JP5558119B2 - How to use granular iron - Google Patents
How to use granular iron Download PDFInfo
- Publication number
- JP5558119B2 JP5558119B2 JP2010003876A JP2010003876A JP5558119B2 JP 5558119 B2 JP5558119 B2 JP 5558119B2 JP 2010003876 A JP2010003876 A JP 2010003876A JP 2010003876 A JP2010003876 A JP 2010003876A JP 5558119 B2 JP5558119 B2 JP 5558119B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- mass
- granular iron
- steelmaking dust
- granular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は、粒鉄の利用方法に関し、さらに詳細には、製鋼スラグから回収された粒子サイズが7mm以下である粒鉄を鉄源として利用する、粒鉄の利用方法に関する。 The present invention relates to a method for using granular iron, and more particularly, to a method for using granular iron in which granular iron with a particle size of 7 mm or less recovered from steelmaking slag is used as an iron source.
従来、製鉄所における製鋼スラグ処理においては、溶融スラグを固化する固化工程、固化したスラグを100℃程度まで冷却する冷却工程、磁力選鉱に適した粒度に破砕する細粒化工程、磁力選鉱による粒鉄とスラグとの分別工程、ヤードエージングによるスラグの安定化工程などのほかに、粒鉄を製鋼用原料として転炉で使用するリサイクル工程が行われている。通常、製鋼用原料として利用される粒鉄は、粒子サイズが7mmを超える粒子であり、粒子サイズが7mm以下の粒子については、高温の銑鉄に投入すると、高い温度による激しい上昇気流により炎となり飛散するなど、操業上の問題から転炉への装入は行えなかった。 Conventionally, in steelmaking slag treatment at steelworks, a solidification process for solidifying molten slag, a cooling process for cooling the solidified slag to about 100 ° C., a fine granulation process for crushing to a particle size suitable for magnetic beneficiation, and grains by magnetic beneficiation In addition to the separation process of iron and slag, the stabilization process of slag by yard aging, and the like, a recycling process using granular iron as a raw material for steelmaking in a converter is performed. Normally, granular iron used as a raw material for steelmaking is a particle having a particle size exceeding 7 mm. When particles having a particle size of 7 mm or less are put into high-temperature pig iron, they are flamed and scattered by intense ascending current due to high temperature. The converter could not be charged due to operational problems.
そこで、特許文献1では、溶銑予備処理後であって脱炭精錬前の取鍋内または混銑車内溶銑の表面スラグ上に、粒鉄を上置きするように散布し、粒鉄をスラグに取り込ませることによって、急激な反応を引き起こす溶銑との接触を避け、脱炭精錬で鉄分を溶鋼中に回収する方法が提案されている。 So, in patent document 1, it sprays so that a granular iron may be set | placed on the surface slag of the ladle after the hot metal preliminary treatment, and before decarburization refining, or the molten iron in a kneading vehicle, and let granular iron be taken in into slag. Thus, a method has been proposed in which contact with hot metal causing a rapid reaction is avoided and iron is recovered in molten steel by decarburization refining.
しかしながら、特許文献1に記載の技術では、粒鉄がスラグ層を突き抜けないように、スラグ表面の近い位置に投入シュートを設けるなどして慎重に作業する必要があり、また、溶銑予備処理後のスラグ層の厚みは薄く都度変化するため、粒鉄の投入量を抑える必要があるなどの問題がある。 However, in the technique described in Patent Document 1, it is necessary to work carefully by providing a charging chute near the surface of the slag so that the granular iron does not penetrate the slag layer. Since the thickness of the slag layer is thin and changes each time, there is a problem that it is necessary to suppress the amount of granular iron input.
一方、粒子サイズが7mm以下である粒鉄を造粒等の塊成化手段により、転炉への装入が可能な大きさの原料にすることが考えられる。しかし、粒鉄は、一般的に行われる造粒、例えば、皿型のパン型造粒機による転動造粒やダブルロール成形機によるブリケット成形で処理するには、粒子自体に吸水性がないなど、性状的に塊成化が困難であるだけでなく、粒度分布が粗く、仮にこれら手段による塊成化を行おうとした場合、前処理として微粉砕等が必要になるなどの問題もある。 On the other hand, it is conceivable that granular iron having a particle size of 7 mm or less is made into a raw material having a size that can be charged into a converter by agglomeration means such as granulation. However, granular iron is not water-absorbing in order to be processed by commonly performed granulation, for example, rolling granulation with a pan-type granulator or briquette molding with a double roll molding machine. In addition to being difficult to agglomerate in nature, there is a problem that the particle size distribution is coarse, and if agglomeration by these means is attempted, fine grinding or the like is required as pretreatment.
そこで、本発明は、前処理として微粉砕等を行うことなく塊成化が可能であり、スクラップや粒子サイズが7mmを超える粒鉄などを用いる既存の転炉装入原料と同じ設備を使用することができ、また、転炉への十分な量の装入を行うことができる、粒子サイズが7mm以下である粒鉄の利用方法を提供することを目的とする。 Therefore, the present invention can be agglomerated without performing fine grinding or the like as a pretreatment, and uses the same equipment as existing converter charging materials using scrap or granular iron having a particle size exceeding 7 mm. It is another object of the present invention to provide a method for using granular iron having a particle size of 7 mm or less, which can be charged into a converter in a sufficient amount.
本発明者等は、上記課題を解決すべく鋭意研究を積み重ねた。その結果、粒子自体に吸水性がないなど性状的に塊成化が困難な粒子サイズが7mm以下の粒鉄に対して、製鋼ダストを所定量混合することにより、微粉砕等の前処理を行うことなく塊成化が可能となり、また、得られた塊成化物が転炉装入に耐え得る高い強度を発現することを見出し、本発明を完成するに至った。 The present inventors have intensively studied to solve the above problems. As a result, a pretreatment such as fine pulverization is performed by mixing a predetermined amount of steelmaking dust with granular iron having a particle size of 7 mm or less that is difficult to agglomerate due to its lack of water absorption. It has been found that agglomeration can be performed without any problem, and that the obtained agglomerated material exhibits a high strength that can withstand the charging of the converter, and the present invention has been completed.
すなわち、上記課題は、以下の(1)〜(3)によって達成される。 That is, the said subject is achieved by the following (1)-(3).
(1)粒子サイズが7mm以下である粒鉄(A)20〜80質量%と、製鋼ダスト(B)80〜20質量%と、(ただし、(A)+(B)=100質量%)を混練し塊成化した後、得られた塊成化物を転炉に装入することを特徴とする、粒鉄の利用方法。 (1) Granular iron (A) having a particle size of 7 mm or less (A) 20 to 80% by mass, steelmaking dust (B) 80 to 20% by mass, ((A) + (B) = 100% by mass) After kneading and agglomerating, the obtained agglomerated material is charged into a converter.
(2)前記粒鉄(A)と前記製鋼ダスト(B)との合計100質量%に対して、さらに3〜10質量%のフライアッシュ(C)をさらに添加することを特徴とする、上記(1)に記載の粒鉄の利用方法。 (2) 3 to 10% by mass of fly ash (C) is further added to the total of 100% by mass of the granular iron (A) and the steelmaking dust (B), A method for using the granular iron described in 1).
(3)材料を内部に貯えるドラムと、前記ドラム内を公転しながら自転し、かつ可変速可能な複数のロータと、を備え、前記ロータがロータ回転軸に対し直角方向に配設された複数の回転羽根を有するミキサーを用いて、前記粒鉄と前記製鋼ダストとを混練し、擬似造粒化した後、転動機を用いて塊成化することを特徴とする、上記(1)または(2)に記載の粒鉄の利用方法。 (3) A plurality of drums each having a drum for storing material therein and a plurality of rotors that rotate while revolving within the drum and that can be variable-speeded, wherein the rotors are arranged in a direction perpendicular to the rotor rotation axis. The above-mentioned (1) or (1), wherein the granular iron and the steelmaking dust are kneaded using a mixer having rotating blades of the following, pseudo-granulated, and then agglomerated using a rolling machine. The utilization method of the granular iron as described in 2).
本発明によれば、粒鉄に製鋼ダストを配合することで、微細な粒子と粘りとが粒鉄に付与されるため、前処理として微粉砕等を行うことなく、造粒が困難であった粒鉄の塊成化が可能となる。また、粒鉄の塊成化物に含まれる製鋼ダスト由来の微細な金属鉄が酸化する過程で塊成化物の強度が高まり、塊成化物の転炉装入が可能となり、製鋼ダストに含まれる鉄分を回収利用できるようになる。 According to the present invention, by adding steelmaking dust to the granular iron, fine particles and stickiness are imparted to the granular iron, and thus granulation is difficult without performing pulverization or the like as pretreatment. Agglomeration of granular iron is possible. In addition, the strength of the agglomerate is increased in the process of oxidizing the fine metal iron derived from the steelmaking dust contained in the agglomerate of granular iron, allowing the agglomerate to be charged into the converter, and the iron content contained in the steelmaking dust. Can be recovered and used.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
(A)粒鉄
本発明で用いられる粒鉄は、製鋼スラグの破砕・分級によって発生する、粒子サイズが7mm以下のものである。ところで、一般に、固体粒子に水を加え、混練した場合の状態変化は、固相、液相、気相の関係から、図1のように考えられている。特に、造粒は、混練作用によって粒子表面に水が浮き出て、隣接する粒子同士が液面を介して連続的につながった、流動性のない状態であることから、捏和(ねっか)の中でも、より低水分側で起こっていると説明される。しかしながら、粒鉄の粒子は、吸水性が極端に乏しく、捏和の状態を経ることなく、比較的低い水分で分散状態になってしまうため、造粒による塊成化が困難であった。かような問題に対し、本発明では、粒鉄に捏和の状態を生じさせるために製鋼ダストを配合する。
(A) Grained iron The grained iron used in the present invention has a particle size of 7 mm or less generated by crushing / classifying steelmaking slag. By the way, in general, a state change when water is added to a solid particle and kneaded is considered as shown in FIG. 1 from the relationship between a solid phase, a liquid phase, and a gas phase. In particular, since granulation is a non-fluid state in which water floats on the particle surface due to the kneading action, and adjacent particles are continuously connected via the liquid surface. Above all, it is explained that it occurs on the lower moisture side. However, the granular iron particles are extremely poor in water absorption, and are not dispersed and become dispersed with relatively low moisture without passing through a kneaded state, making it difficult to agglomerate by granulation. In order to solve such a problem, in the present invention, steelmaking dust is blended in order to produce a mild state in the granular iron.
前述のように、本発明で用いられる粒鉄の粒子サイズは7mm以下であれば、特に制限されない。好ましくは3mm以下である。 As described above, the particle size of the granular iron used in the present invention is not particularly limited as long as it is 7 mm or less. Preferably it is 3 mm or less.
なお、本発明に係る粒鉄は、例えば粒子サイズが7mm以下であれば、目開き7mmの篩を通過したものを使用すればよい。また、例えば粒子サイズが3mm以下であれば、目開き3mmの篩を通過したものを使用すればよい。 In addition, as for the granular iron which concerns on this invention, if the particle size is 7 mm or less, what passed the sieve with an opening of 7 mm should just be used. For example, if the particle size is 3 mm or less, a particle having passed through a sieve having an opening of 3 mm may be used.
本発明に係る混練時における粒鉄の配合量は、粒鉄と製鋼ダストとの合計量に対して、20〜80質量%、好ましくは30〜75質量%である。この範囲であれば、粒鉄の塊成化が可能となり、また、粒鉄の塊成化物に含まれる製鋼ダスト由来の微細な金属鉄の作用で塊成化物の強度が高まり、転炉装入が可能となる。粒鉄の配合量が20質量%未満であると、磁石への吸着力が低下し、磁力を用いた搬送が難しくなる。一方、粒鉄の配合量が80質量%を超えると、塊成化物を構成する微粒分が不足し、塊成化が十分に進まない。 The compounding quantity of the granular iron at the time of kneading | mixing which concerns on this invention is 20-80 mass% with respect to the total amount of granular iron and steelmaking dust, Preferably it is 30-75 mass%. Within this range, agglomeration of granular iron becomes possible, and the strength of the agglomerate is increased by the action of fine metallic iron derived from steelmaking dust contained in the agglomerate of granular iron. Is possible. When the blending amount of the granular iron is less than 20% by mass, the adsorptive power to the magnet is reduced, and conveyance using magnetic force becomes difficult. On the other hand, when the blending amount of the granular iron exceeds 80% by mass, the fine particles constituting the agglomerated material are insufficient, and the agglomeration does not proceed sufficiently.
なお、粒鉄と製鋼ダストとの混練・塊成化により得られる塊成化物中の粒鉄の量は、上記配合量とほぼ等しい。このため、塊成化物中の粒鉄の量は、粒鉄と製鋼ダストとの合計量に対して、好ましくは20〜80質量%、より好ましくは30〜75質量%である。 In addition, the quantity of the granular iron in the agglomerate obtained by kneading | mixing and agglomerating granular iron and steelmaking dust is substantially equal to the said compounding quantity. For this reason, the amount of granular iron in the agglomerated material is preferably 20 to 80 mass%, more preferably 30 to 75 mass%, based on the total amount of granular iron and steelmaking dust.
(B)製鋼ダスト
本発明で用いられる製鋼ダストとは、高炉から出銑された銑鉄を転炉に流し込み、銑鉄内に酸素を吹き込んで脱炭する過程で、排ガスと共に排出されるもので、一般的に、ベンチュリーで補集され、シックナーで水と分離後フィルタープレスで脱水されることで、含水率が概ね15〜40質量%のケーキ状で発生している。この製鋼ダストは、堆積放置すると、ダストに含まれる微細な金属鉄が酸化し、発熱しながら硬化し始めるが、本発明では、酸化反応が開始前か反応途中である金属鉄を含有する製鋼ダストを使用することが好ましい。金属鉄の含有量が少ない製鋼ダストは、粒子同士の固結が進み、粒度分布が粗い方向に変化していることが多く、粒鉄の造粒効果に乏しいだけでなく、金属鉄の酸化反応による強度発現が劣るため、粒鉄の造粒促進用の材料としては性能が十分ではない場合がある。したがって、本発明では、金属鉄を少なくとも20質量%含有する製鋼ダストを利用することが好ましい。転炉から排出される製鋼ダストは、通常、金属鉄を30質量%以上、好ましくは50質量%以上含むため、そのまま本発明において使用することができる。
(B) Steelmaking dust Steelmaking dust used in the present invention is a process in which pig iron discharged from a blast furnace is poured into a converter, oxygen is blown into pig iron, and decarburized. In particular, it is collected in a venturi, separated from water by a thickener and then dehydrated by a filter press, resulting in a cake having a moisture content of approximately 15 to 40% by mass. When this steelmaking dust is left undisturbed, fine metallic iron contained in the dust is oxidized and begins to harden while generating heat.In the present invention, the steelmaking dust containing metallic iron before the oxidation reaction is started or during the reaction. Is preferably used. Steelmaking dust with a low content of metallic iron often causes the particles to solidify and the particle size distribution to change in a coarse direction, which is not only poor in the granulation effect of granular iron, but also the oxidation reaction of metallic iron. Since the strength development due to is inferior, the performance may not be sufficient as a material for promoting granulation of granular iron. Therefore, in the present invention, it is preferable to use steelmaking dust containing at least 20% by mass of metallic iron. The steelmaking dust discharged from the converter usually contains 30% by mass or more, preferably 50% by mass or more of metallic iron, and can be used as it is in the present invention.
本発明に係る混練時における製鋼ダストの配合量は、粒鉄と製鋼ダストとの合計量に対して、80〜20質量%であり、好ましくは70〜25質量%である。この範囲であれば、粒鉄の塊成化が可能となり、また、粒鉄の塊成化物に含まれる製鋼ダスト由来の微細な金属鉄の作用で塊成化物の強度が高まり、塊成化物の転炉装入が可能となる。製鋼ダストの配合量が20質量%未満であると、塊成化物を構成する微粒分が不足し、塊成化が十分に進まない。一方、製鋼ダストの配合量が80質量%を超えると、製造直後の塊成化物の水分が高くなるため、塊成化物が柔らかく崩れ易くなる。 The compounding amount of the steelmaking dust during kneading according to the present invention is 80 to 20% by mass, preferably 70 to 25% by mass, based on the total amount of the granular iron and the steelmaking dust. Within this range, the agglomeration of granular iron becomes possible, and the strength of the agglomerated material is increased by the action of fine metallic iron derived from steelmaking dust contained in the agglomerated material of granular iron. Converter charging becomes possible. When the blending amount of the steelmaking dust is less than 20% by mass, the fine particles constituting the agglomerated material are insufficient and the agglomeration does not proceed sufficiently. On the other hand, if the amount of steelmaking dust exceeds 80% by mass, the water content of the agglomerate immediately after production becomes high, so that the agglomerate is soft and easily broken.
なお、粒鉄と製鋼ダストとの混練・塊成化により得られる塊成化物中の製鋼ダストの量は、上記配合量とほぼ等しい。このため、塊成化物中の製鋼ダストの量は、粒鉄と製鋼ダストとの合計量に対して、好ましくは80〜20質量%、より好ましくは70〜25質量%である。 The amount of steelmaking dust in the agglomerated product obtained by kneading and agglomerating granular iron and steelmaking dust is substantially equal to the above blending amount. For this reason, the amount of steelmaking dust in the agglomerated material is preferably 80 to 20% by mass, more preferably 70 to 25% by mass, based on the total amount of the granular iron and the steelmaking dust.
また、製鋼ダストのうち、酸化反応が完全に進んだ鉄を含む酸化ダストについては、造粒促進効果は低いが、含水率が製鋼ダストに比べ低いため、粒鉄の粒度分布の補正や塊成化の際の水分調整材として配合することが出来る。 Also, among the steelmaking dusts, oxidation dust containing iron that has undergone an oxidation reaction completely has a low granulation acceleration effect, but its moisture content is lower than that of steelmaking dust, so correction of the particle size distribution of granular iron and agglomeration are not possible. It can mix | blend as a moisture adjustment material in the case of crystallization.
(C)フライアッシュ
本発明では、製鋼ダストに加えて、粒鉄の造粒性をさらに高めるために、石炭由来のフライアッシュをさらに添加することができる。フライアッシュの微細な粒子が、粒鉄の造粒性をさらに促進するだけでなく、フライアッシュ中の酸化カルシウム、二酸化ケイ素、酸化アルミニウム等が製鋼ダスト由来の微細な金属鉄と複合されることで、粒鉄の塊成化物の強度(圧壊強度)がさらに高まる。
(C) Fly ash In this invention, in addition to steelmaking dust, in order to further improve the granulation property of granular iron, coal-derived fly ash can be further added. The fine particles of fly ash not only further promote the granulation properties of the granular iron, but the calcium oxide, silicon dioxide, aluminum oxide, etc. in the fly ash are combined with the fine metallic iron derived from steelmaking dust. Further, the strength (crushing strength) of the agglomerate of granular iron is further increased.
前記フライアッシュの添加量は、粒鉄と製鋼ダストとの合計100質量%に対して3〜10質量%が好ましく、3.3〜9質量%がより好ましい。添加量が上記範囲であれば、十分な造粒促進効果が得られ、また、粒鉄の塊成化物の強度(圧壊強度)がさらに高まる。 The addition amount of the fly ash is preferably 3 to 10% by mass and more preferably 3.3 to 9% by mass with respect to 100% by mass in total of the granular iron and the steelmaking dust. If the addition amount is in the above range, a sufficient granulation promoting effect can be obtained, and the strength (crushing strength) of the agglomerate of granular iron can be further increased.
また、フライアッシュに代えて、あるいはフライアッシュに加えて、粒鉄と製鋼ダストとの合計100質量%に対して好ましくは5〜10質量%程度のセメントを添加して塊成化物を作製し、塊成化物の強度を高めることも可能である。さらに、例えば、フライアッシュを10質量%用いる場合において、そのフライアッシュの一部をセメントに置き換えることによっても、塊成化物の強度を高めることができる。 Further, instead of fly ash or in addition to fly ash, preferably a cement of about 5 to 10% by mass is added to the total 100% by mass of the granular iron and the steelmaking dust to produce an agglomerated product, It is also possible to increase the strength of the agglomerated material. Furthermore, for example, when 10% by mass of fly ash is used, the strength of the agglomerate can be increased by replacing part of the fly ash with cement.
本発明に係る塊成化物の製造方法は、特に制限されず、例えば、粒鉄、製鋼ダスト、および必要に応じてフライアッシュを均一に混練した後に塊成化する。さらに必要に応じて、水を添加してもよい。塊成化方法も特に制限されず、例えば、ハンドミキサー、高速攪拌型造粒ミキサーなどを用いて上記各成分を攪拌混合し造粒した後、ドラム型容器を用いて転動する方法が挙げられる。 The method for producing the agglomerated product according to the present invention is not particularly limited. For example, the agglomerated product is obtained by uniformly kneading the granular iron, steelmaking dust, and if necessary fly ash. Further, if necessary, water may be added. The agglomeration method is not particularly limited, and examples thereof include a method in which the above components are stirred and mixed using a hand mixer, a high-speed stirring granulation mixer, etc., and then rolled using a drum-type container. .
塊成化の際に水を添加する場合の添加量は、例えば、塊成化物の仕上がり含水率として好ましくは5〜17質量%となるように不足する水量を添加する。 The amount of water added in the case of agglomeration is, for example, the amount of water that is insufficient so that the finished moisture content of the agglomerated product is preferably 5 to 17% by mass.
本発明においては、ケーキ状の製鋼ダストを解砕しながら造粒できる、例えば、特許3703640号公報に示されるような高速攪拌型の造粒ミキサーも好適に利用される。この高速攪拌型の造粒ミキサーは、材料を内部に貯えるドラムと、該ドラム内を公転しながら自転し、かつ可変速可能な複数のロータと、を備えており、前記ロータがロータ回転軸に対し直角方向に配設された複数の回転羽根を有するミキサーである。 In the present invention, for example, a high-speed agitation type granulation mixer as disclosed in Japanese Patent No. 3703640 can be suitably used, which can granulate cake-shaped steelmaking dust. This high-speed agitation type granulation mixer includes a drum for storing material therein, and a plurality of rotors that rotate while revolving inside the drum and that can be variable-speed, and the rotor serves as a rotor rotation shaft. It is a mixer having a plurality of rotating blades arranged in a direction perpendicular to it.
かような造粒ミキサーは、ミキサーのロータに具備された回転羽根によって、脱水ケーキ状の製鋼ダストを細かく解砕しながら、強制的に製鋼ダストと粒鉄とを混合していく。したがって、短時間でほぼ均一な擬似造粒物を製造でき、さらに、転動機を通すことによって、擬似造粒物が未造粒の混合物や粒子の粗い粒鉄を巻き込みながら塊成化するため、表面が滑らかで、粉分の少ない、歩留りのよい塊成化物が得られる。 Such a granulating mixer forcibly mixes the steelmaking dust and the granular iron while finely crushing the dewatered cake-like steelmaking dust by the rotating blades provided in the rotor of the mixer. Therefore, almost uniform pseudo-granulated material can be produced in a short time, and further, by passing through a rolling machine, the pseudo-granulated material agglomerates while entraining the ungranulated mixture and coarse-grained iron, An agglomerated product with a smooth surface, low powder content and good yield can be obtained.
前記造粒ミキサーのさらに具体的な例としては、例えば、株式会社北川鉄工所製のペレガイア(登録商標)が挙げられる。 As a more specific example of the granulation mixer, for example, Pelegaia (registered trademark) manufactured by Kitagawa Iron Works Co., Ltd. may be mentioned.
転動機としては、上記の働きをするものであれば、いかなる形状のものでも使用することができ、例えば、横置きのドラムを回転させるドラム型転動機を使用することができる。 As the rolling machine, any shape can be used as long as it functions as described above. For example, a drum type rolling machine that rotates a horizontally placed drum can be used.
上記のような方法により得られた粒鉄の塊成化物中の、粒子サイズが10mm以上である造粒物の含有量は、41〜100質量%であることが好ましい。また、塊成化物中の含水率(塊成化直後の含水率)は、5〜20質量%であることが好ましく、7〜17質量%であることがより好ましい。 The content of the granulated product having a particle size of 10 mm or more in the agglomerate of granular iron obtained by the method as described above is preferably 41 to 100% by mass. Moreover, it is preferable that it is 5-20 mass%, and, as for the moisture content in the agglomerated material (water content immediately after agglomeration), it is more preferable that it is 7-17 mass%.
上記の方法により得られた粒鉄の塊成化物は、スクラップまたは粒子サイズが7mmを超える粒鉄で使用する既存の投入設備を使用して、転炉への装入が可能となる。また、該塊成化物は、半日以上養生することでより強度が上がりうる。転炉へ装入された塊成化物は、微粒分が少ないため、炎となり飛散する等の問題を起こすことがほとんどなく、溶銑上に落下し溶解されることで、図2に示すような流れで、粒鉄に含まれる鉄分の回収利用が達成される。 The agglomerates of granular iron obtained by the above method can be charged into a converter using existing charging equipment used for scrap or granular iron having a particle size exceeding 7 mm. In addition, the agglomerated product can be further strengthened by curing for more than half a day. The agglomerated material charged into the converter has a small amount of fine particles, so it hardly causes problems such as flame and scattering, and it falls on the hot metal and melts to flow as shown in FIG. Thus, recovery and use of iron contained in the granular iron is achieved.
以下、実施例により、本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example.
(実施例1〜3、比較例1〜3)
粒子サイズが7mm以下である粒鉄の塊成化について、製鋼ダストの造粒促進効果を確認するため、ハンドミキサーとドラム型容器とを使用した転動による造粒試験を実施した。粒子サイズが7mm以下である粒鉄と製鋼ダストを、下記表2に記載の配合量にて2Lの金属製容器に測り取り、ハンドミキサーにて攪拌混合しながら、造粒可能な状態になるまで水を添加し、造粒を行った。続いて、ドラム型容器内で転動させることで塊成化させた。なお、使用した粒鉄の粒度分布は、下記表1に示すものであった。また、製鋼ダストは、製鋼ダストの総質量に対して金属鉄を30質量%含むものであった。
(Examples 1-3, Comparative Examples 1-3)
For the agglomeration of granular iron having a particle size of 7 mm or less, a granulation test by rolling using a hand mixer and a drum-type container was performed in order to confirm the granulation acceleration effect of steelmaking dust. Grain iron and steelmaking dust having a particle size of 7 mm or less are measured in a 2 L metal container at the blending amount shown in Table 2 below, until stirring and mixing with a hand mixer are possible until granulation is possible. Water was added and granulation was performed. Then, it agglomerated by rolling in a drum type container. In addition, the particle size distribution of the used granular iron was shown in Table 1 below. The steelmaking dust contained 30% by mass of metallic iron with respect to the total mass of the steelmaking dust.
含水率は、赤外線水分計(株式会社ケット科学研究所製)を用いて測定した。 The moisture content was measured using an infrared moisture meter (manufactured by Kett Science Laboratory).
また、粒度分布は、各目開きの篩を用いた分級を行い、下記表1に記載の粒子サイズの範囲に入る粒子の質量を測定し、決定した。 The particle size distribution was determined by performing classification using each sieve sieve and measuring the mass of particles falling within the particle size range shown in Table 1 below.
塊成化の評価は、目視により粒子サイズを確認しながら、10mm以上の造粒物を選り分けた。そして、粒子サイズが10mm以上の造粒物の質量を測定し、粒子サイズ10mm以上の造粒物の割合が0質量%〜40質量%であるものを×、41質量%〜70質量%であるものを△、71質量%〜100質量%であるものを〇とした。 The agglomeration was evaluated by selecting a granulated product having a size of 10 mm or more while visually confirming the particle size. Then, the mass of the granulated product having a particle size of 10 mm or more is measured, and the ratio of the granulated product having a particle size of 10 mm or more is 0% by mass to 40% by mass, x is 41% by mass to 70% by mass. The thing which is (triangle | delta) and 71 mass%-100 mass% was made into (circle).
得られた塊成化物についての評価結果を表2に示す。 The evaluation results for the obtained agglomerated material are shown in Table 2.
表2に示す結果から、製鋼ダストを、20質量%以上の量で配合することにより粒鉄の造粒性が高まり、塊成化することが分かる。 From the results shown in Table 2, it can be seen that by adding steelmaking dust in an amount of 20% by mass or more, the granulation property of the granular iron is increased and agglomerated.
(実施例4〜5、比較例4〜5)
塊成化の評価がそれぞれ△および×となった実施例1および比較例3の配合に対して、フライアッシュをさらに添加し、塊成化させた。配合比は下記表3に示す配合比とし、塊成化は実施例1と同様の方法で行った。
(Examples 4-5, Comparative Examples 4-5)
Fly ash was further added to the blends of Example 1 and Comparative Example 3 where the agglomeration evaluation was Δ and x, respectively, and agglomerated. The blending ratio was set as shown in Table 3 below, and the agglomeration was performed in the same manner as in Example 1.
上記表2と同様に、含水率および塊成化の評価を行った結果を下記表3に示す。なお、塊成化の評価は、粒子サイズ10mm以上の造粒物の割合が0質量%〜40質量%であるものを×、41質量%〜70質量%であるものを△、71質量%〜100質量%であるものを〇とした。また、それぞれのサンプルについて、圧壊強度(粒子に力をかけていき、粒子が崩壊する際の荷重)を測定し、実施例1の塊成化物の圧壊強度を100とした場合の値で示した。なお、圧壊強度は、圧壊強度計 ZP−500N(株式会社イマダ製)を用いて測定した。 Similar to Table 2 above, the results of evaluation of moisture content and agglomeration are shown in Table 3 below. In addition, evaluation of agglomeration is that in which the ratio of the granulated product having a particle size of 10 mm or more is 0% by mass to 40% by mass, x is 41% by mass to 70% by mass, Δ is 71% by mass to 70% by mass. What was 100 mass% was set as (circle). In addition, for each sample, the crushing strength (the load when the particles are applied and the particles are collapsed) is measured, and the value is shown when the crushing strength of the agglomerate of Example 1 is set to 100. . The crushing strength was measured using a crushing strength meter ZP-500N (manufactured by Imada Co., Ltd.).
表3の結果から明らかなように、製鋼ダストに加え、フライアッシュを3〜10質量%加えることにより、粒鉄の造粒性がさらに良くなり、また、強度も向上することが分かる。 As is apparent from the results in Table 3, it can be seen that by adding 3 to 10% by mass of fly ash in addition to steelmaking dust, the granulation property of the granular iron is further improved and the strength is also improved.
(実施例6)
表1に記載の粒度分布を有する粒子サイズ7mm以下の粒鉄に対して、酸化反応が終了した酸化ダストを粒鉄と同じ量添加し、ハンドミキサーで攪拌しながら加水したが、造粒性の向上は見られず、砂状となった。そこで、さらに製鋼ダストを20質量%の配合で添加し、評価した際の結果を下記表4に示す。表4から明らかなように、製鋼ダストを配合することによって、塊成化できることが分かる。
(Example 6)
To the granular iron having a particle size distribution shown in Table 1 having a particle size of 7 mm or less, the same amount of oxidized dust that has undergone the oxidation reaction was added as the granular iron, and the mixture was added with stirring with a hand mixer. Improvement was not seen and it became sandy. Therefore, steelmaking dust is further added in a composition of 20% by mass, and the results when evaluated are shown in Table 4 below. As is apparent from Table 4, it can be seen that agglomeration can be achieved by adding steelmaking dust.
(実施例7)
上記実施例6で得られた塊成化物に対して、さらにセメントを6質量%添加した配合で、高速撹拌型造粒ミキサー(商品名:ペレガイア(登録商標)VZ−500、株式会社北川鉄工所製)と、直径1,600mm、長さ36,000mmのドラム型転動機(株式会社北川鉄工所製)とを用い、粒鉄の塊成化物を20t製造した。2日間養生後、転炉に1t/チャージで塊成化物を装入したが、炎が上がることもなく、安定した操業を行うことができた。
(Example 7)
A high-speed stirring granulation mixer (trade name: Pelegaia (registered trademark) VZ-500, Kitagawa Iron Works Co., Ltd.) was added to the agglomerated product obtained in Example 6 above by adding 6% by mass of cement. Manufactured) and a drum-type rolling machine (made by Kitagawa Iron Works Co., Ltd.) having a diameter of 1,600 mm and a length of 36,000 mm were used to produce 20 t of agglomerated granular iron. After curing for 2 days, the agglomerated material was charged into the converter at 1 t / charge, but stable operation could be performed without raising the flame.
Claims (3)
高炉から出銑された銑鉄を転炉に流し込み、銑鉄内に酸素を吹き込んで脱炭する過程で、排ガスと共に排出される製鋼ダスト(B)80〜20質量%と、
(ただし、(A)+(B)=100質量%)
を混練し塊成化した後、得られた塊成化物を転炉に装入することを特徴とする、粒鉄の利用方法。 20-80 mass% of granular iron (A) whose particle size generated by crushing and classification of steelmaking slag is 7 mm or less,
In the process of pouring iron from the blast furnace into the converter, blowing oxygen into the pig iron and decarburizing, steelmaking dust (B) 80-20% by mass discharged together with exhaust gas ,
(However, (A) + (B) = 100 mass%)
After kneading and agglomerating, the obtained agglomerated material is charged into a converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010003876A JP5558119B2 (en) | 2010-01-12 | 2010-01-12 | How to use granular iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010003876A JP5558119B2 (en) | 2010-01-12 | 2010-01-12 | How to use granular iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011144395A JP2011144395A (en) | 2011-07-28 |
JP5558119B2 true JP5558119B2 (en) | 2014-07-23 |
Family
ID=44459502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010003876A Active JP5558119B2 (en) | 2010-01-12 | 2010-01-12 | How to use granular iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5558119B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5747467B2 (en) * | 2010-09-28 | 2015-07-15 | Jfeスチール株式会社 | Production method of raw materials for blast furnace |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56139631A (en) * | 1980-04-01 | 1981-10-31 | Ube Ind Ltd | Recovering method for iron source |
JPS62267406A (en) * | 1986-05-15 | 1987-11-20 | Nippon Jiryoku Senko Kk | Method for utilizing luppe recovered from steel making slag |
JP3238227B2 (en) * | 1993-03-03 | 2001-12-10 | 新日本製鐵株式会社 | Method for recovering iron from steelmaking slag |
JP3292758B2 (en) * | 1993-03-30 | 2002-06-17 | 新日本製鐵株式会社 | Method for recovering iron from steelmaking slag and method and apparatus for recycling slag |
JPH09310112A (en) * | 1996-02-14 | 1997-12-02 | Nkk Corp | Production of slag killing material for steelmaking |
JPH10158718A (en) * | 1996-11-29 | 1998-06-16 | Kawasaki Steel Corp | Method for recycling dust in electric furnace |
JPH10195514A (en) * | 1996-12-27 | 1998-07-28 | Nippon Steel Corp | Carburizing material for electric furnace steelmaking, its manufacturing apparatus, its manufacturing method and its transport method |
JP3035285B1 (en) * | 1999-01-20 | 2000-04-24 | エヌケーマテック株式会社 | Method for producing carburized material for steel making containing electric furnace dust, carburized material for steel making obtained thereby and method for recycling electric furnace dust |
JP3679986B2 (en) * | 2000-09-22 | 2005-08-03 | 新日本製鐵株式会社 | Effective use of fly ash |
JP4711350B2 (en) * | 2007-08-20 | 2011-06-29 | Jfeスチール株式会社 | Electric furnace operation method using steelmaking dust |
JP5332806B2 (en) * | 2009-03-30 | 2013-11-06 | 新日鐵住金株式会社 | Electric furnace dust recycling method |
-
2010
- 2010-01-12 JP JP2010003876A patent/JP5558119B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011144395A (en) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5042586B2 (en) | Powder granulation method using desulfurized slag | |
JP2009270198A (en) | Titanium oxide-containing agglomerate for producing granular metallic iron | |
KR20180110034A (en) | Method for producing sintered ores | |
CN103274708A (en) | Method for preparing refractory material by utilizing wasted magnesia carbon brick | |
JP2012097295A (en) | Method and equipment for producing granule with iron-making sludge or the like as main raw material | |
CN107614710B (en) | The manufacturing method of reduced iron | |
KR102217869B1 (en) | Method and device for producing granulates | |
CN101935176B (en) | Method for preparing conductive admixture from pyrite smelting slag | |
JP3820132B2 (en) | Pretreatment method of sintering raw material | |
JP5558119B2 (en) | How to use granular iron | |
KR20130080844A (en) | Process for production of reduced iron | |
CN106756380B (en) | A method of so that high carbon ferro-chrome solid state decarbonization is produced low-carbon ferrochromium with rotary hearth furnace | |
JP3376621B2 (en) | Method for producing low CaO sintered ore | |
WO2018194014A1 (en) | Method for producing sintered ore | |
JP3395554B2 (en) | Sinter production method | |
JP4567908B2 (en) | Treatment method of hard-granulated iron ore powder | |
JP4732740B2 (en) | Method of blowing used plastic into furnace, used plastic particles for blowing furnace, and method for producing the same | |
JP2002241853A (en) | Unfired agglomerate for blast furnace | |
JP5463571B2 (en) | Method of agglomerating iron raw material and its agglomeration equipment | |
JPH0660359B2 (en) | Method for producing unfired agglomerated ore | |
JPH07331342A (en) | Sintered ore manufacturing method | |
JP2004250780A (en) | Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material | |
JP2008291331A (en) | Method for manufacturing zinc-containing dust agglomerate | |
JP6721093B2 (en) | Blast furnace cement and method for manufacturing blast furnace cement | |
CN106756346B (en) | A method of low-carbon ferromanganese is prepared with high carbon ferromanganese |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140604 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5558119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |