[go: up one dir, main page]

JP5592611B2 - Persulfuric acid production apparatus and persulfuric acid production method - Google Patents

Persulfuric acid production apparatus and persulfuric acid production method Download PDF

Info

Publication number
JP5592611B2
JP5592611B2 JP2009000281A JP2009000281A JP5592611B2 JP 5592611 B2 JP5592611 B2 JP 5592611B2 JP 2009000281 A JP2009000281 A JP 2009000281A JP 2009000281 A JP2009000281 A JP 2009000281A JP 5592611 B2 JP5592611 B2 JP 5592611B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
anode
persulfuric acid
cathode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000281A
Other languages
Japanese (ja)
Other versions
JP2010156034A (en
Inventor
太郎 大江
高志 二ツ木
義宣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2009000281A priority Critical patent/JP5592611B2/en
Publication of JP2010156034A publication Critical patent/JP2010156034A/en
Application granted granted Critical
Publication of JP5592611B2 publication Critical patent/JP5592611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、酸化剤等として有用な過硫酸の溶解水を電気化学的手法により製造するための装置及び方法に関する。   The present invention relates to an apparatus and a method for producing persulfuric acid dissolved water useful as an oxidizing agent or the like by an electrochemical technique.

超LSI製造工程におけるウエハ洗浄は、レジスト残渣、微粒子、金属及び自然酸化膜等を剥離洗浄するプロセスであり、例えば、濃硫酸と過酸化水素との混合溶液(SPM)、濃硫酸にオゾンガスを吹き込んだ溶液(SOM)等を用いてウエハを洗浄する方法が多用されている。このように、(高濃度)硫酸に過酸化水素やオゾンを加えると、硫酸が酸化されて過硫酸が生成される。そして、過硫酸は、自己分解する際に強い酸化力を発するため、上記ウエハ等の洗浄に役立つことが知られている。   Wafer cleaning in the VLSI manufacturing process is a process for stripping and cleaning resist residues, fine particles, metals, natural oxide films, etc. For example, ozone gas is blown into concentrated sulfuric acid / hydrogen peroxide mixed solution (SPM) or concentrated sulfuric acid. A method of cleaning a wafer using a solution (SOM) or the like is often used. Thus, when hydrogen peroxide or ozone is added to (high concentration) sulfuric acid, the sulfuric acid is oxidized to produce persulfuric acid. And it is known that persulfuric acid is useful for cleaning the wafer and the like because it generates a strong oxidizing power when self-decomposing.

SPMを用いる洗浄方法では、生成した過硫酸は自己分解等によって、使用とともに酸化力が低下してしまう。そのため、洗浄時には過酸化水素水の補給を繰り返す必要がある。また、過酸化水素水を補給すると、SPM中の硫酸濃度が低減するため、硫酸濃度が所定の濃度を下回ると、新しい高濃度硫酸と交換する必要がある。   In the cleaning method using SPM, the generated persulfuric acid is reduced in oxidizing power with use due to autolysis or the like. For this reason, it is necessary to repeatedly supply hydrogen peroxide water during cleaning. Further, when hydrogen peroxide solution is replenished, the sulfuric acid concentration in the SPM is reduced. Therefore, when the sulfuric acid concentration falls below a predetermined concentration, it is necessary to replace it with new high-concentration sulfuric acid.

また、SPMを用いる洗浄方法では、一回洗浄槽を満たした高濃度硫酸と数回の過酸化水素水添加により発生する過硫酸量は少ない。また、SOMを用いる洗浄方法では、オゾン吹き込み量に対する過硫酸の発生効率が非常に低い。したがって、これらの方法では、生成する過硫酸の濃度に限界があるため、洗浄効果にも限界がある。   In the cleaning method using SPM, the amount of persulfuric acid generated by adding high-concentration sulfuric acid that has filled the cleaning tank once and hydrogen peroxide water several times is small. Further, in the cleaning method using SOM, the generation efficiency of persulfuric acid with respect to the ozone blowing amount is very low. Therefore, in these methods, since the concentration of persulfuric acid produced is limited, the cleaning effect is also limited.

過硫酸を生成する方法としては、上記方法の他に、硫酸溶液を電解して過硫酸を製造する方法が知られている(例えば、特許文献1〜4参照)。このような電気化学的手法は、上記方法より過硫酸濃度を高めることができ、薬品使用量を低減することもできる。   As a method for producing persulfuric acid, in addition to the above method, a method for producing persulfuric acid by electrolyzing a sulfuric acid solution is known (for example, see Patent Documents 1 to 4). Such an electrochemical method can increase the concentration of persulfuric acid as compared with the above method, and can also reduce the amount of chemicals used.

特開2001−192874号公報JP 2001-192874 A 特表2003−511555号公報Special table 2003-511555 gazette 特表2006−111943号公報JP 2006-111943 A 特開2008−19507号公報JP 2008-19507 A

ところで、ウエハ上に形成されるレジスト膜の剥離効果を高めるためには、過硫酸濃度のみならず硫酸濃度も高濃度であることが望まれる。しかし、上記のような従来の電気化学的手法では、硫酸濃度が高いと、過硫酸生成のための電流効率が低下してしまうという問題がある。また、電解条件として、熱による過硫酸の自己分解を抑制するために、低温で電解する必要がある。   Incidentally, in order to enhance the peeling effect of the resist film formed on the wafer, it is desired that not only the persulfuric acid concentration but also the sulfuric acid concentration is high. However, the conventional electrochemical method as described above has a problem that current efficiency for producing persulfuric acid decreases when the sulfuric acid concentration is high. As electrolysis conditions, it is necessary to perform electrolysis at a low temperature in order to suppress the self-decomposition of persulfuric acid due to heat.

そこで、本発明は、硫酸及び過硫酸が高濃度で共存する過硫酸溶解水を製造することが可能な過硫酸製造装置及び過硫酸製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a persulfuric acid production apparatus and a persulfuric acid production method capable of producing persulfuric acid-dissolved water in which sulfuric acid and persulfuric acid coexist at a high concentration.

