JP5542767B2 - Radiation monitor - Google Patents
Radiation monitor Download PDFInfo
- Publication number
- JP5542767B2 JP5542767B2 JP2011210292A JP2011210292A JP5542767B2 JP 5542767 B2 JP5542767 B2 JP 5542767B2 JP 2011210292 A JP2011210292 A JP 2011210292A JP 2011210292 A JP2011210292 A JP 2011210292A JP 5542767 B2 JP5542767 B2 JP 5542767B2
- Authority
- JP
- Japan
- Prior art keywords
- count rate
- count
- current
- rate
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005855 radiation Effects 0.000 title claims description 33
- 238000004364 calculation method Methods 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 25
- 238000005259 measurement Methods 0.000 claims description 20
- 230000010354 integration Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000012958 reprocessing Methods 0.000 description 2
- 239000002915 spent fuel radioactive waste Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
Description
この発明は、原子炉施設、使用済燃料再処理施設等の放出管理又は放射線管理に用いられる放射線モニタに関するものである。 The present invention relates to a radiation monitor used for emission management or radiation management of a nuclear reactor facility, a spent fuel reprocessing facility, or the like.
原子炉施設、使用済燃料再処理施設等で使用される放射線モニタは、放射線を検出した結果としての信号パルスの繰り返し周波数が10cpm(count per minute)程度から107cpm程度までの広いレンジをカバーし、レンジ切換なしで要求の精度を確保して測定することが求められている。また、放射線検出器の出力パルスの繰り返し周波数が、バックグラウンドレベルから高警報点を含む高計数率領域へ変化した場合に、計数率の速い応答が求められている。このため、計数率に反比例して時定数が変化すると共に標準偏差が一定になるように制御された計数率演算方式が広く導入されている。 Radiation monitors used in nuclear reactor facilities, spent fuel reprocessing facilities, etc. cover a wide range of signal pulse repetition frequencies from about 10 cpm (count per minute) to about 10 7 cpm as a result of detecting radiation. However, it is required to ensure and measure the required accuracy without switching the range. Further, when the repetition frequency of the output pulse of the radiation detector changes from the background level to a high count rate region including a high alarm point, a response with a fast count rate is required. For this reason, a count rate calculation method in which the time constant changes in inverse proportion to the count rate and the standard deviation is controlled to be constant has been widely introduced.
この方式をベースに、従来の放射線モニタは、測定レンジを低計数率領域と高計数率領域の2つに分け、低計数率領域は標準偏差を小さく設定して測定精度を優先した測定を行い、高計数率領域は標準偏差を大きく設定して応答性を優先した測定を行い、両方の標準偏差によりそれぞれ独立して計数率演算処理が実施され、境界点で出力する計数率が自動的に切り換わるようになっている(特許文献1参照)。また、特許文献2では、低い計数率では、積算時間一定の特性を持ち、高い計数率では、積算カウント値一定の特性を持つ放射線モニタが開示されている。
Based on this method, the conventional radiation monitor divides the measurement range into two, the low count rate region and the high count rate region, and the low count rate region sets the standard deviation to be small and performs measurement with priority on measurement accuracy. In the high count rate area, the standard deviation is set to a large value and priority is given to responsiveness. The count rate calculation process is performed independently for both standard deviations, and the count rate output at the boundary point is automatically set. Switching is made (see Patent Document 1).
従来の放射線モニタは、以上のように構成されているので、標準偏差が異なる計数率において、データベースが異なることに起因した段差が発生するという問題があり、指示トレンドの段差は、指示変化に注目して監視する際に連続して変化するはずのトレンドの一部に急変として発現するため、機器故障等の誤った判断を行うリスクがあった。
この発明は前記のような課題を解決するためになされたものであり、標準偏差又は測定時間切換時の指示の不連続な変化を防止でき、応答と視認性を両立させた高信頼な放射線モニタを得ることを目的とする。
Since the conventional radiation monitor is configured as described above, there is a problem that a level difference caused by a different database occurs at a counting rate with a different standard deviation. Therefore, since there is a sudden change in a part of the trend that should change continuously when monitoring, there is a risk of erroneous determination such as equipment failure.
The present invention has been made to solve the above-described problems, and can prevent a discontinuous change in the standard deviation or the indication at the time of switching the measurement time, and can provide a highly reliable radiation monitor that achieves both response and visibility. The purpose is to obtain.
