料ガスfを得ることが可能になる。 Accordingly, the dry gas purification equipment 4 of the above-described embodiment includes the features of the first reference example to the fifth reference example, suppresses the loss of thermal energy, considers the influence on the rise and fall of temperature and pressure, It is possible to obtain the fuel gas f maintained at a high temperature by refining the coal gasification gas g in a dry manner in a state where the impurities are removed and the influence on the subsequent equipment is taken into consideration.

尚、上述した乾式ガス精製設備4では、石炭ガス化ガスgを精製して得られる高温に維持された燃料ガスfとして、タービン設備5(図1参照)の燃焼器6(図1参照)に供給する燃料ガスfを例に挙げて説明したが、他の用途に適用することができ、例えば、燃料合成を行う設備の燃料、溶融炭酸塩型燃料電池の燃料として適用することも可能である。   In the dry gas purification facility 4 described above, the fuel gas f maintained at a high temperature obtained by refining the coal gasification gas g is supplied to the combustor 6 (see FIG. 1) of the turbine facility 5 (see FIG. 1). The fuel gas f to be supplied has been described as an example. However, the fuel gas f can be applied to other uses. For example, the fuel gas f can be applied as a fuel for a facility for performing fuel synthesis or as a fuel for a molten carbonate fuel cell. .

図8に基づいて本発明の一実施例に係る乾式ガス精製設備4の具体的な構成を説明する。 Based on FIG. 8, the specific structure of the dry-type gas purification equipment 4 which concerns on one Example of this invention is demonstrated.

図8には乾式ガス精製設備の具体的な構成を説明する系統を示してある。図8に示した系統構成は、図7に示した一実施例の乾式ガス精製設備4の具体的な構成である。このため、図7に示した部材と同一部材には同一符号を付してある。 FIG. 8 shows a system for explaining a specific configuration of the dry gas purification facility. The system configuration shown in FIG. 8 is a specific configuration of the dry gas purification equipment 4 of the embodiment shown in FIG. For this reason, the same members as those shown in FIG.

熱交換器3(図1参照)で所定温度に調整された石炭ガス化ガスgが導入されるハロゲン化物除去装置21は、ハロゲン化物除去器31、32が並列に配置されて構成されている。ハロゲン化物除去器31、32への石炭ガス化ガスgの導入は、切換え手段によりいずれか一方に切換えられて実施される。ハロゲン化物除去器31、32にはアルカリ系としてナトリウム系のハロゲン化物吸収剤であるアルミン酸ナトリウム(NaAlO)のペレットが充填され、ペレット状に成形されたハロゲン化物吸収剤33は、ハロゲン化物除去器31、32の筒内部の周囲に、石炭ガス化ガスgの導入方向に沿って(上下方向)充填されている。 The halide removing device 21 into which the coal gasification gas g adjusted to a predetermined temperature by the heat exchanger 3 (see FIG. 1) is introduced is configured by arranging halide removers 31 and 32 in parallel. The introduction of the coal gasification gas g into the halide removers 31 and 32 is performed by switching to one of the switching means. The halide removers 31 and 32 are filled with sodium aluminate (NaAlO 2 ) pellets, which are sodium halide absorbers, as alkalis, and the halide absorbents 33 formed into pellets are used to remove halides. The insides of the cylinders of the vessels 31 and 32 are filled along the introduction direction of the coal gasification gas g (up and down direction).

ハロゲン化物除去器31、32の上部から下方に向けて筒内部の中央部に石炭ガス化ガスgが導入され、導入方向に交差する方向で、筒内部の周囲に配されたハロゲン化物吸収剤33に対して石炭ガス化ガスgが流通する。ハロゲン化物吸収剤33を流通してハロゲン化物が除去された石炭ガス化ガスgはハロゲン化物除去器31、32の下部から脱硫装置22に送られる。   Coal gasification gas g is introduced into the center of the inside of the cylinder from the upper part of the halide removers 31 and 32 downward, and the halide absorbent 33 disposed around the inside of the cylinder in a direction crossing the introduction direction. In contrast, coal gasification gas g circulates. The coal gasification gas g from which the halide has been removed through the halide absorbent 33 is sent to the desulfurization device 22 from the lower part of the halide removers 31 and 32.

ハロゲン化物吸収剤33としてペレット状に成形したアルミン酸ナトリウムを使用しているので、石炭ガス化ガスg中の塩化水素とフッ化水素はアルミン酸ナトリウムと反応して無害・低毒性の塩化ナトリウム(NaCl)及びチオライト(NaAl14)となって除去される。この結果、石炭ガス化ガスg中のハロゲン化物は1ppm以下に低減される。 Since sodium aluminate molded into pellets is used as the halide absorbent 33, hydrogen chloride and hydrogen fluoride in the coal gasification gas g react with sodium aluminate to cause harmless and low toxicity sodium chloride ( NaCl) and thiolite (Na 5 Al 3 F 14 ) are removed. As a result, the halide in the coal gasification gas g is reduced to 1 ppm or less.