本発明は、陽極と陰極とを備え、前記陽極と前記陰極との間に電流を流し、硫酸含有溶液を電解して、過硫酸溶解水を製造する過硫酸製造装置であって、前記陽極側に供給する溶液中の硫酸濃度は92〜96重量%の範囲であり、前記硫酸含有溶液の電解時に、前記陽極と前記陰極との間を流れる電流を所定の間隔で停止させる制御手段を備えるものである。 The present invention is an apparatus for producing persulfuric acid comprising an anode and a cathode, wherein a current is passed between the anode and the cathode, and a sulfuric acid-containing solution is electrolyzed to produce persulfuric acid-dissolved water, the anode side the concentration of sulfuric acid supplied solution is in the range of 92 to 96 wt%, when the electrolysis of the sulfuric acid-containing solution, a predetermined control unit Ru is stopped at intervals the current flowing between the anode and the cathode It is to be prepared.

また、前記過硫酸製造装置において、前記制御手段による前記電流の停止時間は、10秒〜10分の範囲であることが好ましい。 Further, in the above persulfate manufacturing apparatus, the stop time of the currents by the control means is preferably in the range of 10 seconds to 10 minutes.

また、本発明は、陽極と陰極との間に電流を流し、硫酸含有溶液を電解して、過硫酸溶解水を製造する過硫酸製造方法であって、前記陽極側に供給する溶液中の硫酸濃度は92〜96重量%の範囲であり、前記硫酸含有溶液の電解時に、陽極と陰極との間を流れる電流を所定の間隔で停止するものである。 The present invention is also a persulfuric acid production method for producing persulfuric acid-dissolved water by passing an electric current between an anode and a cathode and electrolyzing a sulfuric acid-containing solution, wherein the sulfuric acid in the solution supplied to the anode side the concentration is in the range of 92 to 96 wt%, when the electrolysis of the sulfuric acid-containing solution, is the also you stopped at a predetermined interval a current flowing between the anode and the cathode.

本発明によれば、硫酸及び過硫酸が高濃度で共存する過硫酸溶解水を製造することができる。   According to the present invention, it is possible to produce persulfuric acid-dissolved water in which sulfuric acid and persulfuric acid coexist at a high concentration.

本発明の実施形態に係る過硫酸製造装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the persulfuric acid manufacturing apparatus which concerns on embodiment of this invention. 本実施形態の通電パターンの一例を示す図である。It is a figure which shows an example of the electricity supply pattern of this embodiment. 実施例1及び比較例1における通電量と過硫酸(H228)濃度及び電圧との関係を示す図である。It is a diagram showing the relationship between the current amount and the persulfate (H 2 S 2 O 8) concentration and the voltage in Example 1 and Comparative Example 1. 実施例2における通電量と過硫酸(H228)濃度及び電圧との関係を示す図である。It is a diagram showing the relationship between the current amount and the persulfate (H 2 S 2 O 8) concentration and the voltage in the second embodiment. 実施例3及び比較例2における通電量と過硫酸(H228)濃度及び電圧との関係を示す図である。It is a diagram showing the relationship between the current amount and the persulfate (H 2 S 2 O 8) concentration and the voltage in Example 3 and Comparative Example 2. 実施例4及び比較例3における通電量と過硫酸(H228)濃度及び電圧との関係を示す図である。It is a diagram showing the relationship between the current amount and the persulfate (H 2 S 2 O 8) concentration and the voltage in Example 4 and Comparative Example 3.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本発明の実施形態に係る過硫酸製造装置の構成の一例を示す模式図である。図1に示すように、過硫酸製造装置1は、電解槽10、陽極液タンク12、陽極液ポンプ14、陽極液供給ライン16、過硫酸排出ライン18、陰極液タンク20、陰極液ポンプ22、陰極液供給ライン24、陰極液排出ライン26、を備えるものである。   FIG. 1 is a schematic diagram showing an example of the configuration of a persulfuric acid production apparatus according to an embodiment of the present invention. As shown in FIG. 1, the persulfuric acid production apparatus 1 includes an electrolytic cell 10, an anolyte tank 12, an anolyte pump 14, an anolyte supply line 16, a persulfate discharge line 18, a catholyte tank 20, a catholyte pump 22, A catholyte supply line 24 and a catholyte discharge line 26 are provided.

電解槽10は、イオン交換膜等の隔膜28、陽極30、陰極32、を備えている。電解槽10は、隔膜28により陽極室34及び陰極室36に区画されている。そして、陽極室34には陽極30が配置され、陰極室36には陰極32が配置されている。陽極30及び陰極32は、導線により電解槽10外のコントローラ38(制御手段)を介して電源40に接続されている。   The electrolytic cell 10 includes a diaphragm 28 such as an ion exchange membrane, an anode 30, and a cathode 32. The electrolytic cell 10 is partitioned into an anode chamber 34 and a cathode chamber 36 by a diaphragm 28. The anode 30 is disposed in the anode chamber 34, and the cathode 32 is disposed in the cathode chamber 36. The anode 30 and the cathode 32 are connected to the power supply 40 via a controller 38 (control means) outside the electrolytic cell 10 by conducting wires.

電解槽10の陽極室34側には、陽極液入口及び陽極液出口が設けられている。電解槽10の陽極液入口と陽極液タンク12とは、陽極液供給ライン16により接続されている。また、陽極液供給ライン16には、陽極液ポンプ14が設けられている。電解槽10の陽極液出口には、過硫酸排出ライン18が接続されている。一方、電解槽10の陰極室36側には、陰極液入口及び陰極液出口が設けられている。電解槽10の陰極液入口と陰極液タンク20とは、陰極液供給ライン24により接続されている。また、陰極液供給ライン24には、陰極液ポンプ22が設けられている。電解槽10の陰極液出口には、陰極液排出ライン26が接続されている。なお、本実施形態では、陽極液の一部が循環するように、過硫酸排出ライン18を分岐させ、その分岐ライン18aが陽極液タンク12に接続され、また、陰極液が循環するように、陰極液排出ライン26が陰極液タンク20に接続されている。   An anolyte inlet and an anolyte outlet are provided on the anode chamber 34 side of the electrolytic cell 10. The anolyte inlet of the electrolytic cell 10 and the anolyte tank 12 are connected by an anolyte supply line 16. The anolyte supply line 16 is provided with an anolyte pump 14. A persulfuric acid discharge line 18 is connected to the anolyte outlet of the electrolytic cell 10. On the other hand, the cathode chamber 36 side of the electrolytic cell 10 is provided with a catholyte inlet and a catholyte outlet. The catholyte inlet of the electrolytic cell 10 and the catholyte tank 20 are connected by a catholyte supply line 24. The catholyte supply line 24 is provided with a catholyte pump 22. A catholyte discharge line 26 is connected to the catholyte outlet of the electrolytic cell 10. In this embodiment, the persulfuric acid discharge line 18 is branched so that a part of the anolyte circulates, the branch line 18a is connected to the anolyte tank 12, and the catholyte circulates. A catholyte discharge line 26 is connected to the catholyte tank 20.

以下に、本実施形態に係る過硫酸製造装置1の動作について説明する。   Below, operation | movement of the persulfuric acid manufacturing apparatus 1 which concerns on this embodiment is demonstrated.

まず、陽極液ポンプ14を稼働させ、陽極液タンク12から陽極液供給ライン16を通して、陽極液を電解槽10の陽極室34に供給する。また、陰極液ポンプ22を稼働させ、陰極液タンク20から陰極液供給ライン24を通して、陰極液を電解槽10の陰極室36に供給する。ここで、陽極30液及び陰極32液には、硫酸含有溶液を用いている。その後、電源40から陽極30に正電圧、陰極32に負電圧を印加し、陽極30及び陰極32間に電流を流すと、陽極室34では、主に下式のような反応が起こる。   First, the anolyte pump 14 is operated, and the anolyte is supplied from the anolyte tank 12 through the anolyte supply line 16 to the anode chamber 34 of the electrolytic cell 10. Further, the catholyte pump 22 is operated, and the catholyte is supplied from the catholyte tank 20 through the catholyte supply line 24 to the cathode chamber 36 of the electrolytic cell 10. Here, a sulfuric acid-containing solution is used for the anode 30 liquid and the cathode 32 liquid. Thereafter, when a positive voltage is applied from the power source 40 to the anode 30 and a negative voltage is applied to the cathode 32, and a current is passed between the anode 30 and the cathode 32, the following reaction mainly occurs in the anode chamber 34.

2SO4 2- → S28 2- + 2e- (1)
2HSO4 - → S28 2- + 2H+ + 2e- (2)
HSO4 - + H2O → HSO5 - + 2H+ + 2e- (3)
2SO 4 2- → S 2 O 8 2- + 2e - (1)
2HSO 4 → S 2 O 8 2− + 2H + + 2e (2)
HSO 4 + H 2 O → HSO 5 + 2H + + 2e (3)

また、陰極室36では、主に下式のような反応が起こる。
2H+ + 2e- → H2
Further, in the cathode chamber 36, the following reaction mainly occurs.
2H + + 2e - → H 2

そして、このように硫酸含有溶液を電解することによって、ペルオキソ一硫酸(H2SO5)、ペルオキソ二硫酸(H228)等の過硫酸を含む過硫酸溶解水が得られる。過硫酸溶解水は、過硫酸排出ライン18を通り、ウエハ等の洗浄に用いられる。また、過硫酸溶解水の一部は、分岐ライン18aを通り、陽極液タンク12に戻される。一方、陰極室36を通過した陰極液は、陰極液排出ライン26を通り、陰極液タンク20に戻される。 By electrolyzing the sulfuric acid-containing solution in this way, persulfuric acid-dissolved water containing persulfuric acid such as peroxomonosulfuric acid (H 2 SO 5 ) and peroxodisulfuric acid (H 2 S 2 O 8 ) can be obtained. The persulfuric acid-dissolved water passes through the persulfuric acid discharge line 18 and is used for cleaning wafers and the like. A part of the persulfuric acid-dissolved water is returned to the anolyte tank 12 through the branch line 18a. On the other hand, the catholyte that has passed through the cathode chamber 36 passes through the catholyte discharge line 26 and is returned to the catholyte tank 20.

高濃度の硫酸を電解する場合、通常、陽極30に正電圧、陰極32に負電圧を印加し、陽極30及び陰極32間に電流を通電し続けると、電解電圧が上昇し、過硫酸生成のための電流効率が低下して、過硫酸の生成量が低下してしまう。特に、通電量が高く、陽極室34に供給する硫酸含有溶液の硫酸濃度がより高い場合に起こり易い。これは、陽極30及び陰極32間に電流を通電し続けることにより、生成した過硫酸イオン(HSO5 -、S28 2-)が、陽極30近傍に留まるため、新たな硫酸イオン(及び亜硫酸イオン)が、陽極30近傍へ拡散(或いは吸着)し難くなるためであると考えられる。そこで、本実施形態では、陽極30と陰極32との間を流れる電流を所定の間隔で停止するか又は逆電流を流すことにより、生成した過硫酸イオンを陽極30近傍から離し、低下した硫酸イオンの拡散性(吸着性)を回復させ、電圧上昇による過硫酸生成のための電流効率の低下を抑制している。 In the case of electrolyzing high-concentration sulfuric acid, normally, when a positive voltage is applied to the anode 30 and a negative voltage is applied to the cathode 32 and a current is continuously applied between the anode 30 and the cathode 32, the electrolysis voltage rises and persulfuric acid is generated. Therefore, the current efficiency is reduced, and the amount of persulfuric acid produced is reduced. In particular, this is likely to occur when the energization amount is high and the sulfuric acid concentration of the sulfuric acid-containing solution supplied to the anode chamber 34 is higher. This is because the persulfate ions (HSO 5 , S 2 O 8 2− ) generated by continuing to pass a current between the anode 30 and the cathode 32 remain in the vicinity of the anode 30, so that new sulfate ions (and This is probably because sulfite ions are less likely to diffuse (or adsorb) near the anode 30. Therefore, in the present embodiment, the generated persulfate ions are separated from the vicinity of the anode 30 by stopping the current flowing between the anode 30 and the cathode 32 at a predetermined interval or by applying a reverse current, and the reduced sulfate ions. The diffusivity (adsorbability) is restored, and the decrease in current efficiency due to persulfuric acid generation due to voltage increase is suppressed.