また、この発明に係わる放射線モニタは、放射線を検出してアナログ信号パルスを出力する放射線検出器と、前記アナログ信号パルスが入力されその波高レベルが許容範囲内にある場合にデジタルパルスを出力し、許容範囲を逸脱する場合にノイズとして除去する波高弁別器と、前記デジタルパルスが入力され定周期で計数して計数値を出力する計数手段と、前記計数値を先入れ先出し方式で所定のデータ数について格納すると共に、計数率演算過程の最新データを格納する記憶手段と、前記計数値に基づき定周期で計数率を演算し、演算した計数率又はその計数率を変換した工学値について警報判定を行って計数率又は工学値及び警報判定結果を出力する演算手段と、前記計数率又は工学値及び警報判定結果を表示する表示手段を備え、前記演算手段は、設定された計数率領域毎に計数率を演算し、その設定された計数率領域境界で、測定時間に基づく計数率から標準偏差に基づく計数率に切り換える際に、その演算周期における切換前の計数率を引き継いで切換を行い、標準偏差に基づく計数率から測定時間に基づく計数率に切り換える際に、その計数率の差が許容範囲内の場合に切換を行うようにしたものである。 In addition, the radiation monitor according to the present invention is a radiation detector that detects radiation and outputs an analog signal pulse, and outputs a digital pulse when the analog signal pulse is input and the wave height level is within an allowable range, A wave height discriminator that removes noise as a noise when it deviates from the allowable range, a counting unit that receives the digital pulse, counts at a constant cycle and outputs a count value, and stores the count value for a predetermined number of data in a first-in first-out method In addition, the storage means for storing the latest data of the count rate calculation process, the count rate is calculated at regular intervals based on the count value , and the alarm determination is performed on the calculated count rate or the engineering value obtained by converting the count rate comprising calculating means for outputting the count rate or engineering values and alarm determination result, the display means for displaying the count rate or the engineering value and alarm determination result, before Calculating means calculates the count rate in the count rate for each area set in the set count rate region boundary, when switching from the counting rate based on the measured time count rate based on the standard deviation, in that calculation period When switching from the count rate based on the standard deviation to the count rate based on the measurement time, switching is performed when the difference between the count rates is within the allowable range. is there.
この発明の放射線モニタによれば、切換点で計数率の段差を発生させることなく切換を行うことができ、応答と視認性を両立させた高信頼な放射線モニタを得ることができる。 According to the radiation monitor of the present invention, switching can be performed without causing a difference in counting rate at the switching point, and a highly reliable radiation monitor that achieves both response and visibility can be obtained.
実施の形態1.
この発明の実施の形態1を図に基づいて説明する。図1において、放射線検出器1は、放射線を検出してアナログ信号パルスを出力する。波高弁別器2には、放射線検出器1から出力されたアナログ信号パルスが入力され、その電圧レベル(つまり、波高レベル)が、設定されたレベルの範囲内(つまり許容範囲内)である場合には、入力されたアナログ信号パルスは信号パルスと見なしデジタルパルスを出力するが、設定された許容範囲を逸脱する場合には、ノイズとみなし、デジタルパルスを出力しない。
カウンタ3(計数手段)には、波高弁別器2から出力されたデジタルパルスが入力され、定周期で計数して計数値ΔNを出力する。演算器4には、カウンタ3から出力された今回演算周期の計数値ΔN(今回)が入力され、メモリー5(記憶手段)に格納する。演算器4(演算手段)は、メモリー5に格納されている計数値に基づき定周期で計数率を演算し、計数率を工学値に変換する共にその工学値の警報判定を行って、工学値及び警報判定結果を出力する。表示器6(表示手段)は、その計数率(工学値)及び警報判定結果を表示すると共に、画面から設定値入力及び操作を行うことができる。工学値は用途により計数率そのものである場合もあり、工学値を放射線量に変換する定数を乗じたものである場合もある。以下の説明では、工学値=計数率の場合で説明する。
The digital pulse output from the
次に、演算器4における標準偏差一定の計数率mを求める演算について説明する。前回演算周期の計数率をm(前回)、前回演算周期の加減差積算値をM(前回)、演算周期毎のカウンタの計数時間をΔT、今回演算周期の加減差積算値をM(今回)、今回演算周期の計数率をm(今回)とすると、M(今回)及びm(今回)はそれぞれ(1)式、(2)式により求めることができる。
M(今回)=M(前回)+2α×{ΔN(今回)−m(前回)×ΔT}・・・(1)
m(今回)=exp{γM(今回)}・・・(2)
Next, the calculation for obtaining the count rate m with a constant standard deviation in the
M (current) = M (previous) +2 α × {ΔN (current) −m (previous) × ΔT} (1)
m (this time) = exp {γM (this time)} (2)
(2)式で求められた計数率mは、次式(3)に示すように標準偏差σ=一定で制御される。
σ=1/(2mτ)1/2=一定・・・(3)
また、時定数τは、次式(4)のように計数率mに反比例し、標準偏差の2乗に反比例し、γに反比例する。γは、次式(5)のように標準偏差の2乗に比例し、例えば、計数の重み付けに係わる定数αを用いて2αで重み付けして計数することにより、(2)式から求められる計数率mは、波高弁別器2の出力パルスの繰り返し周波数の変化に時定数τの一次遅れで追従して応答する。
τ=1/(2mσ2)=1/(mγ) ・・・(4)
γ=2σ2=2α×2−11×ln2=定数・・・(5)
The count rate m obtained by the equation (2) is controlled with the standard deviation σ = constant as shown in the following equation (3).
σ = 1 / (2mτ) 1/2 = constant (3)
Further, the time constant τ is inversely proportional to the count rate m, inversely proportional to the square of the standard deviation, and inversely proportional to γ as in the following equation (4). γ is proportional to the square of the standard deviation as shown in the following equation (5), and is obtained from the equation (2) by, for example, counting by weighting with 2 α using a constant α relating to counting weighting. The count rate m responds by following the change in the repetition frequency of the output pulse of the
τ = 1 / (2mσ 2 ) = 1 / (mγ) (4)
γ = 2σ 2 = 2 α × 2 −11 × ln2 = constant (5)
(5)式において、2αで計数の重み付けをすることにより、α=0の重み付け20=1を基準とすると、計数α=2の重み付け22=4でτは1/4、α=4の重み付け24=16でτは1/16、α=6の重み付け26=64でτは1/64と、計数の重み付けを大きくすることにより応答は順次速くなる。
(5) In the equation, by the weighting count in 2 alpha, when the reference weighted 2 0 = 1 alpha = 0, the counting alpha = 2 weighting 2 2 = 4 in the
次に、図2のフロー図で演算器4における演算処理手順について説明する。S1において、mBは把握されている平均的なバックグラウンド計数率であり、k1は標準偏差切換点(σ1→σ2)に対応する計数率とmBの比であり、k2は標準偏差切換点(σ2→σ1) に
対応する計数率とmBの比であり、α1及びα2は計数の重み付けに係わる定数である。また、S12に示すようにk1<k2の関係にあり、S6に示すようにα1<α2の関係にある。k1mB、k2mB、α1、α2、はそれぞれ設定値としてメモリーに格納している。S1でΔN(今回)、m(前回)、M(前回)、k1mB、k2mBを入力し、S2で(1)式によりM(今回)を求め、S3で(2)式によりm(今回)を求める。
Next, the calculation processing procedure in the
S4でm(今回)≦k1mBのフラグ有りかの判定を行い、NOならばS5でm(今回)≦k1mBかの判定を行い、YESならばS6でm(今回)≦k1mBのフラグを立て、α1
をα2に切り換える。S7でm(今回)≦低警報設定点かの判定を行い、YESならS8で
低警報を出力し、S9でm(今回)≧高警報設定点かの判定を行い、YESならS10で高警報を出力し、S11でm(今回)を出力し、今回演算周期を終了してS1に戻る。S7でNOならばS9に進み、S9でNOならばS11に進む。S4でYESならばS12でm(今回)≧k2mBかの判定を行い、YESならS13でm(今回)≦k1mBのフラグをリセットし、α2をα1に切り換えてS7に進む。S12でNOならばS7に進む。
In S4, it is determined whether there is a flag of m (current) ≦ k 1 m B. If NO, it is determined in S5 whether m (current) ≦ k 1 m B , and if YES, m (current) ≦ Raise the k 1 m B flag and α 1
The switch to the α 2. In S7, m (current) ≤ low alarm set point is determined. If YES, a low alarm is output in S8. In S9, m (current) ≥ high alarm set point is determined. If YES, high alarm is determined in S10. , M (current) is output in S11, the current calculation cycle is terminated, and the process returns to S1. If NO in S7, the process proceeds to S9, and if NO in S9, the process proceeds to S11. S4 performed m (time) ≧ k 2 m B Kano determination is YES if The S12, m (this time) in S13 if YES ≦ k 1 resets the flag of m B, switching the alpha 2 to alpha 1 S7 Proceed to If NO in S12, the process proceeds to S7.
バックグラウンド計数率を含みそのゆらぎの下限以上から測定レンジ上限までは、測定
精度からの要求で決まる標準偏差σ1になるように計数率が演算され、機器故障で計数率
がバックグラウンド計数率から低下し、そのゆらぎの下限を逸脱して低下した場合に、できるだけ早く低警報を発信させて欠測を最短にする。
From the lower limit of the fluctuation including the background count rate to the upper limit of the measurement range, the count rate is calculated so that the standard deviation σ 1 determined by the request from the measurement accuracy is reached. If it falls and deviates from the lower limit of the fluctuation, a low alarm is issued as soon as possible to minimize missing data.
図3おいて、低警報設定値Lに対してcの標準偏差切換点(σ1→σ2)を、例えば1/2×(mB+L)なる計数率に設定すると、σ1の今回計数率m(今回)がその切換点計数率以下になると、標準偏差がσ1からσ1<σ2なるσ2に切り換えられ、 (5)式の計数の重
み付けに係わる定数αがσ1に対応するα1からσ2に対応するα2に切り換えられ、(4)式により時定数τが短くなって結果として図4のようにgからhに応答が速くなり、低警報発信が速まる。このとき、図3においてゆらぎの下限をeの平均的なバックグラウンド計数率mBから、例えば標準偏差σ1の4倍の幅を想定したmB(1−4σ1)とし、誤切換の確率に配慮してcの切換点を設定する。切換後の次の演算周期では、(1)式でM(今回)を求める際に、切換前のm(前回)に対応するM(前回)を引き継ぎ、切り換えられた計数の重み付けに係わる定数α2で(2)式によりm(今回)を求める。
In FIG. 3, if the standard deviation switching point (σ 1 → σ 2 ) of c with respect to the low alarm set value L is set to a count rate of, for example, 1/2 × (m B + L), the current count of σ 1 When the rate m (current) falls below the switching point counting rate is switched from the standard deviation sigma 1 to sigma 1 <sigma 2 becomes sigma 2, (5) corresponds to 1 constant α is sigma relating to weighting of the counting of formula The α 1 corresponding to σ 2 is switched to α 2 corresponding to σ 2, and the time constant τ is shortened by the equation (4). As a result, the response from g to h is accelerated as shown in FIG. In this case, in FIG. 3, the lower limit of fluctuation is set to m B (1−4σ 1 ) assuming a width four times the standard deviation σ 1 from the average background count rate m B of e, and the probability of erroneous switching. In consideration of the above, the switching point of c is set. In the next calculation cycle after switching, when calculating M (current) in equation (1), M (previous) corresponding to m (previous) before switching is taken over, and a constant α relating to the weighting of the switched count. In step 2 , m (current) is obtained from equation (2).
バックグラウンド計数率mBが復帰する場合は、cの標準偏差切換点(σ1→σ2)とmBの間の、例えば1/4×(3 mB+L)なる計数率をdの標準偏差切換点(σ2→σ1)とし
てヒステリシスを設ける。
When the background count rate m B returns, a count rate of, for example, 1/4 × (3 m B + L) between the standard deviation switching point (σ 1 → σ 2 ) of c and m B is set to the standard of d. A hysteresis is provided as a deviation switching point (σ 2 → σ 1 ).
以上のように、切換点において計数率を引き継いで標準偏差の切換を行うようにしたので、切換点で計数率の段差を発生させることなく切換を行うことができ、入力の変化に対する所望の出力応答が容易に得られ、応答と視認性を両立させた高信頼な放射線モニタを得ることができる。また、標準偏差切換点(σ1→σ2)と標準偏差切換点(σ2→σ1) とに
ヒステリシスを設けたので、標準偏差切換点におけるハンチングを防止して安定な切換を行うことができる。
As described above, since the standard deviation is switched by taking over the count rate at the switching point, the switching can be performed without causing a difference in the counting rate at the switching point, and a desired output with respect to a change in input can be achieved. A response can be easily obtained, and a highly reliable radiation monitor having both response and visibility can be obtained. Since hysteresis is provided at the standard deviation switching point (σ 1 → σ 2 ) and the standard deviation switching point (σ 2 → σ 1 ), hunting at the standard deviation switching point can be prevented and stable switching can be performed. it can.
実施の形態2.
実施の形態1では、波高弁別器2から出力されたデジタルパルスをカウンタ3が定周期で計数して計数値ΔNを出力し、演算器4は、カウンタ3から出力された今回演算周期の計数値ΔN(今回)を入力してメモリー5に格納し、その計数値に基づき定周期で計数率を演算したが、実施の形態2は、図5においてカウンタ3の代わりにアップダウンカウンタ7と、積算制御回路8と、パルス発生器9(周波数合成回路)を備え、アップダウンカウンタ7は波高弁別器2から出力されたデジタルパルスが加算入力端子71に入力され、パルス発生器9から出力されたデジタルパルスが減算入力端子72に入力され、その結果の加減差積算値を出力する。実施の形態2では、この加減差積算値を、実施の形態1のM(
今回)の代わりとして用いる。
In the first embodiment, the
Use as an alternative to this time.