ハロゲン化物除去装置21では、石炭ガス化ガスgの導入方向に交差する方向に石炭ガス化ガスgをハロゲン化物吸収剤33に流通させるので、いわゆる、ラジアルフロー形式により石炭ガス化ガスgをハロゲン化物吸収剤33に流通させることができる。このため、石炭ガス化ガスgの圧力損失が最小限に抑制された状態で石炭ガス化ガスgをハロゲン化物吸収剤33の広い面積に接触させることができ、圧力損失を伴うことなくハロゲン化物を確実に除去することができる。   In the halide removing device 21, the coal gasification gas g is circulated through the halide absorbent 33 in a direction crossing the introduction direction of the coal gasification gas g. The absorbent 33 can be distributed. For this reason, the coal gasification gas g can be brought into contact with a wide area of the halide absorbent 33 in a state where the pressure loss of the coal gasification gas g is suppressed to the minimum, and the halide can be removed without causing pressure loss. It can be removed reliably.

ハロゲン化物除去器31、32は、通常いずれか一方側に石炭ガス化ガスgが流通している。石炭ガス化ガスgが流通していない他方側では、図示しないホッパが用いられて、下部から使用済みのハロゲン化物吸収剤33が排出されると共に、上部から新品のハロゲン化物吸収剤33が充填される。ハロゲン化物除去器31、32に対する石炭ガス化ガスgの流通を切換えることで、石炭ガス化ガスgの流通とハロゲン化物吸収剤33の交換を同時に行うことができ、運転を停止することなくハロゲン化物の除去を連続して実施することが可能になっている。   In the halide removers 31 and 32, the coal gasification gas g normally circulates on either one side. On the other side where the coal gasification gas g is not circulated, a hopper (not shown) is used, and the used halide absorbent 33 is discharged from the lower part, and a new halide absorbent 33 is filled from the upper part. The By switching the flow of the coal gasification gas g to the halide removers 31, 32, the flow of the coal gasification gas g and the exchange of the halide absorbent 33 can be performed simultaneously, and the halide can be stopped without stopping the operation. It is possible to carry out the removal continuously.

ハロゲン化物除去装置21でハロゲン化物が除去された石炭ガス化ガスgは脱硫装置22に送られる。   The coal gasification gas g from which the halide has been removed by the halide removing device 21 is sent to the desulfurization device 22.

脱硫装置22は、3塔の反応塔35、36、37が並列に配され、反応塔35、36、37には、亜鉛フェライト脱硫剤がハニカム形状化された触媒を集合させた触媒ブロック38がそれぞれ複数(図示例では4個)充填されている。3塔の反応塔35、36、37への石炭ガス化ガスgの導入は、図示しない切換え手段によりいずれかに切換えられて実施される。   In the desulfurization apparatus 22, three reaction towers 35, 36, and 37 are arranged in parallel. In the reaction towers 35, 36, and 37, a catalyst block 38 in which a catalyst in which a zinc ferrite desulfurizing agent is formed into a honeycomb shape is assembled is provided. Each is filled with a plurality (four in the illustrated example). The introduction of the coal gasification gas g into the three reaction towers 35, 36, and 37 is performed by switching to any one by a switching means (not shown).

即ち、3塔の反応塔35、36、37は、脱硫処理が実施される反応塔と、ハロゲン化合物が除去された石炭ガス化ガスgの一部により亜鉛フェライト脱硫剤の還元処理が実施される反応塔と、還元処理された亜鉛フェライト脱硫剤から硫黄成分の放出処理が実施される反応塔とが並設されたものとなっている。そして、図示しない切換え手段により、脱硫処理、還元処理、放出処理が順次切換えられる。   That is, the three reaction towers 35, 36, and 37 are subjected to the reduction treatment of the zinc ferrite desulfurization agent by the reaction tower in which the desulfurization treatment is performed and a part of the coal gasification gas g from which the halogen compound has been removed. A reaction tower and a reaction tower in which a sulfur component is released from the reduced zinc ferrite desulfurization agent are arranged side by side. Then, the desulfurization process, the reduction process, and the release process are sequentially switched by a switching unit (not shown).

脱硫処理では、石炭ガス化ガスgが亜鉛フェライト脱硫剤(触媒ブロック38)に接触することにより、硫化硫黄(HS)や硫化カルボニル(COS)等が除去される。亜鉛フェライト脱硫剤は、亜鉛フェライト(ZnFe)の鉄と亜鉛が相乗して高性能の脱硫機能を発揮する。例えば、石炭ガス化ガスgの温度が450℃、圧力が0.98MPaで、1ppm以下の低濃度まで硫黄分を低減することが可能である。 In the desulfurization treatment, the coal gasification gas g comes into contact with the zinc ferrite desulfurization agent (catalyst block 38), thereby removing sulfur sulfide (H 2 S), carbonyl sulfide (COS), and the like. The zinc ferrite desulfurization agent exhibits a high-performance desulfurization function by synergism between zinc ferrite (ZnFe 2 O 4 ) iron and zinc. For example, the temperature of the coal gasification gas g is 450 ° C., the pressure is 0.98 MPa, and the sulfur content can be reduced to a low concentration of 1 ppm or less.

3塔の反応塔35、36、37では、例えば、ハロゲン化物が除去された石炭ガス化ガスgの大部分が反応塔35に送られ、反応塔35で脱硫処理が行われる。石炭ガス化ガスgの一部(少量)が反応塔36に送られ、反応塔36で還元処理が行われる。また、反応塔36で還元処理を終えた二酸化硫黄を含む石炭ガス化ガスgが反応塔37の途中部に供給され、反応塔37硫黄成分の放出処理が行われる。3塔の反応塔35、36、37では所定の期間毎にガスの流通状態が順次切換えられ、反応塔35、36、37のいずれかで脱硫処理が実施される。   In the three reaction towers 35, 36, and 37, for example, most of the coal gasification gas g from which the halide has been removed is sent to the reaction tower 35, and desulfurization processing is performed in the reaction tower 35. A part (small amount) of the coal gasification gas g is sent to the reaction tower 36, and reduction treatment is performed in the reaction tower 36. Further, the coal gasification gas g containing sulfur dioxide that has been subjected to the reduction treatment in the reaction tower 36 is supplied to the middle part of the reaction tower 37, and the sulfur treatment of the reaction tower 37 is performed. In the three reaction towers 35, 36, and 37, the gas flow state is sequentially switched every predetermined period, and the desulfurization treatment is performed in any of the reaction towers 35, 36, and 37.

放出された硫黄成分は、硫黄成分回収手段39に送られ、例えば、石灰・石膏法により、石膏として回収される。硫黄成分回収手段39としては、硫黄成分から硫黄そのものを回収する手段を用いることも可能である。   The released sulfur component is sent to the sulfur component recovery means 39 and recovered as gypsum by, for example, the lime / gypsum method. As the sulfur component recovery means 39, a means for recovering sulfur itself from the sulfur component can also be used.

上述した脱硫装置22では、脱硫処理を行うと同時に、亜鉛フェライト脱硫剤の再生である還元処理、放出処理をオンラインで実施し、連続運転の過程で亜鉛フェライト脱硫剤を再生して再利用することができる。これにより、廃棄物の排出量を大幅に減らして環境負荷を低減することができる。また、亜鉛フェライト脱硫剤がハニカム形状化されているため、少ない圧力損失で大容量の石炭ガス化ガスgを処理することができる。   In the desulfurization apparatus 22 described above, the desulfurization process is performed, and simultaneously, the reduction process and the release process, which are regeneration of the zinc ferrite desulfurization agent, are performed online, and the zinc ferrite desulfurization agent is regenerated and reused in the process of continuous operation. Can do. As a result, the amount of waste discharged can be greatly reduced and the environmental load can be reduced. Further, since the zinc ferrite desulfurizing agent is formed into a honeycomb shape, a large volume of coal gasification gas g can be processed with a small pressure loss.

尚、脱硫剤としてハニカム形状化された触媒を用いたが、装置や設備の規模、石炭ガス化ガスgの流量に応じて他の形態の触媒にすることも可能である。   Although a honeycomb-shaped catalyst is used as the desulfurizing agent, other forms of catalyst can be used depending on the scale of the apparatus and equipment and the flow rate of the coal gasification gas g.

脱硫装置22で硫黄成分が除去された石炭ガス化ガスgはアンモニア分解装置23に送られる。   The coal gasification gas g from which the sulfur component has been removed by the desulfurization device 22 is sent to the ammonia decomposition device 23.

アンモニア分解装置23は、反応容器41、42が並列に配置されている。反応容器41、42への石炭ガス化ガスgの導入は、切換え手段によりいずれか一方に切換えられて実施される。反応容器41、42にはNi/Al触媒のペレットが充填され、ペレット状に成形された触媒43は、反応容器41、42の筒内部の周囲に、石炭ガス化ガスgの導入方向に沿って(上下方向)充填されている。 In the ammonia decomposition apparatus 23, reaction vessels 41 and 42 are arranged in parallel. The coal gasification gas g is introduced into the reaction vessels 41 and 42 by switching to one of the switching means. The reaction vessels 41 and 42 are filled with pellets of Ni / Al 2 O 3 catalyst, and the catalyst 43 formed into pellets is introduced around the inside of the cylinders of the reaction vessels 41 and 42 in the direction in which the coal gasification gas g is introduced. (Up and down direction) is filled.

反応容器41、42の上部から下方に向けて筒内部の中央部に石炭ガス化ガスgが導入され、導入方向に交差する方向で、筒内部の周囲に配された触媒43に対して石炭ガス化ガスgが流通する。触媒43を流通してアンモニア成分が窒素に分解された石炭ガス化ガスgは反応容器41、42の下部から熱交換装置25に送られる。   Coal gasification gas g is introduced from the upper part of reaction vessels 41 and 42 downward into the center of the inside of the cylinder, and coal gas is applied to catalyst 43 disposed around the inside of the cylinder in a direction crossing the introduction direction. Gasified gas g circulates. The coal gasification gas g in which the ammonia component has been decomposed into nitrogen through the catalyst 43 is sent to the heat exchange device 25 from the lower part of the reaction vessels 41 and 42.

アンモニア分解装置23では、石炭ガス化ガスgの導入方向に交差する方向に石炭ガス化ガスgを触媒43に流通させるので、いわゆる、ラジアルフロー形式により石炭ガス化ガスgを触媒43に流通させることができる。このため、石炭ガス化ガスgの圧力損失が最小限に抑制された状態で石炭ガス化ガスgを触媒43の広い面積に接触させることができ、圧力損失を伴うことなくアンモニア成分を確実に分解することができる。   In the ammonia decomposing apparatus 23, the coal gasification gas g is circulated through the catalyst 43 in a direction crossing the direction of introduction of the coal gasification gas g, so that the coal gasification gas g is circulated through the catalyst 43 in a so-called radial flow format. Can do. Therefore, the coal gasification gas g can be brought into contact with a wide area of the catalyst 43 in a state where the pressure loss of the coal gasification gas g is suppressed to the minimum, and the ammonia component is reliably decomposed without accompanying the pressure loss. can do.

反応容器41、42は、通常いずれか一方側に石炭ガス化ガスgが流通している。触媒43は繰り返し使用することが可能であるが、いずれか他方側を予備として並設してある。運転中に一方側の触媒43に不具合が生じた場合、予備の触媒43に石炭ガス化ガスgの流通を切換え、連続運転を持続させるようにしている。脱硫装置22としては、一つの反応容器41で構成することも可能である。   In the reaction vessels 41 and 42, the coal gasification gas g normally circulates on either side. The catalyst 43 can be used repeatedly, but either side is arranged as a spare. If a problem occurs in the catalyst 43 on one side during operation, the circulation of the coal gasification gas g is switched to the spare catalyst 43 so that the continuous operation is continued. The desulfurization device 22 may be configured with a single reaction vessel 41.

アンモニア成分が窒素に分解された石炭ガス化ガスgは熱交換装置25で降温されて水銀除去装置26に送られる。   The coal gasification gas g in which the ammonia component has been decomposed into nitrogen is cooled by the heat exchange device 25 and sent to the mercury removal device 26.

水銀除去装置26は、除去容器45に銅を主体として水銀を吸収する銅系吸収剤46が充填され、例えば、約180℃の石炭ガス化ガスgが導入されて水銀が吸収される。銅系吸収剤46の最適な運転温度で、石炭ガス化ガスgに含まれる水が凝縮しない約180℃の石炭ガス化ガスgが導入されるため、銅の吸収容量を確保して水分の凝縮を抑制することができる。   In the mercury removing device 26, the removal container 45 is filled with a copper-based absorbent 46 that mainly absorbs copper and absorbs mercury. For example, a coal gasification gas g of about 180 ° C. is introduced to absorb mercury. Since the coal gasification gas g of about 180 ° C. at which the water contained in the coal gasification gas g does not condense is introduced at the optimum operating temperature of the copper-based absorbent 46, the copper absorption capacity is secured to condense the moisture. Can be suppressed.

水銀除去装置26には水銀回収手段47が備えられ、銅系吸収剤46に吸収された水銀を放出し、水銀吸収性能を回復させている。例えば、高温のガスにより吸収された水銀を放出し、放出した水銀を常温下で活性炭に吸収させることで、最小限の量の活性炭に対して多くの水銀を吸収させて回収することができる。   The mercury removing device 26 is provided with mercury recovery means 47, which releases mercury absorbed by the copper-based absorbent 46 and restores mercury absorption performance. For example, mercury absorbed by a high-temperature gas is released, and the released mercury is absorbed by activated carbon at room temperature, so that a large amount of mercury can be absorbed and recovered with respect to a minimum amount of activated carbon.

水銀除去装置26で水銀が除去された石炭ガス化ガスgはバグフィルター27に送られる。   The coal gasification gas g from which mercury has been removed by the mercury removing device 26 is sent to the bag filter 27.

バグフィルター27では、水銀除去装置26で水銀が除去された石炭ガス化ガスgに含まれる固体析出物、微粒子、粉体を含む不純物が物理的に濾過される。即ち、バグフィルター7では、粉化した銅系吸収剤46をはじめとして、上流側で粉化した物質を含むダスト、タール分、微量物質、約180℃で凝縮する種々の固体析出粒子等が最下流部で濾過されて除去される。   In the bag filter 27, impurities including solid precipitates, fine particles, and powder contained in the coal gasification gas g from which mercury has been removed by the mercury removing device 26 are physically filtered. That is, in the bag filter 7, the dust including the powdered copper-based absorbent 46, the dust containing the material powdered on the upstream side, the tar content, the trace material, and various solid precipitated particles condensed at about 180 ° C. are the best. It is filtered and removed in the downstream part.

バグフィルター27で不純物が物理的に濾過された燃料ガスfは、アンモニアが分解された石炭ガス化ガスgの顕熱により、熱交換装置25で400℃から450℃程度に昇温され、高温の燃料ガスfとされる。高温の燃料ガスfはタービン設備5(図1参照)の燃焼器6(図1参照)に供給される。   The fuel gas f from which impurities are physically filtered by the bag filter 27 is heated from 400 ° C. to 450 ° C. by the sensible heat of the coal gasification gas g from which ammonia has been decomposed, and is heated to a high temperature. The fuel gas f is used. The high-temperature fuel gas f is supplied to the combustor 6 (see FIG. 1) of the turbine equipment 5 (see FIG. 1).

図8に示した乾式ガス精製設備4では、石炭ガス化炉2で生成された石炭ガス化ガスgのハロゲン化物がハロゲン化物除去装置21で乾式により除去され、ハロゲン化物が除去された石炭ガス化ガスgの硫化物が脱硫装置22により乾式で除去される。その後、アンモニア分解装置23により石炭ガス化ガスgのアンモニア成分が乾式で分解され、水銀除去装置26で水銀が除去され、最下流部でバグフィルター27により固体析出物、微粒子、粉体を含む不純物が物理的な濾過により除去される。   In the dry gas refining equipment 4 shown in FIG. 8, the coal gasification gas g generated in the coal gasification furnace 2 is removed by the dry method using the halide removal device 21, and the coal gasification from which the halide has been removed is removed. The sulfide of the gas g is removed by the desulfurization device 22 in a dry manner. Thereafter, the ammonia component of the coal gasification gas g is decomposed in a dry manner by the ammonia decomposition device 23, mercury is removed by the mercury removal device 26, and impurities including solid precipitates, fine particles, and powder by the bag filter 27 at the most downstream portion. Are removed by physical filtration.

このため、高温状態を維持した状態で石炭ガス化ガスgの種々の不純物を除去することができるので、ガスタービン7の構成部材の腐食の原因となる不純物や、翼の冷却孔や流体の流路を塞ぐ原因となる不純物を乾式で除去することができる。従って、後続機器への影響を抑制した状態で、石炭ガス化ガスgを乾式で精製し、無排水を実現した状態で高温の燃料ガスfを得ることができる。   For this reason, since various impurities of the coal gasification gas g can be removed while maintaining a high temperature state, impurities that cause corrosion of components of the gas turbine 7, cooling holes of the blades, and flow of fluid Impurities that cause blockages can be removed in a dry manner. Therefore, it is possible to obtain the high-temperature fuel gas f in a state in which the coal gasification gas g is purified by a dry method while the influence on the subsequent equipment is suppressed and no drainage is realized.

そして、ハロゲン化物除去装置21では、ラジアルフロー形式により石炭ガス化ガスgをハロゲン化物吸収剤33に流通させ、脱硫装置22では、ハニカム形状化された脱硫剤に石炭ガス化ガスgを流通させ、アンモニア分解装置23では、ラジアルフロー形式により石炭ガス化ガスgを触媒43に流通させているので、石炭ガス化ガスgの圧力損失を大幅に低減することができ、高圧状態の燃料ガスfを得ることができる。   In the halide removing device 21, the coal gasification gas g is circulated through the halide absorbent 33 in a radial flow format. In the desulfurization device 22, the coal gasification gas g is circulated through the honeycomb-shaped desulfurization agent, In the ammonia decomposing apparatus 23, the coal gasification gas g is circulated through the catalyst 43 in the radial flow format, so that the pressure loss of the coal gasification gas g can be greatly reduced, and the high-pressure fuel gas f is obtained. be able to.

更に、熱交換装置25により、アンモニア分解装置23でアンモニア成分が分解された石炭ガス化ガスgの顕熱を燃料ガスfの昇温のための熱源としているので、熱エネルギーを系内で回収して、水銀除去装置26での運転温度を水の凝縮が生じない最適な温度に制御し、高温の燃料ガスfを得ることができる。   Furthermore, since the sensible heat of the coal gasification gas g obtained by decomposing the ammonia component in the ammonia decomposition device 23 is used as a heat source for raising the temperature of the fuel gas f by the heat exchange device 25, the heat energy is recovered in the system. Thus, the operating temperature in the mercury removing device 26 can be controlled to an optimum temperature at which water does not condense, and a high temperature fuel gas f can be obtained.

また、ハロゲン化物除去装置21、アンモニア分解装置23では、ペレット状のハロゲン化物吸収剤33、触媒43を抜出し・充填することで交換できるようになっているので、運転操作性や保守性、運用性が高い設備を構築することができる。   Further, the halide removing device 21 and the ammonia decomposing device 23 can be replaced by extracting and filling the pellet-shaped halide absorbent 33 and the catalyst 43, so that the operability, maintainability and operability are improved. Can build high equipment.

また、脱硫装置22、水銀除去装置26では触媒、銅系吸収剤の再生をオンラインで行い、硫黄成分や水銀の回収を実施しているので、排出される廃棄物を低減することができ、無排水の設備であることと相俟って、環境に排出される汚染物質を大幅に低減して簡素でコンパクトな設備とすることができる。   In addition, since the desulfurization unit 22 and the mercury removal unit 26 perform online regeneration of the catalyst and the copper-based absorbent and recover the sulfur component and mercury, the discharged waste can be reduced. Combined with the drainage facility, it is possible to greatly reduce the pollutants discharged to the environment and to make the facility simple and compact.

上述した乾式ガス精製設備4を備えた石炭ガス化複合発電設備1では、種々の不純物を乾式で除去して高温・高圧状態に維持された燃料ガスfがタービン設備5に供給される。このため、発電設備全体で効率を向上させることができ、例えば、湿式のガス精製設備を適用した石炭ガス化複合発電設備で得られる45%程度の発電効率と比較して数%程度発電効率を向上させて、例えば、48%程度の発電効率を達成することが可能になる。また、環境負荷が低減されて廃棄物処理設備や排水処理設備が不要になり、設備をコンパクトにして建設設備のコストを低減することが可能になる。   In the combined coal gasification combined power generation facility 1 provided with the dry gas purification facility 4 described above, the fuel gas f, which is maintained in a high temperature and high pressure state by removing various impurities in a dry manner, is supplied to the turbine facility 5. For this reason, the efficiency of the entire power generation facility can be improved. For example, the power generation efficiency is about several percent compared to the power generation efficiency of about 45% obtained by a coal gasification combined power generation facility to which a wet gas purification facility is applied. For example, the power generation efficiency of about 48% can be achieved. In addition, the environmental load is reduced, and waste treatment facilities and wastewater treatment facilities are no longer required, making it possible to reduce the cost of construction facilities by making the facilities compact.

本発明は、乾式ガス精製設備及び石炭ガス化複合発電設の産業分野で利用することができる。   The present invention can be used in the industrial fields of dry gas refining equipment and coal gasification combined power generation facilities.

1 石炭ガス化複合発電設備
2 石炭ガス化炉
3 熱交換器
4 乾式ガス精製設備
5 タービン設備
6 燃焼器
7 ガスタービン
8 排熱回収ボイラー
9 排煙脱硝装置
10 煙突
11 蒸気タービン
12 発電機
16 圧縮機
21 ハロゲン化物除去装置
22 脱硫装置
23 アンモニア分解装置
24 高温フィルター
25 熱交換装置
26 水銀除去装置
27 バグフィルター
31、32 ハロゲン化物除去器
33 ハロゲン化物吸収剤
35、36、37 反応塔
38 触媒ブロック
39 硫黄成分回収手段
41、42 反応容器
43 触媒
45 除去容器
46 銅系吸収剤
47 水銀回収手段
DESCRIPTION OF SYMBOLS 1 Coal gasification combined cycle power generation equipment 2 Coal gasification furnace 3 Heat exchanger 4 Dry-type gas purification equipment 5 Turbine equipment 6 Combustor 7 Gas turbine 8 Waste heat recovery boiler 9 Flue gas denitrification device 10 Chimney 11 Steam turbine 12 Generator 16 Compression Machine 21 Halide removal device 22 Desulfurization device 23 Ammonia decomposition device 24 High temperature filter 25 Heat exchange device 26 Mercury removal device 27 Bag filter 31, 32 Halide removal device 33 Halide absorber 35, 36, 37 Reaction tower 38 Catalyst block 39 Sulfur component recovery means 41, 42 Reaction vessel 43 Catalyst 45 Removal vessel 46 Copper-based absorbent 47 Mercury recovery means

Claims (3)

石炭ガス化炉で生成された石炭ガス化ガスを450℃の温度に維持して運転する乾式法によりハロゲン化物を除去するハロゲン化物除去装置と、
前記ハロゲン化物除去装置によりハロゲン化物が除去された石炭ガス化ガスが導入され、石炭ガス化ガスを450℃の温度に維持して運転する乾式法により硫化物を除去する脱硫装置と、
前記脱硫装置により硫化物が除去された石炭ガス化ガスが導入され、石炭ガス化ガスを400℃の温度に維持して運転する乾式法によりアンモニア成分を乾式法により分解するアンモニア分解装置と、
前記アンモニア分解装置によりアンモニア成分が分解された石炭ガス化ガスが導入され、石炭ガス化ガスを180℃に降温する熱交換装置と、
前記熱交換装置で180℃に降温された石炭ガス化ガスが導入され、石炭ガス化ガスを180℃の温度に維持して運転する乾式法により水銀を除去する水銀除去装置と、
前記水銀除去装置により水銀が除去された石炭ガス化ガスが導入され、石炭ガス化ガスを180℃の温度に維持して石炭ガス化ガスに含まれる不純物を物理的な濾過により除去することで燃料ガスを得る物理的濾過装置とを備え、
前記物理的濾過装置により不純物が除去された燃料ガスが前記熱交換装置に送られ、石炭ガス化ガスが熱媒とされて前記燃料ガスが400℃から450℃に昇温される
ことを特徴とする乾式ガス精製設備。
A halide removal device for removing the halide by a dry method to operate while maintaining the coal gasification gas produced in the coal gasification furnace 4 50 ° C. of temperature,
A desulfurization apparatus for removing sulfides by a dry method in which a coal gasification gas from which halide has been removed by the halide removal apparatus is introduced, and the coal gasification gas is operated while being maintained at a temperature of 450 ° C .;
An ammonia decomposing apparatus for decomposing an ammonia component by a dry process using a dry process in which a coal gasification gas from which sulfides have been removed by the desulfurization apparatus is introduced and the coal gasification gas is maintained at a temperature of 400 ° C.
A heat exchange device for introducing a coal gasification gas in which the ammonia component has been decomposed by the ammonia decomposition device, and lowering the coal gasification gas to 180 ° C .;
The heat exchange device 1 80 coal gasification gas is cooled to ° C. is introduced in a mercury removal apparatus for removing mercury by a dry method to operate while maintaining the coal gasification gas to a temperature of 1 80 ° C.,
The coal gasification gas from which mercury has been removed by the mercury removal device is introduced, the coal gasification gas is maintained at a temperature of 180 ° C., and impurities contained in the coal gasification gas are removed by physical filtration. A physical filtration device for obtaining fuel gas,
The fuel gas from which impurities have been removed by physical filtration device is sent to the heat exchanger, said fuel gas coal gasification gas is a heat transfer medium is heated to 4 00 ° C. or et 4 50 ° C. Dry gas purification equipment characterized by
請求項1に記載の乾式ガス精製設備において、
前記ハロゲン化物除去装置は、
ペレット状に成形されたアルカリ系のハロゲン化物吸収剤が石炭ガス化ガスの導入方向に沿って配され、前記導入方向に交差する方向で石炭ガス化ガスが前記ハロゲン化物吸収剤を流通し、
前記脱硫装置は、
ハニカム形状化された酸化亜鉛系の脱硫剤が複数の反応塔に充填され、
前記複数の反応塔は、脱硫処理が実施される前記反応塔、前記ハロゲン化合物が除去された石炭ガス化ガスの一部により前記脱硫剤の還元処理が実施される前記反応塔、還元処理された前記脱硫剤から硫黄成分の放出処理が実施される前記反応塔が並設され、前記脱硫処理、前記還元処理、前記放出処理が順次切換えられ、
前記放出処理で放出された硫黄成分を回収する硫黄成分回収手段が備えられている
ことを特徴とする乾式ガス精製設備。
The dry gas purification equipment according to claim 1,
The halide removing device is:
Alkaline halide absorbent formed into pellets is arranged along the introduction direction of the coal gasification gas, and the coal gasification gas flows through the halide absorbent in a direction crossing the introduction direction,
The desulfurization apparatus includes:
A plurality of reaction towers are filled with a honeycomb-shaped zinc oxide-based desulfurization agent,
The plurality of reaction towers are subjected to reduction treatment, the reaction tower in which desulfurization treatment is performed, the reaction tower in which reduction treatment of the desulfurization agent is performed by a part of the coal gasification gas from which the halogen compound has been removed. The reaction tower in which the sulfur component is released from the desulfurization agent is installed in parallel, and the desulfurization treatment, the reduction treatment, and the release treatment are sequentially switched,
A dry gas refining facility comprising a sulfur component recovery means for recovering the sulfur component released in the release process .
石炭及び酸化剤の反応により石炭ガス化ガスを生成する石炭ガス化炉と、A coal gasifier that generates coal gasification gas by reaction of coal and oxidant;
前記石炭ガス化炉で生成された石炭ガス化ガスを精製して燃料ガスを得る請求項1もしくは請求項2に記載の乾式ガス精製設備と、The dry gas purification facility according to claim 1 or claim 2, wherein the coal gasification gas generated in the coal gasification furnace is purified to obtain a fuel gas;
前記乾式ガス精製設備で得られた燃料ガスを燃焼させる燃焼手段と、Combustion means for burning the fuel gas obtained in the dry gas purification facility;
前記燃焼手段からの燃焼ガスを膨張することで動力を得るガスタービンと、A gas turbine that obtains power by expanding combustion gas from the combustion means;
前記ガスタービンの排気ガスの熱を回収して得られた蒸気を膨張することで動力を得る蒸気タービンとを備えたA steam turbine for obtaining power by expanding the steam obtained by recovering the heat of the exhaust gas of the gas turbine.
ことを特徴とする石炭ガス化複合発電設備。Coal gasification combined power generation facility characterized by that.
JP2009064840A 2009-03-17 2009-03-17 Dry gas refining equipment and coal gasification combined power generation equipment Active JP5601659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064840A JP5601659B2 (en) 2009-03-17 2009-03-17 Dry gas refining equipment and coal gasification combined power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064840A JP5601659B2 (en) 2009-03-17 2009-03-17 Dry gas refining equipment and coal gasification combined power generation equipment

Publications (2)

Publication Number Publication Date
JP2010215802A JP2010215802A (en) 2010-09-30
JP5601659B2 true JP5601659B2 (en) 2014-10-08

Family

ID=42974967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064840A Active JP5601659B2 (en) 2009-03-17 2009-03-17 Dry gas refining equipment and coal gasification combined power generation equipment

Country Status (1)

Country Link
JP (1) JP5601659B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219225A (en) * 2011-04-12 2012-11-12 Central Research Institute Of Electric Power Industry Dry gas purification facility and coal gasification-combined power generation facility
JP2014015499A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Gasification method and system of the same, and coal gasification composite electricity generation method and system of the same
JP2019189850A (en) * 2018-04-20 2019-10-31 一般財団法人電力中央研究所 Impurity removal device, dry type gas refining facility and coal gasification combined power generating facility

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123184A (en) * 1999-10-29 2001-05-08 Mitsubishi Heavy Ind Ltd Method for gas purification
JP4573650B2 (en) * 2005-01-11 2010-11-04 財団法人電力中央研究所 Fuel gas purification equipment
JP4590336B2 (en) * 2005-09-30 2010-12-01 財団法人電力中央研究所 Fuel gas purification equipment
JP5301113B2 (en) * 2007-05-24 2013-09-25 一般財団法人電力中央研究所 Reusing copper-based absorbent
JP5120888B2 (en) * 2007-07-18 2013-01-16 一般財団法人電力中央研究所 Method for regenerating copper-based absorbent and method for removing mercury from source gas
JP4775858B2 (en) * 2007-07-18 2011-09-21 財団法人電力中央研究所 Method for regenerating copper-based absorbent and method for removing mercury from source gas

Also Published As

Publication number Publication date
JP2010215802A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
CN109482049B (en) Dry desulfurization, denitrification and purification integrated process for coke oven flue gas
CN112915777A (en) Blast furnace gas dechlorination, desulfurization and purification process
JP2019055903A (en) Firing apparatus of ecological cement
CN109499313A (en) The low-temp desulfurization method of denitration of sintering flue gas
JP5601659B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
JP4775858B2 (en) Method for regenerating copper-based absorbent and method for removing mercury from source gas
JP6095116B2 (en) Gas refining equipment and coal gasification combined power generation equipment
JP6161064B2 (en) Desulfurization equipment and coal gasification combined power generation facility
CN208082173U (en) The processing system of activated coke method coke oven flue gas desulphurization denitration acid vapour is handled with system for preparing sulfuric acid
CN109453660A (en) Boiler smoke low-temp desulfurization method of denitration
JP2004075712A (en) Cos treatment apparatus for gasified gas and cos treatment method
JPH03238019A (en) Purification of high temperature reductive gas
JP2015010211A (en) Impurity removal method and desulfurization method
JP5688748B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
JP2012219225A (en) Dry gas purification facility and coal gasification-combined power generation facility
JP5301113B2 (en) Reusing copper-based absorbent
JP2009173717A (en) Fuel gas purification facility and method of operating fuel gas purification facility
CN109499310A (en) The low temperature synthesis desulfurating method of denitration of boiler smoke
CN109453649A (en) Boiler smoke low-temp desulfurization method of denitration
CN109499311A (en) The low temperature of boiler smoke is without ammonia integration desulfurization denitration method
CN109464909A (en) Coke oven flue gas low-temp desulfurization method of denitration
CN109499324A (en) The low temperature desulfurization denitration method of boiler smoke
CN109499307A (en) The desulfurization denitration method of pelletizing flue gas
CN109499320A (en) The synthesis desulfurating method of denitration of boiler smoke
CN109453655A (en) Boiler smoke low-temp desulfurization method of denitration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R150 Certificate of patent or registration of utility model

Ref document number: 5601659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250