図2は、本実施形態の通電パターンの一例を示す図である。図2(A)は、陽極30及び陰極32間における通電と停止とを繰り返し行う通電パターンである。また、図2(B)は、陽極30に正電圧及び陰極32に負電圧を印加、陽極30に負電圧及び陰極32に正電圧を印加し、陽極30及び陰極32間に正電流及び逆電流を繰り返し行う通電パターンである。このような制御は、図1に示すコントローラ38に上記のような通電パターンを記憶させることにより、行われる。   FIG. 2 is a diagram illustrating an example of the energization pattern of the present embodiment. FIG. 2A shows an energization pattern in which energization and stopping between the anode 30 and the cathode 32 are repeated. In FIG. 2B, a positive voltage is applied to the anode 30 and a negative voltage is applied to the cathode 32, a negative voltage is applied to the anode 30 and a positive voltage is applied to the cathode 32, and a positive current and a reverse current are applied between the anode 30 and the cathode 32. Is an energization pattern in which is repeatedly performed. Such control is performed by storing the energization pattern as described above in the controller 38 shown in FIG.

ここで、電流の停止時間又は逆電流を流す時間(図2(A)及び(B)に示すt2)は、陽極30側の電解量、陽極30側に供給する硫酸含有溶液の硫酸濃度等により適宜設定されるものであればよいが、例えば、停止させるか又は逆電流を流す間の電解量が0.1〜5Ah/Lの範囲であるとき、電流の停止時間又は逆電流を流す時間は、10秒〜10分の範囲であることが好ましい。電流の停止時間又は逆電流を流す時間が10秒未満であると、低下した陽極30近傍への硫酸イオンの拡散性(吸着性)を回復させることが困難となり、10分超であると、陽極30側からの過硫酸の生成量が低下し、ウエハ上に形成されるレジスト膜の剥離効果が低下する場合がある。また、(正)電流を流す時間(図2(A)及び(B)に示すt1)は、電流の停止時間又は逆電流を流す時間よりも長くすることが好ましく、例えば、1分〜30分の範囲であることが好ましい。 Here, the time for stopping the current or the time for flowing the reverse current (t 2 shown in FIGS. 2A and 2B) is the amount of electrolysis on the anode 30 side, the sulfuric acid concentration of the sulfuric acid-containing solution supplied to the anode 30 side, etc. However, when the amount of electrolysis during the stop or flow of the reverse current is in the range of 0.1 to 5 Ah / L, for example, the stop time of the current or the time of flowing the reverse current Is preferably in the range of 10 seconds to 10 minutes. If the current stop time or the reverse current flow time is less than 10 seconds, it becomes difficult to recover the reduced diffusibility (adsorbability) of sulfate ions in the vicinity of the anode 30, and if it exceeds 10 minutes, The amount of persulfuric acid generated from the 30th side may decrease, and the peeling effect of the resist film formed on the wafer may decrease. Moreover, it is preferable to make the time (( 1 ) shown to FIG. 2 (A) and (B)) to flow the (positive) electric current longer than the electric current stop time or the time to flow a reverse current, for example, 1 minute to 30 It is preferably in the range of minutes.

本実施形態に用いる陽極液としての硫酸含有溶液の硫酸濃度は、92〜96重量%の範囲であることが好ましい。硫酸溶液の濃度が92重量%未満であると、過硫酸生成量は増加するものの、本実施形態の電解方法により得られる過硫酸溶解水中の硫酸濃度が低くなり、ウエハ上に形成されるレジスト膜の剥離効果が低下する場合がある。また、硫酸濃度が96重量%超であると、本実施形態の電解方法によっても、十分な量の過硫酸が生成されない場合がある。また、陽極液としての硫酸含有溶液の温度は、本実施形態の電解方法により得られる過硫酸の自己分解を抑制することができる点で、80℃以下が好ましく、60℃以下がより好ましく、40℃以下がさらにより好ましい。硫酸含有溶液の温度制御方法は、特に制限されるものではないが、例えば、陽極液タンク12にヒータを設置したり、陽極液供給ライン16に冷却器を設置することによって、行われる。   The sulfuric acid concentration of the sulfuric acid-containing solution as the anolyte used in the present embodiment is preferably in the range of 92 to 96% by weight. When the concentration of the sulfuric acid solution is less than 92% by weight, the amount of persulfuric acid generated increases, but the concentration of sulfuric acid in the persulfuric acid-dissolved water obtained by the electrolysis method of the present embodiment decreases, and the resist film formed on the wafer The peeling effect may be reduced. If the sulfuric acid concentration is more than 96% by weight, a sufficient amount of persulfuric acid may not be generated even by the electrolysis method of this embodiment. Further, the temperature of the sulfuric acid-containing solution as the anolyte is preferably 80 ° C. or less, more preferably 60 ° C. or less, in that it can suppress the self-decomposition of persulfuric acid obtained by the electrolysis method of this embodiment. Even more preferred is less than or equal to ° C. The method for controlling the temperature of the sulfuric acid-containing solution is not particularly limited. For example, it is performed by installing a heater in the anolyte tank 12 or installing a cooler in the anolyte supply line 16.

本実施形態に用いる陰極液としては、陽極液と同じ硫酸含有溶液であっても、陽極液と異なるような導電性物質を溶解した溶液であってもよい。また、陰極液として硫酸含有溶液を用いた場合、陽極液としての硫酸含有溶液と同程度の濃度の硫酸含有溶液を用いる方が、より多くの過硫酸を生成することができる点で好ましいが、陽極液の硫酸濃度より低い濃度、例えば10重量%以下の硫酸含有溶液であってもよい。   The catholyte used in the present embodiment may be the same sulfuric acid-containing solution as the anolyte or a solution in which a conductive substance different from the anolyte is dissolved. In addition, when a sulfuric acid-containing solution is used as the catholyte, it is preferable to use a sulfuric acid-containing solution having a concentration similar to that of the sulfuric acid-containing solution as the anolyte, in that more persulfuric acid can be generated. It may be a sulfuric acid-containing solution having a concentration lower than the sulfuric acid concentration of the anolyte, for example, 10% by weight or less.

本実施形態に用いる電解槽10は、図1に示すように隔膜28で陽極室34及び陰極室36に区画された2室型電解槽でもよいし、隔膜28を設けない無隔膜型電解槽でもよい。しかし、無隔膜型電解槽では、陽極30で一旦生成したペルオキソ一硫酸イオン(HSO5 -)、ペルオキソ二硫酸イオン(S28 2-)等の過硫酸イオンが陰極32に接触して硫酸イオンに還元される可能性があるため、2室型電解槽を使用することが好ましい。また、電解槽10は単極式でも複極式でも特に制限されるものではない。 The electrolytic cell 10 used in this embodiment may be a two-chamber electrolytic cell partitioned into an anode chamber 34 and a cathode chamber 36 by a diaphragm 28 as shown in FIG. Good. However, in the diaphragm-type electrolytic cell, persulfate ions such as peroxomonosulfate ions (HSO 5 ) and peroxodisulfate ions (S 2 O 8 2− ) once generated at the anode 30 come into contact with the cathode 32 and sulfuric acid. Since there is a possibility of being reduced to ions, it is preferable to use a two-chamber electrolytic cell. Further, the electrolytic cell 10 is not particularly limited to a single electrode type or a bipolar type.

本実施形態に用いる隔膜28としては、例えば、商品名Poreflon等の中性膜や商品名Nafion,Aciplex,Flemion等の陽イオン交換膜等が使用できるが、耐食性の点で、陽イオン交換膜を使用することが好ましい。   As the diaphragm 28 used in the present embodiment, for example, a neutral membrane such as a trade name Poreflon or a cation exchange membrane such as a trade name Nafion, Aciplex, Flemion or the like can be used. However, in terms of corrosion resistance, a cation exchange membrane is used. It is preferable to use it.

本実施形態に用いる陽極30及び陰極32としては、例えば、白金、ダイアモンド被覆電極等を使用するが、陰極32はその他に、カーボン、チタン、ニオブ、タンタル、ジルコニウム電極等を使用することができる。隔膜28を有することで陰極32側に供給する硫酸含有溶液を低濃度にすることができる場合には、白金、ダイアモンド被覆電極等より、カーボン、チタン、ニオブ、タンタル、ジルコニウム電極等を使用することが、耐食性、コストの点で好ましい。   As the anode 30 and the cathode 32 used in the present embodiment, for example, platinum, a diamond-coated electrode or the like is used, but the cathode 32 can also be a carbon, titanium, niobium, tantalum, zirconium electrode or the like. When the sulfuric acid-containing solution supplied to the cathode 32 side can be reduced in concentration by having the diaphragm 28, carbon, titanium, niobium, tantalum, zirconium electrodes, etc. should be used rather than platinum, diamond-coated electrodes, etc. However, it is preferable in terms of corrosion resistance and cost.

陽極30及び陰極32間の距離は、特に制限されるものではないが、短い方が好ましい。陽極30及び陰極32間の距離を短くすることにより、溶液抵抗によるジュール熱の発生が抑えられ、生成した過硫酸の自己分解を抑制することができるからである。陽極30及び陰極32間の距離は、例えば、1〜100mmの範囲であることが好ましい。また、陽極30及び陰極32間の電流密度は、特に制限されるものではないが、例えば10〜2000mA/cm2の範囲であることが好ましい。 The distance between the anode 30 and the cathode 32 is not particularly limited, but is preferably shorter. This is because by shortening the distance between the anode 30 and the cathode 32, generation of Joule heat due to solution resistance can be suppressed, and self-decomposition of the generated persulfuric acid can be suppressed. The distance between the anode 30 and the cathode 32 is preferably in the range of 1 to 100 mm, for example. The current density between the anode 30 and the cathode 32 is not particularly limited, but is preferably in the range of 10 to 2000 mA / cm 2 , for example.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1,2)
図1に示す過硫酸製造装置を用いて、硫酸溶液を以下の条件で電解し、過硫酸溶解水を製造した。陽極液には、濃度96重量%の硫酸溶液(60℃以下)を用い、陰極液には、濃度1mol/Lの硫酸溶液(60℃以下)を用いた。過硫酸製造装置で使用した陽極はダイアモンド被覆電極、陰極はジルコニウム電極であった。実施例1の電解条件は、240秒通電後、60秒停止を1サイクルとし、これを繰り返すこととし、実施例2の電解条件は、290秒通電後、10秒停止を1サイクルとし、これを繰り返すこととした。
(Examples 1 and 2)
Using the persulfuric acid production apparatus shown in FIG. 1, the sulfuric acid solution was electrolyzed under the following conditions to produce persulfuric acid-dissolved water. A 96 wt% sulfuric acid solution (60 ° C. or lower) was used as the anolyte, and a 1 mol / L sulfuric acid solution (60 ° C. or lower) was used as the catholyte. The anode used in the persulfuric acid production apparatus was a diamond-coated electrode, and the cathode was a zirconium electrode. The electrolysis conditions of Example 1 were energized for 240 seconds and then stopped for 60 seconds as one cycle, and this was repeated, and the electrolysis conditions of Example 2 were energized for 290 seconds and then stopped for 10 seconds as one cycle. I decided to repeat it.

