[go: up one dir, main page]

JP5552805B2 - Oxide superconducting wire connection method - Google Patents

Oxide superconducting wire connection method Download PDF

Info

Publication number
JP5552805B2
JP5552805B2 JP2009283257A JP2009283257A JP5552805B2 JP 5552805 B2 JP5552805 B2 JP 5552805B2 JP 2009283257 A JP2009283257 A JP 2009283257A JP 2009283257 A JP2009283257 A JP 2009283257A JP 5552805 B2 JP5552805 B2 JP 5552805B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
metal
connection
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009283257A
Other languages
Japanese (ja)
Other versions
JP2011124188A (en
Inventor
敬昭 坊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009283257A priority Critical patent/JP5552805B2/en
Publication of JP2011124188A publication Critical patent/JP2011124188A/en
Application granted granted Critical
Publication of JP5552805B2 publication Critical patent/JP5552805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

この発明は、超電導変圧器,超電導リアクトル,超電導限流器,超電導電動機,超電導発電機などの超電導機器のコイルに適用する酸化物超電導線の接続方法に関する。   The present invention relates to a method for connecting an oxide superconducting wire applied to a coil of a superconducting device such as a superconducting transformer, a superconducting reactor, a superconducting current limiter, a superconducting motive motor, and a superconducting generator.

超電導線材として、最近では液体窒素の蒸発温度である77Kの温度でも超電導状態を維持する高温超電導体が実用化されており、例えばビスマス系の高温超電導材の粉末を銀パイプ中に充填し、線引き、圧延してテープ状に成形した高温超電導線が一般に用いられている。   As a superconducting wire, recently, a high-temperature superconductor that maintains a superconducting state even at a temperature of 77 K, which is the evaporation temperature of liquid nitrogen, has been put into practical use. A high temperature superconducting wire that has been rolled and formed into a tape shape is generally used.

ところで、頭記した超電導機器は、巻枠に巻回されたコイル導体の中間部で超電導線同士を接続する、あるいはコイル端部で超電導線と電極に向けて軸方向に引き出した別な超電導線とを接続するなど、超電導線同士の接続が必要となる。このような超電導線相互間の接続方法として、従来でははんだ付けによる接続法が一般に採用されている。   By the way, the superconducting equipment mentioned above is a superconducting wire that connects the superconducting wires at the middle part of the coil conductor wound around the winding frame, or is drawn in the axial direction toward the superconducting wire and the electrode at the coil end. For example, it is necessary to connect the superconducting wires. As a connection method between such superconducting wires, a connection method by soldering has been generally employed.

このはんだ付けによる接続法は、超電導線材の端部を例えば30mm〜50mmの長さに重ね合わせ、この状態でその重ね合わせ面がはんだ接合される。この場合に、前記したビスマス系の高温超電導線は、線材の全表面が母材となる銀または銀合金などのシース材で覆われているので、線材の向きに関係なくシース材同士を重ね合わせてはんだ付けすることで、超電導線同士を比較的容易に接続できる。   In this connection method by soldering, the end portions of the superconducting wire are overlapped to a length of, for example, 30 mm to 50 mm, and the overlapping surfaces are soldered in this state. In this case, since the entire surface of the bismuth-based high-temperature superconducting wire is covered with a sheath material such as silver or a silver alloy as a base material, the sheath materials are overlapped regardless of the direction of the wire. By soldering, superconducting wires can be connected relatively easily.

一方、最近では電流容量の増大、製造コストの低減化などの観点から、次世代の超電導線材としてイットリウム系の高温酸化物超電導体が注目されている。このイットリウム系酸化物超電導体は、ステンレスやハステロイなどの高剛性金属テープ(基材)の片面に絶縁材料の中間層を蒸着した上で、この中間層にイットリウム系の酸化物超電導材を蒸着して成膜し、さらにこの超電導層の上にクエンチ保護の安定化材として銀をコーティングする方法で高温超電導線材を製作している。また、イットリウム系の酸化物超電導層に蒸着した銀層をシード層として、この銀層の上に安定化金属として銀よりも安価な銅などの金属テープをはんだ接合(金属テープにはんだメッキを施し、銀層に重ねて加熱溶着する),あるいは導電性接着剤によりラミネートして安定化材を複合化した構造の超電導線材も開発されている(例えば、特許文献1参照)。   On the other hand, yttrium-based high-temperature oxide superconductors have recently attracted attention as next-generation superconducting wires from the viewpoint of increasing current capacity and reducing manufacturing costs. This yttrium-based oxide superconductor is formed by depositing an intermediate layer of insulating material on one side of a highly rigid metal tape (base material) such as stainless steel or hastelloy, and then depositing an yttrium-based oxide superconductor on this intermediate layer. Then, a high temperature superconducting wire is manufactured by coating silver on the superconducting layer as a quench protection stabilizing material. In addition, a silver layer deposited on an yttrium-based oxide superconducting layer is used as a seed layer, and a metal tape such as copper, which is cheaper than silver as a stabilizing metal, is solder-bonded onto the silver layer (the metal tape is subjected to solder plating). In addition, a superconducting wire having a structure in which a stabilizing material is combined by laminating with a conductive adhesive by heating and superposing on a silver layer has also been developed (see, for example, Patent Document 1).

上記イットリウム系酸化物超電導線材の模式構造を図5に示す。図5において、1はステンレスやハステロイなどの高剛性金属材になるテープ状の金属基材、2は金属基材1の片面に蒸着した絶縁物の中間層、3は中間層2の上に蒸着したイットリウム系の超電導層、4は超電導層3の上に蒸着した銀層、5は銀層4の上にラミネートしたテープ状の安定化金属であり、銀層4と安定化金属5とで複合の安定化層を形成している。   A schematic structure of the yttrium-based oxide superconducting wire is shown in FIG. In FIG. 5, 1 is a tape-shaped metal substrate that becomes a highly rigid metal material such as stainless steel or Hastelloy, 2 is an intermediate layer of an insulator deposited on one side of the metal substrate 1, and 3 is deposited on the intermediate layer 2. The yttrium-based superconducting layer 4 is a silver layer deposited on the superconducting layer 3, 5 is a tape-shaped stabilizing metal laminated on the silver layer 4, and the silver layer 4 and the stabilizing metal 5 are combined. The stabilizing layer is formed.

前記のようにイットリウム系の酸化物超電導線材は、線材の全表面が銀,銀合金のシース材で覆われている先記のビスマス系高温超電導線とは異なり、線材の片面側が中間層を介して超電導層と絶縁された金属基材であることから、この超電導線同士を接続するにはその線材構造に対応した接続方法が必要となる。かかる点、従来から酸化物超電導線の接続法として様々な提案がなされており、その代表例として接続する超電導線の安定化金属を向かい合わせ(Face-to-Face)に重ね合わせた上で、その重ね合わせ面をはんだ接合する接続方法が知られている(例えば、特許文献2参照)。   As described above, the yttrium-based oxide superconducting wire is different from the bismuth-based high-temperature superconducting wire in which the entire surface of the wire is covered with a sheath material of silver or a silver alloy, and one side of the wire is interposed through an intermediate layer. In order to connect the superconducting wires to each other, a connection method corresponding to the wire structure is required. In this regard, various proposals have conventionally been made as connecting methods of oxide superconducting wires, and as a representative example, after superposing the stabilizing metal of the connecting superconducting wires facing each other (Face-to-Face), A connection method for soldering the overlapping surfaces is known (see, for example, Patent Document 2).

一方、近年の電力系統は電力需要増加に伴いますます大規模化、複雑化していることから、電力系統の短絡事故発生の際に系統に流れる故障電流も増大すると予測される。そこで、電力系統の短絡事故時に流れる故障電流が系統に接続した遮断器の遮断容量を超えないように抑制するための限流手段として、最近では前記のイットリウム系酸化物超電導体のS/N転移を利用して故障電流を限流させるようにした超電導限流器が注目され、その製品開発が進められている。   On the other hand, since the power system in recent years has become larger and more complex with increasing power demand, it is expected that the fault current flowing in the system will also increase when a short circuit accident occurs in the power system. Therefore, as a current-limiting means to suppress the fault current that flows in the event of a short circuit in the power system so as not to exceed the breaking capacity of the circuit breaker connected to the system, the S / N transition of the yttrium-based oxide superconductor has recently been introduced. The superconducting fault current limiter is designed to limit the fault current by using, and its product development is underway.

この超電導限流器の動作原理はよく知られているように、平常時は電流が超電導材を通流し、電力系統の突発短絡事故などにより過大な故障電流が流れて超電導材が常電導状態に転移した際に、電流を安定化金属にバイパスさせて過電流を限流させるようにしたものである。そして、この超電導限流器では、過電流が超電導材から安定化金属にバイパスした際のインピーダンスを大きくするために、図5に示した超電導線の安定化金属5として、CuNiやCuZn、またはステンレスなどの比較的高抵抗な金属材を採用している。   As the operation principle of this superconducting fault current limiter is well known, the current flows through the superconducting material in normal times, and an excessive fault current flows due to a sudden short circuit accident of the power system, etc., and the superconducting material becomes normal conducting state. At the time of transition, the current is bypassed to the stabilizing metal to limit the overcurrent. In this superconducting fault current limiter, CuNi, CuZn, or stainless steel is used as the stabilizing metal 5 of the superconducting wire shown in FIG. 5 in order to increase the impedance when overcurrent is bypassed from the superconducting material to the stabilizing metal. A relatively high resistance metal material is used.

また、前記の超電導限流器の動作原理を超電導変圧器に応用した限流機能付き超電導変圧器の開発も進められている。   Also, development of a superconducting transformer with a current limiting function in which the operating principle of the superconducting current limiting device is applied to a superconducting transformer is underway.

特表2007−524198号公報(図1、P8−9)Special Table 2007-524198 (FIG. 1, P8-9) 特開2000−133067号公報JP 2000-133067 A

ところで、超電導限流器,あるいは限流機能付き超電導変圧器などのコイル導体に適用する前記のイットリウム系酸化物超電導線(図5参照)について、先記のように巻枠に巻回されたコイル導体の中間部、あるいはコイル端部で電極に向けて軸方向に引き出した超電導線との間で超電導線同士を接続する際に、超電導線材の安定化金属を向かい合わせに重ねてはんだ付けする従来の接続方法(特許文献2)をそのまま採用すると、その接続部を通流する電流の通電性には次記のような不具合が発生する。   By the way, as to the yttrium-based oxide superconducting wire (see FIG. 5) applied to a coil conductor such as a superconducting current limiting device or a superconducting transformer with a current limiting function, a coil wound around a winding frame as described above. Conventionally, when superconducting wires are connected to each other between the superconducting wires drawn in the axial direction toward the electrode at the middle of the conductor or at the coil end, the stabilizing metal of the superconducting wire is overlapped and soldered. If the above connection method (Patent Document 2) is employed as it is, the following problems occur in the conductivity of the current flowing through the connecting portion.

すなわち、図6,図7は、それぞれ図5に示したイットリウム系酸化物超電導線AとBの端部を長手方向に並行,および直交する方向に重ね合わせた上で、その重ね合わせ面をはんだ接合した接続法による接続部の模式図であり、各図の(a)は超電導線AとBとを接続する前、(b)は接続後における接続部の超電導通電状態を表す。なお、各図中には図5と同一部材に同じ符号を付している。   That is, FIG. 6 and FIG. 7 respectively show the ends of the yttrium-based oxide superconducting wires A and B shown in FIG. 5 in the direction parallel to and perpendicular to the longitudinal direction, and the overlapping surfaces are soldered. It is the schematic diagram of the connection part by the joined connection method, (a) of each figure before connecting the superconducting wire A and B, (b) represents the superconducting conduction state of the connection part after a connection. In addition, in each figure, the same code | symbol is attached | subjected to the same member as FIG.

この図6(b),図7(b)の図中に矢印で表した通電経路から判るように、右側の超電導線Bから接続部を経て左側の超電導線Aに流れる電流は、超電導層3→銀層4→安定化金属5→はんだ層6→安定化金属5→銀層4→超電導層3の経路に沿って流れる。したがって、超電導,常電導の状態に関係なく超電導線の接続部を通流する電流は安定化金属4と銀層3を2回ずつ通過することになる。   6B and 7B, the current flowing from the superconducting wire B on the right side to the superconducting wire A on the left side through the connecting portion is represented by the superconducting layer 3. → Silver layer 4 → stabilized metal 5 → solder layer 6 → stabilized metal 5 → silver layer 4 → flows along the path of superconducting layer 3. Therefore, the current flowing through the connection portion of the superconducting wire passes through the stabilizing metal 4 and the silver layer 3 twice regardless of the state of superconductivity or normal conduction.

この場合に、超電導限流器などに使用する超電導線として、先述のように安定化金属5にCuNiやCuZn、またはステンレスなどの比較的高抵抗な金属材を採用したものでは、超電導線の接続部に生じるジュール発熱が大きく、特に過電流が流れた場合に発熱が大となる。このために、前記接続方法では超電導線接続部の抵抗損失が増大するほか、最悪の場合にはジュール発熱によって線材が焼損する危険性がある。   In this case, as a superconducting wire used for a superconducting fault current limiter, etc., as described above, if the stabilizing metal 5 uses a relatively high resistance metal material such as CuNi, CuZn, or stainless steel, the connection of the superconducting wire The Joule heat generated in the part is large, and especially when an overcurrent flows, the heat generation becomes large. For this reason, in the connection method, the resistance loss of the superconducting wire connection portion increases, and in the worst case, there is a risk that the wire rod may be burned by Joule heat generation.

この発明は上記の点に鑑みなされたものであり、その目的は前記課題を解消して接続部の抵抗損失を低減し、併せて過度な発熱で線材が焼損するなどの不具合を巧みに抑止して信頼性の向上が図れるように改良した酸化物超電導線の接続方法を提供することにある。   The present invention has been made in view of the above points, and its object is to eliminate the above-mentioned problems and reduce the resistance loss of the connecting portion, and to skillfully suppress problems such as wire burnout due to excessive heat generation. It is another object of the present invention to provide an oxide superconducting wire connection method improved so as to improve reliability.

前記の目的を達成するために、この発明によれば、安定化金属にCuNiやCuZn、またはステンレスなどの比較的高抵抗を有する金属材を採用した酸化物超電導線の接続方法において、まず、その接続部における前記安定化金属を選択的に除去した上で、該接続部に露呈した銀層面を互い向かい合わせる。 To achieve the above object, according to the inventions, CuNi and CuZn stabilization metal or the oxide method for connecting superconducting wire employing a metal material having a relatively high resistance such as stainless steel, firstly, its on the selective removal of the stabilizing metal in the connecting portion, thereby Mukaiawa another silver layer surface exposed to the connection portion.

そして、向かい合わせた前記銀層面の間に金または金合金,銀または銀合金,銅または銅合金,アルミニウムまたはアルミニウム合金などの良導電性金属片を介在させた上で、超電導線の接続部を重ね合わせ、この状態で前記良導電性金属片と各超電導線の銀層面との間をはんだ付けして接続する。 Then, between the silver layer surface facing, gold or gold alloy, silver or a silver alloy, copper or a copper alloy, on which is interposed a highly conductive metal piece, such as aluminum or aluminum alloy, superconducting wire connecting portion superposition, to connect between the silver layer surface of the highly conductive metal piece and the superconducting wire in this state by soldering.

上記したこの発明の接続方法によれば、超電導線の接続部に流れる電流は高抵抗金属材の安定化金属を経由せずに通流させることができ、これにより接続部における局部的な発熱を抑えて低損失,高信頼性な接続が達成できる。   According to the connection method of the present invention described above, the current flowing through the connection portion of the superconducting wire can be passed without passing through the stabilizing metal of the high resistance metal material, thereby causing local heat generation at the connection portion. A low loss and highly reliable connection can be achieved by suppressing.

また、超電導線間の接続部において、高抵抗な安定化金属を除去したあとに良導電性金属片を介在させ、この良導電性金属片と銀層との間をはんだ接合するようにしたこの発明の接続方法によれば、接続抵抗の増加を伴うことなしに良導電性金属片がバッファとなって接続部の熱容量が増加する。これにより、超電導線に過電流が短時間過渡的に流れた場合でも前記良導電性金属片のバッファ効果により接続部の過度な温度上昇を抑制して信頼性の高い接続が達成できる。 Further, in the connection portion between the superconducting wire, by interposing a highly conductive metal piece after eliminating the high-resistance-stabilized metal and to be soldered between the highly conductive metal piece and silver layer this According to the connection method of the invention, the highly conductive metal piece becomes a buffer without increasing the connection resistance, and the heat capacity of the connection portion is increased. Thereby, even when an overcurrent flows through the superconducting wire transiently for a short time, an excessive temperature rise of the connecting portion is suppressed by the buffer effect of the highly conductive metal piece, and a highly reliable connection can be achieved.

酸化物超電導線同士を長手方向に沿って並行に接続したこの発明の参考例を示す接続部の模式図であり、(a)は分解斜視図、(b)は電流経路とともに表した接続状態の側視図である。It is the schematic diagram of the connection part which shows the reference example of this invention which connected oxide superconducting wires in parallel along the longitudinal direction, (a) is an exploded perspective view, (b) is the connection state represented with the current path. It is a side view. 化物超電導線同士を直交する方向に接続した図1とは異なる参考例を示す接続部の模式図であり、(a)は分解斜視図、(b)は電流経路とともに表した接続状態の側視図である。It is a schematic view of a connection part showing a different reference examples and Figure 1 connected in a direction orthogonal to oxides superconducting wire together, (a) shows the exploded perspective view, (b) is the side of the connection state representing together the current path FIG. この発明により酸化物超電導線同士を長手方向に沿って並行に接続した実施例を示す接続部の模式図であり、(a)は分解斜視図、(b)は電流経路とともに表した接続状態の側視図である。Is a schematic view of a connection portion showing an embodiment in which a more oxide superconducting wire together and connected in parallel along the longitudinal direction of the inventions, (a) shows the exploded perspective view, (b) is connected, it expressed with the current path It is a side view of a state. この発明により酸化物超電導線同士を直交する方向に接続した実施例を示す接続部の模式図であり、(a)は分解斜視図、(b)は電流経路とともに表した接続状態の側視図である。Is a schematic view of a connection portion of an embodiment connected in a direction orthogonal more oxide superconducting wire together to this inventions, (a) shows the exploded perspective view, (b) is the side of the connection state representing together the current path FIG. イットリウム系酸化物超電導線材の模式構造図である。It is a schematic structure diagram of an yttrium oxide superconducting wire. 酸化物超電導線同士を長手方向に沿って並行接続した接続部の従来構造図であり、(a)は分解斜視図、(b)は電流経路とともに表した接続状態の側視図である。It is the conventional structural diagram of the connection part which connected the oxide superconducting wires in parallel along the longitudinal direction, (a) is a disassembled perspective view, (b) is a side view of the connection state represented with the current path. 酸化物超電導線同士を直交する方向に接続した接続部の従来構造図であり、(a)は分解斜視図、(b)は電流経路とともに表した接続状態の側視図である。It is the conventional structural diagram of the connection part which connected the oxide superconducting wires in the orthogonal direction, (a) is a disassembled perspective view, (b) is a side view of the connection state represented with the current path.

以下、この発明の実施の形態を図1および図2に示す参考例、ならびに3および図4に示す各実施例に基づいて説明する。なお、参考例および実施例の図中で図5〜図7に対応する部材には同じ符号を付してその説明は省略する。
(参考例1)
Hereinafter, Reference Examples showing an embodiment of the present invention in FIGS. 1 and 2, and will be described with reference to the embodiments shown in FIG. 3 and Figure 4. In the drawings of the reference example and the embodiment, the members corresponding to those in FIGS.
(Reference Example 1)

まず、この発明の第1の参考例として、イットリウム系の酸化物超電導線同士をその長手方向に並行して接続した接続部の構造,および接続方法を図1(a),(b)で説明する。 First, as a first reference example of the present invention, a structure of a connecting portion in which yttrium-based oxide superconducting wires are connected in parallel in the longitudinal direction, and a connecting method will be described with reference to FIGS. To do.

この参考例においては、超電導線AとBを接続する際の前処理工程として、超電導線A,Bの接続部の幅Wに合わせて安定化金属5を選択的に除去する。この処理工程では、安定化金属5が銀層4にはんだ接合されている場合には、例えば、前記幅Wに合わせて安定化金属5の表面に切込みを入れた後、超電導線の接続部をトーチなどによりはんだ溶融温度に加熱した状態でテープ状の安定化金属5を端から部分的に引き剥がしカットする。これにより接続部には、はんだ層の残った銀層4が露呈するようになる。 In this reference example , as a pretreatment step when connecting the superconducting wires A and B, the stabilizing metal 5 is selectively removed in accordance with the width W of the connecting portion of the superconducting wires A and B. In this processing step, when the stabilizing metal 5 is soldered to the silver layer 4, for example, after making a cut in the surface of the stabilizing metal 5 in accordance with the width W, the connecting portion of the superconducting wire is formed. The tape-shaped stabilizing metal 5 is partially peeled off from the end and cut while being heated to the solder melting temperature by a torch or the like. As a result, the silver layer 4 with the solder layer remaining is exposed at the connection portion.

次に、(a)図のように超電導線AとBの銀層4を向かい合わせ(Face-to-Face)に重ね合わせてはんだ接合する。なお、状況により超電導線A,Bの接合面の間に、はんだシートを介在させるか、あるいはクリームはんだを塗布するようにしてもよい。これにより、(b)図で示すように超電導線AとBの間が接続される。   Next, as shown in (a), the superconducting wires A and B of the silver layer 4 are superposed face to face and soldered together. Depending on the situation, a solder sheet may be interposed between the joint surfaces of the superconducting wires A and B, or cream solder may be applied. As a result, the superconducting wires A and B are connected as shown in FIG.

そして、接続後に超電導線A,Bに通電(定常状態)すると、図中の矢印で表すように超電導層3→銀層4→はんだ接合層6→銀層4→超電導層3を辿る電流経路に沿って電流が接続部を流れることになる。したがって、図6に示した従来の接続方法のように、電流が安定化金属5に流れることがない。これにより、先記した超電導限流器のように安定化金属5がCuNiやCuZn、またはステンレスなどの比較的高抵抗な金属材であっても、接続部における抵抗損失の増大,局部的なジュール発熱に起因する線材の焼損を防止して信頼性の高い低抵抗接続が達成できる。
(参考例2)
Then, when the superconducting wires A and B are energized (steady state) after the connection, the current path follows the superconducting layer 3 → the silver layer 4 → the solder bonding layer 6 → the silver layer 4 → the superconducting layer 3 as indicated by the arrows in the figure. A current will flow through the connection along. Therefore, no current flows through the stabilizing metal 5 as in the conventional connection method shown in FIG. As a result, even if the stabilizing metal 5 is a relatively high resistance metal material such as CuNi, CuZn, or stainless steel as in the superconducting fault current limiter described above, an increase in resistance loss at the connecting portion, local Joule A highly reliable low resistance connection can be achieved by preventing the wire from burning due to heat generation.
(Reference Example 2)

図2(a),(b)は前記参考例1の変形例であり、超電導層AとBは互いに直交する方向に接続されている。この参考例2においても、参考例1と同様に接続部の幅Wに合わせて超電導線A,Bの安定化金属5を選択的に除去した上で向かい合わせに重ねた銀層4の間をはんだ接合して超電導線AとBを接続する。これにより、参考例1と同等な効果を奏することができる。
(実施例1)
FIGS. 2A and 2B are modifications of the first reference example, and the superconducting layers A and B are connected in directions orthogonal to each other. In this reference example 2 as well, in the same manner as in reference example 1, the stabilizing metal 5 of the superconducting wires A and B is selectively removed in accordance with the width W of the connecting portion, and then the space between the silver layers 4 stacked face to face is removed. The superconducting wires A and B are connected by soldering. Thereby, an effect equivalent to that of Reference Example 1 can be achieved.
Example 1

次に、この発明の実施例として、イットリウム系の酸化物超電導線同士を先記の参考例1と同様に長手方向に並行して接続した接続部の構造,および接続方法を図3(a),(b)で説明する。 Then, as the actual施例of the present invention, FIG structure of the connecting portion of connecting the oxide superconducting lines of the Y-based in the same manner as in Reference Example 1 of Sakiki in parallel in the longitudinal direction, and the connection 3 (a ) And (b).

この実施例においては、接続部の幅Wに合わせて超電導線A,Bの安定化金属5を選択的に除去することは参考例1と同様であるが、互いに向かい合わせに対向する銀層4の間には金または金合金,銀または銀合金,銅または銅合金,アルミニウムまたはアルミニウム合金などの良導電性金属片7を介在させた上で、超電導線A,Bの銀層4を良導電性金属片7に重ね合わせてその相互間をはんだ接合するようにしている。 In this embodiment, the selective removal of the stabilizing metal 5 of the superconducting wires A and B in accordance with the width W of the connecting portion is the same as in Reference Example 1, but the silver layer 4 facing each other face to face. In between, a highly conductive metal piece 7 such as gold or gold alloy, silver or silver alloy, copper or copper alloy, aluminum or aluminum alloy is interposed, and the silver layer 4 of the superconducting wires A and B is electrically conductive. The metal pieces 7 are superposed on each other and soldered together.

この接続方法では、超電導線AとBとの間の電流経路に良導電性金属片7が介在することになるが、この良導電性金属片7は超電導線の安定化金属(高抵抗金属材)5に比べて低抵抗であるので、接続部における抵抗損失の増加は殆どない。   In this connection method, the highly conductive metal piece 7 is interposed in the current path between the superconducting wires A and B. This highly conductive metal piece 7 is a stabilizing metal (high resistance metal material) of the superconducting wire. ) Since the resistance is lower than that of 5, there is almost no increase in resistance loss at the connection portion.

しかも、良導電性金属片7の介在により、該金属片7が熱的なバッファ材として接続部の熱容量が増大することになる。これにより、通電中に超電導材の臨界電流を超える過電流(電力系統の事故電流)が短時間過渡的に流れた場合でも、接続部のジュール発熱は良導電性金属片7に吸収され、そのバッファ効果により接続部の過度な温度上昇を抑えて焼損を防ぐことができてより一層高い信頼性を確保できる。
(実施例2)
Moreover, due to the interposition of the highly conductive metal piece 7, the metal piece 7 serves as a thermal buffer material and the heat capacity of the connecting portion increases. As a result, even when an overcurrent exceeding the critical current of the superconducting material (a fault current in the power system) flows transiently for a short time during energization, Joule heat generation at the connection is absorbed by the highly conductive metal piece 7, Due to the buffer effect, it is possible to prevent an excessive increase in temperature of the connecting portion and prevent burnout, thereby ensuring higher reliability.
(Example 2)

図4(a),(b)は前記実施例の変形例であり、超電導層AとBは互いに直交する方向に接続されている。この実施例においても、実施例と同様に接続部の幅Wに合わせて超電導線A,Bの安定化金属5を選択的に除去した上で、重ねた銀層4の間に良導電性金属片7を介在させてはんだ接合し、超電導線AとBとの間を接続する。これにより、実施例と同等な効果を奏することができる。 Figure 4 (a), (b) is a modification of the first embodiment, superconducting layer A and B are connected in a direction perpendicular to each other. Also in this Example 2 , after the selective removal of the stabilizing metal 5 of the superconducting wires A and B in accordance with the width W of the connecting portion as in Example 1 , good conductivity between the stacked silver layers 4 is achieved. The superconducting wires A and B are connected by soldering with the conductive metal piece 7 interposed therebetween. Thereby, an effect equivalent to Example 1 can be produced.

1:金属基板
2:中間層
3:超電導層
4:銀層
5:安定化金属
6:はんだ接合層
7:良導電性金属片
A,B:酸化物超電導線
1: Metal substrate 2: Intermediate layer 3: Superconducting layer 4: Silver layer 5: Stabilized metal 6: Solder joint layer 7: Highly conductive metal piece A, B: Oxide superconducting wire

Claims (1)

安定化金属に比較的高抵抗の金属材を採用した酸化物超電導線の接続方法において、その接続部における安定化金属を選択的に除去し、かつ該接続部に露呈する銀層の間に良導電性金属片を介在させた上で、超電導線の接続部を重ね合わせ、この状態で前記良導電性金属片と各超電導線の銀層との間をはんだ接合することを特徴とする酸化物超電導線の接続方法。   In a method for connecting an oxide superconducting wire that employs a metal material having a relatively high resistance as a stabilizing metal, the stabilizing metal at the connecting portion is selectively removed, and a good portion is provided between the silver layers exposed at the connecting portion. An oxide characterized in that, after interposing a conductive metal piece, superconducting wire connection portions are overlapped, and in this state, the good conductive metal piece and a silver layer of each superconducting wire are solder-joined. Superconducting wire connection method.
JP2009283257A 2009-12-14 2009-12-14 Oxide superconducting wire connection method Active JP5552805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283257A JP5552805B2 (en) 2009-12-14 2009-12-14 Oxide superconducting wire connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283257A JP5552805B2 (en) 2009-12-14 2009-12-14 Oxide superconducting wire connection method

Publications (2)

Publication Number Publication Date
JP2011124188A JP2011124188A (en) 2011-06-23
JP5552805B2 true JP5552805B2 (en) 2014-07-16

Family

ID=44287862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283257A Active JP5552805B2 (en) 2009-12-14 2009-12-14 Oxide superconducting wire connection method

Country Status (1)

Country Link
JP (1) JP5552805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799917A (en) * 2017-10-20 2018-03-13 东北大学 The low resistance connection device and its manufacture method of a kind of REBCO high-temperature superconductors band

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422494B2 (en) * 2010-06-18 2014-02-19 株式会社フジクラ Superconducting wire metal terminal joint structure and superconducting wire and metal terminal joining method
JP6155258B2 (en) 2012-05-02 2017-06-28 古河電気工業株式会社 Superconducting wire, superconducting wire connection structure, superconducting wire connecting method, and superconducting wire terminal treatment method
CN109192393B (en) * 2018-09-06 2021-02-26 江苏天贯碳纳米材料有限公司 Preparation method of spliced transparent conductive film electrode and product thereof
CN113593767B (en) * 2020-04-30 2022-11-04 中国科学院电工研究所 A connection method of the second generation high temperature superconducting wire and a connection superconducting wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810268B2 (en) * 2006-03-28 2011-11-09 株式会社東芝 Superconducting wire connection method and superconducting wire
JP4845040B2 (en) * 2007-03-20 2011-12-28 古河電気工業株式会社 Thin film superconducting wire connection method and connection structure thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799917A (en) * 2017-10-20 2018-03-13 东北大学 The low resistance connection device and its manufacture method of a kind of REBCO high-temperature superconductors band
CN107799917B (en) * 2017-10-20 2019-05-21 东北大学 A kind of the low resistance connection device and its manufacturing method of REBCO high-temperature superconductor band

Also Published As

Publication number Publication date
JP2011124188A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4744248B2 (en) RE oxide superconducting wire joining method
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP6040515B2 (en) Superconducting coil manufacturing method
JP5552805B2 (en) Oxide superconducting wire connection method
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP6678509B2 (en) Superconducting tape wire, superconducting current lead using superconducting tape, permanent current switch and superconducting coil
WO2017061563A1 (en) Superconducting coil
JP6364502B2 (en) Superconducting coil
JP6873848B2 (en) Superconducting coil
JP5791734B2 (en) Connector assembly and superconducting fault current limiter
CN102396112A (en) Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure
JP5531664B2 (en) Superconducting current lead
JP2014508490A5 (en)
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
KR20210066011A (en) Method of Electrical Contact of Superconducting Strip Conductors
JP5741094B2 (en) Superconducting coil
JP2014130788A (en) Connection structure of oxide superconductive wire material and superconductive appliance
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP4634954B2 (en) Superconducting device
JP5640022B2 (en) Superconducting wire and external terminal joining method, and superconducting wire external terminal joining structure
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP7614993B2 (en) Superconducting coil and superconducting coil device
JP2000067663A (en) Superconducting conductor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250