積算制御回路8は、アップダウンカウンタ7の加算入力及び減算入力を標準偏差に基づき前記(5)式の2αで重み付けして計数するようにアップダウンカウンタ7を制御する。パルス発生器9はアップダウンカウンタ7から出力された加減差積算値が入力され、加算入力の繰り返し周波数に対して時定数の一時遅れで応答する繰り返し周波数に変換してアップダウンカウンタ7の減算入力端子72に減算入力する。演算器4は、アップダウンカウンタ7から出力された加減差積算値が入力され、加減差積算値及び計数率演算過程の最新データをメモリー5に格納し、その加減差積算値に基づき前記(2)式により計数率を求める。演算器4は、加減差積算値に基づき計数率を求める標準偏差一定計数率演算を実行する。
次に、図6のフロー図で演算器4における演算処理手順について説明する。なお、mB、k1、k2、α1、α2は図2と同じなので説明を省略する。S21でM(今回)(アップダウンカウンタ7の出力)、k1mB、k2mBを入力し、S22で(2)式によりm(
今回)を求め、S23でm(今回)≦k1mBのフラグ有りかの判定を行い、NOならばS
24でm(今回)≦k1mBかの判定を行い、YESならばS25でm(今回)≦k1mBのフラグを立て、α1をα2に切り換える。S26でm(今回)≦低警報設定点かの判定を行い、YESならS27で低警報を出力し、S28でm(今回)≧高警報設定点かの判定を行い、YESならS29で高警報を出力し、S30でm(今回)を出力して今回演算周期を終了してS21に戻る。S26でNOならばS28に進み、S28でNOならばS30に進む。S23でYESならばS31でm(今回)≧k2mBかの判定を行い、YESならS32でm(今回)≦k1mBのフラグをリセットし、α2をα1に切り換えてS26に進む。S31でNOならばS26に進む。
Next, the calculation processing procedure in the
This time) is obtained, and it is determined in S23 whether m (current) ≦ k 1 m B flag is present.
24, it is determined whether m (current) ≦ k 1 m B. If YES, a flag m (current) ≦ k 1 m B is set in S25, and α 1 is switched to α 2 . In S26, it is determined whether m (current) ≤ low alarm set point. If YES, a low alarm is output in S27. In S28, m (current) ≥ high alarm set point is determined. If YES, high alarm is determined in S29. , M (current) is output in S30, the current calculation cycle is terminated, and the process returns to S21. If NO in S26, the process proceeds to S28, and if NO in S28, the process proceeds to S30. S23 performs m (time) ≧ k 2 m B Kano determination is YES if S31 in, m (this time) in S32 if YES resets the flag of ≦ k 1 m B, switching the alpha 2 to alpha 1 S26 Proceed to If NO in S31, the process proceeds to S26.
以上のように、切換点において計数率を引き継いで積算制御回路8によりアップダウンカウンタ7の計数の重み付け制御を変えて標準偏差の切換を行うことにより、実施の形態1と同様に、切換点で計数率の段差を発生させることなく切換を行うことができ、入力の変化に対する所望の出力応答が容易に得られ、応答と視認性を両立させた高信頼な放射線モニタを得ることができると共に、ハードウェアで加減差積算値が得られるようにしたので演算時間を短縮して高計数率まで良好な直線性が得られる。
As described above, by taking over the count rate at the switching point and changing the weighting control of the count of the up / down
実施の形態3.
実施の形態1では、演算器4が、カウンタ3から出力された今回演算周期の計数値ΔN(今回)を入力してメモリー5に格納し、定周期でΔN(今回)に基づき標準偏差一定で計数率m(今回)を演算する標準偏差一定計数率演算フローを備え、標準偏差を切り換えて所望の計数率応答を得るようにした。
In the first embodiment, the
これに代えて、実施の形態3において演算器4は、カウンタ3から出力された計数値ΔN(今回)を入力してメモリー5に先入れ先出し方式で格納し、定周期でΔN(今回)に基づき標準偏差一定で計数率m(今回)を演算する標準偏差一定計数率演算フローと、今回演算周期から設定された演算周期数まで過去に遡って計数値を積算して積算計数値ΣΔNを求め、対応する各演算周期の計数時間ΔTの積算時間ΣΔTで割り算して時間一定で計数率n(今回)を求める測定時間一定演算フローの両方を備え、測定レンジを、例えば、測定レンジ下限と低警報及びバックグラウンドレベルを含む低計数率領域と、高警報及び測定レンジ上限を含む高計数率領域の2つに分け、低計数率領域を時間一定計数率演算でカバーし、高計数率領域を標準偏差一定計数率演算でカバーし、低計数率領域では次式(6)により今回計数率n(今回)を求め、高計数率領域では前記(2)式により今回計数率m(今
回)を求める。
Instead, in the third embodiment, the
n(今回)=ΣΔN(今回) /ΣΔT ・・・(6) n (current) = ΣΔN (current) / ΣΔT (6)
計数率がバックグラウンドレベルから上昇して第1の切換点以上になったら、n(今回)を引き継いでm(今回)が出力され、次の演算周期に備えて、次式(7)によりM(今回)が求められ、演算が切換移行される。
M(今回)=ln{ m(今回)}/γ・・・(7)
計数率が、高計数率領域から下降して第2の切換点未満になったら、その演算周期における切換前の計数率に対して切換後の計数率が許容範囲内の場合に出力の切換を行う。
When the count rate rises from the background level and exceeds the first switching point, n (current) is taken over and m (current) is output. In preparation for the next calculation cycle, M is calculated according to the following equation (7). (This time) is obtained, and the calculation is switched.
M (this time) = ln {m (this time)} / γ (7)
When the count rate falls from the high count rate region and falls below the second switching point, the output is switched when the count rate after switching is within the allowable range with respect to the count rate before switching in the calculation cycle. Do.
次に、図7のフロー図で演算器4における演算処理手順について説明する。nBは把握されている平均的なバックグラウンド計数率であり、k3は時間・標準偏差切換点(ΣΔ
T→σ)に対応する計数率とnBの比であり、k4は時間・標準偏差切換点(σ→ΣΔT)
に対応する計数率とnBの比であり、σは標準偏差であり、k5は標準偏差の係数である。また、S53に示すようにk3とk4はk3>k4の関係にある。k3nB、k4nB、k5σはそれぞれ設定値としてメモリーに格納されている。
Next, the calculation processing procedure in the
The ratio of the count rate corresponding to T → σ) and n B , and k 4 is the time / standard deviation switching point (σ → ΣΔT)
Is the ratio of the count rate corresponding to and n B , σ is the standard deviation, and k 5 is the coefficient of the standard deviation. Also, k 3 and k 4 as shown in and S53 are in a relationship of k 3> k 4. k 3 n B , k 4 n B , and k 5 σ are respectively stored in the memory as set values.
S41で時系列的に配列されたΔN、k3nBを入力し、S42で(6)式によりn(
今回)を求め、S43でn(今回)≧k3nBかの判定を行い、NOならばS44でn(今回)≦低警報設定点かの判定を行い、YESならばS45で低警報を出力し、S46でn(今回)≧高警報設定点かの判定を行い、YESならばS47で高警報を出力してS48に進
み、S44でNOの場合はS46に進み、S46でNOの場合はS48に進み、S48でn(今回)を出力して当該演算周期を終了してS41に戻る。
In step S41, ΔN and k 3 n B arranged in time series are input, and in step S42, n (
This time) is determined. In step S43, it is determined whether n (current) ≧ k 3 n B. If NO, it is determined in step S44 whether n (current) ≦ low alarm set point. If YES, a low alarm is determined in S45. In S46, it is determined whether n (current) ≧ high alarm set point. If YES, a high alarm is output in S47 and the process proceeds to S48. If NO in S44, the process proceeds to S46, and if S46 is NO. Advances to S48, outputs n (current) in S48, ends the calculation cycle, and returns to S41.
S43でYESの場合はS49でn=mとし、(7)式でM(今回)を求めてS57に進み、S57でm(今回)≧高警報設定点かの判定を行い、YESならばS58で高警報を出力し、S57でNOの場合はS59に進み、S59でm(今回)を出力して当該演算周期を終了し、次の演算周期はS50から開始する。S50でΔN、m(前回)、M(前回)、k4nB、k5σを入力し、S51で(1)式によりM(今回)を求め、S52で(2)式によりm(今回)を求め、S53でm(今回)≦k4nBの判定を行い、YESの場合はS54で時系列的に配列されたΔNを入力し、S55で(6)式によりn(今回)を求め、S56でm(今回)−k5σ≦n(今回)≦m(今回)+k5σの判定を行い、YESの場合はS44に進み、NOの場合はS57に進む。 If YES in S43, n = m is set in S49, M (current) is obtained by equation (7), and the process proceeds to S57. In S57, it is determined whether m (current) ≧ high alarm set point. If NO in S57, the process proceeds to S59. In S59, m (current) is output to end the calculation cycle, and the next calculation cycle starts from S50. At S50, ΔN, m (previous), M (previous), k 4 n B , and k 5 σ are input, M (current) is obtained by equation (1) in S51, and m (current) is calculated by equation (2) in S52. ), M (current) ≦ k 4 n B is determined in S53, and if YES, ΔN arranged in time series in S54 is input, and in S55, n (current) is calculated using equation (6). calculated, m (this time) in S56 -k 5 σ ≦ n (current) ≦ m (current) makes a determination of + k 5 sigma, in the case of YES, the process advances to S44, and if NO, it proceeds to a S57.
図8は、計数率と応答時間特性を示すもので、測定レンジ下限〜バックグラウンドの通常のゆらぎ上限付近の低計数率領域ではiのΣΔT=一定で計数率が求められ、低計数率領域以上〜測定レンジ上限の高警報設定点を含む高計数率領域ではjのσ=一定で計数率が求められ、2つの領域の境界のk3nBにpの時間・標準偏差切換点(ΣΔT→σ)が設定され、計数率が上昇してk3nB以上になると、計数率を求める演算がiのΣΔT=一定からjのσ=一定に切り換わる。上昇した計数率がバックグラウンドに向かって復帰する際に、k4nB以下になると、k3>k4なるk4nBに、sの時間・標準偏差切換点(σ→ΣΔT)が設定され、sにおいて、jのσ=一定からiのΣΔT=一定に切り換わり、上昇と下降の切換点にヒステリシスを設けている。 FIG. 8 shows the count rate and response time characteristics. In the low count rate region near the upper limit of the measurement range to the normal fluctuation upper limit, the count rate is obtained with ΣΔT = constant of i. the high count rate region including the high alarm set point - measuring range limit counting rate is obtained by j of sigma = constant, two times p to k 3 n B of the boundary of the area, standard deviation switching point (ΣΔT → sigma) is set, the count rate becomes more than k 3 n B rises, calculation for obtaining the count rate is switched from i of ShigumaderutaT = constant j of sigma = constant. When the increased count rate returns to the background, if k 4 n B or less, the time / standard deviation switching point (σ → ΣΔT) of s is set to k 4 n B where k 3 > k 4 In s, j is switched from σ = constant to ΣΔT = constant, and hysteresis is provided at the switching point between ascending and descending.
図9はステップ入力に対する計数率の応答を示すものので、u及びyのΣΔT=一定では直線的に応答し、v及びwのσ=一定では指数関数で応答する。 FIG. 9 shows the response of the count rate to the step input. When u and y are ΣΔT = constant, the response is linear, and when v and w are constant, the response is an exponential function.
なお、図10は、標準偏差の一定計数率における度数と計数率の例を示す図である。図11は測定時間ΣΔTの一定計数率における度数と計数率の例を示す図である。これらにより、図11はガウス分布であり、図10はガウス分布が高計数率側に歪むことがわかる。 In addition, FIG. 10 is a figure which shows the example of the frequency and count rate in the fixed count rate of a standard deviation. FIG. 11 is a diagram illustrating an example of the frequency and the count rate at a constant count rate of the measurement time ΣΔT. From these, FIG. 11 shows a Gaussian distribution, and FIG. 10 shows that the Gaussian distribution is distorted to the high count rate side.
以上のように、測定レンジを低計数率領域と高計数率領域の2つに分け、例えば、低計数率領域を時間一定計数率演算でカバーし、高計数率領域を標準偏差一定計数率演算でカバーし、上昇時は計数率を引き継ぐようにして演算の切換を行い、降下時は両方の演算の計数率が許容範囲内の場合に切換を行うようにしたので、切換点で計数率の段差を発生させることなく切換を行うことができ、入力の変化に対する所望の出力応答が容易に得られ、応答と視認性を両立させた高信頼な放射線モニタを得ることができる。 As described above, the measurement range is divided into two areas, the low count rate area and the high count rate area. For example, the low count rate area is covered by the constant count rate calculation, and the high count rate area is calculated by the standard deviation constant count rate calculation. In the case of ascent, the calculation rate is switched to take over, and in the case of descent, the calculation rate is switched when the count rate of both operations is within the allowable range. Switching can be performed without generating a step, a desired output response to an input change can be easily obtained, and a highly reliable radiation monitor in which both response and visibility can be obtained.
また、上昇時の切換点に対して下降時の切換点を低く設定することで、ハンチングを防止して安定な切換を行うことができる。また、標準偏差一定計数率は、時定数が計数率に反比例するので応答は速い反面、計数率分布はガウス分布からプラス側に歪んだ形になるため精度が低下することが特長であるのに対して、時間一定計数率は、応答は一定であるが、ガウス分布となるために精度の高い測定ができることが特長で、切換によりバックグラウンドレベルでは精度の高い測定を行うことができ、指示上昇に対しては応答を優先して短時間で高警報を発信できる効果を奏する。 Moreover, by setting the switching point at the time of lowering to the switching point at the time of rising, hunting can be prevented and stable switching can be performed. In addition, the standard deviation constant count rate has a quick response because the time constant is inversely proportional to the count rate, but the count rate distribution is distorted from the Gaussian distribution to the plus side, so the accuracy is reduced. On the other hand, the constant time count rate has a constant response, but it is characterized by high accuracy due to the Gaussian distribution. By switching, high accuracy measurement can be performed at the background level, and the indication rises. In response to this, it is possible to send a high warning in a short time by giving priority to the response.
1 放射線検出器 2 波高弁別器
3 カウンタ 4 演算器
5 メモリー 6 表示器
7 アップダウンカウンタ 71 加算入力端子
72 減算入力端子 8 積算制御回路
9 パルス発生器
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011210292A JP5542767B2 (en) | 2011-09-27 | 2011-09-27 | Radiation monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011210292A JP5542767B2 (en) | 2011-09-27 | 2011-09-27 | Radiation monitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013072675A JP2013072675A (en) | 2013-04-22 |
JP5542767B2 true JP5542767B2 (en) | 2014-07-09 |
Family
ID=48477307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011210292A Expired - Fee Related JP5542767B2 (en) | 2011-09-27 | 2011-09-27 | Radiation monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5542767B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11604146B2 (en) | 2017-09-19 | 2023-03-14 | Beckman Coulter, Inc. | Analog light measuring and photon counting with a luminometer system for assay reactions in chemiluminescence measurements |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6628701B2 (en) * | 2016-08-05 | 2020-01-15 | 三菱電機株式会社 | Radiation measuring device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60201278A (en) * | 1984-03-27 | 1985-10-11 | Mitsubishi Electric Corp | Digital counting rate meter |
JPS62228962A (en) * | 1986-03-31 | 1987-10-07 | Toshiba Corp | Counting rate meter |
JPH02304388A (en) * | 1989-05-18 | 1990-12-18 | Toshiba Corp | Digital counting rate meter |
JPH03214088A (en) * | 1990-01-18 | 1991-09-19 | Toshiba Corp | Radiation monitor |
JP3517329B2 (en) * | 1997-02-24 | 2004-04-12 | 三菱電機株式会社 | Digital counting rate meter |
JP3517331B2 (en) * | 1997-04-07 | 2004-04-12 | 三菱電機株式会社 | Digital counting rate meter |
JP3712857B2 (en) * | 1998-05-18 | 2005-11-02 | 三菱電機株式会社 | Digital counting rate meter |
JP4795272B2 (en) * | 2007-03-01 | 2011-10-19 | 三菱電機株式会社 | Radiation measurement equipment |
JP5185581B2 (en) * | 2007-09-05 | 2013-04-17 | 三菱電機株式会社 | Radiation monitoring device |
JP5419670B2 (en) * | 2009-12-14 | 2014-02-19 | 三菱電機株式会社 | Radiation measuring apparatus and diagnostic method thereof |
-
2011
- 2011-09-27 JP JP2011210292A patent/JP5542767B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11604146B2 (en) | 2017-09-19 | 2023-03-14 | Beckman Coulter, Inc. | Analog light measuring and photon counting with a luminometer system for assay reactions in chemiluminescence measurements |
US11754504B2 (en) | 2017-09-19 | 2023-09-12 | Beckman Coulter, Inc. | System for analog light measuring and photon counting in chemiluminescence measurements |
Also Published As
Publication number | Publication date |
---|---|
JP2013072675A (en) | 2013-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8315836B2 (en) | Radiation measuring device and diagnostic method thereof | |
JP5773949B2 (en) | Radiation monitoring device | |
JP6076062B2 (en) | Radiation monitor | |
JP5542767B2 (en) | Radiation monitor | |
JP5373711B2 (en) | Radiation monitoring device | |
JP5743844B2 (en) | Radiation monitor | |
WO2014112398A1 (en) | Electronic weighing device having flow calculation function | |
JP5931690B2 (en) | Radiation measurement equipment | |
JP3152247B2 (en) | Reactor power monitoring method and apparatus | |
JP6342652B2 (en) | Electronic device, measurement data processing method, and measurement data processing program | |
JP2016053546A (en) | Weighting device | |
JP5148053B2 (en) | Pulse counter, reactor power monitor using the same, and pulse counting method | |
JP3517329B2 (en) | Digital counting rate meter | |
JP5373720B2 (en) | Radiation monitoring device | |
JP2013088266A5 (en) | ||
JP5281983B2 (en) | Creep error compensation device and creep error compensation method | |
US11041964B2 (en) | Radiation monitoring equipment | |
US10845233B2 (en) | Weighing apparatus with flowmeter function | |
JPS6247246B2 (en) | ||
JPH07134180A (en) | Radiation measuring device | |
JPH11326523A (en) | Digital counting rate meter | |
JPS62228962A (en) | Counting rate meter | |
JP2012007899A (en) | Radiation measurement apparatus | |
JPH07167981A (en) | Reactor stability monitor | |
JP3706346B2 (en) | Number scale and method of counting articles using the scale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140507 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5542767 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |