[go: up one dir, main page]

JP5596773B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5596773B2
JP5596773B2 JP2012276732A JP2012276732A JP5596773B2 JP 5596773 B2 JP5596773 B2 JP 5596773B2 JP 2012276732 A JP2012276732 A JP 2012276732A JP 2012276732 A JP2012276732 A JP 2012276732A JP 5596773 B2 JP5596773 B2 JP 5596773B2
Authority
JP
Japan
Prior art keywords
substrate
forming
hole
wiring portions
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012276732A
Other languages
Japanese (ja)
Other versions
JP2014120709A (en
Inventor
秀昭 松崎
卓也 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012276732A priority Critical patent/JP5596773B2/en
Publication of JP2014120709A publication Critical patent/JP2014120709A/en
Application granted granted Critical
Publication of JP5596773B2 publication Critical patent/JP5596773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、一方の面に集積回路が形成された半導体基板について、基板貫通孔を用いて他方の面との導電経路を形成した半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device in which a conductive path is formed between a semiconductor substrate having an integrated circuit formed on one surface and the other surface using a substrate through hole, and a method for manufacturing the same.

従来、半導体基板の表面と裏面とを電気的に接続するために、半導体基板を貫通する貫通孔を形成し、貫通孔内に導電経路を配置していた(例えば非特許文献1参照)。複数の導電経路を所望する場合は、必要な導電経路と同数の貫通孔を半導体基板に形成していた。   Conventionally, in order to electrically connect the front surface and the back surface of a semiconductor substrate, a through hole penetrating the semiconductor substrate is formed, and a conductive path is disposed in the through hole (see, for example, Non-Patent Document 1). When a plurality of conductive paths are desired, the same number of through holes as the required conductive paths are formed in the semiconductor substrate.

Hirokazu Kikuchi, Yusuke Yamada, Atif Mossad Ali, Jun Liang, Takafumi Fukushima, Tetsu Tanaka, and Mitsumasa Koyanagi, “Tungsten Through-Silicon Via Technology for Three-Dimensional LSIs”, Japanese Journal of Applied Physics, Vol. 47, No. 4, 2008, pp. 2801-2806Hirokazu Kikuchi, Yusuke Yamada, Atif Mossad Ali, Jun Liang, Takafumi Fukushima, Tetsu Tanaka, and Mitsumasa Koyanagi, “Tungsten Through-Silicon Via Technology for Three-Dimensional LSIs”, Japanese Journal of Applied Physics, Vol. 47, No. 4 , 2008, pp. 2801-2806

従来の方法では、半導体基板表面に形成される素子の微細化に伴い、半導体基板表面と裏面とを電気的に接続する導電経路を複数個形成するには、貫通孔のアスペクト比をあげて径を縮小する、貫通孔の形成密度を向上させる、などの必要があり、高アスペクト比貫通孔の作製技術、貫通孔内への均一な金属薄膜形成、メッキによって金属を貫通孔内に堆積する際の空隙発生の抑制など貫通孔及び導電経路の作成工程の高度化・複雑化が要求されるという課題があった。また、貫通孔が高密度に存在することによって基板機械強度が低下するという課題があった。   In the conventional method, with the miniaturization of elements formed on the surface of the semiconductor substrate, in order to form a plurality of conductive paths that electrically connect the surface and the back surface of the semiconductor substrate, the diameter ratio of the through hole is increased. Reducing the size of the through hole, improving the formation density of the through hole, etc., and forming a high aspect ratio through hole, forming a uniform metal thin film in the through hole, and depositing metal in the through hole by plating. There is a problem that the creation process of the through hole and the conductive path is required to be sophisticated and complicated, such as suppression of the generation of voids. Moreover, there existed a subject that board | substrate mechanical strength fell because a through-hole exists in high density.

本発明は、上記に鑑みてなされたものであり、半導体基板の表面と裏面とを電気的に接続する導電経路を高密度に形成することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to form a conductive path that electrically connects a front surface and a back surface of a semiconductor substrate with high density.

発明に係る半導体装置の製造方法は、第1の面に集積回路と前記集積回路に電気的に接続した複数の配線部が配置された半導体基板の第2の面の前記複数の配線部に対応する位置から前記複数の配線部が露出するまで基板貫通孔を形成するステップと、前記基板貫通孔の底面と内側内壁に金属薄膜を形成するステップと、前記第2の面にレジストを塗布し、前記基板貫通孔の底を前記複数の配線部の位置に合わせて区切るレジストパターンを形成するステップと、レジストパターンを形成後に、前記複数の配線部と前記第2の面とを電気的に接続する複数の導電経路となる金属堆積層を形成するステップと、レジストを除去し、レジストに被覆されていたことで前記金属堆積層が形成されていない領域の金属薄膜を除去するステップと、を有することを特徴とする。
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device including: an integrated circuit on a first surface; and a plurality of wiring portions that are electrically connected to the integrated circuit. Forming a substrate through hole from the corresponding position until the plurality of wiring portions are exposed , forming a metal thin film on a bottom surface and an inner inner wall of the substrate through hole, and applying a resist to the second surface. A step of forming a resist pattern that divides the bottom of the substrate through hole in accordance with the positions of the plurality of wiring portions, and electrically connecting the plurality of wiring portions and the second surface after forming the resist pattern Forming a metal deposited layer to be a plurality of conductive paths, and removing the resist and removing a metal thin film in a region where the metal deposited layer is not formed by being covered with the resist. Characterized in that it.

上記半導体装置の製造方法において、前記金属薄膜を形成するステップの前に、前記基板貫通孔の内側内壁に絶縁膜を形成するステップをさらに有することを特徴とする。   The method for manufacturing a semiconductor device may further include a step of forming an insulating film on the inner inner wall of the substrate through hole before the step of forming the metal thin film.

上記半導体装置の製造方法において、前記複数の導電経路となる金属堆積層を形成するステップでは、当該複数の導電経路を用いた高周波用コプレーナ線路を形成することを特徴とする。   In the method of manufacturing a semiconductor device, in the step of forming the metal deposition layer serving as the plurality of conductive paths, a high frequency coplanar line using the plurality of conductive paths is formed.

本発明によれば、半導体基板の表面と裏面とを電気的に接続する導電経路を高密度に形成することができる。   According to the present invention, conductive paths that electrically connect the front surface and the back surface of a semiconductor substrate can be formed with high density.

本実施の形態における半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device in this Embodiment. 図1の半導体装置の表面に配置された配線部の構成を示す平面図である。FIG. 2 is a plan view showing a configuration of a wiring portion arranged on the surface of the semiconductor device of FIG. 1. 図1の半導体装置の裏面に配置された導電経路の構成を示す平面図である。FIG. 2 is a plan view showing a configuration of conductive paths arranged on the back surface of the semiconductor device of FIG. 1. 図1の半導体装置の製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor device of FIG.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態における半導体装置の構成を示す断面図である。同図に示す半導体装置は、インジウム燐基板1の表面(図の上側)に半導体素子、キャパシタ、抵抗、およびインダクタンス等の集積回路を構成する素子2、素子2間を適宜電気的に接続するための配線3、インジウム燐基板1の裏面(図の下側)と電気的接続を得るための複数の配線部4A,4B,4C、および絶縁膜7が配置される。配線部4A,4B,4Cの直下にはインジウム燐基板1を貫く基板貫通孔が形成され、基板貫通孔内に電解メッキ用シード層5および配線部4A,4B,4Cそれぞれに電気的に接続された導電経路6A,6B,6Cが配置され、配線部4A,4B,4Cをインジウム燐基板1の裏面に電気的に接続する。   FIG. 1 is a cross-sectional view illustrating a configuration of a semiconductor device according to the present embodiment. The semiconductor device shown in FIG. 2 is used to appropriately electrically connect the elements 2 constituting the integrated circuit such as a semiconductor element, a capacitor, a resistor, and an inductance to the surface of the indium phosphorus substrate 1 (upper side in the figure). A plurality of wiring portions 4A, 4B, 4C and an insulating film 7 are arranged to obtain electrical connection to the wiring 3, the back surface of the indium phosphorous substrate 1 (the lower side in the figure). A substrate through-hole penetrating the indium phosphorous substrate 1 is formed immediately below the wiring portions 4A, 4B, and 4C, and electrically connected to the electroplating seed layer 5 and the wiring portions 4A, 4B, and 4C, respectively, in the substrate through-hole. Conductive paths 6A, 6B, and 6C are arranged to electrically connect the wiring portions 4A, 4B, and 4C to the back surface of the indium phosphorous substrate 1.

図2は、インジウム燐基板1の表面に配置した配線部4A,4B,4Cの構成を示す平面図である。本実施の形態における配線部4A,4B,4Cは、3つに分割された構成である。配線部4A,4B,4Cそれぞれが配線3を介してインジウム燐基板1上に構成された集積回路に接続される。また、配線部4A,4B,4Cの下面に基板貫通孔が形成され、配線部4A,4B,4Cそれぞれが導電経路6A,6B,6Cに電気的に接続される。本実施の形態では、図2で示す配線部4A,4B,4Cの円形の中心部分に対応して基板貫通孔が形成される。なお、本実施の形態では、円形を3つに分割した配線部4A,4B,4Cを示したが、これに限定されるものではない。   FIG. 2 is a plan view showing the configuration of the wiring portions 4A, 4B, and 4C arranged on the surface of the indium phosphorus substrate 1. FIG. The wiring portions 4A, 4B, 4C in the present embodiment have a configuration divided into three. Each of the wiring portions 4A, 4B, 4C is connected to an integrated circuit formed on the indium phosphorous substrate 1 via the wiring 3. Further, substrate through holes are formed in the lower surfaces of the wiring portions 4A, 4B, and 4C, and the wiring portions 4A, 4B, and 4C are electrically connected to the conductive paths 6A, 6B, and 6C, respectively. In the present embodiment, substrate through holes are formed corresponding to the circular central portions of the wiring portions 4A, 4B, 4C shown in FIG. In the present embodiment, the wiring portions 4A, 4B, and 4C obtained by dividing the circle into three are shown, but the present invention is not limited to this.

図3は、インジウム燐基板1の裏面側からみた、導電経路6A,6B,6Cの構成を示す平面図である。本実施の形態では、図3に示すように、導電経路6A,6B,6C間に2本のスロットを設け、導電経路6A,6B,6Cで高周波用コプレーナ線路(CPW)を構成した。本実施の形態によりCPWを形成した場合、3つの基板貫通孔を用いて高周波配線を形成するよりも信号線路とグラウンド用線路のギャップの調整がレジストパターンにて容易にできるため、線路設計の自由度を簡易に向上させることができる。   FIG. 3 is a plan view showing the configuration of the conductive paths 6A, 6B, 6C as seen from the back side of the indium phosphorus substrate 1. FIG. In the present embodiment, as shown in FIG. 3, two slots are provided between the conductive paths 6A, 6B, and 6C, and the conductive paths 6A, 6B, and 6C constitute a high frequency coplanar line (CPW). When CPW is formed according to the present embodiment, the gap between the signal line and the ground line can be adjusted more easily with a resist pattern than when high-frequency wiring is formed using three substrate through holes. The degree can be easily improved.

次に、本実施の形態における半導体装置の製造方法について説明する。   Next, a method for manufacturing a semiconductor device in the present embodiment will be described.

まず、図4(a)に示すように、インジウム燐基板1上に素子2、配線3、配線部4A,4B,4C、および絶縁膜7などを形成する。   First, as shown in FIG. 4A, the element 2, the wiring 3, the wiring portions 4A, 4B, 4C, the insulating film 7 and the like are formed on the indium phosphorous substrate 1.

続いて、インジウム燐基板1の裏面を研磨し、インジウム燐基板1の厚みを例えば50〜100μmとする。   Subsequently, the back surface of the indium phosphorous substrate 1 is polished so that the thickness of the indium phosphorous substrate 1 is, for example, 50 to 100 μm.

続いて、図4(b)に示すように、インジウム燐基板1の裏面から配線部4A,4B,4Cの直下の対応する所定位置に、配線部4A,4B,4Cの下面が露出するように、基板貫通孔10をレーザあるいは反応性イオンエッチング(RIE)法などを用いて形成する。このとき基板貫通孔10の大きさは例えば直径60μmとしておく。   Subsequently, as shown in FIG. 4B, the lower surfaces of the wiring portions 4A, 4B, and 4C are exposed from the back surface of the indium phosphorous substrate 1 to corresponding predetermined positions immediately below the wiring portions 4A, 4B, and 4C. The substrate through-hole 10 is formed using a laser or reactive ion etching (RIE) method. At this time, the size of the substrate through hole 10 is, for example, 60 μm in diameter.

続いて、図4(c)に示すように、配線部4A,4B,4Cとの電気的接続が得られるように、基板貫通孔10の底面(配線部4A,4B,4Cの下面)と内側側壁にスパッタ法等により電解メッキ用シード層5として用いるための金属薄膜を形成する。なお、金属薄膜を形成する前に、基板貫通孔10の内側側壁に化学気相成長(CVD)法などにより絶縁膜を形成してもよい。   Subsequently, as shown in FIG. 4C, the bottom surface of the substrate through-hole 10 (the lower surfaces of the wiring portions 4A, 4B, 4C) and the inner side so as to obtain electrical connection with the wiring portions 4A, 4B, 4C. A metal thin film for use as the electroplating seed layer 5 is formed on the side wall by sputtering or the like. Before forming the metal thin film, an insulating film may be formed on the inner side wall of the substrate through hole 10 by a chemical vapor deposition (CVD) method or the like.

続いて、インジウム燐基板1の裏面にレジスト11を塗布し、図4(d)に示すように、基板貫通孔10の底を配線部4A,4B,4Cの位置に合わせて3つの領域に区切るようにレジストパターンを形成する。   Subsequently, a resist 11 is applied to the back surface of the indium phosphorous substrate 1, and as shown in FIG. 4D, the bottom of the substrate through hole 10 is divided into three regions in accordance with the positions of the wiring portions 4A, 4B, 4C. Thus, a resist pattern is formed.

その後、図4(e)に示すように、電解メッキ等により表面と裏面とを電気的に接続する導電経路6A,6B,6Cとなる金属堆積層を2〜5μm厚となるように形成する。   Thereafter, as shown in FIG. 4 (e), metal deposited layers to be conductive paths 6A, 6B, 6C that electrically connect the front surface and the back surface are formed by electrolytic plating or the like so as to have a thickness of 2 to 5 μm.

そして、図4(f)に示すように、レジスト11除去後に、RIE法等により、レジスト11に被覆されていたことでメッキ成長していない領域の金属薄膜を除去する。   Then, as shown in FIG. 4F, after the resist 11 is removed, the metal thin film in the region that is not plated and grown because of being covered with the resist 11 is removed by the RIE method or the like.

以上の工程により、1つの基板貫通孔10内に、配線部4A,4B,4Cそれぞれに電気的に接続された導電経路6A,6B,6Cを同時に形成することができる。   Through the above steps, the conductive paths 6A, 6B, and 6C electrically connected to the wiring portions 4A, 4B, and 4C can be simultaneously formed in one substrate through-hole 10, respectively.

本実施の形態では、半導体基板としてインジウム燐基板を用いた例で説明したが、本発明の効果は、基板の半導体の材料により変わるものではなく、シリコン基板やガリウムヒ素基板などに対しても本実施の形態と同等の効果が得られることは明らかである。   In this embodiment, an example in which an indium phosphide substrate is used as a semiconductor substrate has been described. However, the effect of the present invention does not vary depending on the semiconductor material of the substrate, and the present invention can be applied to a silicon substrate or a gallium arsenide substrate. It is clear that the same effect as the embodiment can be obtained.

また、本実施の形態では、基板貫通孔内に3つの導電経路6A,6B,6Cを形成する例について説明したが、これに限るものではなく、1つの基板貫通孔に複数の導電経路を形成するものであればよい。なお、基板貫通孔ないに形成する導電経路の数の上限は基板貫通孔へのレジストパターン形成技術で決定される。本発明の効果という意味においては数が多ければ多いほどよい
基板貫通孔の大きさや形状については特に制限はない。基板貫通孔の大きさの下限については、基板貫通孔の加工技術で決定される。
In the present embodiment, the example in which the three conductive paths 6A, 6B, and 6C are formed in the substrate through hole has been described. However, the present invention is not limited to this, and a plurality of conductive paths are formed in one substrate through hole. Anything to do. Note that the upper limit of the number of conductive paths formed without the substrate through hole is determined by a technique for forming a resist pattern on the substrate through hole. In terms of the effect of the present invention, the larger the number, the better. The size and shape of the substrate through hole are not particularly limited. The lower limit of the size of the substrate through-hole is determined by the substrate through-hole processing technique.

基板厚についても特に制限はない。基板厚が薄ければ薄いほど基板貫通孔のアスペクト比が緩和されるため、貫通孔加工技術としては基板厚が薄い方が望ましい一方で、基板自身の機械強度を考慮すると一定の基板厚の確保が必要であることから、これらのバランスから適正な基板厚を決定することが要求される。   There is no particular limitation on the substrate thickness. The thinner the substrate thickness, the less the aspect ratio of the substrate through-hole. Therefore, it is desirable that the substrate thickness be thinner as the through-hole processing technology, while ensuring a certain substrate thickness considering the mechanical strength of the substrate itself. Therefore, it is required to determine an appropriate substrate thickness from these balances.

また、半導体基板上に複数の基板貫通孔を形成し、形成した基板貫通孔それぞれに対して複数の導電経路を形成することも可能である。   It is also possible to form a plurality of substrate through holes on the semiconductor substrate, and to form a plurality of conductive paths for each of the formed substrate through holes.

以上説明したように、本実施の形態によれば、1つの基板貫通孔内に、インジウム燐基板1の表面と裏面を電気的に接続する導電経路6A,6B,6Cを複数形成することにより、基板貫通孔及び貫通電極作製技術の高度化を回避しながら、導電経路の高密度化を簡易に実現できる。また、基板貫通孔の数を抑えるとともに、基板貫通孔の径の縮小を防ぐことができるので、基板の機械的強度の低下や、基板貫通孔の径の縮小による導電経路の高抵抗化に伴う帯域や通過損失の悪化を抑えることができる。   As described above, according to the present embodiment, by forming a plurality of conductive paths 6A, 6B, and 6C that electrically connect the front surface and the back surface of the indium phosphorous substrate 1 in one substrate through hole, While avoiding the advancement of substrate through-hole and through-electrode manufacturing techniques, it is possible to easily realize high-density conductive paths. In addition, since the number of substrate through holes can be suppressed and the diameter of the substrate through holes can be prevented from decreasing, the mechanical strength of the substrate is reduced and the resistance of the conductive path is increased due to the reduction in the diameter of the substrate through holes. The deterioration of the band and the passage loss can be suppressed.

1…インジウム燐基板
2…素子
3…配線
4A,4B,4C…配線部
5…電解メッキ用シード層
6A,6B,6C…導電経路
7…絶縁膜
10…基板貫通孔
11…レジスト
DESCRIPTION OF SYMBOLS 1 ... Indium phosphorus substrate 2 ... Element 3 ... Wiring 4A, 4B, 4C ... Wiring part 5 ... Electrolytic plating seed layer 6A, 6B, 6C ... Conductive path 7 ... Insulating film 10 ... Substrate through-hole 11 ... Resist

Claims (3)

第1の面に集積回路と前記集積回路に電気的に接続した複数の配線部が配置された半導体基板の第2の面の前記複数の配線部に対応する位置から前記複数の配線部が露出するまで基板貫通孔を形成するステップと、
前記基板貫通孔の底面と内側内壁に金属薄膜を形成するステップと、
前記第2の面にレジストを塗布し、前記基板貫通孔の底を前記複数の配線部の位置に合わせて区切るレジストパターンを形成するステップと、
レジストパターンを形成後に、前記複数の配線部と前記第2の面とを電気的に接続する複数の導電経路となる金属堆積層を形成するステップと、
レジストを除去し、レジストに被覆されていたことで前記金属堆積層が形成されていない領域の金属薄膜を除去するステップと、
を有することを特徴とする半導体装置の製造方法。
The plurality of wiring portions are exposed from positions corresponding to the plurality of wiring portions on the second surface of the semiconductor substrate in which the integrated circuit and the plurality of wiring portions electrically connected to the integrated circuit are arranged on the first surface. Forming a substrate through-hole until
Forming a metal thin film on a bottom surface and an inner inner wall of the substrate through hole;
Applying a resist to the second surface, and forming a resist pattern that divides the bottoms of the substrate through holes in accordance with the positions of the plurality of wiring portions;
Forming a metal deposition layer to be a plurality of conductive paths that electrically connect the plurality of wiring portions and the second surface after forming the resist pattern;
Removing the resist and removing the metal thin film in the region where the metal deposition layer is not formed by being covered with the resist;
A method for manufacturing a semiconductor device, comprising:
前記金属薄膜を形成するステップの前に、前記基板貫通孔の内側内壁に絶縁膜を形成するステップをさらに有することを特徴とする請求項記載の半導体装置の製造方法。 Before the step of forming the metal thin film, a method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming an insulating film inside the inner wall of the substrate through hole. 前記複数の導電経路となる金属堆積層を形成するステップでは、当該複数の導電経路を用いた高周波用コプレーナ線路を形成することを特徴とする請求項1又は2記載の半導体装置の製造方法。 Wherein the plurality of forming a conductive path to become a metal deposition layer, a method of manufacturing a semiconductor device according to claim 1, wherein forming a high-frequency coplanar line with the plurality of conductive paths.
JP2012276732A 2012-12-19 2012-12-19 Manufacturing method of semiconductor device Active JP5596773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276732A JP5596773B2 (en) 2012-12-19 2012-12-19 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276732A JP5596773B2 (en) 2012-12-19 2012-12-19 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2014120709A JP2014120709A (en) 2014-06-30
JP5596773B2 true JP5596773B2 (en) 2014-09-24

Family

ID=51175281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276732A Active JP5596773B2 (en) 2012-12-19 2012-12-19 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5596773B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330919B2 (en) * 1997-03-14 2009-09-16 株式会社東芝 Microwave integrated circuit element
US7531445B2 (en) * 2006-09-26 2009-05-12 Hymite A/S Formation of through-wafer electrical interconnections and other structures using a thin dielectric membrane
JP2011204979A (en) * 2010-03-26 2011-10-13 Oki Electric Industry Co Ltd Semiconductor chip, semiconductor multilayer circuit, and method of manufacturing semiconductor chip

Also Published As

Publication number Publication date
JP2014120709A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
US10813214B2 (en) Cavities containing multi-wiring structures and devices
US9484293B2 (en) Semiconductor devices with close-packed via structures having in-plane routing and method of making same
US9543204B2 (en) Method for manufacturing semiconductor device
TWI387052B (en) Method for forming a conductive viathrough a semiconductor device structure,method for fabricating a semiconductor device structure,semiconductor device structure,and electronic device
KR101980871B1 (en) Method for Processing Metallization in Through Type Through Glass Via
JP2012129528A (en) Integration of shallow trench isolation and through-substrate vias into integrated circuit designs
JP2006019455A (en) Semiconductor device and manufacturing method thereof
SE1250374A1 (en) CTE-adapted interposer and method of manufacturing one
JP2007012854A (en) Semiconductor chip and its manufacturing method
CN108713249B (en) Low capacitance through-substrate via structure
JP2018152616A (en) Substrate with conductive vias
US9184113B1 (en) Methods of forming coaxial feedthroughs for 3D integrated circuits
US8519524B1 (en) Chip stacking structure and fabricating method of the chip stacking structure
TW201413907A (en) Multilayer electronic structures with novel transmission lines
JP5814959B2 (en) Semiconductor device and manufacturing method thereof
JP5596773B2 (en) Manufacturing method of semiconductor device
JP5648897B2 (en) Manufacturing method of silicon substrate with plating layer having through hole formed
CN111261602B (en) Interconnection method of semiconductor structure and semiconductor structure
CN111769072B (en) Semiconductor interconnect structure and method for manufacturing the same
JP5252491B2 (en) Multilayer fine wiring structure
US20200091062A1 (en) Integrated circuit cavity formation with multiple interconnection pads
JP2015213152A (en) Interposer frame with polymer matrix and method of fabrication
CN113035811B (en) Through-silicon via structure, package structure and manufacturing method thereof
TWI509761B (en) Silicon based substrate and manufacturing method thereof
CN112466839B (en) Germanium-silicon through hole structure and preparation method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20140421

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent (=grant) or registration of utility model

Country of ref document: JP

Ref document number: 5596773

Free format text: JAPANESE INTERMEDIATE CODE: R150