JP3820132B2 - Pretreatment method of sintering raw material - Google Patents
Pretreatment method of sintering raw material Download PDFInfo
- Publication number
- JP3820132B2 JP3820132B2 JP2001329303A JP2001329303A JP3820132B2 JP 3820132 B2 JP3820132 B2 JP 3820132B2 JP 2001329303 A JP2001329303 A JP 2001329303A JP 2001329303 A JP2001329303 A JP 2001329303A JP 3820132 B2 JP3820132 B2 JP 3820132B2
- Authority
- JP
- Japan
- Prior art keywords
- ore
- raw material
- mass
- iron ore
- goethite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- SAUPBJHQMHRJFB-UHFFFAOYSA-N C=BCC1C2=C3C2C3C1 Chemical compound C=BCC1C2=C3C2C3C1 SAUPBJHQMHRJFB-UHFFFAOYSA-N 0.000 description 1
- ODJURGVVFWZJDP-UHFFFAOYSA-N CCCC(CC(C1)CC1C1CC(C)C1)C1CC(C)CC1 Chemical compound CCCC(CC(C1)CC1C1CC(C)C1)C1CC(C)CC1 ODJURGVVFWZJDP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、焼結鉱製造工程の造粒工程における焼結原料の事前処理方法に関する。
【0002】
【従来の技術】
鉄鉱石焼結鉱の製造に際しては、まず鉄鉱石、石灰石、蛇紋岩、粉コークス等の焼結原料を所定の割合に配合してから、この焼結原料に必要量の水分を加えて造粒し、焼結パレットに装入して焼結原料充填層を形成する。次に、点火炉において、この焼結原料充填層の表面(表層部)に火を着けると共に、ウインドボックスを介して排風機によって装入原料(焼結原料充填)層の上方の空気を吸引する。これにより、焼結原料中に配合されたコークスが燃焼し、その熱で順次焼成が行われた後、排鉱部において焼成物(焼結ケーキとも言う)がパレットより排出される。排出された焼成物は、破砕冷却された後、ある一定粒径以上の産物を焼結鉱として高炉用原料に供給する。なお、一定粒径未満の粉粒体(以下、返鉱と言う)は、再び焼結原料として使用される。
この焼結鉱製造工程において、焼結原料の造粒は焼成時の充填層の通気性を左右するものであり、焼結鉱の生産性に大きく影響を及ぼす。従って、造粒工程の改善については従来から多くの検討がなされてきた。
【0003】
前記した焼結原料を製造する造粒装置としては、世界的に普及しているドラムミキサーが一般的であったが、近年では、例えばパンペレタイザーや高速撹拌羽根を内蔵したミキサー(以後、高速撹拌ミキサーと略す)等の混合造粒機も実用化されている。
特許第2790008号では、0.5mm以下の微粉を30wt%以上含む焼結原料の事前処理方法として、高速撹拌ミキサーを使用して焼結原料の水分を6.5〜10.0%にして混合する方法が開示されている。これは、高速撹拌ミキサー独特のねっか処理効果(剪断力を与えつつ混合する効果)を引き出すために造粒水分量を規定したものであり、造粒水分を鉄鉱石毎の遠心分離法で計測される吸水性指数よりも1.0〜3.0%高くする方法である。
また、近年、焼結原料に使用する鉄鉱石原料として、従来から使用されているヘマタイト鉱石に比べて安価な、例えばピソライト鉱石、マラマンバ鉱石等のゲーサイト鉱石の使用が多くなっている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記した焼結原料の事前処理方法を用いて、ヘマタイト鉱石の処理方法と同様にゲーサイト鉱石を処理しようとする場合、ゲーサイト鉱石はヘマタイト鉱石と吸水機構が異なるため、高速撹拌ミキサーで混合造粒すると水分が不足して、鉄鉱石原料の造粒性が悪化するので、焼成時の通気悪化を引き起こす等の問題が生じる場合がある。
本発明はかかる事情に鑑みてなされたもので、ゲーサイト鉱石を多量に配合した鉄鉱石原料の造粒性を向上させる焼結原料の事前処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る焼結原料の事前処理方法は、結晶水を4質量%以上含有するゲーサイト鉱石を70質量%以上配合した鉄鉱石原料に水分を添加し、これを高速撹拌羽根を内蔵した混合機を使用して混合造粒するに際して、前記鉄鉱石原料の含水率が10.0質量%を超え12.5質量%以下となるように前記水分を添加し、前記高速撹拌羽根の回転数を100〜300rpmとする。
【0006】
焼結原料として使用する鉄鉱石の種類は多岐に亘っており、鉱石種毎に吸水機構が異なることから、単純な吸水機構に基づく評価試験結果のみだけでは、最適な水分量(含水率)を決定することができない。即ち、良好な造粒を行う場合には、この鉄鉱石の種類の影響を考慮した適正水分量を設定することが求められる。本発明者らは、近年その使用量が増加しつつある例えばピソライト鉱石、マラマンバ鉱石等のゲーサイト鉱石の造粒性特性について、詳細に検討を進めた。その結果、ゲーサイト鉱石は、4質量%以上の結晶水(ゲーサイト鉱物由来)を含有しているため、ヘマタイト鉱石よりも濡れ性が高く、かつ気孔率が高いことが判明した。これらの濡れ性及び気孔率の高いゲーサイト鉱石を例えば高速撹拌ミキサーで混合造粒する場合には、ヘマタイト鉱石を通常のドラムミキサー等で造粒する場合より高水分レベルで混合を行うことにより、著しい造粒性の改善効果が得られる現象を見出した。
【0007】
即ち、ゲーサイト鉱石をドラムミキサーで造粒した場合、このゲーサイト鉱石の気孔内に水分が侵入することなく鉱石表面に水分が付着するので、高水分(含水率:10.0質量%超〜12.5質量%)状態にすることで造粒時は水分過剰状態となって良好な造粒ができなくなる。また、ヘマタイト鉱石と同等の低含水量とすることで造粒を良好に行うことができるが、濡れ性が良好である理由から、時間が経過するにつれて気孔内に水分が順次侵入するので、焼結パレット上に装入する時点では、ゲーサイト鉱石表面の水分が不足した状態となって造粒物が粉化して通気性を悪化する。
一方、ゲーサイト鉱石を高速撹拌ミキサーで造粒した場合、造粒中に水分が気孔内に侵入して、このゲーサイト鉱石の気孔内及び表面に水分がまんべんなく付着することから、前記高水分状態にすると造粒が適正に行われ、しかも時間が経過してもゲーサイト鉱石の気孔内に水分が侵入することがないので、焼結パレット上に装入する時点においても、その造粒性は維持されて通気性の悪化を招くことはない。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る焼結原料の事前処理方法を適用した造粒法の説明図、図2は同焼結原料の事前処理方法に使用するゲーサイト鉱石が含有する結晶水と湿潤熱との関係を示す説明図、図3は同焼結原料の事前処理方法に使用する鉱石原料の含水率の影響を示す説明図である。
【0009】
図1(A)に示すように、本発明の一実施の形態に係る焼結原料の事前処理方法は、結晶水を4質量%以上含有するゲーサイト鉱石(例えば、ピソライト鉱石、マラマンバ鉱石等)を70質量%以上配合した鉄鉱石原料に水分を添加し、これを高速撹拌羽根を内蔵した混合機の一例である高速撹拌ミキサー(アイリッヒミキサー)を使用して混合造粒する方法である。以下、詳しく説明する。
【0010】
まず、粒径が例えば10mm以下(乾燥状態で平均粒径が2mm)程度のピソライト鉱石及びマラマンバ鉱石を70質量%以上配合した鉄鉱石原料に、鉄鉱石原料の含水率が10.0質量%を超え12.5質量%以下となるように水分を添加し、これを高速撹拌ミキサーで例えば0.5〜2分程度混合造粒して、鉄鉱石原料を造粒する。なお、高速撹拌ミキサーの高速撹拌羽根(アジテータ)の回転数を100〜300rpmとし、パンの回転数を10〜70rpmとしている(以上、事前処理工程)。
【0011】
このようにして混合造粒した鉄鉱石原料に、結晶水が4質量%未満の鉄鉱石(例えば、ヘマタイト鉱石)、雑原料(例えば、粒径が所定の粒径より小さい焼結鉱、高炉に投入できない粒径が小さい鉱石等)、副原料(例えば、粒径が7mm以下の石灰石、5mm以下の蛇紋岩等)、1mm以下の生石灰等を加えることで、鉄鉱石原料を例えば20〜50質量%程度含有する焼結原料とする。なお、この焼結原料には、焼結原料100質量%に対して外枠で、例えば10〜20質量%程度の前記返鉱(その他、鉄鉱石)や、例えば2〜5質量%程度の粉コークスが更に添加されているが、返鉱の量を、雑原料の量に含めることも可能である。
この焼結原料をドラムミキサーを用いて、回転数を例えば5〜50rpm、滞留時間を例えば2〜5分程度として転動造粒して造粒物とした(以上、造粒工程)後、この造粒物を焼結機にて焼成することで焼結鉱とする。ここで、ドラムミキサーには、水分を加えることなく、又は図1に示すように1〜2質量%の水分(添加水)を加えて転動造粒する。なお、このドラムミキサーで、焼結原料に水分を添加する場合、前記した鉄鉱石原料の含水率を考慮して添加を行う。
【0012】
また、図1(B)に示すように、鉄鉱石原料に、鉄鉱石原料の含水率を10.0質量%を超え12.5質量%以下となるように水分を加えて、これを高速撹拌ミキサーで混合造粒した後、更に例えばパンペレタイザーを用いて転動造粒した鉄鉱石原料を、前記した他の焼結原料と共にドラムミキサーに投入して転動造粒することも可能である。
【0013】
図2に示すように、前記したゲーサイト鉱石(Fe2 O3 ・nH2 O)は、結晶水が4質量%以上になると、鉱石表面上に濡れ性の良いゲーサイトが増加し湿潤熱が上昇するようになり、一方、それを下回ると濡れ性の悪いヘマタイトが増加し湿潤熱が低下することが判明した。なお、湿潤熱とは、鉱石表面を乾燥状態から湿潤状態へと変化させたときに発生する熱量であり、市販の双子型微少熱量計を用いて測定した値である。
また、本発明が対象とするゲーサイト鉱石の代表的なものである豪州産のピソライト鉱石A、豪州産のマラマンバ鉱石Bの化学成分と鉱石性状を、従来から使用されている豪州産、又はブラジル産のヘマタイト鉱石C、Dと共に表1に示す。
【0014】
【表1】
【0015】
表1からも解るように、ピソライト鉱石A、マラマンバ鉱石Bは、結晶水を4〜9質量%程度含有しており、湿潤熱もヘマタイト鉱石C、Dに比して高い値を示し、鉱石表面の濡れ性が良い事を示している。また、表1中のBET比表面積は、実質的な気孔率を表す指標の1つであり、これも高い値を示している。このため、ピソライト鉱石A、マラマンバ鉱石B等のゲーサイト鉱石は、高速撹拌ミキサーにより混合造粒を行った場合に、該鉱石の気孔内に水分が急速に侵入して、気孔内の内壁面及び鉱石の表面にまんべんなく水分が付着する。
なお、比表面積とは、BET法で測定した値である。このBET法は、窒素の吸着量から比表面積を求める一般的な測定方法である(例えば、久保輝一郎、水渡英二、中川有三、早川宗八郎共編「粉体理論と応用」丸善、P134(S37年発行))。
【0016】
続いて、ゲーサイト鉱石の鉄鉱石原料への配合率、鉄鉱石原料の含水率、高速撹拌羽根の回転数を前記した数値に限定した理由について説明する。
ゲーサイト鉱石の鉄鉱石原料への配合率を70質量%以上としたのは、70質量%未満の配合率では、ゲーサイト鉱石の鉄鉱石原料に対する影響が支配的とならず、その他の鉱石の特性に強く影響されるためである。一方、上限値については規定していないが、鉄鉱石原料の全てがゲーサイト鉱石の場合でも可能である。従って、鉄鉱石原料に対するゲーサイト鉱石の影響を更に顕著に現すため、また経済性を考慮することで、今後更にゲーサイト鉱石の使用量が増加することを考慮すれば、ゲーサイト鉱石の鉄鉱石原料への配合率を75質量%以上、更には80質量%以上とすることが好ましい。
【0017】
また、ピソライト鉱石Aの鉄鉱石原料中の配合量を変化させると共に、鉄鉱石原料の含水率(水分量)を種々調整した後、この鉄鉱石原料を高速撹拌ミキサーに装入し撹拌して、鉄鉱石原料の造粒性について検討した。なお、この高速撹拌ミキサーの高速撹拌羽根の回転数を200rpmとした。
図3に示すように、鉄鉱石原料の含水率を10質量%を超え12.5質量%以下とすると、鉄鉱石原料の造粒性を改善できることが確認できた。なお、マラマンバ鉱石Bは、曲線のピークがピソライト鉱石Aと比較して水分量の低い方向へ僅かに移動するが、ピソライト鉱石Aと類似した傾向を示すことが分かる。
【0018】
ここで、鉄鉱石原料の含水率が10質量%以下になると、水分がゲーサイト鉱石の気孔内部に侵入するため、造粒に必要な表面水が不足するので、鉄鉱石原料の造粒性が悪化する。一方、鉄鉱石原料の含水率が12.5質量%を超えると、過剰水分により微粉粒子が流れるため、団子状の強度のない造粒物となってしまい、適正な粒度の造粒物はむしろ減少する。従って、造粒に必要な表面水を確保し、適正な粒度の造粒物を得るためには、鉄鉱石原料の含水率を10.5質量%以上12.5質量%以下、更には10.5質量%以上12.0質量%以下とすることが好ましい。なお、この鉄鉱石原料の含水率、即ち10質量%を超え12.5質量%以下は、前記特許第2790008号における吸水性指数から求めた最適水分の範囲を逸脱するものであり、ピソライト鉱石気孔内への高い浸水性を加味しても、過剰水分と見なせる範囲に相当するものである。
【0019】
このように高水分を加えた場合には、高速撹拌ミキサーの回転羽根の回転数は100〜300rpm程度が好ましい。ここで、回転数が100rpm未満になると高速撹拌ミキサー特有の剪断力が不足し、通常の転動造粒に近い造粒条件となり、水分と鉱石を効果的に接触させる作用が失われ、水分をゲーサイト鉱石の気孔内に十分に侵入させることができなくなる。また、このような高水分条件で300rpmを超える強撹拌を行うと、造粒作用よりも混合作用が強化され擬似粒子の崩壊作用が促進されるため、望ましくない。従って、鉄鉱石原料に十分な剪断力を与えると共に、擬似粒子の崩壊を抑制するには、回転数を150〜300rpm、更には150〜250rpmとすることが好ましい。
【0020】
【実施例】
本発明に係る焼結原料の事前処理方法を適用した造粒法を用いて試験を行った結果について説明する。
鉄鉱石原料の配合構成及び鉄鉱石原料の含水率を種々変えた鉄鉱石原料を調製し、前記した図1(A)、(B)の方法をそれぞれ使用して鉄鉱石原料を転動造粒し、造粒法の効果を焼結機を用いた操業試験によって確認した。
ここで、結晶水を4質量%以上含有するゲーサイト鉱石、即ちピソライト鉱石及びマラマンバ鉱石と、結晶水が4質量%未満のヘマタイト鉱石C、ヘマタイト鉱石Dの配合条件、更にその試験結果を表2、表3にそれぞれ示す。なお、ピソライト鉱石、マラマンバ鉱石、ヘマタイト鉱石C、ヘマタイト鉱石Dは、それぞれ表1中の鉱石を意味する。
【0021】
【表2】
【0022】
【表3】
【0023】
また、操業試験の前提条件、即ち事前処理工程鉄及び造粒工程で使用する混合機の種類(アイリッヒミキサー(A)、パンペレタイザー(B)、ドラムミキサー(C))、及び各混合機の運転条件、更に鉄鉱石原料を焼結する焼結機について表4に示す。
【0024】
【表4】
【0025】
表2に示すように、本発明例1の鉄鉱石原料はピソライト鉱石が100質量%の原料であり、発明例2の鉄鉱石原料はピソライト鉱石が40質量%、マラマンバ鉱石が60質量%(ゲーサイト鉱石が100質量%)の原料、そして発明例3及び4の鉄鉱石原料はピソライト鉱石が40質量%、マラマンバ鉱石が30質量%(ゲーサイト鉱石が70質量%)、ヘマタイト鉱石Cが30質量%の原料である。ここで、本発明例1〜3は前記した図1(A)の方法、本発明例4は前記した図1(B)の方法をそれぞれ使用している。
【0026】
なお、造粒に必要な添加水分については、混合造粒前の原料水分、即ちゲーサイト鉱石が含有する水分4.0質量%程度、及び例えば鉱石の放置時に鉱石の気孔内に侵入した水分(表1中の含水率)を考慮して、混合機における混合造粒時において更に全量加えることとし、その添加水分(3.7〜4.1質量%)を調整することによって、アイリッヒミキサー(撹拌羽根回転数が150rpm又は250rpm)での混合造粒後の水分、即ち鉄鉱石原料の含水率(造粒物水分)を11.2〜12.2質量%の範囲内で変化させた。
この鉄鉱石原料に、前記雑原料(その他雑原料)、副原料(石灰石、蛇紋岩)、生石灰等を加えることで、鉄鉱石原料を30〜45質量%含有する焼結原料を作製した。この焼結原料には、焼結原料100質量%に対して外分で、前記返鉱、粉コークスを更に添加し、添加水分(0.6〜1.2質量%)を調整して、パンペレタイザー又はドラムミキサーを用いて、造粒物水分を6.7質量%に調整した。
【0027】
一方、表2に示すように、比較例1〜3の鉄鉱石原料は、鉄鉱石原料の配合構成、及び造粒工程の操業条件がいずれも本発明例1と略同じものであり、比較例1の鉄鉱石原料は事前処理工程で使用する混合機の種類(ドラムミキサー)が異なった場合、比較例2の鉄鉱石原料は鉄鉱石原料の含水率が本発明の下限値、即ち10質量%を下回った(9.2質量%)場合、比較例3の鉄鉱石原料はアイリッヒミキサーの撹拌羽根回転数が本発明の下限値、即ち100rpmを下回った(90rpm)場合をそれぞれ示している。
上記した方法で製造した造粒物を、それぞれ焼結機によって焼成し焼結鉱を製造した。
【0028】
焼結機には、表4に示すようなDL型の焼結機を使用し、パレット速度3.6m/分、パレット焼結面積600m2 で、焼結原料の装入層(充填層)の厚さを600mmとした操業条件によって造粒物を焼成した。
表3に示す操業結果から解るように、発明例1〜4の造粒物を使用した場合、焼結鉱の生産量は17800〜18200(t/日)程度、焼成時の充填層の通気性は31〜32程度、そしてこの操業における歩留は78.5〜78.9%であった。
一方、比較例1〜3の造粒物を使用した場合、焼結鉱の生産量は15200〜16000(t/日)程度、通気性は28〜30程度、そしてこの操業における歩留は74.1〜75.1%であった。
このことから分かるように、比較例においては、混合機の選択、鉄鉱石原料の含水率、アイリッヒミキサーの撹拌羽根回転数を適切にできなかったため、焼結原料の造粒が不良となり、焼成時の充填層の通気性を悪化させ、焼結鉱の生産性を本発明と比較して大きく低下させ、更に歩留も低下させたと考えられる。
【0029】
以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、前記実施の形態において、石灰石、蛇紋岩、生石灰の粒径、及び粉コークスの量をそれぞれ示したが、前記した数値に限定されることなく、他の数値であっても本発明は適用される。
【0030】
【発明の効果】
請求項1記載の焼結原料の事前処理方法においては、高速撹拌羽根を内蔵した混合機を使用するので、造粒中に水分がゲーサイト鉱石の気孔内に侵入して、ゲーサイト鉱石の気孔内及び表面に水分をまんべんなく付着させることができる。このため、混合機によって造粒が適正に行われ、しかも時間が経過してもゲーサイト鉱石の気孔内に水分が侵入することがないので、鉄鉱石原料を基に作製した造粒物を、焼結パレット上に装入する時点においても、その造粒性は維持されて、焼結時における充填層の通気性の悪化を招く可能性がない。従って、造粒性を良好にし、これにより焼結鉱の生産性を向上させることができるので、経済的である。
【0031】
特に、請求項1記載の焼結原料の事前処理方法においては、鉄鉱石原料の含水率を所定の範囲に限定することで、鉄鉱石原料の表面に付着する水分量を、適正な量に調整することが可能となる。従って、従来から使用されてきたヘマタイト鉱石と吸水機構が異なるゲーサイト鉱石を用いた場合においても、造粒性を良好にできるので、鉄鉱石原料中により多くのゲーサイト鉱石を配合でき、これにより鉄鉱石原料の原料コストを抑えることができ経済的である。
請求項1記載の焼結原料の事前処理方法においては、高速撹拌羽根の回転によって発生する剪断力を、鉄鉱石原料に対して十分に与えることができると共に、鉄鉱石原料中で大きな粒径を有する鉱石の周囲に、小さな粒径を有する鉱石を付着させた擬似粒子を形成することが可能となる。従って、従来から使用されてきたヘマタイト鉱石と吸水機構が異なるゲーサイト鉱石を用いた場合においても、ゲーサイト鉱石の気孔内及び表面に水分をまんべんなく付着させることができるので、鉄鉱石原料中により多くのゲーサイト鉱石を配合でき、これにより鉄鉱石原料の原料コストを抑えることができ経済的である。
【図面の簡単な説明】
【図1】(A)、(B)はそれぞれ本発明の一実施の形態に係る焼結原料の事前処理方法を適用した造粒法の説明図である。
【図2】同焼結原料の事前処理方法に使用するゲーサイト鉱石が含有する結晶水と湿潤熱との関係を示す説明図である。
【図3】同焼結原料の事前処理方法に使用する鉱石原料の含水率の影響を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for pre-processing a sintering raw material in a granulation step of a sintered ore production step.
[0002]
[Prior art]
When producing iron ore sintered ore, first mix sintering raw materials such as iron ore, limestone, serpentine, and powdered coke at a predetermined ratio, and then add the required amount of moisture to the sintered raw material and granulate Then, it is charged into a sintering pallet to form a sintered raw material packed layer. Next, in the ignition furnace, the surface (surface layer part) of the sintered raw material packed layer is ignited, and the air above the charged raw material (sintered raw material charged) layer is sucked by the wind exhauster through the wind box. . As a result, the coke blended in the sintered raw material burns and is sequentially fired with the heat, and then the fired product (also referred to as a sintered cake) is discharged from the pallet in the exhausting part. The discharged fired product is crushed and cooled, and then a product having a certain particle size or more is supplied as a sintered ore to a blast furnace raw material. In addition, the granular material (henceforth return ore) below a fixed particle size is used again as a sintering raw material.
In this sinter production process, the granulation of the sintered raw material affects the air permeability of the packed bed during firing and greatly affects the productivity of the sinter. Therefore, many studies have been made on the improvement of the granulation process.
[0003]
As a granulating apparatus for producing the above-mentioned sintered raw material, a drum mixer that has been widely used worldwide is generally used. However, in recent years, for example, a mixer incorporating a pan pelletizer or a high-speed stirring blade (hereinafter referred to as high-speed stirring). Mixing granulators such as abbreviated as mixers have also been put into practical use.
In Japanese Patent No. 2790008, as a pretreatment method of a sintered raw material containing 30 wt% or more of fine powder of 0.5 mm or less, the moisture of the sintered raw material is mixed to 6.5 to 10.0% using a high-speed stirring mixer. A method is disclosed. This is to regulate the amount of granulated water in order to bring out the special treatment effect (the effect of mixing while giving a shearing force), which is unique to a high-speed agitating mixer, and the granulated water is measured by a centrifugal separation method for each iron ore. This is a method of increasing the water absorption index by 1.0 to 3.0%.
Further, in recent years, the use of goethite ore such as pisolite ore and maramamba ore, which is cheaper than the conventionally used hematite ore, is increasing as the iron ore material used for the sintering raw material.
[0004]
[Problems to be solved by the invention]
However, when the goethite ore is to be treated in the same manner as the hematite ore processing method using the above-mentioned sintering raw material pre-treatment method, goethite ore is different from hematite ore in water absorption mechanism. When the mixed granulation is performed, moisture is insufficient and the granulation property of the iron ore raw material is deteriorated, which may cause problems such as deterioration of aeration during firing.
This invention is made | formed in view of this situation, and it aims at providing the pre-processing method of the sintering raw material which improves the granulation property of the iron ore raw material which mix | blended a lot of goethite ores.
[0005]
[Means for Solving the Problems]
In the pretreatment method of the sintered raw material according to the present invention that meets the above object, water is added to an iron ore raw material containing 70% by mass or more of goethite ore containing 4% by mass or more of crystal water, and this is added to a high-speed stirring blade. When mixing and granulating using a mixer having a built-in, the water is added so that the water content of the iron ore raw material is more than 10.0% by mass and not more than 12.5% by mass, and the high-speed stirring blade Is set to 100 to 300 rpm.
[0006]
There are a wide variety of types of iron ore used as a raw material for sintering, and the water absorption mechanism is different for each ore type. Therefore, the optimum moisture content (water content) can be determined only by the evaluation test results based on the simple water absorption mechanism. Cannot be determined. That is, when performing good granulation, it is required to set an appropriate moisture amount in consideration of the influence of the type of iron ore. The inventors of the present invention have made detailed studies on the granulating properties of goethite ores such as pisolite ore and maramamba ore, which have been used in recent years. As a result, the goethite ore contains 4% by mass or more of crystal water (derived from goethite mineral), and thus has been found to have higher wettability and higher porosity than hematite ore. When mixing and granulating these goethite ores with high wettability and porosity, for example, with a high-speed stirring mixer, by mixing at a higher moisture level than when granulating hematite ore with a normal drum mixer, We found a phenomenon that markedly improved granulation.
[0007]
That is, when goethite ore is granulated with a drum mixer, moisture adheres to the surface of the ore without entering water into the pores of the goethite ore, so high moisture (water content: more than 10.0% by mass to In the state of 12.5% by mass, when granulating, the water becomes excessive and good granulation cannot be performed. In addition, granulation can be performed satisfactorily by setting the water content to the same low level as that of hematite ore, but because the wettability is good, moisture sequentially penetrates into the pores over time. At the time of charging onto the pallet, the moisture on the surface of the goethite ore becomes insufficient, and the granulated material is pulverized to deteriorate the air permeability.
On the other hand, when the goethite ore is granulated with a high-speed stirring mixer, moisture penetrates into the pores during granulation, and moisture adheres uniformly to the pores and the surface of the goethite ore. Then, granulation is performed properly, and moisture does not enter the pores of the goethite ore even after a long time. It is maintained and does not cause deterioration of air permeability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIGS. 1A and 1B are explanatory diagrams of a granulation method to which a pretreatment method for a sintering material according to an embodiment of the present invention is applied, respectively, and FIG. 2 is a pretreatment of the sintering material. FIG. 3 is an explanatory view showing the influence of the moisture content of the ore raw material used in the pretreatment method of the sintered raw material, and FIG. 3 is an explanatory view showing the relationship between the crystal water contained in the goethite ore used in the method and the heat of wetting. .
[0009]
As shown in FIG. 1 (A), the pretreatment method of a sintering raw material according to an embodiment of the present invention is a goethite ore containing 4% by mass or more of crystal water (for example, pisolite ore, maramamba ore, etc.). Is a method in which water is added to an iron ore raw material containing 70% by mass or more of this, and this is mixed and granulated using a high-speed stirring mixer (Eirich mixer) which is an example of a mixer incorporating a high-speed stirring blade. This will be described in detail below.
[0010]
First, the iron ore raw material in which 70% by mass or more of pisolite ore and maramamba ore having a particle size of, for example, about 10 mm or less (average particle size in a dry state) is 10.0% by mass or less is 10.0% by mass. Moisture is added so as to exceed 12.5% by mass, and this is mixed and granulated, for example, for about 0.5 to 2 minutes with a high-speed stirring mixer, and the iron ore raw material is granulated. In addition, the rotation speed of the high-speed stirring blade (agitator) of the high-speed stirring mixer is set to 100 to 300 rpm, and the rotation speed of the pan is set to 10 to 70 rpm (pre-processing step).
[0011]
In the iron ore raw material mixed and granulated in this way, iron ore (eg, hematite ore) having a crystal water of less than 4% by mass, miscellaneous raw material (eg, sintered ore having a particle size smaller than a predetermined particle size, blast furnace) Ore, etc. that cannot be charged), secondary raw materials (for example, limestone with a particle size of 7 mm or less, serpentine with 5 mm or less), quick lime with 1 mm or less, etc. Sintering raw material containing about%. In addition, this sintering raw material has an outer frame with respect to 100% by mass of the sintering raw material, for example, about 10 to 20% by mass of the above-mentioned return (other iron ore), for example, about 2 to 5% by mass of powder. Coke is further added, but the amount of return can be included in the amount of miscellaneous raw materials.
This sintered raw material is granulated by rolling and granulating the sintered raw material at a rotational speed of, for example, 5 to 50 rpm and a residence time of, for example, about 2 to 5 minutes (the granulating step). Sintered ore is obtained by firing the granulated material with a sintering machine. Here, the drum mixer is subjected to rolling granulation without adding water or by adding 1 to 2% by mass of water (added water) as shown in FIG. In addition, when adding moisture to the sintering raw material with this drum mixer, the addition is performed in consideration of the moisture content of the iron ore raw material described above.
[0012]
Further, as shown in FIG. 1 (B), water is added to the iron ore raw material so that the water content of the iron ore raw material is more than 10.0% by mass and 12.5% by mass or less, and this is stirred at high speed. After mixing and granulating with a mixer, it is also possible to roll and granulate the iron ore raw material rolled and granulated using, for example, a pan pelletizer together with the above-mentioned other sintered raw materials into a drum mixer.
[0013]
As shown in FIG. 2, in the above-described goethite ore (Fe 2 O 3 .nH 2 O), when the crystal water is 4% by mass or more, goethite with good wettability increases on the ore surface and the heat of wetting is increased. On the other hand, it has been found that hematite with poor wettability increases and heat of wetting decreases below that. The wet heat is the amount of heat generated when the ore surface is changed from a dry state to a wet state, and is a value measured using a commercially available twin-type microcalorimeter.
The chemical composition and ore properties of Australian pisolite ore A and Australian maramamba ore B, which are representative of the goethite ore targeted by the present invention, are conventionally used in Australia or Brazil. It is shown in Table 1 together with the hematite ores C and D produced in Japan.
[0014]
[Table 1]
[0015]
As can be seen from Table 1, pisolite ore A and maramamba ore B contain about 4 to 9% by mass of crystal water, and the heat of wetting is higher than that of hematite ores C and D, and the surface of the ore It shows that the wettability is good. In addition, the BET specific surface area in Table 1 is one of the indices representing substantial porosity, which also shows a high value. For this reason, when gossite ores such as pisolite ore A and maramamba ore B are mixed and granulated with a high-speed agitating mixer, moisture rapidly penetrates into the pores of the ore, Moisture adheres evenly to the surface of the ore.
The specific surface area is a value measured by the BET method. This BET method is a general measurement method for obtaining a specific surface area from the amount of nitrogen adsorbed (for example, “Co-powder Theory and Application” Maruzen, P134 (S37, co-edited by Teruichiro Kubo, Eiji Mizuwatari, Yuzo Nakagawa, Soshiro Hayakawa). Issue year)).
[0016]
Subsequently, the reason why the blending ratio of goethite ore to the iron ore raw material, the moisture content of the iron ore raw material, and the rotation speed of the high-speed stirring blade are limited to the above-described numerical values will be described.
The mixing ratio of goethite ore to the iron ore raw material is set to 70% by mass or more. When the mixing ratio is less than 70% by mass, the influence of the goethite ore on the iron ore raw material does not dominate. This is because it is strongly influenced by the characteristics. On the other hand, although the upper limit is not specified, it is possible even when all of the iron ore raw materials are goethite ores. Therefore, in order to make the effect of goethite ore on the iron ore raw material more prominent and considering the increase in the amount of goethite ore in the future due to economic considerations, the iron ore of goethite ore It is preferable that the blending ratio to the raw material is 75% by mass or more, more preferably 80% by mass or more.
[0017]
Moreover, while changing the compounding quantity in the iron ore raw material of the pisolite ore A and adjusting the water content (moisture content) of the iron ore raw material variously, the iron ore raw material is charged into a high-speed stirring mixer and stirred. The granulation properties of iron ore raw materials were investigated. In addition, the rotation speed of the high-speed stirring blade of this high-speed stirring mixer was 200 rpm.
As shown in FIG. 3, it was confirmed that the granulation property of the iron ore raw material could be improved when the water content of the iron ore raw material was more than 10% by mass and 12.5% by mass or less. In addition, although the maramamba ore B slightly moves in the direction of the lower moisture content than the pisolite ore A, it can be seen that the maramamba ore B shows a tendency similar to that of the pisolite ore A.
[0018]
Here, when the moisture content of the iron ore raw material becomes 10% by mass or less, the moisture penetrates into the pores of the goethite ore, and therefore the surface water necessary for granulation is insufficient. Getting worse. On the other hand, if the water content of the iron ore raw material exceeds 12.5% by mass, fine powder particles flow due to excess moisture, resulting in a granulated product having a dango-like strength. Decrease. Therefore, in order to secure surface water necessary for granulation and to obtain a granulated product having an appropriate particle size, the water content of the iron ore raw material is 10.5% by mass or more and 12.5% by mass or less, and further 10. It is preferable to set it to 5 mass% or more and 12.0 mass% or less. The water content of the iron ore raw material, that is, more than 10% by mass and not more than 12.5% by mass deviates from the optimum moisture range determined from the water absorption index in the above-mentioned Patent No. 2790008. Even if high water immersion is taken into account, it corresponds to a range that can be regarded as excess water.
[0019]
Thus, when high moisture is added, the rotation speed of the rotary blades of the high-speed stirring mixer is preferably about 100 to 300 rpm. Here, when the rotational speed is less than 100 rpm, the shearing force peculiar to a high-speed stirring mixer is insufficient, and the granulation condition is close to that of normal rolling granulation, and the action of effectively bringing moisture into contact with ore is lost. It will not be possible to sufficiently enter the pores of the goethite ore. Further, when strong stirring exceeding 300 rpm is performed under such a high moisture condition, the mixing action is strengthened rather than the granulating action, and the disintegrating action of the pseudo particles is promoted, which is not desirable. Therefore, in order to give a sufficient shearing force to the iron ore raw material and suppress the collapse of the pseudo particles, it is preferable to set the rotation speed to 150 to 300 rpm, and further to 150 to 250 rpm.
[0020]
【Example】
The result of having performed the test using the granulation method which applied the pre-processing method of the sintering raw material which concerns on this invention is demonstrated.
Prepare iron ore raw materials in which the composition of the iron ore raw materials and the water content of the iron ore raw materials are varied, and roll granulate the iron ore raw materials using the methods shown in FIGS. 1 (A) and 1 (B). The effect of the granulation method was confirmed by an operation test using a sintering machine.
Here, the blending conditions of goethite ore containing 4% by mass or more of crystal water, ie, pisolite ore and maramamba ore, hematite ore C and hematite ore D having less than 4% by mass of crystal water, and the test results are shown in Table 2. Table 3 shows the results. Pisolite ore, maramamba ore, hematite ore C, and hematite ore D mean the ores in Table 1, respectively.
[0021]
[Table 2]
[0022]
[Table 3]
[0023]
In addition, the preconditions of the operation test, that is, the type of the pretreatment process iron and the mixer used in the granulation process (Eirich mixer (A), pan pelletizer (B), drum mixer (C)), and each mixer Table 4 shows the operating conditions and the sintering machine for sintering the iron ore raw material.
[0024]
[Table 4]
[0025]
As shown in Table 2, the iron ore raw material of Invention Example 1 is 100% by mass of pisolite ore, and the iron ore raw material of Invention Example 2 is 40% by mass of pisolite ore and 60% by mass of Maramamba ore. The iron ore raw materials of Invention Examples 3 and 4 are 40% by mass of pisolite ore, 30% by mass of maramamba ore (70% by mass of goethite ore), and 30% by mass of hematite ore C. % Raw material. Here, Invention Examples 1 to 3 use the method shown in FIG. 1A, and Invention Example 4 uses the method shown in FIG. 1B.
[0026]
The additive moisture necessary for granulation is the raw material moisture before mixing granulation, that is, about 4.0% by mass of moisture contained in goethite ore, and moisture that has entered into the pores of ore when the ore is left (for example, In consideration of the water content in Table 1), the whole amount is added at the time of granulation in the mixer, and by adjusting the added water (3.7 to 4.1% by mass), the Eirich mixer ( The water content after mixing and granulation at a stirring blade rotation speed of 150 rpm or 250 rpm, that is, the water content of the iron ore raw material (granulated product water content) was changed within the range of 11.2 to 12.2% by mass.
By adding the above-mentioned miscellaneous raw materials (other miscellaneous raw materials), auxiliary raw materials (limestone, serpentine), quicklime, etc. to this iron ore raw material, a sintered raw material containing 30 to 45 mass% of the iron ore raw material was produced. The sintered raw material is further added with the above-mentioned return mineral and coke breeze in an external portion with respect to 100% by mass of the sintered raw material, and the added moisture (0.6 to 1.2% by mass) is adjusted. The granulated product moisture was adjusted to 6.7% by mass using a pelletizer or a drum mixer.
[0027]
On the other hand, as shown in Table 2, the iron ore raw materials of Comparative Examples 1 to 3 have substantially the same composition as the iron ore raw material and the operating conditions of the granulation process as in Example 1 of the present invention. When the iron ore raw material of 1 is different in the type of mixer (drum mixer) used in the pretreatment process, the iron ore raw material of Comparative Example 2 has a water content of the iron ore raw material of the lower limit of the present invention, that is, 10% by mass. (9.2% by mass), the iron ore raw material of Comparative Example 3 shows the case where the rotation speed of the stirring blade of the Eirich mixer is lower than the lower limit of the present invention, that is, 100 rpm (90 rpm).
The granulated product produced by the above-described method was fired by a sintering machine to produce a sintered ore.
[0028]
For the sintering machine, a DL-type sintering machine as shown in Table 4 was used. The pallet speed was 3.6 m / min, and the pallet sintering area was 600 m 2 . The granulated material was fired under the operating conditions with a thickness of 600 mm.
As understood from the operation results shown in Table 3, when the granulated product of Invention Examples 1 to 4 is used, the production of sintered ore is about 17800 to 18200 (t / day), and the air permeability of the packed bed at the time of firing Was about 31 to 32, and the yield in this operation was 78.5 to 78.9%.
On the other hand, when the granulated material of Comparative Examples 1 to 3 is used, the production of sintered ore is about 15200 to 16000 (t / day), the air permeability is about 28 to 30, and the yield in this operation is 74. It was 1-75.1%.
As can be seen from this, in the comparative example, the selection of the mixer, the moisture content of the iron ore raw material, the rotation speed of the stirring blade of the Eirich mixer could not be made appropriate, the granulation of the sintered raw material became poor, and the firing It is considered that the air permeability of the packed bed at the time was deteriorated, the productivity of the sintered ore was greatly reduced as compared with the present invention, and the yield was further reduced.
[0029]
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included.
For example, in the above-described embodiment, the particle size of limestone, serpentine, quicklime, and the amount of powder coke are shown, but the present invention is not limited to the above-described numerical values and can be applied to other numerical values. Is done.
[0030]
【The invention's effect】
In the sintering raw material pretreatment method according to claim 1, since a mixer having a high-speed stirring blade is used, moisture enters the pores of the goethite ore during granulation, and the pores of the goethite ore Water can be evenly attached to the inside and the surface. For this reason, since granulation is properly performed by the mixer and moisture does not enter into the pores of the goethite ore even when time elapses, the granulated material produced based on the iron ore raw material is Even at the time of charging onto the sintering pallet, the granulation property is maintained, and there is no possibility that the air permeability of the packed bed is deteriorated during sintering. Therefore, it is economical because the granulation property can be improved and the productivity of sintered ore can be improved.
[0031]
In particular, in the pre-processing method of the sintering raw material according to claim 1, by limiting the water content of the iron Ishihara fee to a predetermined range, the amount of water adhering to the surface of the iron Ishihara fee, adjusted to an appropriate amount It becomes possible to do. Therefore, even when a goethite ore having a different water absorption mechanism from the conventionally used hematite ore is used, the granulation property can be improved, so that more goethite ore can be blended in the iron ore raw material. It is economical because the raw material cost of iron ore raw material can be reduced.
In the pretreatment method of the sintered raw material according to claim 1, the shearing force generated by the rotation of the high-speed stirring blade can be sufficiently applied to the iron ore raw material, and a large particle size is formed in the iron ore raw material. It becomes possible to form pseudo particles in which ores having a small particle size are attached around the ores that the ores have. Therefore, even in the case of using goethite ore with a different water absorption mechanism from the conventionally used hematite ore, moisture can be evenly adhered to the pores and the surface of the goethite ore. It is economical because the raw material cost of the iron ore raw material can be reduced.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory diagrams of a granulation method to which a sintering raw material pretreatment method according to an embodiment of the present invention is applied.
FIG. 2 is an explanatory view showing the relationship between water of crystallization and heat of wetting contained in goethite ore used in the pretreatment method for the sintered raw material.
FIG. 3 is an explanatory diagram showing the influence of the moisture content of the ore raw material used in the pretreatment method of the sintered raw material.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001329303A JP3820132B2 (en) | 2001-10-26 | 2001-10-26 | Pretreatment method of sintering raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001329303A JP3820132B2 (en) | 2001-10-26 | 2001-10-26 | Pretreatment method of sintering raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003129139A JP2003129139A (en) | 2003-05-08 |
JP3820132B2 true JP3820132B2 (en) | 2006-09-13 |
Family
ID=19145230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001329303A Expired - Lifetime JP3820132B2 (en) | 2001-10-26 | 2001-10-26 | Pretreatment method of sintering raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3820132B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005307253A (en) * | 2004-04-20 | 2005-11-04 | Jfe Steel Kk | Method for producing sintered ore |
JP4661154B2 (en) * | 2004-10-01 | 2011-03-30 | Jfeスチール株式会社 | Method for producing sintered ore |
JP2007100150A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP4982993B2 (en) * | 2005-10-03 | 2012-07-25 | Jfeスチール株式会社 | Method for producing sintered ore |
JP5194378B2 (en) * | 2006-04-17 | 2013-05-08 | 新日鐵住金株式会社 | Method for producing sintered ore |
JP5315659B2 (en) * | 2007-10-15 | 2013-10-16 | 新日鐵住金株式会社 | Method for producing sintered ore |
JP5206030B2 (en) * | 2008-03-04 | 2013-06-12 | 新日鐵住金株式会社 | Method for producing sintered ore |
EP2848299B1 (en) | 2013-09-11 | 2019-08-14 | Primetals Technologies Austria GmbH | Method and device for producing granulates |
JP6287511B2 (en) * | 2014-04-10 | 2018-03-07 | 新日鐵住金株式会社 | Pretreatment method of sintering raw materials |
KR102189069B1 (en) | 2016-03-04 | 2020-12-09 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing sintered ore |
CN119256099A (en) | 2022-06-03 | 2025-01-03 | 杰富意钢铁株式会社 | Method for producing granulated raw material for sintering and method for producing sintered ore |
-
2001
- 2001-10-26 JP JP2001329303A patent/JP3820132B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003129139A (en) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108699623B (en) | Method for producing sintered ore | |
JP3820132B2 (en) | Pretreatment method of sintering raw material | |
WO2013175601A1 (en) | Method for manufacturing granulating raw material for sintering, device for manufacturing same, and method for manufacturing sintered ore for blast furnace | |
RU2675883C2 (en) | Method and device for producing granulates | |
JP4996100B2 (en) | Method for producing sintered ore | |
JP5987958B2 (en) | Method of adding binder to sintering raw material | |
JP4205242B2 (en) | Granulation method of sintering raw material | |
JP6369113B2 (en) | Method for producing sintered ore | |
JP5828305B2 (en) | Pretreatment method of sintering raw material | |
JP6071409B2 (en) | Pre-granulation method for sintering raw materials | |
JP2004137575A (en) | Production method for sintered ore | |
JPH05156271A (en) | Method for granulating mixture of powder coke and anthracite and production of sintered ore | |
JP4231468B2 (en) | Method for producing sintered ore | |
JP7110830B2 (en) | Granulation method of mixed raw materials | |
JP3888981B2 (en) | Method for producing sintered ore | |
JP4356929B2 (en) | Method for producing sintered ore | |
JP2953308B2 (en) | Sinter production method | |
JP3675105B2 (en) | Sintering raw material processing method | |
JPH0748634A (en) | Pretreatment method for sintering raw material | |
JP3252646B2 (en) | Sinter production method | |
JP4204789B2 (en) | Method for granulating raw materials for iron making | |
JPH10219361A (en) | Processing method of sintering raw material | |
JP5928731B2 (en) | Manufacturing method and apparatus for granulating raw material for sintering | |
JP2746030B2 (en) | Pre-processing method for sintering raw materials | |
JP7067372B2 (en) | Granulation method for compounded raw materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060616 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3820132 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |