[go: up one dir, main page]

JP5559668B2 - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber Download PDF

Info

Publication number
JP5559668B2
JP5559668B2 JP2010273039A JP2010273039A JP5559668B2 JP 5559668 B2 JP5559668 B2 JP 5559668B2 JP 2010273039 A JP2010273039 A JP 2010273039A JP 2010273039 A JP2010273039 A JP 2010273039A JP 5559668 B2 JP5559668 B2 JP 5559668B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorbing
film
absorbing film
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010273039A
Other languages
Japanese (ja)
Other versions
JP2012124291A (en
Inventor
清二 加川
Original Assignee
清二 加川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清二 加川 filed Critical 清二 加川
Priority to JP2010273039A priority Critical patent/JP5559668B2/en
Publication of JP2012124291A publication Critical patent/JP2012124291A/en
Application granted granted Critical
Publication of JP5559668B2 publication Critical patent/JP5559668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Description

本発明は高い電磁波吸収能を有する電磁波吸収体に関する。   The present invention relates to an electromagnetic wave absorber having high electromagnetic wave absorbing ability.

パーソナルコンピュータ、携帯電話、有料道路の自動料金収受システム(ETC)、RFIDシステム、無線LAN等の電子機器や通信機器のシステムには、電磁波の漏洩及び進入を防止するシールド材が使用されている。シールド材には、広範囲の周波数の電磁波を良好に吸収できるだけでなく、入射方向に応じた電磁波吸収能の変化(異方性)が少ないことも求められる。特にETC等のように円偏波を用いるシステムでは、TE波(入射面に対して電界成分が垂直な電磁波)及びTM波(入射面に対して磁界成分が垂直な電磁波)の両方とも効率良く吸収するシールド材が求められる。   Shielding materials that prevent leakage and entry of electromagnetic waves are used in systems for electronic devices and communication devices such as personal computers, mobile phones, toll road automatic toll collection systems (ETC), RFID systems, and wireless LANs. The shielding material is required not only to absorb electromagnetic waves in a wide range of frequencies well, but also to have a small change (anisotropy) in electromagnetic wave absorption capability according to the incident direction. Especially in systems using circularly polarized waves such as ETC, both TE waves (electromagnetic waves whose electric field components are perpendicular to the incident surface) and TM waves (electromagnetic waves whose magnetic field components are perpendicular to the incident surface) are both efficient. A shielding material that absorbs is required.

特開平6-120689号(特許文献1)は、適当な表面抵抗を有する抵抗皮膜と誘電体とを交互に配置し、背面に電波反射体で裏打した誘電体を設置した多層型電波吸収体において、抵抗皮膜及び誘電体を透明な材料で構成し、電波反射体を光を通す構造若しくは材料で構成したことを特徴とする電波吸収体を開示している。各抵抗皮膜は、電波の到来方向に377Ω/□(自由空間の電波特性インピーダンス)±10%の表面抵抗を有し、電波反射体で裏打された誘電体はλg/4(λgは電波の波長である。)の厚さを有する。多層構造を示す唯一の実施例である実施例5では、抵抗皮膜として表面抵抗377Ω/□±10%の金属酸化物皮膜を形成した厚さ0.5 mmの3枚のPET板は10 mmの等間隔で配置されており、最も奥の抵抗皮膜と電波反射体で裏打した誘電体との間隔も10 mmである。約377Ω/□の表面抵抗を有する複数の抵抗皮膜を電波反射体の前に配置しただけでも電波吸収能は向上するが、今だ不十分であり、さらなる改良が望まれる。 Japanese Patent Laid-Open No. 6-120689 (Patent Document 1) is a multilayer type radio wave absorber in which a resistive film having an appropriate surface resistance and dielectrics are alternately arranged and a dielectric lined with a radio wave reflector on the back side. An electromagnetic wave absorber is disclosed in which the resistance film and the dielectric are made of a transparent material, and the electric wave reflector is made of a structure or material that transmits light. Each resistive film has a surface resistance of 377 Ω / □ (free-space radio wave characteristic impedance) ± 10% in the direction of radio wave arrival, and the dielectric lined with a radio wave reflector is λ g / 4 (λ g is radio wave) The thickness of the In Example 5, which is the only example showing a multilayer structure, three 0.5 mm thick PET plates on which a metal oxide film having a surface resistance of 377 Ω / □ ± 10% is formed as a resistance film are equally spaced by 10 mm. The distance between the innermost resistive film and the dielectric lined with a radio wave reflector is 10 mm. Even if a plurality of resistive films having a surface resistance of about 377Ω / □ are arranged in front of the radio wave reflector, the radio wave absorption ability is improved, but it is still insufficient and further improvement is desired.

特開平6-120689号Japanese Patent Laid-Open No. 6-208989

従って本発明の目的は、高い電磁波吸収能を有する電磁波吸収体を提供することである。   Accordingly, an object of the present invention is to provide an electromagnetic wave absorber having high electromagnetic wave absorbing ability.

上記目的に鑑み鋭意研究の結果、本発明者は、複数の電磁波吸収フィルムを電磁波反射体の前に配置してなる電磁波吸収体において、(a) 最前の電磁波吸収フィルムが次の電磁波吸収フィルムより大きな表面抵抗を有すると、同じ表面抵抗を有する場合より著しく高い電磁波吸収能が得られること、(b) 電磁波吸収フィルム間の間隔及び電磁波吸収フィルムと電磁波反射体との間隔を異なるものにすると、電磁波吸収能はさらに向上すること、及び(c) 電磁波吸収フィルムのプラスチックフィルム側に不規則な幅及び間隔で実質的に平行な多数の断続的な線状痕を複数方向に形成すると、線状痕を形成しない場合より電磁波吸収能はさらに向上することを発見し、本発明に想到した。
As a result of earnest research in view of the above object, the present inventor found that the electromagnetic wave absorber in which a plurality of electromagnetic wave absorbing films are arranged in front of the electromagnetic wave reflector, (a) the first electromagnetic wave absorbing film is more than the next electromagnetic wave absorbing film. When having a large surface resistance, a significantly higher electromagnetic wave absorption ability can be obtained than when having the same surface resistance, (b) When the interval between the electromagnetic wave absorbing film and the interval between the electromagnetic wave absorbing film and the electromagnetic wave reflector are different, When the electromagnetic wave absorbing ability is further improved, and (c) a large number of intermittent linear traces substantially parallel with irregular widths and intervals are formed in a plurality of directions on the plastic film side of the electromagnetic wave absorbing film, The inventors have discovered that the ability to absorb electromagnetic waves is further improved than the case where no trace is formed, and have arrived at the present invention.

すなわち、本発明の電磁波吸収体は、電磁波反射体の前に複数枚の電磁波吸収フィルムを誘電体を介して積層してなり、
各電磁波吸収フィルムはプラスチックフィルムの一方の面に導電体層を形成してなり、
各電磁波吸収フィルムの導電体層は100〜1000Ω/□の範囲内の表面抵抗を有し、 最前の電磁波吸収フィルムの導電体層の表面抵抗はその次の電磁波吸収フィルムの導電体層の表面抵抗より100Ω/□以上大きく、
(a) 前記電磁波吸収フィルムが2枚の場合、第一の電磁波吸収フィルムと第二の電磁波吸収フィルムとの間隔と、前記第二の電磁波吸収フィルムと前記電磁波反射体との間隔との比が100:30〜100:70であり、(b) 前記電磁波吸収フィルムが3枚以上の場合、第一の電磁波吸収フィルムと第二の電磁波吸収フィルムとの間隔と、前記第二の電磁波吸収フィルムと第三の電磁波吸収フィルムとの間隔との比が100:30〜100:70であり、
前記電磁波吸収フィルムのプラスチックフィルム側に不規則な幅及び間隔で実質的に平行な多数の断続的な線状痕が複数方向に形成されており、
前記線状痕の幅は90%以上が0.1〜100μmの範囲内にあって、平均1〜50μmであり、前記線状痕の間隔は0.1〜200μmの範囲内にあって、平均1〜100μmであることを特徴とする。
That is, the electromagnetic wave absorber of the present invention is formed by laminating a plurality of electromagnetic wave absorbing films through a dielectric before the electromagnetic wave reflector.
Each electromagnetic wave absorbing film is formed by forming a conductor layer on one side of a plastic film,
The conductive layer of each electromagnetic wave absorbing film has a surface resistance in the range of 100 to 1000 Ω / □, and the surface resistance of the conductive layer of the previous electromagnetic wave absorbing film is the surface of the conductive layer of the next electromagnetic wave absorbing film. 100 Ω / □ or more larger than the resistance
(a) When the number of the electromagnetic wave absorbing films is two, the ratio between the distance between the first electromagnetic wave absorbing film and the second electromagnetic wave absorbing film and the distance between the second electromagnetic wave absorbing film and the electromagnetic wave reflector is 100: 30 to 100: 70, and (b) when there are three or more electromagnetic wave absorbing films, an interval between the first electromagnetic wave absorbing film and the second electromagnetic wave absorbing film, and the second electromagnetic wave absorbing film, The ratio of the distance to the third electromagnetic wave absorbing film is 100: 30 to 100: 70,
A number of intermittent linear traces substantially parallel with irregular widths and intervals are formed in a plurality of directions on the plastic film side of the electromagnetic wave absorbing film,
90% or more of the width of the linear traces is in the range of 0.1 to 100 μm, and the average is 1 to 50 μm, and the interval of the linear traces is in the range of 0.1 to 200 μm, and the average is 1 to 100 μm. characterized in that there.

第一の実施形態による電磁波吸収体は、第一の電磁波吸収フィルム/誘電体/第二の電磁波吸収フィルム/誘電体/電磁波反射体の層構成を有し、前記第一及び第二の電磁波吸収フィルムの導電体層は100〜1000Ω/□の表面抵抗を有し、前記第一の電磁波吸収フィルムの導電体層は前記第二の電磁波吸収フィルムの導電体層より100Ω/□以上大きな表面抵抗を有する。前記第一及び第二の電磁波吸収フィルムの間隔と前記第二の電磁波吸収フィルムと前記電磁波反射体との間隔との比は100:30〜100:70である
The electromagnetic wave absorber according to the first embodiment has a layer configuration of a first electromagnetic wave absorbing film / dielectric / second electromagnetic wave absorbing film / dielectric / electromagnetic wave reflector, and the first and second electromagnetic wave absorbers. The conductive layer of the film has a surface resistance of 100 to 1000 Ω / □, and the conductive layer of the first electromagnetic wave absorbing film has a surface that is 100 Ω / □ or more larger than the conductive layer of the second electromagnetic wave absorbing film. Has resistance . The ratio between the distance between the distance and the second electromagnetic wave absorption film of the first and second electromagnetic wave absorbing film and the electromagnetic wave reflector 100: 30 to 100: 70.

第二の実施形態による電磁波吸収体は、第一の電磁波吸収フィルム/誘電体/第二の電磁波吸収フィルム/誘電体/第三の電磁波吸収フィルム/誘電体/電磁波反射体の層構成を有し、前記第一〜第三の電磁波吸収フィルムの導電体層は100〜1000Ω/□の表面抵抗を有し、前記第一の電磁波吸収フィルムの導電体層は前記第二の電磁波吸収フィルムの導電体層より100Ω/□以上大きな表面抵抗を有する。前記第三の電磁波吸収フィルムの導電体層は前記第二の電磁波吸収フィルムの導電体層より100Ω/□以上大きな表面抵抗を有するのが好ましい。前記第一及び第二の電磁波吸収フィルムの間隔と前記第二及び第三の電磁波吸収フィルムの間隔との比は100:30〜100:70である。前記第三の電磁波吸収フィルムと前記電磁波反射体との間隔と前記第二及び第三の電磁波吸収フィルムの間隔との比は100:30〜100:70であるのが好ましい。
The electromagnetic wave absorber according to the second embodiment has a layer configuration of a first electromagnetic wave absorbing film / dielectric / second electromagnetic wave absorbing film / dielectric / third electromagnetic wave absorbing film / dielectric / electromagnetic wave reflector. The conductive layer of the first to third electromagnetic wave absorbing films has a surface resistance of 100 to 1000 Ω / □, and the conductive layer of the first electromagnetic wave absorbing film is conductive of the second electromagnetic wave absorbing film. It has a surface resistance that is 100 Ω / □ or more greater than the body layer. The conductor layer of the third electromagnetic wave absorbing film preferably has a surface resistance that is 100 Ω / □ or more larger than that of the second electromagnetic wave absorbing film . The ratio between the distance interval between the second and third electromagnetic wave absorption film of the first and second electromagnetic wave absorbing film 100: 30 to 100: 70. The ratio of the distance between the third electromagnetic wave absorbing film and the electromagnetic wave reflector and the distance between the second and third electromagnetic wave absorbing films is preferably 100: 30 to 100: 70.

電磁波吸収フィルムの線状痕は二方向に配向しており、その交差角は30〜90°であるのが好ましい。
The linear traces of each electromagnetic wave absorbing film are oriented in two directions, and the crossing angle is preferably 30 to 90 ° .

少なくとも一つの電磁波吸収フィルムは、異なる表面抵抗を有する複数の電磁波吸収フィルム片からなるものでも良い。異なる表面抵抗を有する複数の電磁波吸収フィルム片を用いることにより、電磁波吸収フィルムの表面抵抗の面内における不均一性の悪影響が緩和される。   The at least one electromagnetic wave absorbing film may be composed of a plurality of electromagnetic wave absorbing film pieces having different surface resistances. By using a plurality of electromagnetic wave absorbing film pieces having different surface resistances, the adverse effect of non-uniformity in the surface resistance of the electromagnetic wave absorbing film is reduced.

本発明の電磁波吸収体は、導電体層を有するプラスチックフィルムからなる複数枚の電磁波吸収フィルムを誘電体を介して積層してなり、各電磁波吸収フィルムの導電体層は100〜1000Ω/□の範囲内の表面抵抗を有し、かつ最前の電磁波吸収フィルムの導電体層の表面抵抗はその次の電磁波吸収フィルムの導電体層の表面抵抗より100Ω/□以上大きく、最前の電磁波吸収フィルムと二枚目の電磁波吸収フィルムとの間隔と、二枚目の電磁波吸収フィルムと電磁波反射体又は三枚目の電磁波吸収フィルムとの間隔との比が100:30〜100:70であり、かつ電磁波吸収フィルムのプラスチックフィルム側に不規則な幅及び間隔で実質的に平行な多数の断続的な線状痕が複数方向に形成されているので、単に同じ表面抵抗の複数枚の電磁波吸収フィルムを積層した場合と比較して著しく高い電磁波吸収能を有するだけでなく、電磁波吸収能の異方性が低下する。このような特徴を有する本発明の電磁波吸収体は、ETC,FRID等の高い電磁波吸収能を必要とする広範な用途に使用することができる。
The electromagnetic wave absorber of the present invention is formed by laminating a plurality of electromagnetic wave absorbing films made of a plastic film having a conductive layer via a dielectric, and the conductive layer of each electromagnetic wave absorbing film is 100 to 1000 Ω / □. The surface resistance of the conductive layer of the previous electromagnetic wave absorbing film having a surface resistance within the range is 100 Ω / □ or more larger than the surface resistance of the conductive layer of the next electromagnetic wave absorbing film, The ratio between the interval between the second electromagnetic wave absorbing film and the interval between the second electromagnetic wave absorbing film and the electromagnetic wave reflector or the third electromagnetic wave absorbing film is 100: 30 to 100: 70, and the electromagnetic wave since intermittent linear scratches of many substantially parallel with irregular widths and intervals on the plastic film side of the absorbing film is formed in a plurality of directions, simply a plurality of electromagnetic wave absorption film having the same surface resistance Not only has a significantly higher electromagnetic wave absorption capability as compared with the case of layers, the anisotropy of electromagnetic wave absorption capability is decreased. The electromagnetic wave absorber of the present invention having such characteristics can be used for a wide range of applications that require high electromagnetic wave absorption ability such as ETC and FRID.

線状痕を有さない電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film which does not have a linear trace. 導電体層に線状痕を有する電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film which has a linear trace in a conductor layer. プラスチック面に線状痕を有する電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film which has a linear trace on a plastic surface. 線状痕の一例を示す部分平面図である。It is a fragmentary top view which shows an example of a linear trace. 線状痕の他の例を示す部分平面図である。It is a fragmentary top view which shows the other example of a linear trace. 線状痕のさらに他の例を示す部分平面図である。It is a fragmentary top view which shows the other example of a linear trace. 線状痕のさらに他の例を示す部分平面図である。It is a fragmentary top view which shows the other example of a linear trace. 線状痕を有さないストライプ状の電磁波吸収フィルム片からなる複合電磁波吸収フィルムを示す部分平面図である。It is a partial top view which shows the composite electromagnetic wave absorption film which consists of a striped electromagnetic wave absorption film piece which does not have a linear trace. 線状痕を有するストライプ状の電磁波吸収フィルム片からなる複合電磁波吸収フィルムを示す部分平面図である。It is a partial top view which shows the composite electromagnetic wave absorption film which consists of a striped electromagnetic wave absorption film piece which has a linear trace. 線状痕を有する矩形状の電磁波吸収フィルム片からなる複合電磁波吸収フィルムを示す部分平面図である。It is a partial top view which shows the composite electromagnetic wave absorption film which consists of a rectangular electromagnetic wave absorption film piece which has a linear trace. 導電体層及び線状痕の上に保護層が設けられた電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film in which the protective layer was provided on the conductor layer and the linear trace. 電磁波吸収フィルムの製造装置の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing apparatus of an electromagnetic wave absorption film. 図8(a) の装置を示す平面図である。FIG. 9 is a plan view showing the device of FIG. 8 (a). 図8(b) のB-B断面図である。FIG. 9 is a sectional view taken along line BB in FIG. 8 (b). フィルムの進行方向に対して傾斜した線状痕が形成される原理を説明するための部分拡大平面図である。It is a partial enlarged plan view for demonstrating the principle in which the linear trace inclined with respect to the advancing direction of a film is formed. 図8(a) の装置において、フィルムに対するパターンロール及び押えロールの傾斜角度を示す部分平面図である。FIG. 9 is a partial plan view showing the inclination angles of the pattern roll and the presser roll with respect to the film in the apparatus of FIG. 8 (a). 電磁波吸収フィルムの製造装置の他の例を示す部分断面図である。It is a fragmentary sectional view which shows the other example of the manufacturing apparatus of an electromagnetic wave absorption film. 電磁波吸収フィルムの製造装置のさらに他の例を示す斜視図である。It is a perspective view which shows the further another example of the manufacturing apparatus of an electromagnetic wave absorption film. 電磁波吸収フィルムの製造装置のさらに他の例を示す斜視図である。It is a perspective view which shows the further another example of the manufacturing apparatus of an electromagnetic wave absorption film. 電磁波吸収フィルムの製造装置のさらに他の例を示す斜視図である。It is a perspective view which shows the further another example of the manufacturing apparatus of an electromagnetic wave absorption film. 比較例の電磁波吸収体において、線状痕を有さない2枚の電磁波吸収フィルム及び反射板の配置を示す断面図である。 In the electromagnetic wave absorber of a comparative example , it is sectional drawing which shows arrangement | positioning of two electromagnetic wave absorption films which do not have a linear trace, and a reflecting plate. 図13の電磁波吸収体の構成を示す分解斜視図である。FIG. 14 is an exploded perspective view showing the configuration of the electromagnetic wave absorber shown in FIG. 比較例の電磁波吸収体において、導電体層に線状痕を有する2枚の電磁波吸収フィルム及び反射板の配置を示す断面図である。 In the electromagnetic wave absorber of a comparative example , it is sectional drawing which shows arrangement | positioning of two electromagnetic wave absorption films and reflectors which have a linear trace in a conductor layer. 本発明の電磁波吸収体において、プラスチック面に線状痕を有する2枚の電磁波吸収フィルム及び反射板の配置を示す断面図である。In the electromagnetic wave absorber of the present invention, it is a cross-sectional view showing the arrangement of two electromagnetic wave absorbing films having a linear mark on a plastic surface and a reflector. 図15及び図16の電磁波吸収体の構成を示す分解斜視図である。FIG. 17 is an exploded perspective view showing a configuration of the electromagnetic wave absorber of FIGS. 15 and 16. 本発明の電磁波吸収体において、線状痕を有する2枚の電磁波吸収フィルムの組合せの一例を示す分解平面図である。In the electromagnetic wave absorber of the present invention, it is an exploded plan view showing an example of a combination of two electromagnetic wave absorbing films having linear traces. 本発明の電磁波吸収体において、線状痕を有する2枚の電磁波吸収フィルムの組合せの別の例を示す分解平面図である。In the electromagnetic wave absorber of the present invention, it is an exploded plan view showing another example of a combination of two electromagnetic wave absorbing films having linear traces. 本発明の電磁波吸収体において、線状痕を有する2枚の電磁波吸収フィルムの組合せのさらに別の例を示す分解平面図である。FIG. 6 is an exploded plan view showing still another example of a combination of two electromagnetic wave absorbing films having linear traces in the electromagnetic wave absorber of the present invention. 比較例の電磁波吸収体において、線状痕を有さない3枚の電磁波吸収フィルム及び反射板の配置を示す断面図である。 In the electromagnetic wave absorber of a comparative example , it is sectional drawing which shows arrangement | positioning of the three electromagnetic wave absorption films and reflectors which do not have a linear trace. 図19の電磁波吸収体の構成を示す分解斜視図である。FIG. 20 is an exploded perspective view showing the configuration of the electromagnetic wave absorber shown in FIG. 比較例の電磁波吸収体において、導電体層に線状痕を有する3枚の電磁波吸収フィルム及び反射板の配置を示す断面図である。 In the electromagnetic wave absorber of a comparative example , it is sectional drawing which shows arrangement | positioning of the three electromagnetic wave absorption films which have a linear trace in a conductor layer, and a reflecting plate. 本発明の電磁波吸収体において、プラスチック面に線状痕を有する3枚の電磁波吸収フィルム及び反射板の配置を示す断面図である。In the electromagnetic wave absorber of the present invention, it is a cross-sectional view showing the arrangement of three electromagnetic wave absorbing films having a linear trace on a plastic surface and a reflector. 図21及び図22の電磁波吸収体の構成を示す分解斜視図である。FIG. 23 is an exploded perspective view showing a configuration of the electromagnetic wave absorber shown in FIGS. 21 and 22. FIG. 本発明の電磁波吸収体において、線状痕を有する3枚の電磁波吸収フィルムの組合せの一例を示す分解平面図である。In the electromagnetic wave absorber of the present invention, it is an exploded plan view showing an example of a combination of three electromagnetic wave absorbing films having linear traces. 本発明の電磁波吸収体において、線状痕を有する3枚の電磁波吸収フィルムの組合せの別の例を示す分解平面図である。In the electromagnetic wave absorber of the present invention, it is an exploded plan view showing another example of a combination of three electromagnetic wave absorbing films having linear traces. 本発明の電磁波吸収体において、線状痕を有する3枚の電磁波吸収フィルムの組合せのさらに別の例を示す分解平面図である。FIG. 5 is an exploded plan view showing still another example of a combination of three electromagnetic wave absorbing films having linear traces in the electromagnetic wave absorber of the present invention. 本発明の電磁波吸収体において、線状痕を有する3枚の電磁波吸収フィルムの組合せのさらに別の例を示す分解平面図である。FIG. 5 is an exploded plan view showing still another example of a combination of three electromagnetic wave absorbing films having linear traces in the electromagnetic wave absorber of the present invention. 本発明の電磁波吸収体において、線状痕を有する3枚の電磁波吸収フィルムの組合せのさらに別の例を示す分解平面図である。FIG. 5 is an exploded plan view showing still another example of a combination of three electromagnetic wave absorbing films having linear traces in the electromagnetic wave absorber of the present invention. 本発明の電磁波吸収体において、線状痕を有する3枚の電磁波吸収フィルムの組合せのさらに別の例を示す分解平面図である。FIG. 5 is an exploded plan view showing still another example of a combination of three electromagnetic wave absorbing films having linear traces in the electromagnetic wave absorber of the present invention. 電磁波吸収体の電磁波吸収能を評価する装置を示す概略図である。It is the schematic which shows the apparatus which evaluates the electromagnetic wave absorption capability of an electromagnetic wave absorber. 比較例1の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 6 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 1 . 実施例1の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。2 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Example 1. FIG. 比較例2の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 6 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 2 . 実施例2の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。3 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Example 2. FIG. 比較例3の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 3 . 比較例4の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 4 . 比較例5の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 6 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 5 . 比較例6の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 6 . 比較例7の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。10 is a graph showing the peak absorptance and peak frequency of the electromagnetic wave absorber of Comparative Example 7 . 比較例8の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。10 is a graph showing the peak absorptance and peak frequency of the electromagnetic wave absorber of Comparative Example 8 . 実施例3の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。6 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Example 3. FIG. 実施例4の電磁波吸収体の5.8 GHzにおける電磁波吸収率を示すグラフである。6 is a graph showing the electromagnetic wave absorption rate at 5.8 GHz of the electromagnetic wave absorber of Example 4 . 実施例5の電磁波吸収体の5.8 GHzにおける電磁波吸収率を示すグラフである。6 is a graph showing an electromagnetic wave absorption rate at 5.8 GHz of the electromagnetic wave absorber of Example 5 . 比較例9の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 9 . 比較例10の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorptance and peak frequency of the electromagnetic wave absorber of Comparative Example 10 . 比較例11の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 11 . 比較例12の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 12 . 比較例13の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 14 is a graph showing the peak absorptance and peak frequency of the electromagnetic wave absorber of Comparative Example 13 . 比較例14の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 14 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 14 . 実施例6の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 6 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Example 6. FIG. 比較例15の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 16 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 15 . 比較例16の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 16 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 16 . 比較例17の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 18 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 17 . 比較例17の電磁波吸収体の2.5 GHzにおける電磁波吸収率を示すグラフである。 16 is a graph showing an electromagnetic wave absorption rate at 2.5 GHz of the electromagnetic wave absorber of Comparative Example 17 . 比較例18の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 19 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 18 . 比較例18の電磁波吸収体の2.5 GHzにおける電磁波吸収率を示すグラフである。 16 is a graph showing an electromagnetic wave absorption rate at 2.5 GHz of the electromagnetic wave absorber of Comparative Example 18 . 比較例19の電磁波吸収体の2.5 GHzにおける電磁波吸収率を示すグラフである。 20 is a graph showing an electromagnetic wave absorption rate at 2.5 GHz of the electromagnetic wave absorber of Comparative Example 19 . 実施例7の電磁波吸収体の5.8 GHzにおける電磁波吸収率を示すグラフである。6 is a graph showing an electromagnetic wave absorption rate at 5.8 GHz of the electromagnetic wave absorber of Example 7 . 比較例20の電磁波吸収体の2.5 GHzにおける電磁波吸収率を示すグラフである。 10 is a graph showing an electromagnetic wave absorption rate at 2.5 GHz of the electromagnetic wave absorber of Comparative Example 20 . 比較例20の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 20 . 比較例21の電磁波吸収体のピーク吸収率及びピーク周波数を示すグラフである。 10 is a graph showing the peak absorption rate and peak frequency of the electromagnetic wave absorber of Comparative Example 21 .

本発明の実施形態を添付図面を参照して詳細に説明するが、特に断りがなければ一つの実施形態に関する説明は他の実施形態にも適用される。また下記説明は限定的ではなく、本発明の技術的思想の範囲内で種々の変更をしても良い。   DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the accompanying drawings. Unless otherwise specified, the description relating to one embodiment is applicable to other embodiments. The following description is not limited, and various modifications may be made within the scope of the technical idea of the present invention.

[1] 電磁波吸収フィルム
(1) 第一の電磁波吸収フィルム
第一の電磁波吸収フィルム100は、図1に示すようにプラスチックフィルム10の一方の面に導電体層11を形成したものである。
[1] electromagnetic wave absorbing film
(1) First electromagnetic wave absorbing film
The first electromagnetic wave absorbing film 100 is obtained by forming a conductor layer 11 on one surface of a plastic film 10 as shown in FIG.

(a) プラスチックフィルム
プラスチックフィルム10を形成する樹脂は、性及び絶縁性とともに十分な強度、可撓性及び加工性を有する限り特に制限されず、例えばポリエステル(ポリエチレンテレフタレート等)、ポリアリーレンサルファイド(ポリフェニレンサルファイド等)、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ポリオレフィン(ポリエチレン、ポリプロピレン等)等が挙げられる。プラスチックフィルム10の厚さは10〜100μm程度で良い。
(a) Plastic film The resin forming the plastic film 10 is not particularly limited as long as it has sufficient strength, flexibility, and processability as well as properties and insulation properties. For example, polyester (polyethylene terephthalate, etc.), polyarylene sulfide (polyphenylene) Sulfide), polyether sulfone, polyether ether ketone, polycarbonate, acrylic resin, polystyrene, polyolefin (polyethylene, polypropylene, etc.) and the like. The thickness of the plastic film 10 may be about 10 to 100 μm.

(b) 導電体層
導電体層11は導電性金属又は透明導電性金属酸化物の薄膜からなる。導電性金属の薄膜は薄くなるにつれて透明になる。従って、導電体層11は透明でも不透明でも良い。優れた電磁波吸収能を発揮するために、導電体層11の表面抵抗は100〜1000Ω/□であり、好ましくは200〜1000Ω/□であり、より好ましくは250〜800Ω/□である。表面抵抗は直流二端子法で測定することができる。導電体層11の表面抵抗が100〜1000Ω/□の範囲外であると、複数の電磁波吸収フィルムを電磁波反射体と組合せても高い電磁波吸収能は得られない。導電体層11はスパッタリング法、真空蒸着法等の公知の方法により形成することができる。
(b) Conductor layer The conductor layer 11 is made of a thin film of a conductive metal or a transparent conductive metal oxide. The conductive metal film becomes transparent as it becomes thinner. Therefore, the conductor layer 11 may be transparent or opaque. In order to exhibit excellent electromagnetic wave absorbing ability, the surface resistance of the conductor layer 11 is 100 to 1000 Ω / □, preferably 200 to 1000 Ω / □, and more preferably 250 to 800 Ω / □. The surface resistance can be measured by a direct current two-terminal method. When the surface resistance of the conductor layer 11 is out of the range of 100 to 1000 Ω / □, even if a plurality of electromagnetic wave absorbing films are combined with an electromagnetic wave reflector, high electromagnetic wave absorbing ability cannot be obtained. The conductor layer 11 can be formed by a known method such as a sputtering method or a vacuum deposition method.

導電性金属として、ニッケル、アルミニウム、クロム等が挙げられる。これらの金属は勿論単体に限らず、合金でも良い。アルミニウム薄膜も良好な導電性を有するが、膜厚(表面抵抗)の均一化が難しい。一方、ニッケル薄膜は良好な導電性を有するとともに、表面抵抗の分布が均一であるので、本発明の目的に好適である。金属薄膜の厚さは、表面抵抗が100〜1000Ω/□の範囲内となるように設定する必要があり、具体的には10〜20 nmが好ましく、10〜15 nmがより好ましい。金属薄膜の厚さが10 nm未満であると表面抵抗が大きすぎ、また金属薄膜の厚さが20 nm超であると表面抵抗が小さすぎる。なお、金属薄膜に線状痕を形成する場合、金属薄膜の表面抵抗は線状痕により調整できるので、金属薄膜をより厚く形成できる。具体的には、金属薄膜の厚さは約0.01〜1μmで良い。
Examples of the conductive metal include nickel, aluminum, and chromium. Of course, these metals are not limited to simple substances, but may be alloys. The aluminum thin film also has good conductivity, but it is difficult to make the film thickness (surface resistance) uniform. On the other hand, a nickel thin film is suitable for the purpose of the present invention because it has good conductivity and a uniform surface resistance distribution. The thickness of the metal thin film needs to be set so that the surface resistance is in the range of 100 to 1000 Ω / □, specifically 10 to 20 nm is preferable , and 10 to 15 nm is more preferable. If the thickness of the metal thin film is less than 10 nm, the surface resistance is too large, and if the thickness of the metal thin film exceeds 20 nm, the surface resistance is too small. In addition, when forming a linear trace in a metal thin film, since the surface resistance of a metal thin film can be adjusted with a linear trace, a metal thin film can be formed thicker. Specifically, the thickness of the metal thin film may be about 0.01 to 1 μm.

透明導電性金属酸化物として、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等が挙げられる。透明導電性金属酸化物薄膜の厚さは、表面抵抗が100〜1000Ω/□の範囲内となるように設定する必要があり、具体的には0.05〜1μmが好ましく、0.1〜1μmがより好ましい。
Examples of the transparent conductive metal oxide include indium tin oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO 2 ). The thickness of the transparent conductive metal oxide thin film needs to be set so that the surface resistance is in the range of 100 to 1000 Ω / □, specifically 0.05 to 1 μm is preferable , and 0.1 to 1 μm is more preferable. .

(2) 第二の電磁波吸収フィルム
第二の電磁波吸収フィルム110は、プラスチックフィルム10の一方の面に導電体層11を有し、導電体層11又はその反対側のプラスチック面に複数方向の線状痕12を有するものである。図2は導電体層11に線状痕12が形成された電磁波吸収フィルム110を示し、図3は導電体層11の反対側のプラスチック面に線状痕12が形成された電磁波吸収フィルム120を示す。本発明の電磁波吸収体は電磁波吸収フィルム120を有する。
(2) Second electromagnetic wave absorbing film
The second electromagnetic wave absorbing film 110 has a conductor layer 11 on one surface of the plastic film 10, and has linear traces 12 in a plurality of directions on the conductor layer 11 or on the opposite plastic surface. FIG. 2 shows an electromagnetic wave absorbing film 110 in which a linear mark 12 is formed on the conductor layer 11, and FIG. 3 shows an electromagnetic wave absorbing film 120 in which the linear mark 12 is formed on the plastic surface opposite to the conductive layer 11. Show. The electromagnetic wave absorber of the present invention has an electromagnetic wave absorbing film 120.

いずれの場合も、実質的に平行で断続的な線状痕12が複数方向に不規則な幅及び間隔で形成されている。図4は複数の線状痕12の一例を示す。導電体層11又はプラスチックフィルム10の他方の面(導電体層11を有さない面)に形成された多数の実質的に平行で断続的な線状痕12a,12bは複数方向(図示の例では二方向)に不規則な幅及び間隔で配向している。なお、説明のために図2及び図3では線状痕12の深さを誇張している。二方向に配向した線状痕12は種々の幅W及び間隔Iを有する。なお間隔Iは、線状痕12の配向方向(長手方向)及びそれに直交する方向(横手方向)の両方における間隔を意味する。線状痕12の幅W及び間隔Iはいずれも線状痕形成前のプラスチックフィルム10の表面Sの高さ(元の高さ)で求める。線状痕12が種々の幅W及び間隔Iを有するので、電磁波吸収フィルム1は広範囲にわたる周波数の電磁波を効率良く吸収することができる。   In any case, the substantially parallel and intermittent linear marks 12 are formed with irregular widths and intervals in a plurality of directions. FIG. 4 shows an example of a plurality of linear marks 12. A number of substantially parallel and intermittent linear marks 12a and 12b formed on the other surface of the conductor layer 11 or the plastic film 10 (the surface not having the conductor layer 11) are formed in a plurality of directions (example shown in the figure). In two directions) with irregular widths and intervals. For the sake of explanation, the depth of the linear mark 12 is exaggerated in FIGS. The linear traces 12 oriented in two directions have various widths W and intervals I. The interval I means an interval in both the alignment direction (longitudinal direction) of the linear marks 12 and the direction (lateral direction) perpendicular thereto. Both the width W and the interval I of the linear marks 12 are determined by the height (original height) of the surface S of the plastic film 10 before the linear marks are formed. Since the linear scar 12 has various widths W and intervals I, the electromagnetic wave absorbing film 1 can efficiently absorb electromagnetic waves having a wide range of frequencies.

線状痕12の幅Wの90%以上は0.1〜100μmの範囲内にあるのが好ましく、0.1〜50μmの範囲内にあるのがより好ましく、0.1〜20μmの範囲内にあるのが最も好ましい。線状痕12の平均幅Wavは1〜50μmであるのが好ましく、1〜20μmがより好ましく、1〜10μmが最も好ましい。   90% or more of the width W of the linear scar 12 is preferably in the range of 0.1 to 100 μm, more preferably in the range of 0.1 to 50 μm, and most preferably in the range of 0.1 to 20 μm. The average width Wav of the linear marks 12 is preferably 1 to 50 μm, more preferably 1 to 20 μm, and most preferably 1 to 10 μm.

線状痕12の間隔Iは0.1〜200μmの範囲内にあるのが好ましく、0.1〜100μmの範囲内にあるのがより好ましく、0.1〜50μmの範囲内にあるのが最も好ましく、0.1〜20μmの範囲内にあるのが特に好ましい。また線状痕12の平均間隔Iavは1〜100μmが好ましく、1〜50μmがより好ましく、1〜20μmが最も好ましい。   The interval I between the linear marks 12 is preferably in the range of 0.1 to 200 μm, more preferably in the range of 0.1 to 100 μm, most preferably in the range of 0.1 to 50 μm, and 0.1 to 20 μm. It is particularly preferred that it is within the range. The average interval Iav of the linear marks 12 is preferably 1 to 100 μm, more preferably 1 to 50 μm, and most preferably 1 to 20 μm.

線状痕12の長さLは、摺接条件(主としてロールとフィルムとの相対速度、及びフィルムのロールへの巻回角度)により決まるので、摺接条件を変えない限り大部分がほぼ同じである(ほぼ平均長さに等しい)。線状痕12の長さは特に限定的でなく、実用的には1〜100 mm程度で良い。   Since the length L of the linear mark 12 is determined by the sliding contact condition (mainly the relative speed between the roll and the film and the winding angle of the film on the roll), the length L is almost the same unless the sliding contact condition is changed. Yes (approximately equal to the average length). The length of the linear mark 12 is not particularly limited, and may be about 1 to 100 mm practically.

二方向の線状痕12a,12bの鋭角側の交差角(以下特に断りがなければ単に「交差角」とも言う)θsは30〜90°が好ましく、45〜90°がより好ましく、60〜90°が最も好ましい。プラスチックフィルム10とパターンロールとの摺接条件(摺接方向、周速比等)を調整することにより、図5(a)〜図5(c) に示すように種々の交差角θsの線状痕12が得られる。線状痕の配向は二方向に限定されず、三方向以上でも良い。図5(a) の線状痕12は直交する線状痕12a,12bからなり、図5(b) の線状痕12は60°で交差する線状痕12a,12bからなり、図5(c) の線状痕12は三方向の線状痕12a,12b,12cからなる。   The acute crossing angle (hereinafter also referred to simply as “crossing angle” unless otherwise specified) θs of the two-way linear marks 12a and 12b is preferably 30 to 90 °, more preferably 45 to 90 °, and 60 to 90 ° is most preferred. By adjusting the sliding contact conditions (sliding contact direction, peripheral speed ratio, etc.) between the plastic film 10 and the pattern roll, linear shapes with various crossing angles θs as shown in Fig. 5 (a) to Fig. 5 (c) Trace 12 is obtained. The alignment of the linear marks is not limited to two directions, and may be three or more directions. 5 (a) is composed of orthogonal line marks 12a and 12b, and the line mark 12 in FIG. 5 (b) is composed of line marks 12a and 12b intersecting at 60 °. The linear trace 12 of c) is composed of linear traces 12a, 12b and 12c in three directions.

(3) 第三の電磁波吸収フィルム
各電磁波吸収フィルムは複数の電磁波吸収フィルム片を組合せてなるものでも良い。例えば図6(a) に示す電磁波吸収フィルム130は、表面抵抗の異なる導電体層を有する3種類のストライプ状の電磁波吸収フィルム片100a’、100b’、100c’からなる。表面抵抗の異なる電磁波吸収フィルム片を組合せることにより、所望の表面抵抗の電磁波吸収フィルムと同等の機能を発揮させることができる。勿論組合せる電磁波吸収フィルム片の数は3枚に限らす、2枚でも4枚以上でも良い。好ましい組合せ例として、785Ω/□と500Ω/□と785Ω/□の組合せ、500Ω/□と300Ω/□と500Ω/□の組合せ、300Ω/□と250Ω/□と300Ω/□の組合せ、250Ω/□と500Ω/□と250Ω/□の組合せ等がある。各電磁波吸収フィルム片100a’、100b’、100c’の幅は2〜20 cmの範囲内にあるのが好ましい。
(3) Third electromagnetic wave absorbing film Each electromagnetic wave absorbing film may be a combination of a plurality of electromagnetic wave absorbing film pieces. For example, the electromagnetic wave absorbing film 130 shown in FIG. 6 (a) is composed of three types of striped electromagnetic wave absorbing film pieces 100a ′, 100b ′, and 100c ′ having conductor layers having different surface resistances. By combining the electromagnetic wave absorbing film pieces having different surface resistances, functions equivalent to those of the electromagnetic wave absorbing film having a desired surface resistance can be exhibited. Of course, the number of electromagnetic wave absorbing film pieces to be combined is limited to three, and may be two or four or more. Preferred combinations include 785Ω / □ and 500Ω / □ and 785Ω / □, 500Ω / □ and 300Ω / □ and 500Ω / □, 300Ω / □ and 250Ω / □ and 300Ω / □, 250Ω / □ And combinations of 500Ω / □ and 250Ω / □. The width of each electromagnetic wave absorbing film piece 100a ′, 100b ′, 100c ′ is preferably in the range of 2 to 20 cm.

また図6(b) に示すように、導電体層又はその反対側のプラスチック面に線状痕を形成した複数のストライプ状の電磁波吸収フィルム片12A、12B、12Cを組合せた電磁波吸収フィルム140も使用可能である。組合せの基準は、(a) 所望の表面抵抗の電磁波吸収フィルムと同等の機能を発揮させること、及び(b) 電磁波吸収能の異方性を低減するように線状痕の配向を異ならせることである。図6(a) の例と同様に、各電磁波吸収フィルム片12A、12B、12Cの幅は2〜20 cmの範囲内にあるのが好ましい。   Further, as shown in FIG. 6 (b), there is also an electromagnetic wave absorbing film 140 in which a plurality of striped electromagnetic wave absorbing film pieces 12A, 12B, and 12C in which linear traces are formed on the conductor layer or the plastic surface on the opposite side are combined. It can be used. The criteria for the combination are (a) exhibiting the same function as an electromagnetic wave absorbing film having a desired surface resistance, and (b) changing the orientation of the linear marks so as to reduce the anisotropy of the electromagnetic wave absorbing ability. It is. As in the example of FIG. 6 (a), the width of each electromagnetic wave absorbing film piece 12A, 12B, 12C is preferably in the range of 2 to 20 cm.

図6(c) は複数の長方形状の電磁波吸収フィルム片12A、12B、12Cを組合せてなる電磁波吸収フィルム150の例を示す。この場合も、組合せの基準は、(a) 所望の表面抵抗の電磁波吸収フィルムと同等の機能を発揮させること、及び(b) 電磁波吸収能の異方性を低減するように線状痕の配向を異ならせることである。   FIG. 6 (c) shows an example of an electromagnetic wave absorbing film 150 formed by combining a plurality of rectangular electromagnetic wave absorbing film pieces 12A, 12B, and 12C. In this case as well, the criteria for the combination are (a) exerting the same function as the electromagnetic wave absorbing film having a desired surface resistance, and (b) the alignment of the linear marks so as to reduce the anisotropy of the electromagnetic wave absorbing ability. Is different.

(4) 保護層
図7に示すように、導電体層11、及び線状痕12があればその面にそれぞれ保護層13a,13bを形成するのが好ましい。保護層13a,13bはプラスチックのハードコート又はフィルムであるのが好ましい。フィルムを用いる場合、熱ラミネート法又はドライラミネート法により接着するのが好ましい。プラスチックハードコートは、例えば光硬化性樹脂の塗布及び紫外線の照射により形成することができる。各保護層13a,13bの厚さは10〜100μm程度が好ましい。
(4) Protective layer As shown in FIG. 7, it is preferable to form protective layers 13a and 13b on the conductor layer 11 and the linear trace 12 if there are any. The protective layers 13a and 13b are preferably plastic hard coats or films. When using a film, it is preferable to adhere by a heat laminating method or a dry laminating method. The plastic hard coat can be formed, for example, by application of a photocurable resin and irradiation with ultraviolet rays. The thickness of each protective layer 13a, 13b is preferably about 10-100 μm.

[2] 線状痕の形成装置
図8(a)〜図8(e) はプラスチックフィルムに線状痕を二方向に形成する装置の一例を示す。線状痕は導電体層11及びプラスチック面のいずれにも形成でき、かつ導電体層11の形成の前後いずれでも良いので、説明の簡単化のために単にプラスチックフィルム10に線状痕を形成する場合を例にとって、線状痕の形成方法を説明する。なお、導電体層11を予め形成した市販のプラスチックフィルム10のプラスチック面(導電体層11と反対側の面)に線状痕を形成する場合、線状痕の形成中に導電体層11の損傷を防ぐために、導電体層11の上にオーバーコートを形成しておくのが好ましい。
[2] Apparatus for forming linear traces FIGS. 8 (a) to 8 (e) show an example of an apparatus for forming linear traces in two directions on a plastic film. The linear trace can be formed on either the conductor layer 11 or the plastic surface, and can be either before or after the formation of the conductor layer 11, so that the linear trace is simply formed on the plastic film 10 for simplicity of explanation. Taking a case as an example, a method of forming a linear trace will be described. In addition, when forming a linear trace in the plastic surface (surface on the opposite side to the conductive layer 11) of the commercially available plastic film 10 in which the conductive layer 11 has been formed in advance, the conductive layer 11 is formed during the formation of the linear trace. In order to prevent damage, it is preferable to form an overcoat on the conductor layer 11.

図示の装置は、(a) プラスチックフィルム10を巻き出すリール21と、(b) プラスチックフィルム10の幅方向に対して傾斜して配置された第一のパターンロール2aと、(c) 第一のパターンロール2aの上流側でそれと反対側に配置された第一の押えロール3aと、(d) プラスチックフィルム10の幅方向に関して第一のパターンロール2aと逆方向に傾斜し、かつ第一のパターンロール2aと同じ側に配置された第二のパターンロール2bと、(e) 第二のパターンロール2bの下流側でそれと反対側に配置された第二の押えロール3bと、(f) 線状痕付きプラスチックフィルム10’を巻き取るリール24とを有する。その他に、所定の位置に複数のガイドロール22,23が配置されている。各パターンロール2a,2bは、撓みを防止するためにバックアップロール(例えばゴムロール)5a,5bで支持されている。   The illustrated apparatus includes (a) a reel 21 for unwinding the plastic film 10, (b) a first pattern roll 2a disposed to be inclined with respect to the width direction of the plastic film 10, and (c) a first A first presser roll 3a disposed on the upstream side of the pattern roll 2a and on the opposite side thereof; and (d) a first pattern that is inclined in the direction opposite to the first pattern roll 2a with respect to the width direction of the plastic film 10. A second pattern roll 2b disposed on the same side as the roll 2a, (e) a second presser roll 3b disposed on the opposite side to the downstream side of the second pattern roll 2b, and (f) a linear shape. And a reel 24 for winding the plastic film 10 'with a mark. In addition, a plurality of guide rolls 22 and 23 are arranged at predetermined positions. Each pattern roll 2a, 2b is supported by backup rolls (for example, rubber rolls) 5a, 5b in order to prevent bending.

図8(c) に示すように、各パターンロール2a,2bとの摺接位置より低い位置で各押えロール3a,3bがプラスチックフィルム10に接するので、プラスチックフィルム10は各パターンロール2a,2bに押圧される。この条件を満たしたまま各押えロール3a,3bの高さを調整することにより、各パターンロール2a,2bへの押圧力を調整でき、また中心角θ1に比例する摺接距離も調整できる。 As shown in FIG. 8 (c), since the presser rolls 3a and 3b are in contact with the plastic film 10 at positions lower than the sliding contact positions with the pattern rolls 2a and 2b, the plastic film 10 is in contact with the pattern rolls 2a and 2b. Pressed. Each presser rolls 3a while satisfying this condition, by adjusting the height of 3b, each pattern roll 2a, can adjust the pressing force to 2b, also be adjusted even sliding contact distance which is proportional to the center angle theta 1.

図8(d) は線状痕12aがプラスチックフィルム10の進行方向に対して斜めに形成される原理を示す。プラスチックフィルム10の進行方向に対してパターンロール2aは傾斜しているので、パターンロール2a上の硬質微粒子の移動方向(回転方向)とプラスチックフィルム10の進行方向とは異なる。そこでXで示すように、任意の時点においてパターンロール2a上の点Aにおける硬質微粒子がプラスチックフィルム10と接触して痕Bが形成されたとすると、所定の時間後に硬質微粒子は点A’まで移動し、痕Bは点B’まで移動する。点Aから点A’まで硬質微粒子が移動する間、痕は連続的に形成されるので、点A’から点B’まで延在する線状痕12aが形成されたことになる。   FIG. 8 (d) shows the principle that the linear marks 12 a are formed obliquely with respect to the traveling direction of the plastic film 10. Since the pattern roll 2a is inclined with respect to the traveling direction of the plastic film 10, the moving direction (rotating direction) of the hard fine particles on the pattern roll 2a is different from the traveling direction of the plastic film 10. Therefore, as shown by X, if the hard fine particles at point A on the pattern roll 2a come into contact with the plastic film 10 to form a mark B at an arbitrary time, the hard fine particles move to point A ′ after a predetermined time. , Mark B moves to point B ′. While the hard fine particles move from the point A to the point A ′, the traces are continuously formed, so that a linear trace 12 a extending from the point A ′ to the point B ′ is formed.

第一及び第二のパターンロール2a,2bで形成される線状痕12a,12bの方向及び交差角θsは、各パターンロール2a,2bのプラスチックフィルム10に対する角度、及び/又はプラスチックフィルム10の走行速度に対する各パターンロール2a,2bの周速度を変更することにより調整することができる。例えば、プラスチックフィルム10の走行速度bに対するパターンロール2aの周速度aを増大させると、図8(d) のYで示すように線状痕12aを線分C’D’のようにプラスチックフィルム10の進行方向に対して45°にすることができる。同様に、プラスチックフィルム10の幅方向に対するパターンロール2aの傾斜角θ2を変えると、パターンロール2aの周速度aを変えることができる。これはパターンロール2bについても同様である。従って、両パターンロール2a,2bの調整により、線状痕12a,12bの方向を変更することができる。 The direction and the crossing angle θs of the linear marks 12a, 12b formed by the first and second pattern rolls 2a, 2b are the angles of the pattern rolls 2a, 2b with respect to the plastic film 10 and / or the travel of the plastic film 10. It can be adjusted by changing the peripheral speed of each pattern roll 2a, 2b with respect to the speed. For example, when the peripheral speed a of the pattern roll 2a is increased with respect to the traveling speed b of the plastic film 10, the linear mark 12a is represented by a line segment C′D ′ as shown by Y in FIG. 8 (d). It can be 45 ° with respect to the direction of travel. Similarly, when the inclination angle θ 2 of the pattern roll 2a with respect to the width direction of the plastic film 10 is changed, the peripheral speed a of the pattern roll 2a can be changed. The same applies to the pattern roll 2b. Therefore, the direction of the linear marks 12a and 12b can be changed by adjusting both the pattern rolls 2a and 2b.

各パターンロール2a,2bはプラスチックフィルム10に対して傾斜しているので、各パターンロール2a,2bとの摺接によりプラスチックフィルム10は幅方向の力を受ける。従って、プラスチックフィルム10の蛇行を防止するために、各パターンロール2a,2bに対する各押えロール3a,3bの高さ及び/又は角度を調整するのが好ましい。例えば、パターンロール2aの軸線と押えロール3aの軸線との交差角θ3を適宜調節すると、幅方向の力をキャンセルするように押圧力の幅方向分布が得られ、もって蛇行を防止することができる。またパターンロール2aと押えロール3aとの間隔の調整も蛇行の防止に寄与する。プラスチックフィルム10の蛇行及び破断を防止するために、プラスチックフィルム10の幅方向に対して傾斜した第一及び第二のパターンロール2a,2bの回転方向はプラスチックフィルム10の進行方向と同じであるのが好ましい。 Since each pattern roll 2a, 2b is inclined with respect to the plastic film 10, the plastic film 10 receives a force in the width direction by sliding contact with each pattern roll 2a, 2b. Therefore, in order to prevent the meandering of the plastic film 10, it is preferable to adjust the height and / or angle of each presser roll 3a, 3b with respect to each pattern roll 2a, 2b. For example, if the crossing angle θ 3 between the axis of the pattern roll 2a and the axis of the presser roll 3a is appropriately adjusted, a widthwise distribution of the pressing force is obtained so as to cancel the force in the widthwise direction, thereby preventing meandering. it can. Further, adjustment of the distance between the pattern roll 2a and the presser roll 3a also contributes to prevention of meandering. In order to prevent the meandering and breaking of the plastic film 10, the rotation directions of the first and second pattern rolls 2a, 2b inclined with respect to the width direction of the plastic film 10 are the same as the traveling direction of the plastic film 10. Is preferred.

プラスチックフィルム10に対するパターンロール2a,2bの押圧力を増大するために、図9に示すようにパターンロール2a,2bの間に第三の押えロール3cを設けても良い。第三の押えロール3cにより中心角θ1に比例するプラスチックフィルム10の摺接距離も増大し、線状痕12a,12bは長くなる。第三の押えロール3cの位置及び傾斜角を調整すると、プラスチックフィルム10の蛇行の防止にも寄与できる。 In order to increase the pressing force of the pattern rolls 2a and 2b on the plastic film 10, a third presser roll 3c may be provided between the pattern rolls 2a and 2b as shown in FIG. Sliding length of the plastic film 10 which is proportional to the center angle theta 1 by a third pressing roll 3c also increases, linear scratches 12a, 12b becomes longer. Adjusting the position and inclination angle of the third presser roll 3c can also contribute to prevention of meandering of the plastic film 10.

図10は、図5(c) に示すように三方向に配向した線状痕を形成する装置の一例を示す。この装置は、第二のパターンロール2bの下流にプラスチックフィルム10の幅方向と平行な第三のパターンロール2cを配置した点で図8(a)〜図8(e) に示す装置と異なる。第三のパターンロール2cの回転方向はプラスチックフィルム10の進行方向と同じでも逆でも良いが、線状痕を効率よく形成するために逆方向が好ましい。幅方向と平行に配置された第三のパターンロール2cはプラスチックフィルム10の進行方向に延在する線状痕12cを形成する。第三の押えロール3dは第三のパターンロール2cの上流側に設けられているが、下流側でも良い。なお図示の例に限定されず、第三のパターンロール2cを第一のパターンロール2aの上流側、又は第一及び第二のパターンロール2a、2bの間に設けても良い。   FIG. 10 shows an example of an apparatus for forming linear traces oriented in three directions as shown in FIG. 5 (c). This apparatus differs from the apparatus shown in FIGS. 8 (a) to 8 (e) in that a third pattern roll 2c parallel to the width direction of the plastic film 10 is disposed downstream of the second pattern roll 2b. The rotation direction of the third pattern roll 2c may be the same as or opposite to the traveling direction of the plastic film 10, but the reverse direction is preferable in order to efficiently form linear marks. The third pattern roll 2c arranged in parallel with the width direction forms a linear mark 12c extending in the traveling direction of the plastic film 10. The third presser roll 3d is provided on the upstream side of the third pattern roll 2c, but may be provided on the downstream side. The third pattern roll 2c may be provided upstream of the first pattern roll 2a or between the first and second pattern rolls 2a and 2b without being limited to the illustrated example.

図11は、四方向に配向した線状痕を形成する装置の一例を示す。この装置は、第二のパターンロール2bと第三のパターンロール2cとの間に第四のパターンロール2dを設け、第四のパターンロール2dの上流側に第四の押えロール3eを設けた点で図10に示す装置と異なる。第四のパターンロール2dの回転速度を遅くすることにより、図8(d) においてZで示すように、線状痕12a'の方向(線分E’F’)をプラスチックフィルム10の幅方向と平行にすることができる。   FIG. 11 shows an example of an apparatus for forming linear traces oriented in four directions. This apparatus is provided with a fourth pattern roll 2d between the second pattern roll 2b and the third pattern roll 2c, and a fourth presser roll 3e provided upstream of the fourth pattern roll 2d. This is different from the apparatus shown in FIG. By reducing the rotational speed of the fourth pattern roll 2d, the direction of the line mark 12a ′ (the line segment E′F ′) is changed to the width direction of the plastic film 10 as indicated by Z in FIG. 8 (d). Can be parallel.

図12は、図5(a)に示すように直交する線状痕を形成する装置の別の例を示す。この装置は、第二のパターンロール32bがプラスチックフィルム10の幅方向と平行に配置されている点で図8(a)〜図8(e) に示す装置と異なる。従って、図8(a)〜図8(e) に示す装置と異なる部分のみ以下説明する。第二のパターンロール32bの回転方向はプラスチックフィルム10の進行方向と同じでも逆でも良い。また第二の押えロール33bは第二のパターンロール32bの上流側でも下流側でも良い。この装置は、図8(d) においてZで示すように、線状痕12a'の方向(線分E’F’)をフィルム10の幅方向にし、直交する線状痕を形成するのに適している。   FIG. 12 shows another example of an apparatus for forming orthogonal linear marks as shown in FIG. 5 (a). This apparatus is different from the apparatuses shown in FIGS. 8 (a) to 8 (e) in that the second pattern roll 32b is arranged in parallel with the width direction of the plastic film 10. FIG. Accordingly, only the parts different from the apparatus shown in FIGS. 8 (a) to 8 (e) will be described below. The rotation direction of the second pattern roll 32b may be the same as or opposite to the traveling direction of the plastic film 10. The second presser roll 33b may be on the upstream side or the downstream side of the second pattern roll 32b. As shown by Z in FIG. 8 (d), this apparatus is suitable for forming linear traces orthogonal to the direction of the linear trace 12a '(line segment E'F') in the width direction of the film 10. ing.

線状痕の傾斜角及び交差角だけでなく、それらの深さ、幅、長さ及び間隔を決める運転条件は、プラスチックフィルム10の走行速度、パターンロールの回転速度及び傾斜角及び押圧力等である。フィルムの走行速度は5〜200 m/分が好ましく、パターンロールの周速は10〜2,000 m/分が好ましい。パターンロールの傾斜角θ2は20°〜60°が好ましく、特に約45°が好ましい。フィルム10の張力(押圧力に比例する)は0.05〜5 kgf/cm幅が好ましい。 The operating conditions that determine the depth, width, length, and spacing of the line marks as well as the inclination angle and crossing angle of the linear traces are the traveling speed of the plastic film 10, the rotational speed and inclination angle of the pattern roll, and the pressing force. is there. The running speed of the film is preferably 5 to 200 m / min, and the peripheral speed of the pattern roll is preferably 10 to 2,000 m / min. The inclination angle θ 2 of the pattern roll is preferably 20 ° to 60 °, particularly about 45 °. The tension (proportional to the pressing force) of the film 10 is preferably 0.05 to 5 kgf / cm width.

パターンロールは、鋭い角部を有するモース硬度5以上の微粒子を表面に有するロール、例えば特開2002-59487号に記載されているダイヤモンドロールが好ましい。線状痕の幅は微粒子の粒径により決まるので、ダイヤモンド微粒子の90%以上は1〜100μmの範囲内の粒径を有するのが好ましく、10〜50μmの範囲内の粒径がより好ましい。ダイヤモンド微粒子はロール面に30%以上の面積率で付着しているのが好ましい。   The pattern roll is preferably a roll having fine particles with a Mohs hardness of 5 or more having sharp corners on its surface, such as a diamond roll described in JP-A-2002-59487. Since the width of the linear mark is determined by the particle size of the fine particles, 90% or more of the diamond fine particles preferably have a particle size in the range of 1 to 100 μm, and more preferably in the range of 10 to 50 μm. The diamond fine particles are preferably attached to the roll surface at an area ratio of 30% or more.

[3] 電磁波吸収体
本発明の電磁波吸収体は、電磁波反射体の前に複数枚の電磁波吸収フィルム(プラスチックフィルム側に不規則な幅及び間隔で実質的に平行な多数の断続的な線状痕が複数方向に形成されている。)を誘電体を介して積層してなり、各電磁波吸収フィルムの導電体層は100〜1000Ω/□の範囲内の表面抵抗を有し、かつ最前の電磁波吸収フィルムの導電体層の表面抵抗はその次の電磁波吸収フィルムの導電体層の表面抵抗より100Ω/□以上大きい。各電磁波吸収フィルムの導電体層の表面抵抗は200〜1000Ω/□が好ましく、250〜800Ω/□がより好ましく、また隣接する電磁波吸収フィルムの表面抵抗の差は200Ω/□以上が好ましく、300Ω/□以上がより好ましい。
[3] Electromagnetic wave absorber The electromagnetic wave absorber of the present invention comprises a plurality of electromagnetic wave absorbing films (a number of intermittent linear shapes substantially parallel to the plastic film with irregular widths and intervals ) in front of the electromagnetic wave reflector. And a conductive layer of each electromagnetic wave absorbing film has a surface resistance in the range of 100 to 1000 Ω / □, and The surface resistance of the conductor layer of the electromagnetic wave absorbing film is 100 Ω / □ or more larger than the surface resistance of the conductor layer of the next electromagnetic wave absorbing film. The surface resistance of the conductor layer of each electromagnetic wave absorbing film is preferably 200 to 1000Ω / □, more preferably 250 to 800Ω / □, and the difference in surface resistance between adjacent electromagnetic wave absorbing films is preferably 200Ω / □ or more , and 300Ω / □. □ or more is more preferable.

誘電体はプラスチックの板、発泡体、ハニカム構造体等が好ましい。電磁波吸収フィルムの枚数及び線状痕の有無に関係なく、隣接する電磁波吸収フィルムの間隔及び電磁波吸収フィルムと電磁波反射体との間隔を決める誘電体の合計厚さは、吸収すべき電磁波の波長λに対して、一般にλ/8〜λ/4を含む範囲であるのが好ましい。吸収すべき電磁波の周波数が小さいとき(例えば2.5 GHz)誘電体の合計厚さはλ/4が好ましいが、吸収すべき電磁波の周波数が大きいとき(例えば5.8 GHz)、誘電体の合計厚さはλ/8が好ましい。一般には、λ/8〜λ/4の範囲に対して±40%の許容範囲があり、好ましくは±20%の許容範囲であり、より好ましくは±10%の許容範囲である。   The dielectric is preferably a plastic plate, foam, honeycomb structure or the like. Regardless of the number of electromagnetic wave absorbing films and the presence or absence of linear marks, the total thickness of the dielectrics that determine the distance between adjacent electromagnetic wave absorbing films and the distance between the electromagnetic wave absorbing film and the electromagnetic wave reflector is the wavelength λ of the electromagnetic wave to be absorbed. On the other hand, it is generally preferable that the range includes λ / 8 to λ / 4. When the frequency of the electromagnetic wave to be absorbed is small (for example, 2.5 GHz), the total thickness of the dielectric is preferably λ / 4, but when the frequency of the electromagnetic wave to be absorbed is large (for example, 5.8 GHz), the total thickness of the dielectric is λ / 8 is preferred. In general, there is an allowable range of ± 40% with respect to the range of λ / 8 to λ / 4, preferably an allowable range of ± 20%, and more preferably an allowable range of ± 10%.

(1) 電磁波吸収体の一例
図13及び図14に示す電磁波吸収体は、電磁波反射体200の前に2枚の電磁波吸収フィルム100a,100bを誘電体を介して積層してなる。この電磁波吸収体は、第一の電磁波吸収フィルム100a/誘電体30a/第二の電磁波吸収フィルム100b/誘電体30b/電磁波反射体200の層構成を有する。各電磁波吸収フィルム100a,100bの導電体層11a,11bはプラスチックフィルム10の同じ側にあっても反対側にあっても良い。本発明では、(a) 第一及び第二の電磁波吸収フィルム100a,100bの導電体層11a,11bの表面抵抗は100〜1000Ω/□の範囲内にあり、かつ(b) 導電体層11aの表面抵抗は導電体層11bの表面抵抗より100Ω/□以上大きい必要がある。すなわち、導電体層11aの表面抵抗は200〜1000Ω/□の範囲内で、導電体層11bの表面抵抗は100〜900Ω/□の範囲内であり、かつ導電体層11aの表面抵抗は導電体層11bの表面抵抗より100Ω/□以上大きい。条件(a) 及び(b) を同時に満たさないと、高い電磁波吸収能を有さない。導電体層11a及び11bの表面抵抗は200〜1000Ω/□が好ましく、250〜800Ω/□がより好ましい。また導電体層11aの表面抵抗は導電体層11bの表面抵抗より200Ω/□以上大きいのが好ましく、300Ω/□以上大きいのがより好ましい。
(1) Example of Electromagnetic Wave Absorber The electromagnetic wave absorber shown in FIGS. 13 and 14 is formed by laminating two electromagnetic wave absorbing films 100a and 100b in front of the electromagnetic wave reflector 200 via a dielectric. This electromagnetic wave absorber has a layer structure of first electromagnetic wave absorption film 100a / dielectric 30a / second electromagnetic wave absorption film 100b / dielectric 30b / electromagnetic wave reflector 200. The conductor layers 11a and 11b of the electromagnetic wave absorbing films 100a and 100b may be on the same side or opposite sides of the plastic film 10. In the present invention, (a) the surface resistance of the conductor layers 11a and 11b of the first and second electromagnetic wave absorbing films 100a and 100b is in the range of 100 to 1000 Ω / □, and (b) the conductor layer 11a The surface resistance needs to be 100 Ω / □ or more larger than the surface resistance of the conductor layer 11b. That is, the surface resistance of the conductor layer 11a is in the range of 200 to 1000 Ω / □, the surface resistance of the conductor layer 11b is in the range of 100 to 900 Ω / □, and the surface resistance of the conductor layer 11a is 100 Ω / □ or more larger than the surface resistance of the conductor layer 11b. If the conditions (a) and (b) are not satisfied at the same time, high electromagnetic wave absorbing ability is not obtained. The surface resistance of the conductor layers 11a and 11b is preferably 200 to 1000Ω / □, and more preferably 250 to 800Ω / □. Also it is preferable surface resistance than 200 [Omega / □ or greater surface resistance of the conductive layer 11a is electrically conductive layer 11b, and more preferably 300 [Omega / □ or greater.

誘電体30aの厚さは第一の電磁波吸収フィルム100aと第二の電磁波吸収フィルム100bとの間隔D1を決め、誘電体30bの厚さは第二の電磁波吸収フィルム100aと電磁波反射体200との間隔D2を決める。間隔D1/間隔D2の比は100:30〜100:70である。上記条件(a) 及び(b) を満たすとともに、間隔D1/間隔D2の比がこの範囲内である場合に、最も高い電磁波吸収能が得られる。間隔D1/間隔D2の比は100:40〜100:60が好ましく、100:45〜100:55がより好ましく、理想的には100:50である。
The thickness of the dielectric 30a knocked spacing D 1 of the the first electromagnetic wave absorbing film 100a and a second electromagnetic wave absorbing film 100b, the thickness of the dielectric 30b and the second electromagnetic wave absorption film 100a and an electromagnetic wave reflector 200 determine the distance D 2. The ratio of the distance D 1 / spacing D 2 is 100: 30 to 100: 70. When the above conditions (a) and (b) are satisfied and the ratio of the distance D 1 / the distance D 2 is within this range, the highest electromagnetic wave absorbing ability can be obtained. The ratio of the distance D 1 / the distance D 2 is preferably 100: 40 to 100: 60, more preferably 100: 45 to 100: 55, and ideally 100: 50.

第一及び第二の電磁波吸収フィルムには、導電体層の反対側に線状痕が形成されている。図15に示すように線状痕12が電磁波吸収フィルム110a,110bの導電体層11a,11bの側に形成されている場合、及び図16に示すように線状痕12が電磁波吸収フィルム120a,120bのプラスチック面に形成されている場合のいずれも、上記条件(a) 及び(b) を満たす必要があり、かつ間隔D1/間隔D2の比は上記範囲内である必要がある。線状痕が形成されている場合も、導電体層11a及び11bの表面抵抗は100〜1000Ω/□であり、200〜1000Ω/□が好ましく、250〜800Ω/□がより好ましく、また導電体層11aの表面抵抗は導電体層11bの表面抵抗より100Ω/□以上大きく、200Ω/□以上大きいのが好ましく、300Ω/□以上大きいのがより好ましい。
In the first and second electromagnetic wave absorbing films, linear marks are formed on the opposite side of the conductor layer. As shown in FIG. 15, when the linear scar 12 is formed on the side of the conductor layers 11a, 11b of the electromagnetic wave absorbing films 110a, 110b, and as shown in FIG. 16, the linear scar 12 is an electromagnetic wave absorbing film 120a, In any case where it is formed on the plastic surface of 120b, the above conditions (a) and (b) must be satisfied, and the ratio of the distance D 1 / the distance D 2 needs to be within the above range. Sometimes linear scratches are formed, the surface resistance of the conductive layer 11a and 11b are 100~1000Ω / □, preferably 200~1000Ω / □, 250~800Ω / □, more preferably, also the conductive layer 11a surface resistance conductor layer 11b increases 100 [Omega / □ or higher than the surface resistance of, is preferably 200 [Omega / □ or greater, more preferably 300 [Omega / □ or greater.

図15に示す場合、線状痕12により電磁波吸収フィルム110a,110bの導電体層11a,11bの表面抵抗を調整でき、かつ線状痕12のギャップで電磁波が減衰するという利点が得られる。また図16に示す場合、電磁波吸収フィルム120a,120bの導電体層11a,11bの透明性が線状痕12により影響されないという利点が得られる。図15及び図16のいずれの場合も、図17に示すように第一の電磁波吸収フィルム110a(120a)/誘電体30a/第二の電磁波吸収フィルム110b(120b)/誘電体30b/電磁波反射体200の層構成を有する。   In the case shown in FIG. 15, the surface resistance of the conductor layers 11a and 11b of the electromagnetic wave absorbing films 110a and 110b can be adjusted by the linear trace 12, and the electromagnetic wave is attenuated by the gap of the linear trace 12. Further, in the case shown in FIG. 16, there is an advantage that the transparency of the conductor layers 11a and 11b of the electromagnetic wave absorbing films 120a and 120b is not affected by the linear marks 12. In both cases of FIGS. 15 and 16, as shown in FIG. 17, the first electromagnetic wave absorbing film 110a (120a) / dielectric 30a / second electromagnetic wave absorbing film 110b (120b) / dielectric 30b / electromagnetic wave reflector It has 200 layer structure.

図18(a) 及び図18(b) は電磁波吸収体を構成する2枚の電磁波吸収フィルムの線状痕の組合せ例を示す。2枚の電磁波吸収フィルム110a(120a),110b(120b)の線状痕の配向及び交差角θsを吸収すべき周波数に応じて変えることにより、電磁波吸収能の異方性が低減し、優れた電磁波吸収能が得られる。例えば、線状痕の交差角θsが60°だと電界吸収能に優れた電磁波吸収フィルムが得られ、線状痕の交差角θsが90°だと磁界吸収能に優れた電磁波吸収フィルムが得られる。従って、例えば線状痕の交差角θsが60°の第一の電磁波吸収フィルム110a(120a)と線状痕の交差角θsが90°の第二の電磁波吸収フィルム110b(120b)とを組合せてなる図18(c) の電磁波吸収体は、電界吸収能及び磁界吸収能の両方に優れている。   FIG. 18 (a) and FIG. 18 (b) show examples of combinations of linear traces of two electromagnetic wave absorbing films constituting the electromagnetic wave absorber. By changing the orientation of the linear traces and the crossing angle θs of the two electromagnetic wave absorbing films 110a (120a) and 110b (120b) according to the frequency to be absorbed, the anisotropy of the electromagnetic wave absorbing ability is reduced and excellent. Electromagnetic wave absorption ability is obtained. For example, if the crossing angle θs of linear traces is 60 °, an electromagnetic wave absorbing film having excellent electric field absorption ability can be obtained, and if the crossing angle θs of linear traces is 90 °, an electromagnetic wave absorbing film having excellent magnetic field absorption ability can be obtained. It is done. Therefore, for example, the first electromagnetic wave absorbing film 110a (120a) having a crossing angle θs of linear traces of 60 ° and the second electromagnetic wave absorbing film 110b (120b) having a crossing angle θs of linear traces of 90 ° are combined. The electromagnetic wave absorber shown in FIG. 18 (c) is excellent in both electric field absorption ability and magnetic field absorption ability.

(2) 電磁波吸収体の別の例
図19及び図20に示す電磁波吸収体は、電磁波反射体200の前に3枚の電磁波吸収フィルム100a,100b,100cを誘電体30a,30b,30cを介して積層してなる。この電磁波吸収体は、第一の電磁波吸収フィルム100a/誘電体30a/第二の電磁波吸収フィルム100b/誘電体30b/第三の電磁波吸収フィルム100c/誘電体30c/電磁波反射体200の層構成を有する。各電磁波吸収フィルム100a,100b,100cの導電体層11a,11b,11cは全てプラスチックフィルム10の同じ側にあっても反対側にあっても良い。本発明では、(a) 第一〜第三の電磁波吸収フィルム100a,100b,100cの導電体層11a,11b,11cの表面抵抗は100〜1000Ω/□の範囲内にあり、かつ(b) 導電体層11aの表面抵抗は導電体層11bの表面抵抗より100Ω/□以上大きい必要がある。条件(a) 及び(b) を同時に満たさないと、高い電磁波吸収能を有さない。各導電体層11a,11b,11cの表面抵抗は200〜1000Ω/□が好ましく、250〜800Ω/□がより好ましい。また導電体層11aの表面抵抗は導電体層11bの表面抵抗より200Ω/□以上大きいのが好ましく、300Ω/□以上大きいのがより好ましい。さらに導電体層11cの表面抵抗は導電体層11bの表面抵抗より50Ω/□以上大きいのが好ましく、100Ω/□以上大きいのがより好ましく、200Ω/□以上大きいのが最も好ましく、300Ω/□以上大きいのが特に好ましい。導電体層11cの表面抵抗は導電体層11aの表面抵抗と同じで良い。
(2) Another Example of Electromagnetic Wave Absorber The electromagnetic wave absorber shown in FIGS. 19 and 20 has three electromagnetic wave absorbing films 100a, 100b, and 100c placed in front of the electromagnetic wave reflector 200 through dielectrics 30a, 30b, and 30c. And laminated. This electromagnetic wave absorber has a layer structure of a first electromagnetic wave absorbing film 100a / dielectric 30a / second electromagnetic wave absorbing film 100b / dielectric 30b / third electromagnetic wave absorbing film 100c / dielectric 30c / electromagnetic wave reflector 200. Have. The conductor layers 11a, 11b, and 11c of the electromagnetic wave absorbing films 100a, 100b, and 100c may all be on the same side or the opposite side of the plastic film 10. In the present invention, (a) the surface resistance of the conductor layers 11a, 11b, 11c of the first to third electromagnetic wave absorbing films 100a, 100b, 100c is in the range of 100-1000 Ω / □, and (b) The surface resistance of the conductor layer 11a needs to be 100 Ω / □ or more larger than the surface resistance of the conductor layer 11b. If the conditions (a) and (b) are not satisfied at the same time, high electromagnetic wave absorbing ability is not obtained. The surface resistance of each conductor layer 11a, 11b, 11c is preferably 200 to 1000Ω / □, and more preferably 250 to 800Ω / □. Also it is preferable surface resistance than 200 [Omega / □ or greater surface resistance of the conductive layer 11a is electrically conductive layer 11b, and more preferably 300 [Omega / □ or greater. Furthermore, the surface resistance of the conductor layer 11c is preferably 50Ω / □ or more larger than the surface resistance of the conductor layer 11b, more preferably 100Ω / □ or more, most preferably 200Ω / □ or more, most preferably 300Ω / □ or more. Large is particularly preferred. The surface resistance of the conductor layer 11c may be the same as the surface resistance of the conductor layer 11a.

誘電体30aの厚さは第一の電磁波吸収フィルム100aと第二の電磁波吸収フィルム100bとの間隔D1を決め、誘電体30bの厚さは第二の電磁波吸収フィルム100aと第三の電磁波吸収フィルム100cとの間隔D2を決め、誘電体30cの厚さは第三の電磁波吸収フィルム100cと電磁波反射体200との間隔D3を決める。間隔D1/間隔D2の比は100:30〜100:70である。間隔D3/間隔D2の比も100:30〜100:70であるのが好ましい。上記条件(a) 及び(b) を満たすとともに、間隔D1/間隔D2の比、及び間隔D3/間隔D2の比がこれらの範囲内である場合に、最も高い電磁波吸収能が得られる。間隔D1/間隔D2の比は100:40〜100:60が好ましく、100:45〜100:55がより好ましく、理想的には100:50である。間隔D3/間隔D2の比も100:40〜100:60がより好ましく、100:45〜100:55が最も好ましく、理想的には100:50である。間隔D1と間隔D3は同じで良い。
The thickness of the dielectric 30a knocked spacing D 1 of the the first electromagnetic wave absorbing film 100a and a second electromagnetic wave absorbing film 100b, the thickness of the dielectric 30b is a second electromagnetic wave absorbing film 100a and a third electromagnetic wave absorbing determining the distance D 2 between the film 100c, the thickness of the dielectric 30c determines the distance D 3 between the third electromagnetic wave absorbing film 100c and the electromagnetic wave reflector 200. The ratio of the interval D 1 / the interval D 2 is 100: 30 to 100: 70 . The ratio of the distance D 3 / the distance D 2 is also preferably 100: 30 to 100: 70. When the above conditions (a) and (b) are satisfied and the ratio of the distance D 1 / the distance D 2 and the ratio of the distance D 3 / the distance D 2 are within these ranges, the highest electromagnetic wave absorption ability is obtained. It is done. The ratio of the distance D 1 / the distance D 2 is preferably 100: 40 to 100: 60, more preferably 100: 45 to 100: 55, and ideally 100: 50. The ratio of the distance D 3 / the distance D 2 is more preferably 100: 40 to 100: 60, most preferably 100: 45 to 100: 55, and ideally 100: 50. Distance D 1 and the distance D 3 may be the same.

第一〜第三の電磁波吸収フィルムには、導電体層の反対側に線状痕が形成されている。図21に示すように線状痕12が電磁波吸収フィルム110a,110b,110cの導電体層11a,11b,11cの側に形成されている場合、及び図22に示すように線状痕12が電磁波吸収フィルム120a,120b,120cのプラスチック面に形成されている場合のいずれも、上記条件(a) 及び(b) を満たす必要があり、かつ間隔D1/間隔D2の比は上記範囲内である。間隔D3/間隔D2の比上記範囲内であるのが好ましい。図21に示す場合、線状痕12により電磁波吸収フィルム110a,110b,110cの導電体層11a,11b,11cの表面抵抗を調整でき、かつ線状痕12のギャップで電磁波が減衰するという利点が得られる。また図22に示す場合、電磁波吸収フィルム120a,120bの導電体層11a,11b,11cの透明性が線状痕12により影響されないという利点が得られる。図21及び図22のいずれの場合も、図23に示すように第一の電磁波吸収フィルム110a(120a)/誘電体30a/第二の電磁波吸収フィルム110b(120b)/誘電体30b/第三の電磁波吸収フィルム110c(120c)/誘電体30c/電磁波反射体200の層構成を有する。
In the first to third electromagnetic wave absorbing films, linear marks are formed on the opposite side of the conductor layer. When the linear trace 12 is formed on the side of the conductor layers 11a, 11b, and 11c of the electromagnetic wave absorbing films 110a, 110b, and 110c as shown in FIG. 21, and the linear trace 12 is an electromagnetic wave as shown in FIG. In any case where the films are formed on the plastic surfaces of the absorbent films 120a, 120b, 120c, the above conditions (a) and (b) must be satisfied, and the ratio of the distance D 1 / the distance D 2 is within the above range. is there. The ratio of the distance D 3 / the distance D 2 is also preferably within the above range. In the case shown in FIG. 21, the surface resistance of the conductive layers 11a, 11b, and 11c of the electromagnetic wave absorbing films 110a, 110b, and 110c can be adjusted by the linear trace 12, and the electromagnetic wave is attenuated by the gap of the linear trace 12 can get. Further, in the case shown in FIG. 22, there is an advantage that the transparency of the conductor layers 11a, 11b, 11c of the electromagnetic wave absorbing films 120a, 120b is not affected by the linear marks 12. In both cases of FIGS. 21 and 22, as shown in FIG. 23, the first electromagnetic wave absorbing film 110a (120a) / dielectric 30a / second electromagnetic wave absorbing film 110b (120b) / dielectric 30b / third It has a layer structure of electromagnetic wave absorbing film 110c (120c) / dielectric 30c / electromagnetic wave reflector 200.

線状痕12が形成されている場合も、各導電体層11a,11b,11cの表面抵抗は100〜1000Ω/□であり、200〜1000Ω/□が好ましく、250〜800Ω/□がより好ましく、また導電体層11aの表面抵抗は導電体層11bの表面抵抗より100Ω/□以上大きく、200Ω/□以上大きいのが好ましく、300Ω/□以上大きいのがより好ましい。さらに導電体層11cの表面抵抗は導電体層11bの表面抵抗より50Ω/□以上大きいのが好ましく、100Ω/□以上大きいのがより好ましく、200Ω/□以上大きいのが最も好ましく、300Ω/□以上大きいのが特に好ましい。導電体層11cの表面抵抗は導電体層11aの表面抵抗と同じで良い。
Sometimes linear scratches 12 are formed, each conductive layer 11a, 11b, the surface resistance of 11c is 100~1000Ω / □, preferably 200~1000Ω / □, 250~800Ω / □, more preferably, the surface resistance of the conductive layer 11a is greater 100 Omega / □ or higher than the surface resistance of the conductive layer 11b, is preferably 200 [Omega / □ or greater, more preferably 300 [Omega / □ or greater. Furthermore, the surface resistance of the conductor layer 11c is preferably 50Ω / □ or more larger than the surface resistance of the conductor layer 11b, more preferably 100Ω / □ or more, most preferably 200Ω / □ or more, most preferably 300Ω / □ or more. Large is particularly preferred. The surface resistance of the conductor layer 11c may be the same as the surface resistance of the conductor layer 11a.

図24(a)〜図24(f) は電磁波吸収体を構成する3枚の電磁波吸収フィルムの線状痕の組合せ例を示す。3枚の電磁波吸収フィルム110a(120a),110b(120b),110c(120c)の線状痕の交差角θsを吸収すべき周波数に応じて変えることにより、優れた電磁波吸収能が得られる。   FIG. 24 (a) to FIG. 24 (f) show examples of combinations of linear marks of three electromagnetic wave absorbing films constituting the electromagnetic wave absorber. By changing the crossing angle θs of the linear marks of the three electromagnetic wave absorbing films 110a (120a), 110b (120b), and 110c (120c) according to the frequency to be absorbed, excellent electromagnetic wave absorbing ability can be obtained.

図24(a) に示す例では、第一及び第三の電磁波吸収フィルム110a(120a),110c(120c)における線状痕の交差角θsは60°であり、第二の電磁波吸収フィルム110b(120b)における線状痕の交差角θsは90°である。線状痕の交差角θsが60°だと電界吸収能に優れた電磁波吸収フィルムが得られ、線状痕の交差角θsが90°だと磁界吸収能に優れた電磁波吸収フィルムが得られるので、図24(a) の電磁波吸収体は、電界吸収能及び磁界吸収能の両方に優れている。図24(b) に示す例では逆に、第一及び第三の電磁波吸収フィルム110a(120a),110c(120c)における線状痕の交差角θsは90°であり、第二の電磁波吸収フィルム110b(120b)における線状痕の交差角θsは60°である。この例の電磁波吸収体も電界吸収能及び磁界吸収能の両方に優れている。   In the example shown in FIG. 24 (a), the crossing angle θs of the linear marks in the first and third electromagnetic wave absorbing films 110a (120a) and 110c (120c) is 60 °, and the second electromagnetic wave absorbing film 110b ( The crossing angle θs of the linear marks in 120b) is 90 °. When the crossing angle θs of the linear marks is 60 °, an electromagnetic wave absorbing film having excellent electric field absorption ability is obtained. When the crossing angle θs of the linear marks is 90 °, an electromagnetic wave absorbing film having excellent magnetic field absorption ability is obtained. The electromagnetic wave absorber shown in FIG. 24 (a) is excellent in both electric field absorption ability and magnetic field absorption ability. In the example shown in FIG. 24 (b), conversely, the crossing angle θs of the linear marks in the first and third electromagnetic wave absorbing films 110a (120a) and 110c (120c) is 90 °, and the second electromagnetic wave absorbing film The crossing angle θs of the linear marks at 110b (120b) is 60 °. The electromagnetic wave absorber of this example is also excellent in both electric field absorption capability and magnetic field absorption capability.

図24(c) に示す例では、第一〜第三の電磁波吸収フィルム110a(120a),110b(120b),110c(120c)における線状痕の交差角θsは全て90°である。この場合、第一及び第三の電磁波吸収フィルム110a(120a),110c(120c)における線状痕と第二の電磁波吸収フィルム110b(120b)における線状痕とは45°で交差しているのが好ましい。この例の電磁波吸収体は優れた磁界吸収能を有する。   In the example shown in FIG. 24 (c), the crossing angles θs of the linear marks in the first to third electromagnetic wave absorbing films 110a (120a), 110b (120b), and 110c (120c) are all 90 °. In this case, the linear scars in the first and third electromagnetic wave absorbing films 110a (120a) and 110c (120c) intersect with the linear scars in the second electromagnetic wave absorbing film 110b (120b) at 45 °. Is preferred. The electromagnetic wave absorber of this example has an excellent magnetic field absorption ability.

図24(d) に示す例では、第一〜第三の電磁波吸収フィルム110a(120a),110b(120b),110c(120c)における線状痕の交差角θsは全て60°である。この場合、第一及び第三の電磁波吸収フィルム110a(120a),110c(120c)における線状痕の方向と第二の電磁波吸収フィルム110b(120b)における線状痕の方向とは直交しているのが好ましい。この例の電磁波吸収体は優れた電界吸収能を有する。   In the example shown in FIG. 24 (d), the crossing angles θs of the linear marks in the first to third electromagnetic wave absorbing films 110a (120a), 110b (120b), and 110c (120c) are all 60 °. In this case, the direction of the linear marks in the first and third electromagnetic wave absorbing films 110a (120a) and 110c (120c) is orthogonal to the direction of the linear marks in the second electromagnetic wave absorbing film 110b (120b). Is preferred. The electromagnetic wave absorber of this example has an excellent electric field absorption ability.

図24(e) 及び図24(f) に示す例では、線状痕の交差角θsが90°の電磁波吸収フィルムと線状痕の交差角θsが45°の電磁波吸収フィルムとの組合せである。線状痕の交差角θsが60°の電磁波吸収フィルムの代わりに線状痕の交差角θsが45°の電磁波吸収フィルムを用いても、良好な電界吸収能及び磁界吸収能を有する電磁波吸収体が得られる。   In the example shown in FIG. 24 (e) and FIG. 24 (f), a combination of an electromagnetic wave absorbing film having a linear trace crossing angle θs of 90 ° and an electromagnetic wave absorbing film having a linear trace crossing angle θs of 45 ° is used. . Even if an electromagnetic wave absorbing film having a crossing angle θs of 45 degrees is used instead of an electromagnetic wave absorbing film having a line mark crossing angle θs of 60 °, the electromagnetic wave absorber has good electric field absorption ability and magnetic field absorption ability. Is obtained.

例示の電磁波吸収フィルム110a(120a),110b(120b),110c(120c)の線状痕交差角θsは45°,60°及び90°であったが、本発明は勿論これらに限定されず、30〜90°以内の他の交差角θsも使用可能である。研究の結果、交差角θsは360/偶数であるのが好ましいことが分った。従って、30°,36°,45°,60°及び90°が好ましい。ここで、交差角θsには製造誤差があるので、一般に目標値の±5°以内、好ましくは±3°以内であれば良い。例えば交差角θsが60°の場合、55〜65°の範囲内であれば良い。また交差角θsが90°の場合、85〜90°の範囲内であれば良い。三層の電磁波吸収フィルムを有する電磁波吸収体の場合、外側の電磁波吸収フィルムの線状痕交差角θsは60°又は90°であるのが好ましい。   The linear mark crossing angles θs of the exemplary electromagnetic wave absorbing films 110a (120a), 110b (120b), and 110c (120c) were 45 °, 60 °, and 90 °, but the present invention is of course not limited thereto. Other crossing angles θs within 30-90 ° can also be used. Research has shown that the crossing angle θs is preferably 360 / even. Therefore, 30 °, 36 °, 45 °, 60 ° and 90 ° are preferable. Here, since there is a manufacturing error in the intersection angle θs, it is generally within ± 5 °, preferably within ± 3 ° of the target value. For example, when the crossing angle θs is 60 °, it may be in the range of 55 to 65 °. Further, when the crossing angle θs is 90 °, it may be within a range of 85 to 90 °. In the case of an electromagnetic wave absorber having a three-layer electromagnetic wave absorbing film, the linear mark crossing angle θs of the outer electromagnetic wave absorbing film is preferably 60 ° or 90 °.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

比較例1
図13に示す電磁波吸収体の試験片TP(32 cm×52 cm)を、厚さ120μmのPETフィルム10aに厚さ10 nmのNi薄膜11aを形成してなる電磁波吸収フィルム100a(表面抵抗:785Ω)と、厚さ120μmのPETフィルム10bに厚さ15 nmのNi薄膜11bを形成してなる電磁波吸収フィルム100b(表面抵抗:283Ω)と、厚さ2 mmのアルミニウム板200により構成した。電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1は20 mmであり、電磁波吸収フィルム100bとアルミニウム板200との間隔D2は10 mmであった。
Comparative Example 1
An electromagnetic wave absorbing film 100a (surface resistance: 785Ω) formed by forming a 10 nm-thick Ni thin film 11a on a 120 μm-thick PET film 10a from the electromagnetic wave absorber test piece TP (32 cm × 52 cm) shown in FIG. ), An electromagnetic wave absorbing film 100b (surface resistance: 283Ω) formed by forming a 15 nm thick Ni thin film 11b on a 120 μm thick PET film 10b, and an aluminum plate 200 having a thickness of 2 mm. Spacing D 1 of the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b is 20 mm, the interval D 2 between the electromagnetic wave absorption film 100b and the aluminum plate 200 was 10 mm.

この試験片TPの電磁波吸収能を図25に示す装置を用いて評価した。この装置は、厚さ2 cmの誘電体ホルダ62と、ホルダ62から100 cm離れた送信アンテナ63a及び受信アンテナ63bと、アンテナ63a,63bに接続したネットワークアナライザ64とを有する。まずホルダ62の前面(アンテナ側)にアルミニウム板(32 cm×52 cm×2 mm)を固定し、アンテナ63aから10°から60°まで10°間隔で入射角度θiを変えながら、1〜5.5 GHzの周波数の電磁波(円偏波)を0.25 GHzの周波数間隔で照射し、アンテナ63bで反射波を受信し、ネットワークアナライザ64により反射電力を測定した。次にアルミニウム板の代わりに試験片TPをホルダ62の前面に固定し、上記と同様にして反射電力を測定した。アルミニウム板を用いて測定した反射電力が入射電力と等しいと仮定し、反射係数(反射電力/入射電力)RCを求め、RL(dB)=20 log(1/RC)により反射減衰量(リターンロス)RL(dB)を求めた。各入射角度θiにおける反射減衰量は周波数に応じて変化するので、反射減衰量が最大となるときの周波数(ピーク周波数)で得られた電磁波吸収率をピーク吸収率とした。   The electromagnetic wave absorbing ability of this test piece TP was evaluated using the apparatus shown in FIG. This apparatus includes a dielectric holder 62 having a thickness of 2 cm, a transmitting antenna 63a and a receiving antenna 63b that are 100 cm away from the holder 62, and a network analyzer 64 that is connected to the antennas 63a and 63b. First, an aluminum plate (32 cm x 52 cm x 2 mm) is fixed to the front surface (antenna side) of the holder 62, and the incident angle θi is changed from 10 ° to 60 ° from the antenna 63a at 10 ° intervals. An electromagnetic wave (circularly polarized wave) having a frequency of 0.25 GHz was irradiated at a frequency interval of 0.25 GHz, the reflected wave was received by the antenna 63b, and the reflected power was measured by the network analyzer 64. Next, the test piece TP was fixed to the front surface of the holder 62 instead of the aluminum plate, and the reflected power was measured in the same manner as described above. Assuming that the reflected power measured using an aluminum plate is equal to the incident power, the reflection coefficient (reflected power / incident power) RC is obtained, and the return loss (return loss) is calculated by RL (dB) = 20 log (1 / RC). ) RL (dB) was obtained. Since the return loss at each incident angle θi varies depending on the frequency, the electromagnetic wave absorption obtained at the frequency (peak frequency) when the return loss is maximized was taken as the peak absorption rate.

測定したピーク吸収率及びピーク周波数をそれぞれ図26に示す。図26から明らかなように、10〜60°の入射角度範囲でTE波のピーク吸収率は約13〜38 dBであり、またTM波のピーク吸収率は約11〜49 dBであった。この結果から、前面側に高抵抗のNi薄膜11aを有する電磁波吸収フィルム100aを配置し、後面側に低抵抗のNi薄膜11bを有する電磁波吸収フィルム100bを配置し、D1/D2の比を2/1とした電磁波吸収体は高い電磁波吸収能を有することが分かった。 The measured peak absorption rate and peak frequency are shown in FIG. As is apparent from FIG. 26, the TE wave peak absorptance was about 13 to 38 dB and the TM wave peak absorptance was about 11 to 49 dB in the incident angle range of 10 to 60 °. From this result, the electromagnetic wave absorbing film 100a having the high resistance Ni thin film 11a is arranged on the front side, the electromagnetic wave absorbing film 100b having the low resistance Ni thin film 11b is arranged on the rear side, and the ratio of D 1 / D 2 is set. It was found that the 2/1 electromagnetic wave absorber has a high electromagnetic wave absorbing ability.

実施例1
比較例1で用いた電磁波吸収フィルム100aに対して、粒径分布が50〜80μmのダイヤモンド微粒子を電着したパターンロール32a,32bを有する図12に示す構造の装置を用い、プラスチック面(Ni薄膜11aが形成されていない面)に交差角が90°の二方向の線状痕を形成した。また比較例1で用いた電磁波吸収フィルム100bに対して、粒径分布が50〜80μmのダイヤモンド微粒子を電着したパターンロール2a,2bを有する図8(a) に示す構造の装置を用い、プラスチック面(Ni薄膜11bが形成されていない面)に交差角が60°の二方向の線状痕を形成した。得られた線状痕付き電磁波吸収フィルム120a,120bにおける線状痕の特性は下記の通りであった。
幅Wの範囲:0.5〜5μm
平均幅Wav:2μm
横手方向間隔Iの範囲:2〜30μm
平均横手方向間隔Iav:10μm
平均長さLav:5 mm
交差角θs:90°及び60°
Example 1
For the electromagnetic wave absorbing film 100a used in Comparative Example 1 , an apparatus having a structure shown in FIG. 12 having pattern rolls 32a and 32b electrodeposited with diamond fine particles having a particle size distribution of 50 to 80 μm was used. A line-shaped trace having a crossing angle of 90 ° was formed on the surface on which 11a was not formed. In addition, an apparatus having the structure shown in FIG. 8 (a) having pattern rolls 2a and 2b in which diamond fine particles having a particle size distribution of 50 to 80 μm are electrodeposited on the electromagnetic wave absorbing film 100b used in Comparative Example 1 is used. Bidirectional traces having a crossing angle of 60 ° were formed on the surface (the surface on which the Ni thin film 11b was not formed). The characteristics of the linear marks in the obtained electromagnetic wave absorbing films 120a and 120b with linear marks were as follows.
Width W range: 0.5-5μm
Average width Wav: 2μm
Range in the lateral direction I: 2 to 30 μm
Average lateral direction interval Iav: 10μm
Average length Lav: 5 mm
Crossing angle θs: 90 ° and 60 °

これらの線状痕付きの電磁波吸収フィルム120a,120bを使用した以外比較例1と同様にして図16に示す電磁波吸収体を作製し、10°〜60°の入射角度範囲でそのピーク吸収率及びピーク周波数を測定した。結果を図27に示す。図27から明らかなように、TE波のピーク吸収率は約15〜54 dBであり、またTM波のピーク吸収率は約12〜36 dBであった。また、この入射角度範囲でTE波のピーク吸収率は全体的に比較例1より高かった。この結果から、高抵抗のNi薄膜11aを有する電磁波吸収フィルム120aが前面側で、低抵抗のNi薄膜11bを有する電磁波吸収フィルム120bが後面側であり、D1/D2の比が2/1であり、各電磁波吸収フィルム120a,120bのプラスチック面側に二方向の線状痕を有する電磁波吸収体は、線状痕を形成していない比較例1の電磁波吸収体より高い電磁波吸収能を有することが分かった。
The electromagnetic wave absorber shown in FIG. 16 was prepared in the same manner as in Comparative Example 1 except that these electromagnetic wave absorbing films 120a and 120b with linear traces were used, and the peak absorption rate in the incident angle range of 10 ° to 60 ° and Peak frequency was measured. The results are shown in FIG. As is clear from FIG. 27, the peak absorption rate of the TE wave was about 15 to 54 dB, and the peak absorption rate of the TM wave was about 12 to 36 dB. In addition, the TE wave peak absorptance was generally higher than that of Comparative Example 1 in this incident angle range. From this result, the electromagnetic wave absorption film 120a having the high resistance Ni thin film 11a is on the front side, the electromagnetic wave absorption film 120b having the low resistance Ni thin film 11b is on the rear side, and the ratio of D 1 / D 2 is 2/1 The electromagnetic wave absorbers having linear traces in two directions on the plastic surface side of the respective electromagnetic wave absorption films 120a and 120b have higher electromagnetic wave absorption ability than the electromagnetic wave absorber of Comparative Example 1 in which no linear traces are formed. I understood that.

比較例2
比較例1と別に厚さ120μmのPETフィルム10a上に形成した厚さ10 nmのNi薄膜11aは500Ωの表面抵抗を有していた。この電磁波吸収フィルム100aを前面側に用いた以外比較例1と同様にして、電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図28に示す。図28から明らかなように、TE波のピーク吸収率は約14〜37 dBであり、またTM波のピーク吸収率は約12〜36 dBであった。この結果から、前面側に高抵抗のNi薄膜11aを有する電磁波吸収フィルム100aを配置し、後面側に低抵抗のNi薄膜11bを有する電磁波吸収フィルム100bを配置し、D1/D2の比を2/1とした電磁波吸収体は高い電磁波吸収能を有することが分かった。
Comparative Example 2
Separately from Comparative Example 1 , the 10 nm thick Ni thin film 11a formed on the 120 μm thick PET film 10a had a surface resistance of 500Ω. An electromagnetic wave absorber was prepared in the same manner as in Comparative Example 1 except that this electromagnetic wave absorbing film 100a was used on the front side, and the peak absorptance and peak frequency in the incident angle range of 10 ° to 60 ° were the same as in Comparative Example 1. It was measured. The results are shown in FIG. As apparent from FIG. 28, the peak absorption rate of the TE wave was about 14 to 37 dB, and the peak absorption rate of the TM wave was about 12 to 36 dB. From this result, the electromagnetic wave absorbing film 100a having the high resistance Ni thin film 11a is arranged on the front side, the electromagnetic wave absorbing film 100b having the low resistance Ni thin film 11b is arranged on the rear side, and the ratio of D 1 / D 2 is set. It was found that the 2/1 electromagnetic wave absorber has a high electromagnetic wave absorbing ability.

実施例2
比較例2で用いた電磁波吸収フィルム100aのプラスチック面(Ni薄膜11aが形成されていない面)に、実施例1と同様にして交差角が90°の二方向の線状痕を形成した。また比較例2で用いた電磁波吸収フィルム100bのプラスチック面(Ni薄膜11bが形成されていない面)に、実施例1と同様にして交差角が60°の二方向の線状痕を形成した。これらの線状痕付きの電磁波吸収フィルム120a,120bを使用した以外比較例1と同様にして図16に示す電磁波吸収体を作製し、10°〜60°の入射角度範囲でそのピーク吸収率及びピーク周波数を測定した。結果を図29に示す。図29から明らかなように、TE波のピーク吸収率は約15〜55 dBであり、またTM波のピーク吸収率は約12〜34 dBであった。また、この入射角度範囲でTE波のピーク吸収率は全体的に比較例2より高かった。この結果から、高抵抗のNi薄膜11aを有する電磁波吸収フィルム120aが前面側で、低抵抗のNi薄膜11bを有する電磁波吸収フィルム120bが後面側であり、D1/D2の比が2/1であり、各電磁波吸収フィルム120a,120bのプラスチック面側に二方向の線状痕を有する電磁波吸収体は、線状痕を形成していない比較例2の電磁波吸収体より高い電磁波吸収能を有することが分かった。
Example 2
In the same manner as in Example 1 , two-way linear traces having an intersecting angle of 90 ° were formed on the plastic surface (the surface on which the Ni thin film 11a was not formed) of the electromagnetic wave absorbing film 100a used in Comparative Example 2 . Further, in the same manner as in Example 1 , two-way linear traces having an intersection angle of 60 ° were formed on the plastic surface (the surface on which the Ni thin film 11b was not formed) of the electromagnetic wave absorbing film 100b used in Comparative Example 2 . The electromagnetic wave absorber shown in FIG. 16 was prepared in the same manner as in Comparative Example 1 except that these electromagnetic wave absorbing films 120a and 120b with linear traces were used, and the peak absorption rate in the incident angle range of 10 ° to 60 ° and Peak frequency was measured. The results are shown in FIG. As apparent from FIG. 29, the peak absorption rate of the TE wave was about 15 to 55 dB, and the peak absorption rate of the TM wave was about 12 to 34 dB. In addition, the TE wave peak absorptance was generally higher than that of Comparative Example 2 in this incident angle range. From this result, the electromagnetic wave absorption film 120a having the high resistance Ni thin film 11a is on the front side, the electromagnetic wave absorption film 120b having the low resistance Ni thin film 11b is on the rear side, and the ratio of D 1 / D 2 is 2/1 The electromagnetic wave absorbers having linear traces in two directions on the plastic surface side of the respective electromagnetic wave absorbing films 120a and 120b have higher electromagnetic wave absorption ability than the electromagnetic wave absorber of Comparative Example 2 in which no linear traces are formed. I understood that.

比較例3
比較例1と別に厚さ120μmのPETフィルム10b上に形成した厚さ10 nmのNi薄膜11bは300Ωの表面抵抗を有していた。この電磁波吸収フィルム100bを後面側に用いた以外比較例1と同様に電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図30に示す。図30から明らかなように、TE波のピーク吸収率は約14〜46 dBであり、またTM波のピーク吸収率は約12〜42 dBであった。この結果から、前面側に高抵抗のNi薄膜11aを有する電磁波吸収フィルム100aを配置し、後面側に低抵抗のNi薄膜11bを有する電磁波吸収フィルム100bを配置し、D1/D2の比を2/1とした電磁波吸収体は高い電磁波吸収能を有することが分かった。
Comparative Example 3
Separately from Comparative Example 1 , a 10 nm thick Ni thin film 11b formed on a 120 μm thick PET film 10b had a surface resistance of 300Ω. An electromagnetic wave absorber was prepared in the same manner as in Comparative Example 1 except that this electromagnetic wave absorbing film 100b was used on the rear side, and the peak absorption rate and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. . The results are shown in FIG. As apparent from FIG. 30, the TE wave peak absorptance was about 14 to 46 dB, and the TM wave peak absorptance was about 12 to 42 dB. From this result, the electromagnetic wave absorbing film 100a having the high resistance Ni thin film 11a is arranged on the front side, the electromagnetic wave absorbing film 100b having the low resistance Ni thin film 11b is arranged on the rear side, and the ratio of D 1 / D 2 is set. It was found that the 2/1 electromagnetic wave absorber has a high electromagnetic wave absorbing ability.

比較例4
電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1を10 mmとし、電磁波吸収フィルム100bとアルミニウム板200との間隔D2を20 mmとし、D1/D2の比を1/2とした以外比較例3と同様に電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図31に示す。図31から明らかなように、TE波のピーク吸収率は約8〜15 dBであり、またTM波のピーク吸収率は約15〜32 dBであった。この入射角度範囲でTE波及びTM波のピーク吸収率は全体的に比較例3より低かった。この結果から、D1/D2の比が2/1から1/2になると、電磁波吸収体の電磁波吸収能は比較的低下することが分かった。これから、前面側の電磁波吸収フィルム100aが後面側の電磁波吸収フィルム100bより高抵抗の場合に、電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1が電磁波吸収フィルム100bと反射板200との間隔D2より大きい方が電磁波吸収体の電磁波吸収能が高いことが分かる。
Comparative Example 4
The distance D 1 between the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b is 10 mm, the distance D 2 between the electromagnetic wave absorbing film 100b and the aluminum plate 200 is 20 mm, and the ratio of D 1 / D 2 is 1/2. Other than that, an electromagnetic wave absorber was prepared in the same manner as in Comparative Example 3, and the peak absorption rate and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 31, the TE wave peak absorptance was about 8 to 15 dB, and the TM wave peak absorptance was about 15 to 32 dB. In this incident angle range, the peak absorptance of TE wave and TM wave was lower than that of Comparative Example 3 as a whole. From this result, it was found that when the ratio of D 1 / D 2 was changed from 2/1 to 1/2, the electromagnetic wave absorbing ability of the electromagnetic wave absorber was relatively lowered. Now, the distance between the case of a high resistance than the electromagnetic wave absorbing film 100b on the rear side electromagnetic wave absorbing film 100a on the front side, the distance D 1 of the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b is an electromagnetic wave absorbing film 100b and the reflection plate 200 larger than D 2 it can be seen electromagnetic wave absorbing power of the electromagnetic wave absorber is high.

比較例5
電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1を15 mmとし、電磁波吸収フィルム100bとアルミニウム板200との間隔D2を15 mmとし、D1/D2の比を1/1とした以外比較例3と同様に電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図32に示す。図32から明らかなように、TE波のピーク吸収率は約16〜20 dBであり、またTM波のピーク吸収率は約20〜34 dBであった。この結果から、D1/D2の比が2/1から1/1になると、電磁波吸収体の電磁波吸収能は比較的低下することが分かった。しかし、電磁波吸収能の低下の程度はD1/D2の比が1/2になった比較例4より小さかった。
Comparative Example 5
The distance D 1 between the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b is 15 mm, the distance D 2 between the electromagnetic wave absorbing film 100b and the aluminum plate 200 is 15 mm, and the ratio of D 1 / D 2 is 1/1. Other than that, an electromagnetic wave absorber was prepared in the same manner as in Comparative Example 3, and the peak absorption rate and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 32, the peak absorption rate of the TE wave was about 16 to 20 dB, and the peak absorption rate of the TM wave was about 20 to 34 dB. From this result, it was found that when the ratio of D 1 / D 2 was changed from 2/1 to 1/1, the electromagnetic wave absorbing ability of the electromagnetic wave absorber was relatively lowered. However, the degree of decrease in electromagnetic wave absorption ability was smaller than that of Comparative Example 4 in which the ratio of D 1 / D 2 became 1/2.

比較例6
表面抵抗が300Ωの電磁波吸収フィルムを前面側の電磁波吸収フィルム100aとし、表面抵抗が785Ωの電磁波吸収フィルムを後面側の電磁波吸収フィルム100bとした以外比較例3と同様に電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図33に示す。図33から明らかなように、TE波のピーク吸収率は約10〜17 dBであり、またTM波のピーク吸収率は約12〜52 dBであった。この結果から、前面側の電磁波吸収フィルム100aを後面側の電磁波吸収フィルム100bより低抵抗にすると、電磁波吸収体の電磁波吸収能は不十分なレベルまで低下することが分かる。
Comparative Example 6
An electromagnetic wave absorber was prepared in the same manner as in Comparative Example 3 except that an electromagnetic wave absorbing film having a surface resistance of 300Ω was used as the front electromagnetic wave absorbing film 100a, and an electromagnetic wave absorbing film having a surface resistance of 785Ω was used as the electromagnetic wave absorbing film 100b on the rear side. The peak absorptance and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 33, the peak absorption rate of the TE wave was about 10 to 17 dB, and the peak absorption rate of the TM wave was about 12 to 52 dB. From this result, it can be seen that when the electromagnetic wave absorbing film 100a on the front surface side has a lower resistance than the electromagnetic wave absorbing film 100b on the rear surface side, the electromagnetic wave absorbing ability of the electromagnetic wave absorber is reduced to an insufficient level.

比較例7
電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1を10 mmとし、電磁波吸収フィルム100bとアルミニウム板200との間隔D2を20 mmとし、D1/D2の比を1/2とした以外比較例6と同様に電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図34に示す。図34から明らかなように、TE波のピーク吸収率は約8〜12 dBであり、またTM波のピーク吸収率は約12〜50 dBであった。この結果から、前面側の電磁波吸収フィルム100aが後面側の電磁波吸収フィルム100bより低抵抗の場合に、D1/D2の比が2/1から1/2になると、電磁波吸収体の電磁波吸収能はさらに低下することが分かった。
Comparative Example 7
The distance D 1 between the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b is 10 mm, the distance D 2 between the electromagnetic wave absorbing film 100b and the aluminum plate 200 is 20 mm, and the ratio of D 1 / D 2 is 1/2. Other than that, an electromagnetic wave absorber was prepared in the same manner as in Comparative Example 6, and the peak absorption rate and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 34, the TE wave peak absorptance was about 8 to 12 dB, and the TM wave peak absorptance was about 12 to 50 dB. From this result, when the electromagnetic wave absorption film 100a on the front side has a lower resistance than the electromagnetic wave absorption film 100b on the rear side, the ratio of D 1 / D 2 is reduced from 2/1 to 1/2. It was found that the performance was further reduced.

比較例8
電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1を15 mmとし、電磁波吸収フィルム100bとアルミニウム板200との間隔D2を15 mmとし、D1/D2の比を1/1とした以外比較例6と同様に電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図35に示す。図35から明らかなように、TE波のピーク吸収率は約7〜14 dBであり、またTM波のピーク吸収率は約16〜32 dBであった。この結果から、前面側の電磁波吸収フィルム100aが後面側の電磁波吸収フィルム100bより低抵抗の場合に、D1/D2の比が2/1から1/1になると、電磁波吸収体の電磁波吸収能はさらに低下することが分かった。しかし、電磁波吸収能の低下の程度はD1/D2の比が1/2になった比較例7より小さかった。
Comparative Example 8
The distance D 1 between the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b is 15 mm, the distance D 2 between the electromagnetic wave absorbing film 100b and the aluminum plate 200 is 15 mm, and the ratio of D 1 / D 2 is 1/1. Other than that, an electromagnetic wave absorber was prepared in the same manner as in Comparative Example 6, and the peak absorption rate and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 35, the TE wave peak absorptance was about 7 to 14 dB, and the TM wave peak absorptance was about 16 to 32 dB. From this result, in the case from the electromagnetic wave absorbing film 100b of an electromagnetic wave absorbing film 100a on the front side rear side of the low resistance, the ratio of D 1 / D 2 is from 1/1 to 2/1, the electromagnetic wave absorption of electromagnetic wave absorber It was found that the performance was further reduced. However, the degree of decrease in electromagnetic wave absorption ability was smaller than that of Comparative Example 7 in which the ratio of D 1 / D 2 was halved.

実施例3
表面抵抗が785Ωの電磁波吸収フィルム100aのプラスチック面に対して実施例1と同様にして交差角が60°の二方向の線状痕を形成した。また表面抵抗が300Ωの電磁波吸収フィルム100bのプラスチック面に対して実施例1と同様にして交差角が90°の二方向の線状痕を形成した。これらの線状痕付きの電磁波吸収フィルム120a,120bを使用した以外比較例3と同様にして図16に示す電磁波吸収体を作製し、10°〜60°の入射角度範囲でそのピーク吸収率及びピーク周波数を測定した。結果を図36に示す。図36から明らかなように、TE波のピーク吸収率は約12〜22 dBであり、またTM波のピーク吸収率は約15〜42 dBであった。この入射角度範囲でTE波及びTM波のピーク吸収率の異方性は比較例3より小さかった。この結果から、高抵抗のNi薄膜11aを有する電磁波吸収フィルム120aが前面側で、低抵抗のNi薄膜11bを有する電磁波吸収フィルム120bが後面側であり、D1/D2の比が2/1であり、各電磁波吸収フィルム120a,120bのプラスチック面側に二方向の線状痕を有する電磁波吸収体は、小さい異方性で高い電磁波吸収能を有することが分かった。
Example 3
Bidirectional traces having a crossing angle of 60 ° were formed on the plastic surface of the electromagnetic wave absorbing film 100a having a surface resistance of 785Ω in the same manner as in Example 1 . Further, bi-directional linear traces having a crossing angle of 90 ° were formed in the same manner as in Example 1 on the plastic surface of the electromagnetic wave absorbing film 100b having a surface resistance of 300Ω. The electromagnetic wave absorber shown in FIG. 16 was prepared in the same manner as in Comparative Example 3 except that these electromagnetic wave absorbing films 120a and 120b with linear traces were used, and the peak absorption rate in the incident angle range of 10 ° to 60 ° and Peak frequency was measured. The results are shown in FIG. As is clear from FIG. 36, the peak absorption rate of the TE wave was about 12 to 22 dB, and the peak absorption rate of the TM wave was about 15 to 42 dB. The anisotropy of the TE wave and TM wave peak absorptance was smaller than that of Comparative Example 3 in this incident angle range. From this result, the electromagnetic wave absorption film 120a having the high resistance Ni thin film 11a is on the front side, the electromagnetic wave absorption film 120b having the low resistance Ni thin film 11b is on the rear side, and the ratio of D 1 / D 2 is 2/1 Thus, it was found that the electromagnetic wave absorber having the two-way linear traces on the plastic surface side of each of the electromagnetic wave absorbing films 120a and 120b has a small anisotropy and a high electromagnetic wave absorbing ability.

実施例4
D1を4 mmとし、D2を2 mmとした以外実施例3と同じ電磁波吸収体を作製し、10°〜60°の入射角度範囲で5.8 GHzにおける電磁波吸収率を測定した。結果を図37に示す。図37から明らかなように、TE波の電磁波吸収率は約12〜52 dBであり、またTM波の電磁波吸収率は約4〜25 dBであった。この結果から、D1及びD2が小さくても、高抵抗のNi薄膜11aを有する電磁波吸収フィルム120aが前面側で、低抵抗のNi薄膜11bを有する電磁波吸収フィルム120bが後面側であり、D1/D2の比が2/1であり、各電磁波吸収フィルム120a,120bのプラスチック面側に二方向の線状痕を有する電磁波吸収体は、高い電磁波吸収能を有することが分かった。
Example 4
The same electromagnetic wave absorber as in Example 3 was prepared except that D1 was 4 mm and D2 was 2 mm, and the electromagnetic wave absorption rate at 5.8 GHz was measured in an incident angle range of 10 ° to 60 °. The results are shown in FIG. As is apparent from FIG. 37, the electromagnetic wave absorption rate of the TE wave was about 12 to 52 dB, and the electromagnetic wave absorption rate of the TM wave was about 4 to 25 dB. From this result, even if D1 and D2 are small, the electromagnetic wave absorbing film 120a having the high resistance Ni thin film 11a is on the front side, and the electromagnetic wave absorbing film 120b having the low resistance Ni thin film 11b is on the rear side, D 1 / It was found that the electromagnetic wave absorber having a D 2 ratio of 2/1 and having linear traces in two directions on the plastic surface side of the respective electromagnetic wave absorbing films 120a and 120b has a high electromagnetic wave absorbing ability.

実施例5
実施例1と同じ方法により表面抵抗が300Ωの電磁波吸収フィルムのプラスチック面に交差角が45°の二方向の線状痕を形成し、電磁波吸収フィルム120bを作製した。交差角が90°の二方向の線状痕を形成した表面抵抗が785Ωの電磁波吸収フィルム120aと上記電磁波吸収フィルム120bとを組合せた以外実施例4と同じ構造の電磁波吸収体を作製し、10°〜60°の入射角度範囲で5.8 GHzにおける電磁波吸収率を測定した。結果を図38に示す。図38から明らかなように、TE波の電磁波吸収率は約16〜37 dBであり、またTM波の電磁波吸収率は約4〜28 dBであった。この結果から、一方の電磁波吸収フィルムの線状痕の交差角が45°で、D1及びD2が小さくても、高抵抗のNi薄膜11aを有する電磁波吸収フィルム120aが前面側で、低抵抗のNi薄膜11bを有する電磁波吸収フィルム120bが後面側であり、D1/D2の比が2/1であり、各電磁波吸収フィルム120a,120bのプラスチック面側に二方向の線状痕を有する電磁波吸収体は、高い電磁波吸収能を有することが分かった。
Example 5
In the same manner as in Example 1 , two-way linear marks having a crossing angle of 45 ° were formed on the plastic surface of the electromagnetic wave absorbing film having a surface resistance of 300Ω to produce the electromagnetic wave absorbing film 120b. An electromagnetic wave absorber having the same structure as in Example 4 was prepared except that the electromagnetic wave absorbing film 120a having a surface resistance of 785Ω formed in two directions with a 90 ° crossing angle and the electromagnetic wave absorbing film 120b was combined, and 10 The electromagnetic wave absorptivity at 5.8 GHz was measured in the incident angle range of ° -60 °. The results are shown in FIG. As is clear from FIG. 38, the electromagnetic wave absorption rate of the TE wave was about 16 to 37 dB, and the electromagnetic wave absorption rate of the TM wave was about 4 to 28 dB. From this result, the electromagnetic wave absorption film 120a having the high-resistance Ni thin film 11a is on the front side and the low-resistance Ni even if the crossing angle of the linear trace of one electromagnetic wave absorption film is 45 ° and D1 and D2 are small. The electromagnetic wave absorbing film 120b having the thin film 11b is on the rear side, the ratio of D 1 / D 2 is 2/1, and the electromagnetic wave absorbing film having bi-directional linear marks on the plastic surface side of each of the electromagnetic wave absorbing films 120a and 120b The body was found to have a high ability to absorb electromagnetic waves.

比較例9
電磁波吸収フィルム120aと電磁波吸収フィルム120bとの間隔D1を10 mmとし、電磁波吸収フィルム120bとアルミニウム板200との間隔D2を20 mmとし、D1/D2の比を1/2とした以外実施例3と同様にして、図16に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図39に示す。図39から明らかなように、TE波のピーク吸収率は約8〜16 dBであり、またTM波のピーク吸収率は約17〜28 dBであった。この結果から、D1/D2の比が2/1から1/2になると、電磁波吸収体の電磁波吸収能は比較的低下することが分かった。これから、前面側の電磁波吸収フィルム120aが後面側の電磁波吸収フィルム120bより高抵抗の場合に、電磁波吸収フィルム120aと電磁波吸収フィルム120bとの間隔D1が電磁波吸収フィルム120bと反射板200との間隔D2より大きい方が電磁波吸収体の電磁波吸収能が高いことが分かる。
Comparative Example 9
The distance D 1 between the electromagnetic wave absorbing film 120a and the electromagnetic wave absorbing film 120b is 10 mm, the distance D 2 between the electromagnetic wave absorbing film 120b and the aluminum plate 200 is 20 mm, and the ratio of D 1 / D 2 is 1/2. Except that, the electromagnetic wave absorber shown in FIG. 16 was produced in the same manner as in Example 3 . In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As apparent from FIG. 39, the peak absorption rate of the TE wave was about 8 to 16 dB, and the peak absorption rate of the TM wave was about 17 to 28 dB. From this result, it was found that when the ratio of D 1 / D 2 was changed from 2/1 to 1/2, the electromagnetic wave absorbing ability of the electromagnetic wave absorber was relatively lowered. Now, the distance between the case of a high resistance than the electromagnetic wave absorbing film 120b on the rear side electromagnetic wave absorbing film 120a on the front side, the distance D 1 of the electromagnetic wave absorbing film 120a and the electromagnetic wave absorbing film 120b is an electromagnetic wave absorbing film 120b and the reflection plate 200 larger than D 2 it can be seen electromagnetic wave absorbing power of the electromagnetic wave absorber is high.

比較例10
電磁波吸収フィルム120aと電磁波吸収フィルム120bとの間隔D1を15 mmとし、電磁波吸収フィルム120bとアルミニウム板200との間隔D2を15 mmとし、D1/D2の比を1/1とした以外実施例3と同様にして、図16に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図40に示す。図40から明らかなように、TE波のピーク吸収率は約12〜22 dBであり、またTM波のピーク吸収率は約15〜42 dBであった。この結果から、D1/D2の比が2/1から1/1になると、電磁波吸収体の電磁波吸収能は比較的低下することが分かった。しかし、電磁波吸収能の低下の程度はD1/D2の比が1/2になった比較例9より小さかった。
Comparative Example 10
The distance D 1 between the electromagnetic wave absorbing film 120a and the electromagnetic wave absorbing film 120b is 15 mm, the distance D 2 between the electromagnetic wave absorbing film 120b and the aluminum plate 200 is 15 mm, and the ratio of D 1 / D 2 is 1/1. Except that, the electromagnetic wave absorber shown in FIG. 16 was produced in the same manner as in Example 3 . In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 40, the peak absorption rate of the TE wave was about 12 to 22 dB, and the peak absorption rate of the TM wave was about 15 to 42 dB. From this result, it was found that when the ratio of D 1 / D 2 was changed from 2/1 to 1/1, the electromagnetic wave absorbing ability of the electromagnetic wave absorber was relatively lowered. However, the degree of decrease in electromagnetic wave absorption ability was smaller than that of Comparative Example 9 in which the ratio of D 1 / D 2 became 1/2.

比較例11
電磁波吸収フィルム100aの表面抵抗を300Ωとし、電磁波吸収フィルム100bの表面抵抗を785Ωとした以外実施例3と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図41に示す。図41から明らかなように、TE波のピーク吸収率は約11〜18 dBであり、またTM波のピーク吸収率は約15〜36 dBであった。この結果から、前面側の電磁波吸収フィルム100aの表面抵抗が後面側の電磁波吸収フィルム100bの表面抵抗より小さいと、線状痕を形成しても十分に高い電磁波吸収能が得られないことが分かる。
Comparative Example 11
An electromagnetic wave absorber having the same structure as in Example 3 was prepared except that the surface resistance of the electromagnetic wave absorbing film 100a was 300Ω and the surface resistance of the electromagnetic wave absorbing film 100b was 785Ω, and the peak absorption rate in the incident angle range of 10 ° to 60 °. The peak frequency was measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 41, the peak absorption rate of the TE wave was about 11 to 18 dB, and the peak absorption rate of the TM wave was about 15 to 36 dB. From this result, it can be seen that if the surface resistance of the electromagnetic wave absorbing film 100a on the front side is smaller than the surface resistance of the electromagnetic wave absorbing film 100b on the rear side, a sufficiently high electromagnetic wave absorbing ability cannot be obtained even if linear marks are formed. .

比較例12
比較例1の電磁波吸収体の電磁波吸収フィルム100bとアルミニウム板200との間に電磁波吸収フィルム100aと同じ電磁波吸収フィルム100cを配置し、電磁波吸収フィルム100aと電磁波吸収フィルム100bとの間隔D1と、電磁波吸収フィルム100bと電磁波吸収フィルム100cとの間隔D2と、電磁波吸収フィルム100cとアルミニウム板200との間隔D3をそれぞれ20 mm、10 mm、及び20 mmとし、D1/D2/D3を2/1/2として、図19に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図42に示す。図42から明らかなように、TE波のピーク吸収率は約12〜28 dBであり、またTM波のピーク吸収率は約26〜36 dBであった。また、この入射角度範囲でTM波のピーク吸収率は全体的に高かった。この結果から、三枚の電磁波吸収フィルムを有する電磁波吸収体の場合でも、最前の電磁波吸収フィルム100aの表面抵抗が二枚目の電磁波吸収フィルム100bの表面抵抗より大きければ、優れた電磁波吸収能を示すことが分かる。またD1/D2の比を2/1とし、D3/D2の比を2/1とするのは、高い電磁波吸収能を得るのに好ましいことも分かる。
Comparative Example 12
The same electromagnetic wave absorbing film 100c as the electromagnetic wave absorbing film 100a is disposed between the electromagnetic wave absorbing film 100b of the electromagnetic wave absorber of Comparative Example 1 and the aluminum plate 200, and the interval D 1 between the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b, and distance D 2 between the electromagnetic wave absorption film 100b and the electromagnetic wave absorbing film 100c, the electromagnetic wave absorption film 100c and the interval D 3 each 20 mm of the aluminum plate 200, 10 mm, and a 20 mm, D 1 / D 2 / D 3 The electromagnetic wave absorber shown in FIG. In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 42, the peak absorption rate of the TE wave was about 12 to 28 dB, and the peak absorption rate of the TM wave was about 26 to 36 dB. Also, the TM wave peak absorptance was generally high in this incident angle range. From this result, even in the case of an electromagnetic wave absorber having three electromagnetic wave absorbing films, if the surface resistance of the first electromagnetic wave absorbing film 100a is larger than the surface resistance of the second electromagnetic wave absorbing film 100b, excellent electromagnetic wave absorbing ability is obtained. You can see that It can also be seen that setting the ratio of D 1 / D 2 to 2/1 and the ratio of D 3 / D 2 to 2/1 is preferable for obtaining high electromagnetic wave absorption ability.

比較例13
間隔D1、D2及びD3をそれぞれ10 mm、10 mm及び30 mmとし、D1/D2/D3の比を1/1/3とした以外比較例12と同様にして、図19に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図43に示す。図43から明らかなように、TE波のピーク吸収率は約12〜28 dBであり、またTM波のピーク吸収率は約26〜36 dBであった。この結果から、三枚の電磁波吸収フィルムを有する電磁波吸収体の場合でも、最前の電磁波吸収フィルム100aの表面抵抗が二枚目の電磁波吸収フィルム100bの表面抵抗より大きければ、優れた電磁波吸収能を示すことが分かる。
Comparative Example 13
The distances D 1 , D 2 and D 3 were 10 mm, 10 mm and 30 mm, respectively, and the ratio of D 1 / D 2 / D 3 was 1/1/3, as in Comparative Example 12, and FIG. The electromagnetic wave absorber shown in FIG. In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 43, the TE wave peak absorptance was about 12 to 28 dB, and the TM wave peak absorptance was about 26 to 36 dB. From this result, even in the case of an electromagnetic wave absorber having three electromagnetic wave absorbing films, if the surface resistance of the first electromagnetic wave absorbing film 100a is larger than the surface resistance of the second electromagnetic wave absorbing film 100b, excellent electromagnetic wave absorbing ability is obtained. You can see that

比較例14
電磁波吸収フィルム100a、電磁波吸収フィルム100b、及び電磁波吸収フィルム100cの表面抵抗をそれぞれ283Ω、785Ω及び283Ωとした以外比較例12と同様にして、図19に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図44に示す。図44から明らかなように、TE波のピーク吸収率は約8〜15 dBであり、またTM波のピーク吸収率は約15〜27 dBであった。この結果から、三枚の電磁波吸収フィルムを有する電磁波吸収体の場合でも、最前の電磁波吸収フィルム100aの表面抵抗が二枚目の電磁波吸収フィルム100bの表面抵抗より小さければ、十分に高い電磁波吸収能が得られないことが分かる。
Comparative Example 14
An electromagnetic wave absorber shown in FIG. 19 was produced in the same manner as in Comparative Example 12 except that the surface resistances of the electromagnetic wave absorbing film 100a, the electromagnetic wave absorbing film 100b, and the electromagnetic wave absorbing film 100c were 283Ω, 785Ω, and 283Ω, respectively. In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 44, the peak absorption rate of the TE wave was about 8 to 15 dB, and the peak absorption rate of the TM wave was about 15 to 27 dB. From this result, even in the case of an electromagnetic wave absorber having three electromagnetic wave absorbing films, if the surface resistance of the first electromagnetic wave absorbing film 100a is smaller than the surface resistance of the second electromagnetic wave absorbing film 100b, the electromagnetic wave absorbing ability is sufficiently high. It can be seen that cannot be obtained.

実施例6
電磁波吸収フィルム100a、電磁波吸収フィルム100b、及び電磁波吸収フィルム100cのプラスチック面にそれぞれ交差角が60°,90°及び60°の二方向の線状痕を形成した以外比較例12と同様にして、図22に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図45に示す。図45から明らかなように、TE波のピーク吸収率は12〜32 dBであり、またTM波のピーク吸収率は約22〜52 dBであった。この入射角度範囲でTM波のピーク吸収率は全体的に高かった。この結果から、三枚の電磁波吸収フィルムを有する電磁波吸収体の場合でも、最前の電磁波吸収フィルム100aの表面抵抗が二枚目の電磁波吸収フィルム100bの表面抵抗より大きければ、優れた電磁波吸収能を示すことが分かる。またD1/D2の比を2/1とし、D3/D2の比を2/1とするのは、高い電磁波吸収能を得るのに好ましいことも分かる。
Example 6
Electromagnetic wave absorbing film 100a, electromagnetic wave absorbing film 100b, and electromagnetic wave absorbing film 100c, in the same manner as in Comparative Example 12 , except that the crossing angles are 60 °, 90 ° and 60 °, respectively, forming linear traces in two directions. An electromagnetic wave absorber shown in FIG. 22 was produced. In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 45, the peak absorption rate of the TE wave was 12 to 32 dB, and the peak absorption rate of the TM wave was about 22 to 52 dB. In this incident angle range, the peak absorptance of TM wave was high overall. From this result, even in the case of an electromagnetic wave absorber having three electromagnetic wave absorbing films, if the surface resistance of the first electromagnetic wave absorbing film 100a is larger than the surface resistance of the second electromagnetic wave absorbing film 100b, excellent electromagnetic wave absorbing ability is obtained. You can see that It can also be seen that setting the ratio of D 1 / D 2 to 2/1 and the ratio of D 3 / D 2 to 2/1 is preferable for obtaining high electromagnetic wave absorption ability.

比較例15
間隔D1、D2及びD3をそれぞれ20 mm、20 mm及び20 mmとし、D1/D2/D3の比を1/1/1とした以外実施例6と同様にして、図22に示す電磁波吸収体を作製した。10°〜60°の入射角度範囲で、この電磁波吸収体のピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図46に示す。図46から明らかなように、TE波のピーク吸収率は約13〜43 dBであり、またTM波のピーク吸収率は約16〜39 dBであった。この結果から、三枚の電磁波吸収フィルムを有する電磁波吸収体の場合でも、最前の電磁波吸収フィルム100aの表面抵抗が二枚目の電磁波吸収フィルム100bの表面抵抗より大きければ、優れた電磁波吸収能を示すことが分かる。ただし、D1/D2の比が2/1で、D3/D2の比が2/1の実施例6より電磁波吸収能は劣っていた。
Comparative Example 15
The intervals D 1 , D 2, and D 3 were 20 mm, 20 mm, and 20 mm, respectively, and the ratio of D 1 / D 2 / D 3 was 1/1/1, as in Example 6, and FIG. The electromagnetic wave absorber shown in FIG. In the incident angle range of 10 ° to 60 °, the peak absorption rate and peak frequency of this electromagnetic wave absorber were measured in the same manner as in Comparative Example 1 . The results are shown in FIG. As is clear from FIG. 46, the TE wave peak absorptance was about 13 to 43 dB, and the TM wave peak absorptance was about 16 to 39 dB. From this result, even in the case of an electromagnetic wave absorber having three electromagnetic wave absorbing films, if the surface resistance of the first electromagnetic wave absorbing film 100a is larger than the surface resistance of the second electromagnetic wave absorbing film 100b, excellent electromagnetic wave absorbing ability is obtained. You can see that However, the electromagnetic wave absorption ability was inferior to that of Example 6 in which the ratio of D 1 / D 2 was 2/1 and the ratio of D 3 / D 2 was 2/1.

比較例16
電磁波吸収フィルム120a、電磁波吸収フィルム120b、及び電磁波吸収フィルム120cの表面抵抗をそれぞれ283Ω、785Ω及び283Ωとした以外実施例6と同様に図22に示す電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図47に示す。図47から明らかなように、TE波のピーク吸収率は約8〜17 dBであり、またTM波のピーク吸収率は約17〜25 dBであった。この結果から、線状痕を有する三枚の電磁波吸収フィルムを有する電磁波吸収体の場合でも、最前の電磁波吸収フィルム120aの表面抵抗が二枚目の電磁波吸収フィルム120bの表面抵抗より小さければ、十分に高い電磁波吸収能が得られないことが分かる。
Comparative Example 16
The electromagnetic wave absorber shown in FIG. 22 was prepared in the same manner as in Example 6 except that the surface resistances of the electromagnetic wave absorbing film 120a, the electromagnetic wave absorbing film 120b, and the electromagnetic wave absorbing film 120c were 283Ω, 785Ω, and 283Ω, respectively, and 10 ° -60 ° The peak absorptance and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range. The results are shown in FIG. As is clear from FIG. 47, the peak absorption rate of the TE wave was about 8 to 17 dB, and the peak absorption rate of the TM wave was about 17 to 25 dB. From this result, even in the case of an electromagnetic wave absorber having three electromagnetic wave absorbing films having linear marks, it is sufficient if the surface resistance of the front electromagnetic wave absorbing film 120a is smaller than the surface resistance of the second electromagnetic wave absorbing film 120b. It can be seen that high electromagnetic wave absorbing ability cannot be obtained.

比較例17
電磁波吸収フィルム100aの表面抵抗を228Ωとし、電磁波吸収フィルム100bの表面抵抗を137Ω(Ni薄膜の厚さ20 nm)とした以外比較例1と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図48に示す。図48から明らかなように、TE波のピーク吸収率は約10〜38 dBであり、またTM波のピーク吸収率は約15〜45 dBであった。また10°〜60°の入射角度範囲で2.5 GHzにおける電磁波吸収率を測定した。結果を図49に示す。図49から明らかなように、TE波の吸収率は約7〜16 dBであり、またTM波のピーク吸収率は約5〜23 dBであった。これらの結果から、前面側の電磁波吸収フィルム100aの表面抵抗が後面側の電磁波吸収フィルム100bの表面抵抗より50Ω以上大きいと、十分に高い電磁波吸収能が得られることが分かる。
Comparative Example 17
An electromagnetic wave absorber having the same structure as Comparative Example 1 was prepared except that the surface resistance of the electromagnetic wave absorbing film 100a was 228Ω and the surface resistance of the electromagnetic wave absorbing film 100b was 137Ω (Ni thin film thickness: 20 nm), and 10 ° to 60 ° The peak absorption rate and peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of °. The results are shown in FIG. As is clear from FIG. 48, the peak absorption rate of the TE wave was about 10 to 38 dB, and the peak absorption rate of the TM wave was about 15 to 45 dB. Moreover, the electromagnetic wave absorptivity at 2.5 GHz was measured in an incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 49, the TE wave absorptance was about 7 to 16 dB, and the TM wave peak absorptance was about 5 to 23 dB. From these results, it can be seen that when the surface resistance of the electromagnetic wave absorbing film 100a on the front surface side is 50Ω or more larger than the surface resistance of the electromagnetic wave absorbing film 100b on the rear surface side, sufficiently high electromagnetic wave absorbing ability can be obtained.

比較例18
電磁波吸収フィルム100aと電磁波吸収フィルム100bの配置順序を逆にした以外比較例17と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図50に示す。図50から明らかなように、TE波のピーク吸収率は約6〜8 dBであり、またTM波のピーク吸収率は約8〜22 dBであった。また10°〜60°の入射角度範囲で2.5 GHzにおける電磁波吸収率を測定した。結果を図51に示す。図51から明らかなように、TE波の吸収率は約5.5〜7.5 dBであり、またTM波のピーク吸収率は約7.5〜11.5 dBであった。これらの結果から、前面側の電磁波吸収フィルム100aの表面抵抗が後面側の電磁波吸収フィルム100bの表面抵抗より小さいと、十分に高い電磁波吸収能が得られないことが分かる。
Comparative Example 18
An electromagnetic wave absorber having the same configuration as that of Comparative Example 17 except that the arrangement order of the electromagnetic wave absorbing film 100a and the electromagnetic wave absorbing film 100b was reversed, and the peak absorption rate and the peak frequency were compared in an incident angle range of 10 ° to 60 °. Measured as in 1 . The results are shown in FIG. As is clear from FIG. 50, the peak absorption rate of the TE wave was about 6 to 8 dB, and the peak absorption rate of the TM wave was about 8 to 22 dB. Moreover, the electromagnetic wave absorptivity at 2.5 GHz was measured in an incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 51, the absorption rate of the TE wave was about 5.5 to 7.5 dB, and the peak absorption rate of the TM wave was about 7.5 to 11.5 dB. From these results, it can be seen that when the surface resistance of the electromagnetic wave absorbing film 100a on the front surface side is smaller than the surface resistance of the electromagnetic wave absorbing film 100b on the rear surface side, sufficiently high electromagnetic wave absorbing ability cannot be obtained.

比較例19
電磁波吸収フィルムの表面抵抗を500Ωとし、電磁波吸収フィルム100bの表面抵抗を300Ωとした以外比較例1と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲で2.5 GHzにおける電磁波吸収率を測定した。結果を図52に示す。図52から明らかなように、TE波の吸収率は約12〜27 dBであり、またTM波のピーク吸収率は約4〜25 dBであった。これらの結果から、前面側の電磁波吸収フィルム100aの表面抵抗が後面側の電磁波吸収フィルム100bの表面抵抗より大きいと、2.5 GHzにおいて十分に高い電磁波吸収能が得られることが分かる。
Comparative Example 19
An electromagnetic wave absorber having the same structure as Comparative Example 1 except that the surface resistance of the electromagnetic wave absorbing film was set to 500Ω and the surface resistance of the electromagnetic wave absorbing film 100b was set to 300Ω, and an electromagnetic wave at 2.5 GHz in an incident angle range of 10 ° to 60 °. Absorptivity was measured. The results are shown in FIG. As is clear from FIG. 52, the TE wave absorptance was about 12 to 27 dB, and the TM wave peak absorptance was about 4 to 25 dB. From these results, it can be seen that when the surface resistance of the electromagnetic wave absorbing film 100a on the front surface side is larger than the surface resistance of the electromagnetic wave absorbing film 100b on the rear surface side, sufficiently high electromagnetic wave absorbing ability can be obtained at 2.5 GHz.

実施例7
電磁波吸収フィルム100aのプラスチック面に交差角が60°の二方向の線状痕を形成し、電磁波吸収フィルム100bのプラスチック面に交差角が90°の二方向の線状痕を形成した以外比較例19と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲で5.8 GHzにおける電磁波吸収率を測定した。結果を図53に示す。図53から明らかなように、TE波の電磁波吸収率は約17〜53 dBであり、またTM波の電磁波吸収率は約4〜26 dBであった。この結果から、前面側の電磁波吸収フィルム100aの表面抵抗が後面側の電磁波吸収フィルム100bの表面抵抗より大きいと、線状痕を形成した場合でも、5.8 GHzにおいて十分に高い電磁波吸収能が得られることが分かる。
Example 7
Comparative example except that a two-way linear mark with a crossing angle of 60 ° is formed on the plastic surface of the electromagnetic wave absorbing film 100a, and a two-way linear mark with a crossing angle of 90 ° is formed on the plastic surface of the electromagnetic wave absorbing film 100b. An electromagnetic wave absorber having the same configuration as that of 19 was prepared, and the electromagnetic wave absorption rate at 5.8 GHz was measured in an incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 53, the electromagnetic wave absorption rate of TE waves was about 17 to 53 dB, and the electromagnetic wave absorption rate of TM waves was about 4 to 26 dB. From this result, if the surface resistance of the electromagnetic wave absorbing film 100a on the front side is larger than the surface resistance of the electromagnetic wave absorbing film 100b on the rear side, a sufficiently high electromagnetic wave absorbing ability can be obtained at 5.8 GHz even when linear traces are formed. I understand that.

比較例20
図6(a) に示すように、785Ωの表面抵抗を有する2枚の電磁波吸収フィルム片100a’と283Ωの表面抵抗を有する1枚の電磁波吸収フィルム片100b’とを隙間なく並べて、443Ωの平均表面抵抗を有する複合電磁波吸収フィルム130aを作製した。同様に、283Ωの表面抵抗を有する2枚の電磁波吸収フィルム片100a’と783Ωの表面抵抗を有する1枚の電磁波吸収フィルム片100b’とを隙間なく並べて、367Ωの平均表面抵抗を有する複合電磁波吸収フィルム130bを作製した。これらの複合電磁波吸収フィルム130a,130bを用いた以外比較例1と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲で2.5 GHzにおける電磁波吸収率を測定した。結果を図54に示す。図54から明らかなように、TE波の電磁波吸収率は約12〜33 dBであり、またTM波の電磁波吸収率は約3〜19 dBであった。また10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図55に示す。図55から明らかなように、TE波のピーク吸収率は約16〜40 dBであり、またTM波のピーク吸収率は約11〜22 dBであった。これらの結果から、複数枚の電磁波吸収フィルム片からなる複合電磁波吸収フィルムを使用しても、前面側の複合電磁波吸収フィルム130aの表面抵抗が後面側の複合電磁波吸収フィルム130bの表面抵抗より大きいと、十分に高い電磁波吸収能が得られることが分かる。
Comparative Example 20
As shown in FIG. 6 (a), two electromagnetic wave absorbing film pieces 100a ′ having a surface resistance of 785Ω and one electromagnetic wave absorbing film piece 100b ′ having a surface resistance of 283Ω are arranged without gaps, and an average of 443Ω is obtained. A composite electromagnetic wave absorbing film 130a having a surface resistance was produced. Similarly, two electromagnetic wave absorbing film pieces 100a ′ having a surface resistance of 283Ω and one electromagnetic wave absorbing film piece 100b ′ having a surface resistance of 783Ω are arranged without gaps, and composite electromagnetic wave absorption having an average surface resistance of 367Ω. A film 130b was produced. An electromagnetic wave absorber having the same configuration as that of Comparative Example 1 except that these composite electromagnetic wave absorbing films 130a and 130b were used was produced, and an electromagnetic wave absorption rate at 2.5 GHz was measured in an incident angle range of 10 ° to 60 °. The results are shown in FIG. As apparent from FIG. 54, the electromagnetic wave absorption rate of the TE wave was about 12 to 33 dB, and the electromagnetic wave absorption rate of the TM wave was about 3 to 19 dB. Further, the peak absorption rate and the peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As apparent from FIG. 55, the peak absorption rate of the TE wave was about 16 to 40 dB, and the peak absorption rate of the TM wave was about 11 to 22 dB. From these results, even if a composite electromagnetic wave absorbing film consisting of a plurality of electromagnetic wave absorbing film pieces is used, the surface resistance of the composite electromagnetic wave absorbing film 130a on the front side is larger than the surface resistance of the composite electromagnetic wave absorbing film 130b on the rear side. It can be seen that a sufficiently high electromagnetic wave absorbing ability can be obtained.

比較例21
図6(a) に示すように、300Ωの表面抵抗を有する2枚の電磁波吸収フィルム片100a’と500Ωの表面抵抗を有する1枚の電磁波吸収フィルム片100b’とを隙間なく並べて、331Ωの平均表面抵抗を有する複合電磁波吸収フィルム130bを作製した。比較例20で作製した443Ωの平均表面抵抗を有する複合電磁波吸収フィルム130aを、331Ωの平均表面抵抗を有する上記複合電磁波吸収フィルム130bと組合せた以外比較例20と同じ構成の電磁波吸収体を作製し、10°〜60°の入射角度範囲でピーク吸収率及びピーク周波数を比較例1と同様に測定した。結果を図56に示す。図56から明らかなように、TE波のピーク吸収率は約16〜41 dBであり、またTM波のピーク吸収率は約10〜21 dBであった。比較例20のピーク吸収率と比較すると、比較例21のピーク吸収率の方が僅かに高かった。これらの結果から、前面側の複合電磁波吸収フィルム130aの表面抵抗が後面側の複合電磁波吸収フィルム130bの表面抵抗より100Ω以上大きいと、さらに高い電磁波吸収能が得られることが分かる。
Comparative Example 21
As shown in FIG. 6 (a), two electromagnetic wave absorbing film pieces 100a ′ having a surface resistance of 300Ω and one electromagnetic wave absorbing film piece 100b ′ having a surface resistance of 500Ω are arranged without gaps, and an average of 331Ω is obtained. A composite electromagnetic wave absorbing film 130b having a surface resistance was produced. A composite electromagnetic wave absorbing film 130a having an average surface resistance of 443Ω prepared in Comparative Example 20 was prepared, and an electromagnetic wave absorber having the same structure as Comparative Example 20 was prepared except that the composite electromagnetic wave absorbing film 130b having an average surface resistance of 331Ω was combined. The peak absorption rate and the peak frequency were measured in the same manner as in Comparative Example 1 in the incident angle range of 10 ° to 60 °. The results are shown in FIG. As is clear from FIG. 56, the peak absorption rate of the TE wave was about 16 to 41 dB, and the peak absorption rate of the TM wave was about 10 to 21 dB. Compared with the peak absorption rate of Comparative Example 20, the peak absorption rate of Comparative Example 21 was slightly higher. From these results, it can be seen that when the surface resistance of the composite electromagnetic wave absorbing film 130a on the front surface side is 100Ω or more higher than the surface resistance of the composite electromagnetic wave absorbing film 130b on the rear surface side, higher electromagnetic wave absorbing ability can be obtained.

実施例及び比較例の電磁波吸収体の構成を下記の表1に纏めて示す。

Figure 0005559668
The configurations of the electromagnetic wave absorbers of Examples and Comparative Examples are summarized in Table 1 below.
Figure 0005559668

表1(続き)

Figure 0005559668
Table 1 (continued)
Figure 0005559668

以上本発明を図面を参照して詳細に説明したが、勿論本発明はそれらに限定されず、本発明の範囲内で種々の変更を施すことができる。例えば、線状痕のない電磁波吸収フィルム同士、又は線状痕を有する電磁波吸収フィルム同士の組合せだけでなく、線状痕のない電磁波吸収フィルムと線状痕を有する電磁波吸収フィルムとを組合せるのも本発明の範囲内である。   Although the present invention has been described in detail with reference to the drawings, the present invention is of course not limited thereto, and various modifications can be made within the scope of the present invention. For example, not only a combination of electromagnetic wave absorbing films without linear traces, or an electromagnetic wave absorbing film having linear traces, but also an electromagnetic wave absorbing film without linear traces and an electromagnetic wave absorbing film having linear traces. Are also within the scope of the present invention.

100・・・電磁波吸収フィルム
100a,100b,100c・・・線状痕のない電磁波吸収フィルム
110a,110b,110c・・・導電体層に線状痕を有する電磁波吸収フィルム
120a,120b,120c・・・プラスチック面に線状痕を有する電磁波吸収フィルム
130・・・線状痕のない複数の電磁波吸収フィルム片からなる複合電磁波吸収フィルム
140,150・・・線状痕を有する複数の電磁波吸収フィルム片からなる複合電磁波吸収フィルム
10,10a,10b,10c・・・プラスチックフィルム
11,11a,11b,11c・・・導電体層(金属薄膜)
12,12a,12b,12c,12d・・・線状痕
13a,13b・・・保護層
2a,2b,2c,2d・・・パターンロール
3a,3b,3c,3d,3e・・・押えロール
30a,30b,30c・・・誘電体
200・・・反射板
100 ... Electromagnetic wave absorbing film
100a, 100b, 100c ... electromagnetic wave absorbing film without linear traces
110a, 110b, 110c ... Electromagnetic wave absorbing film having linear traces on the conductor layer
120a, 120b, 120c ... Electromagnetic wave absorbing film with linear marks on the plastic surface
130 ... Composite electromagnetic wave absorbing film comprising a plurality of electromagnetic wave absorbing film pieces without linear traces
140, 150 ... Composite electromagnetic wave absorbing film comprising a plurality of electromagnetic wave absorbing film pieces having linear marks
10, 10a, 10b, 10c ... Plastic film
11, 11a, 11b, 11c ... Conductor layer (metal thin film)
12, 12a, 12b, 12c, 12d ... linear marks
13a, 13b ... Protective layer
2a, 2b, 2c, 2d ... Pattern roll
3a, 3b, 3c, 3d, 3e ... Presser roll
30a, 30b, 30c ・ ・ ・ Dielectric
200 ... Reflector

Claims (2)

電磁波反射体の前に複数枚の電磁波吸収フィルムを誘電体を介して積層してなる電磁波吸収体であって、
各電磁波吸収フィルムはプラスチックフィルムの一方の面に導電体層を形成してなり、
各電磁波吸収フィルムの導電体層は100〜1000Ω/□の範囲内の表面抵抗を有し、 最前の電磁波吸収フィルムの導電体層の表面抵抗はその次の電磁波吸収フィルムの導電体層の表面抵抗より100Ω/□以上大きく、
(a) 前記電磁波吸収フィルムが2枚の場合、第一の電磁波吸収フィルムと第二の電磁波吸収フィルムとの間隔と、前記第二の電磁波吸収フィルムと前記電磁波反射体との間隔との比が100:30〜100:70であり、(b) 前記電磁波吸収フィルムが3枚以上の場合、第一の電磁波吸収フィルムと第二の電磁波吸収フィルムとの間隔と、前記第二の電磁波吸収フィルムと第三の電磁波吸収フィルムとの間隔との比が100:30〜100:70であり、
前記電磁波吸収フィルムのプラスチックフィルム側に不規則な幅及び間隔で実質的に平行な多数の断続的な線状痕が複数方向に形成されており、
前記線状痕の幅は90%以上が0.1〜100μmの範囲内にあって、平均1〜50μmであり、前記線状痕の間隔は0.1〜200μmの範囲内にあって、平均1〜100μmであることを特徴とする電磁波吸収体。
An electromagnetic wave absorber formed by laminating a plurality of electromagnetic wave absorbing films through a dielectric before an electromagnetic wave reflector,
Each electromagnetic wave absorbing film is formed by forming a conductor layer on one side of a plastic film,
The conductive layer of each electromagnetic wave absorbing film has a surface resistance in the range of 100 to 1000 Ω / □, and the surface resistance of the conductive layer of the previous electromagnetic wave absorbing film is the surface of the conductive layer of the next electromagnetic wave absorbing film. 100 Ω / □ or more larger than the resistance
(a) When the number of the electromagnetic wave absorbing films is two, the ratio between the distance between the first electromagnetic wave absorbing film and the second electromagnetic wave absorbing film and the distance between the second electromagnetic wave absorbing film and the electromagnetic wave reflector is 100: 30 to 100: 70, and (b) when there are three or more electromagnetic wave absorbing films, an interval between the first electromagnetic wave absorbing film and the second electromagnetic wave absorbing film, and the second electromagnetic wave absorbing film, The ratio of the distance to the third electromagnetic wave absorbing film is 100: 30 to 100: 70,
A number of intermittent linear traces substantially parallel with irregular widths and intervals are formed in a plurality of directions on the plastic film side of the electromagnetic wave absorbing film,
90% or more of the width of the linear traces is in the range of 0.1 to 100 μm, and the average is 1 to 50 μm, and the interval of the linear traces is in the range of 0.1 to 200 μm, and the average is 1 to 100 μm. electromagnetic wave absorber characterized in that there.
請求項1に記載の電磁波吸収体において、各電磁波吸収フィルムの線状痕が二方向に配向しており、その交差角が30〜90°であることを特徴とする電磁波吸収体。
2. The electromagnetic wave absorber according to claim 1, wherein the linear traces of each electromagnetic wave absorption film are oriented in two directions, and the crossing angle is 30 to 90 °.
JP2010273039A 2010-12-07 2010-12-07 Electromagnetic wave absorber Active JP5559668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273039A JP5559668B2 (en) 2010-12-07 2010-12-07 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273039A JP5559668B2 (en) 2010-12-07 2010-12-07 Electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2012124291A JP2012124291A (en) 2012-06-28
JP5559668B2 true JP5559668B2 (en) 2014-07-23

Family

ID=46505450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273039A Active JP5559668B2 (en) 2010-12-07 2010-12-07 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP5559668B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023122061A1 (en) 2022-08-19 2024-02-22 Seiji Kagawa ABSORBER FOR ELECTROMAGNETIC WAVES IN THE NEAR FIELD

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461416B1 (en) * 2018-06-21 2019-01-30 加川 清二 Electromagnetic wave absorbing composite sheet
JP6404522B1 (en) * 2018-07-03 2018-10-10 加川 清二 Electromagnetic wave absorbing composite sheet
JP6461414B1 (en) * 2018-08-02 2019-01-30 加川 清二 Electromagnetic wave absorbing composite sheet
CN118156152B (en) * 2024-05-09 2024-07-19 日月新半导体(威海)有限公司 Semiconductor device and forming method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059068A (en) * 1998-08-06 2000-02-25 Oji Kako Kk Transparent radio wave absorbing body and manufacture thereof
JP2001044750A (en) * 1998-12-28 2001-02-16 Tokai Rubber Ind Ltd Transparent radio wave absorbing body
JP4103953B2 (en) * 2002-09-11 2008-06-18 横浜ゴム株式会社 Radio wave absorber with sound absorbing function
CN102046370B (en) * 2009-02-13 2014-05-14 加川清二 Metal thin film-plastic film composite film with linear streaks and apparatus for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023122061A1 (en) 2022-08-19 2024-02-22 Seiji Kagawa ABSORBER FOR ELECTROMAGNETIC WAVES IN THE NEAR FIELD

Also Published As

Publication number Publication date
JP2012124291A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5302287B2 (en) Electromagnetic wave absorber
KR101688471B1 (en) Metal thin film-plastic film composite film with linear streaks and apparatus for producing same
JP5542139B2 (en) Composite electromagnetic wave absorbing film
Sheokand et al. Transparent broadband metamaterial absorber based on resistive films
JP5726903B2 (en) Near-field electromagnetic wave absorber
JP5771275B2 (en) Electromagnetic wave absorbing film with high heat dissipation
CN103959927B (en) Composite electromagnetic absorbing sheet
JP5559668B2 (en) Electromagnetic wave absorber
KR102069556B1 (en) Electromagnetic-wave-absorbing filter
JP5214541B2 (en) Visible light transmitting electromagnetic wave absorbing film and visible light transmitting electromagnetic wave absorber using the same
JP5107394B2 (en) Electromagnetic wave absorber and interior material using the same
JP6461416B1 (en) Electromagnetic wave absorbing composite sheet
CN117596854A (en) Near-field electromagnetic wave absorber
JP5186535B2 (en) Transparent electromagnetic wave absorbing film
JP7423172B1 (en) Electromagnetic wave absorbing film, its manufacturing device, and near field electromagnetic wave absorber having such electromagnetic wave absorbing film
TW202508405A (en) Electromagnetic-wave-absorbing film and its production apparatus, and near-field electromagnetic wave absorber comprising such electromagnetic-wave-absorbing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140606

R150 Certificate of patent or registration of utility model

Ref document number: 5559668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250