(比較例1)
比較例1では、陽極及び陰極間に常時通電させて、硫酸溶液を電解したこと以外は、実施例1と同様の条件で、過硫酸溶解水を製造した。
(Comparative Example 1)
In Comparative Example 1, persulfuric acid-dissolved water was produced under the same conditions as in Example 1 except that the sulfuric acid solution was electrolyzed between the anode and the cathode at all times.

(実施例3)
実施例3では、陽極液に濃度92重量%の硫酸溶液(60℃以下)を用いたこと以外は、実施例1と同様の条件で、硫酸溶液を電解し、過硫酸溶解水を製造した。
(Example 3)
In Example 3, persulfuric acid-dissolved water was produced by electrolyzing the sulfuric acid solution under the same conditions as in Example 1, except that a sulfuric acid solution having a concentration of 92% by weight (60 ° C. or lower) was used as the anolyte.

(比較例2)
比較例2では、陽極及び陰極間に常時通電させて、硫酸溶液を電解したこと以外は、実施例3と同様の条件(陽極液に濃度92重量%の硫酸溶液(60℃以下))で、硫酸溶液を電解し、過硫酸溶解水を製造した。
(Comparative Example 2)
In Comparative Example 2, the same conditions as in Example 3 (sulfuric acid solution having a concentration of 92 wt% in the anolyte (60 ° C. or lower)) except that the sulfuric acid solution was electrolyzed between the anode and the cathode at all times, The sulfuric acid solution was electrolyzed to produce persulfuric acid-dissolved water.

(実施例4)
実施例4では、陽極液に濃度85重量%の硫酸溶液(60℃以下)を用いたこと以外は、実施例1と同様の条件で、硫酸溶液を電解し、過硫酸溶解水を製造した。
Example 4
In Example 4, persulfuric acid-dissolved water was produced by electrolyzing the sulfuric acid solution under the same conditions as in Example 1 except that a 85 wt% sulfuric acid solution (60 ° C. or lower) was used as the anolyte.

(比較例3)
比較例3では、陽極及び陰極間に常時通電させて、硫酸溶液を電解したこと以外は、実施例4と同様の条件(陽極液に濃度85重量%の硫酸溶液(60℃以下))で、硫酸溶液を電解し、過硫酸溶解水を製造した。
(Comparative Example 3)
In Comparative Example 3, the same conditions as in Example 4 (85% by weight sulfuric acid solution (60 ° C. or lower) in the anolyte) except that the sulfuric acid solution was electrolyzed between the anode and the cathode at all times, The sulfuric acid solution was electrolyzed to produce persulfuric acid-dissolved water.

表1に、通電量10Ah/Lでの実施例1,2及び比較例1の電流効率をまとめた。また、図3に、実施例1及び比較例1における通電量と過硫酸(H228)濃度及び電圧との関係をまとめた。図4に、実施例2における通電量と過硫酸(H228)濃度及び電圧との関係をまとめた。また、表2に、通電量10Ah/Lでの実施例3及び比較例2の電流効率をまとめた。また、図5に、実施例3及び比較例2における通電量と過硫酸(H228)濃度及び電圧との関係をまとめた。また、表3に通電量10Ah/Lでの実施例4及び比較例3の電流効率をまとめた。また、図6に実施例4及び比較例3における通電量と過硫酸(H228)濃度及び電圧との関係をまとめた。 Table 1 summarizes the current efficiencies of Examples 1 and 2 and Comparative Example 1 when the energization amount is 10 Ah / L. FIG. 3 summarizes the relationship between the energization amount, the persulfuric acid (H 2 S 2 O 8 ) concentration, and the voltage in Example 1 and Comparative Example 1. FIG. 4 summarizes the relationship between the energization amount, the persulfuric acid (H 2 S 2 O 8 ) concentration, and the voltage in Example 2. Table 2 summarizes the current efficiencies of Example 3 and Comparative Example 2 at an energization amount of 10 Ah / L. FIG. 5 summarizes the relationship between the amount of energization, the concentration of persulfuric acid (H 2 S 2 O 8 ), and the voltage in Example 3 and Comparative Example 2. Table 3 summarizes the current efficiencies of Example 4 and Comparative Example 3 at an energization amount of 10 Ah / L. FIG. 6 summarizes the relationship between the amount of energization, the concentration of persulfuric acid (H 2 S 2 O 8 ), and the voltage in Example 4 and Comparative Example 3.

Figure 0005592611
Figure 0005592611
Figure 0005592611
Figure 0005592611
Figure 0005592611
Figure 0005592611

表1から判るように、陽極液の硫酸濃度が96重量%の場合、通電量10Ah/L時の電流効率は、常時通電を行った比較例1より通電−停止を繰り返した実施例1,2の方が高い値を示した。また、図3から判るように、陽極液の硫酸濃度が96重量%の場合、常時通電を行った比較例1では、通電量が5Ah/L以上の時、電解電圧が上昇し、過硫酸濃度もほぼ一定の値となった。これに対し、240秒通電−60秒停止を繰り返した実施例1では、通電量が増加しても電解電圧は上昇することなく、また、通電量の増加に比例して過硫酸濃度も上昇した。また、図4から判るように、290秒通電−10秒停止を繰り返した実施例2では、通電量が増加しても電解電圧は上昇することなく、また、通電量の増加に比例して過硫酸濃度も上昇した。すなわち、通電−停止時間を変えても、通電量の増加による電解電圧の上昇を抑え、また通電量の増加に比例して過硫酸濃度を増加させることができると判った。   As can be seen from Table 1, when the sulfuric acid concentration of the anolyte is 96% by weight, the current efficiency when the energization amount is 10 Ah / L is that of Examples 1 and 2 in which the energization-stop was repeated from Comparative Example 1 in which the energization was always conducted. Showed a higher value. Further, as can be seen from FIG. 3, when the sulfuric acid concentration of the anolyte is 96% by weight, in Comparative Example 1 in which energization was always performed, when the energization amount was 5 Ah / L or more, the electrolysis voltage increased and the persulfuric acid concentration Was also almost constant. On the other hand, in Example 1 in which energization for 240 seconds and stop for 60 seconds was repeated, the electrolysis voltage did not increase even when the energization amount increased, and the persulfuric acid concentration increased in proportion to the increase in the energization amount. . Further, as can be seen from FIG. 4, in Example 2 in which 290 seconds energization-10 seconds stop was repeated, the electrolysis voltage did not increase even when the energization amount increased, and exceeded the increase in the energization amount. The sulfuric acid concentration also increased. That is, it has been found that even if the energization-stop time is changed, the increase in the electrolysis voltage due to the increase in the energization amount can be suppressed, and the persulfuric acid concentration can be increased in proportion to the increase in the energization amount.

また、表2から判るように、陽極液の硫酸濃度が92重量%の場合、通電量10Ah/L時の電流効率は、常時通電を行った比較例2より通電−停止を繰り返した実施例3の方が高い値を示した。また、図5から判るように、陽極液の硫酸濃度が92重量%の場合、常時通電を行った比較例2では、通電量が13Ah/L以上の時、電解電圧が上昇したのに対し、240秒通電−60秒停止を繰り返した実施例3では、通電量が13Ah/L以上でも、電解電圧の上昇は起きなかった。また、比較例2では、通電量の増加と共に、過硫酸濃度は増加するが、その増加率は減少した。これに対し、実施例3では、通電量を増加させても、過硫酸濃度の増加率はほとんど減少しなかった。   In addition, as can be seen from Table 2, when the sulfuric acid concentration of the anolyte is 92% by weight, the current efficiency when the energization amount is 10 Ah / L is Example 3 in which the energization-stop was repeated compared with Comparative Example 2 in which the energization was always conducted. Showed a higher value. Further, as can be seen from FIG. 5, when the sulfuric acid concentration of the anolyte was 92% by weight, in Comparative Example 2 in which energization was always performed, the electrolysis voltage increased when the energization amount was 13 Ah / L or more, In Example 3 in which the energization for 240 seconds and the stop for 60 seconds were repeated, the electrolytic voltage did not increase even when the energization amount was 13 Ah / L or more. In Comparative Example 2, the persulfuric acid concentration increased with an increase in the energization amount, but the increase rate decreased. On the other hand, in Example 3, the increase rate of the persulfuric acid concentration hardly decreased even when the energization amount was increased.

なお、表3から判るように、陽極液の硫酸濃度が85重量%の場合では、通電量10Ah/L時の電流効率は、常時通電を行った比較例3及び通電−停止を繰り返した実施例4ともに、ほとんど同じ値であった。また、図6から判るように、陽極液の硫酸濃度が85重量%の場合では、通電量の増加に伴う、電解電圧の挙動及び過硫酸濃度の増加傾向は、常時通電を行った比較例3及び240秒通電−60秒停止を繰り返した実施例4ともに、ほとんど同じであった。   As can be seen from Table 3, when the sulfuric acid concentration of the anolyte is 85% by weight, the current efficiency when the energization amount is 10 Ah / L is the comparative example 3 in which the energization was always conducted and the example in which the energization-stop was repeated. All four values were almost the same. Further, as can be seen from FIG. 6, when the sulfuric acid concentration of the anolyte is 85% by weight, the behavior of the electrolysis voltage and the increasing tendency of the persulfuric acid concentration accompanying the increase in the amount of energization are the comparative example 3 in which the energization was always conducted. In Example 4 in which the energization for 240 seconds and the stop for 60 seconds were repeated, the results were almost the same.

また、実施例1,3,4については、通電−停止の電解条件から240秒正電流−60秒逆電流の電解条件に代えて試験を行った。その結果、正電流−逆電流の電解条件でも通電−停止の電解条件と同様の結果が得られることを確認した。以上のことから、通電−停止又は正電流−逆電流を繰り返す電解条件により過硫酸を製造する本実施形態の装置では、陽極液の硫酸濃度が低い場合でも、常時通電を行って過硫酸を製造する装置と同等の性能を示し、また、陽極液の硫酸濃度が高い場合には、常時通電を行って過硫酸を製造する装置より、通電量の増加による電圧上昇を抑制し、さらに過硫酸の生成量を増加させることができるとわかった。   Moreover, about Example 1,3,4, it replaced with the electrolysis condition of 240 second positive current-60 second reverse current from the electrolysis condition of energization-stop, and it tested. As a result, it was confirmed that the same result as the electrolysis condition of energization-stop was obtained even under the electrolysis conditions of positive current-reverse current. From the above, in the apparatus of this embodiment that produces persulfuric acid under electrolysis conditions that repeat energization-stop or positive current-reverse current, even when the sulfuric acid concentration of the anolyte is low, it is always energized to produce persulfuric acid. In addition, when the sulfuric acid concentration of the anolyte is high, the voltage rise due to the increase in the amount of current flow is suppressed and the persulfuric acid It was found that the production amount can be increased.

1 過硫酸製造装置、10 電解槽、12 陽極液タンク、14 陽極液ポンプ、16陽極液供給ライン、18 過硫酸排出ライン、18a 分岐ライン、20 陰極液タンク、22 陰極液ポンプ、24 陰極液供給ライン、26 陰極液排出ライン、28 隔膜、30 陽極、32 陰極、34 陽極室、36 陰極室、38 コントローラ、40 電源。   DESCRIPTION OF SYMBOLS 1 Persulfuric acid production apparatus, 10 Electrolyzer, 12 Anolyte tank, 14 Anolyte pump, 16 Anolyte supply line, 18 Persulfate discharge line, 18a Branch line, 20 Catholyte tank, 22 Catholyte pump, 24 Catholyte supply Line, 26 catholyte discharge line, 28 diaphragm, 30 anode, 32 cathode, 34 anode chamber, 36 cathode chamber, 38 controller, 40 power supply.

Claims (2)

陽極と陰極とを備え、前記陽極と前記陰極との間に電流を流し、硫酸含有溶液を電解して、過硫酸溶解水を製造する過硫酸製造装置であって、
前記陽極側に供給する溶液中の硫酸濃度は92〜96重量%の範囲であり、前記硫酸含有溶液の電解時において、前記陽極側に前記硫酸含有溶液を供給し、前記陰極側に前記硫酸含有溶液又は導電性物質溶解溶液を供給している間に、前記陽極と前記陰極との間を流れる電流を所定の間隔で停止させる制御手段を備え
前記制御手段による前記電流の停止時間は、10秒〜10分の範囲であって、前記制御手段による前記電流の供給時間は、前記電流の停止時間より長いことを特徴とする過硫酸製造装置。
A persulfuric acid production apparatus comprising an anode and a cathode, passing an electric current between the anode and the cathode, electrolyzing a sulfuric acid-containing solution, and producing persulfuric acid-dissolved water,
The sulfuric acid concentration in the solution supplied to the anode side is in the range of 92 to 96% by weight, and during the electrolysis of the sulfuric acid-containing solution, the sulfuric acid-containing solution is supplied to the anode side and the sulfuric acid-containing material is supplied to the cathode side. Control means for stopping the current flowing between the anode and the cathode at a predetermined interval while supplying the solution or the conductive substance dissolving solution ,
The apparatus for producing persulfuric acid , wherein the current stop time by the control means is in a range of 10 seconds to 10 minutes, and the current supply time by the control means is longer than the current stop time .
陽極と陰極との間に電流を流し、硫酸含有溶液を電解して、過硫酸溶解水を製造する過硫酸製造方法であって、
前記陽極側に供給する溶液中の硫酸濃度は92〜96重量%の範囲であり、前記硫酸含有溶液の電解時において、前記陽極側に前記硫酸含有溶液を供給し、前記陰極側に前記硫酸含有溶液又は導電性物質溶解溶液を供給している間に、前記陽極と前記陰極との間を流れる電流を所定の間隔で停止し、
前記電流の停止時間を10秒〜10分の範囲とし、前記電流の供給時間を前記電流の停止時間より長くすることを特徴とする過硫酸製造方法。
A persulfuric acid production method for producing persulfuric acid-dissolved water by passing an electric current between an anode and a cathode, electrolyzing a sulfuric acid-containing solution,
The sulfuric acid concentration in the solution supplied to the anode side is in the range of 92 to 96% by weight, and during the electrolysis of the sulfuric acid-containing solution, the sulfuric acid-containing solution is supplied to the anode side and the sulfuric acid-containing material is supplied to the cathode side. While supplying the solution or the conductive substance dissolving solution, the current flowing between the anode and the cathode is stopped at a predetermined interval ,
A method for producing persulfuric acid , wherein the current stop time is in the range of 10 seconds to 10 minutes, and the current supply time is longer than the current stop time .
JP2009000281A 2009-01-05 2009-01-05 Persulfuric acid production apparatus and persulfuric acid production method Active JP5592611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000281A JP5592611B2 (en) 2009-01-05 2009-01-05 Persulfuric acid production apparatus and persulfuric acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000281A JP5592611B2 (en) 2009-01-05 2009-01-05 Persulfuric acid production apparatus and persulfuric acid production method

Publications (2)

Publication Number Publication Date
JP2010156034A JP2010156034A (en) 2010-07-15
JP5592611B2 true JP5592611B2 (en) 2014-09-17

Family

ID=42574159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000281A Active JP5592611B2 (en) 2009-01-05 2009-01-05 Persulfuric acid production apparatus and persulfuric acid production method

Country Status (1)

Country Link
JP (1) JP5592611B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734664B1 (en) 2010-09-17 2011-07-27 田中貴金属工業株式会社 Electrode for electrolysis, anode for electrolysis of ozone, anode for electrolysis of persulfate, and anode for chromium electrooxidation
JP2012180538A (en) * 2011-02-28 2012-09-20 Kurita Water Ind Ltd Method and apparatus for electrolyzing sulfuric acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614978A (en) * 1992-04-03 1994-01-25 Tome Sangyo Kk Washing/sterilizing method
JP2001198574A (en) * 2000-01-20 2001-07-24 Silver Seiko Ltd Device for producing ozonic water
JP4462146B2 (en) * 2004-09-17 2010-05-12 栗田工業株式会社 Sulfuric acid recycling type cleaning system and sulfuric acid recycling type persulfuric acid supply device
JP4410155B2 (en) * 2005-06-16 2010-02-03 ペルメレック電極株式会社 Electrolyzed water ejection device
JP5024528B2 (en) * 2006-10-04 2012-09-12 栗田工業株式会社 Persulfuric acid supply system and persulfuric acid supply method

Also Published As

Publication number Publication date
JP2010156034A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5087325B2 (en) Cleaning system and cleaning method
TWI351446B (en) Cleaning system and cleaning method
KR19990023400A (en) Water electrolysis method
TWI822978B (en) Function recovery method of water electrolysis device and water electrolysis device
TWI453302B (en) Sulfuric acid electrolysis process
TWI419999B (en) Method of electrolysis
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
JP5352246B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
JP5939373B2 (en) Electronic material cleaning method and cleaning apparatus
JP2010234250A (en) Method for decomposing fluorine-containing organic compounds
JP5592611B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
JP4407529B2 (en) Sulfuric acid recycling cleaning system
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
JP4600667B2 (en) Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP2008294020A (en) Cleaning liquid supply system and cleaning system
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP2017055073A (en) Cleaning apparatus and cleaning method
JP2002224674A (en) Apparatus and method for manufacturing substrate washing water, substrate washing water manufactured by the same, and method for washing substrate by using substrate washing water
JP2017087087A (en) Hydrogen water production apparatus
JPH1142481A (en) Apparatus for production of substrate washing water, production thereof, substrate washing water produced by the same and method for washing substrate by using the substrate washing water
JP3906923B2 (en) Method for activating gas diffusion electrode
JP3345197B2 (en) Method for producing electrolytic ionic water
JP4771467B2 (en) Method for producing high purity alkali metal hydroxide
WO2002072481A1 (en) Method and apparatus for generating ozone by electrolysis
JP2009027023A (en) Manufacturing method and apparatus for wafer cleaning liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5592611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250