[go: up one dir, main page]

JP5533849B2 - 成形材料および炭素繊維強化複合材料 - Google Patents

成形材料および炭素繊維強化複合材料 Download PDF

Info

Publication number
JP5533849B2
JP5533849B2 JP2011266149A JP2011266149A JP5533849B2 JP 5533849 B2 JP5533849 B2 JP 5533849B2 JP 2011266149 A JP2011266149 A JP 2011266149A JP 2011266149 A JP2011266149 A JP 2011266149A JP 5533849 B2 JP5533849 B2 JP 5533849B2
Authority
JP
Japan
Prior art keywords
group
carbon fiber
hydrocarbon group
mass
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011266149A
Other languages
English (en)
Other versions
JP2013117000A (ja
Inventor
義文 中山
俊也 釜江
大悟 小林
真 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011266149A priority Critical patent/JP5533849B2/ja
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to IN3279CHN2014 priority patent/IN2014CN03279A/en
Priority to RU2014117512/05A priority patent/RU2014117512A/ru
Priority to MX2014004007A priority patent/MX349435B/es
Priority to CN201280048242.7A priority patent/CN103890056B/zh
Priority to CA 2850719 priority patent/CA2850719A1/en
Priority to PCT/JP2012/074215 priority patent/WO2013051404A1/ja
Priority to EP12838484.9A priority patent/EP2765155B1/en
Priority to KR1020147007473A priority patent/KR101528115B1/ko
Priority to BR112014006820A priority patent/BR112014006820A2/pt
Priority to HUE12838484A priority patent/HUE039223T2/hu
Priority to MX2015004114A priority patent/MX349437B/es
Priority to US14/345,889 priority patent/US9249295B2/en
Priority to KR1020157011183A priority patent/KR101635717B1/ko
Priority to TR2018/07712T priority patent/TR201807712T4/tr
Priority to MX2015004113A priority patent/MX349436B/es
Priority to TW101136485A priority patent/TWI545240B/zh
Publication of JP2013117000A publication Critical patent/JP2013117000A/ja
Application granted granted Critical
Publication of JP5533849B2 publication Critical patent/JP5533849B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、航空機部材、宇宙機部材、自動車部材および船舶部材などに好適に用いられる成形材料および炭素繊維強化複合材料に関するものである。
炭素繊維は、軽量でありながら、強度および弾性率に優れるため、種々のマトリックス樹脂と組み合わせた複合材料は、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に用いられている。炭素繊維を用いた複合材料において、炭素繊維の優れた特性を活かすには、炭素繊維とマトリックス樹脂との接着性が優れることが重要である。
炭素繊維とマトリックス樹脂との接着性を向上させるため、通常、炭素繊維に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入する方法が行われている。例えば、炭素繊維に電解処理を施すことにより、接着性の指標である層間剪断強度を向上させる方法が提案されている(特許文献1参照)。しかしながら、近年、複合材料への要求特性のレベルが向上するにしたがって、このような酸化処理のみで達成できる接着性では不十分になりつつある。
一方、炭素繊維は脆く、集束性および耐摩擦性に乏しいため、高次加工工程において毛羽や糸切れが発生しやすい。このため、炭素繊維に塗布する方法が提案されている(特許文献2および3参照)。
例えば、サイジング剤としてビスフェノールAのジグリシジルエーテルを炭素繊維に塗布する方法が提案されている(特許文献2および3参照)。また、サイジング剤としてビスフェノールAのポリアルキレンオキサイド付加物を炭素繊維に塗布する方法が提案されている(特許文献4および5参照)。また、サイジング剤としてビスフェノールAのポリアルキレンオキサイド付加物にエポキシ基を付加させたものを炭素繊維に塗布する方法が提案されている(特許文献6および7参照)。さらに、サイジング剤としてポリアルキレングリコールのエポキシ付加物を炭素繊維に塗布する方法が提案されている(特許文献8、9および10参照)。
また別に、サイジング剤としてエポキシ基と4級アンモニウム塩とを有するウレタン化合物を炭素繊維に塗布する方法が提案されている(特許文献11参照)。この提案の方法でも、集束性と耐摩擦性は向上するものの、炭素繊維とマトリックス樹脂との接着性を向上させることはできなかった。
これらの方法によれば、炭素繊維の集束性と耐摩擦性が向上することが知られている。しかしながら、これらの従来の提案には、サイジング剤により炭素繊維とマトリックス樹脂との接着性を積極的に向上させるという技術的思想はなく、実際に炭素繊維とマトリックス樹脂との接着性を大幅に向上することはできなかった。
一方、マトリックス樹脂の炭素繊維への含浸性向上を目的として、炭素繊維に特定のサイジング剤を塗布する方法が行われている。
例えば、サイジング剤として表面張力40mN/m以下かつ80℃における粘度が200mPa・s以下のカチオン型界面活性剤を、炭素繊維に塗布する方法が提案されている(特許文献12参照)。また、サイジング剤としてエポキシ樹脂、水溶性ポリウレタン樹脂、およびポリエーテル樹脂を炭素繊維に塗布する方法が提案されている(特許文献13参照)。これらの方法によれば、炭素繊維の集束性と、マトリックス樹脂の炭素繊維への含浸性の向上が認められている。しかしながら、これらの従来の提案にも、サイジング剤により炭素繊維とマトリックス樹脂との接着性を積極的に向上させるという技術的思想はなく、実際に炭素繊維とマトリックス樹脂との接着性を大幅に向上させることはできなかった。
このようにサイジング剤は、従来、いわゆる糊剤として高次加工性を向上させるという目的やマトリックス樹脂の炭素繊維への含浸性向上を目的として使われており、サイジング剤により炭素繊維とマトリックス樹脂との接着性を向上させるという検討はほとんどなされていない。また、検討されている例でも、接着性の向上効果が不十分であるか、または、特殊な炭素繊維との組み合わせの場合にのみ効果が発現されるという限定されたものであった。
例えば、サイジング剤としてN,N,N’,N’−テトラグリシジルメタキシリレンジアミンを炭素繊維に塗布する方法が提案されている(特許文献14参照)。しかしながら、この提案の方法では、ビスフェノールAのグリシジルエーテルを用いた場合と比べて、接着性の指標である層間剪断強度が向上することが示されているが、接着性の向上効果はなお不十分であった。また、この提案で用いられるN,N,N’,N’−テトラグリシジルメタキシリレンジアミンは、骨格内に脂肪族3級アミンを含み求核性を有するため、自己重合反応が起きる結果、経時的に炭素繊維束が硬くなり高次加工性が低下するという問題があった。
また、サイジング剤としてグリシジル基をもつビニル化合物モノマーとエポキシ樹脂用アミン硬化剤との混合物を炭素繊維に塗布する方法が提案されている(特許文献15参照)。しかしながら、この提案の方法では、アミン硬化剤を用いない場合に比べて、接着性の指標である層間剪断強度が向上することが示されているものの、接着性の向上効果はなお不十分であった。また、サイジング剤の乾燥工程でグリシジル基とアミン硬化剤が反応し高分子量化するため、その結果、炭素繊維束が硬くなり高次加工性が低下し、さらに炭素繊維間の空隙が狭くなり樹脂の含浸性が低下するという問題があった。
エポキシ系化合物とアミン硬化剤を併用したサイジング剤を用いる方法は、他にも提案されている(特許文献16参照)。しかしながら、この提案によれば、繊維束の取扱性と含浸性が向上する一方で、炭素繊維表面での高分子量化したサイジング剤の膜形成により、炭素繊維とエポキシマトリックス樹脂との接着が阻害される場合があった。
さらに、アミン化合物を炭素繊維に塗布する方法が提案されている(特許文献17参照)。しかしながら、この提案の方法では、何も塗布しない場合に比べて、接着性の指標である層間剪断強度が向上することが示されているものの、接着性の向上効果はなお不十分であった。この提案の中では、接着向上メカニズムの詳細な記載はないが、おおよそ次のメカニズムと推定している。すなわち、この提案において、アミン化合物として、1級アミノ基を含むジエチレントリアミン、キシレンジアミン、2級アミノ基を含むピペリジン、イミダゾールが用いられているが、いずれも、分子内に活性水素を含むため、この活性水素がエポキシマトリックス樹脂に作用し、硬化反応を促進するものと考えられ、例えば、エポキシマトリックスと前記アミン化合物の反応により生成した水酸基と炭素繊維表面のカルボキシル基および水酸基等と水素結合性の相互作用を形成し接着向上するものと考えられる。しかしながら、前述のとおり、この提案では接着性の向上結果はなお不十分であり、近年の複合材料に求められる要求を満足させるものとはいえない。
さらに、サイジング剤としてアミン化合物を用いた別の例としては、熱硬化性樹脂とアミン化合物の硬化物を用いる方法が提案されている(特許文献18参照)。この提案において、アミン化合物として、1級アミノ基を含むm−キシレンジアミン、2級アミノ基を含むピペラジンが用いられている。この提案の目的は、アミン化合物に含まれる活性水素とエポキシ樹脂に代表される熱硬化性樹脂を積極的に反応させ硬化物とすることで、炭素繊維束の集束性、取扱性を向上させるものであった。この炭素繊維束はチョップド用途に限定され、熱可塑性樹脂との溶融混錬後の成形品の接着性に関する力学特性はなお不十分なものであった。
さらに、炭素繊維として、表面酸素濃度O/C、表面水酸基濃度およびカルボキシル基濃度が特定の範囲内であるものを用い、サイジング剤として複数のエポキシ基を有する脂肪族化合物をその炭素繊維に塗布する方法が提案されている(特許文献19参照)。しかしながら、この提案の方法では、接着性の指標であるEDSが向上することが示されているが、炭素繊維とマトリックス樹脂との接着性の向上効果はやはり不十分であり、また、接着性の向上効果は、特殊な炭素繊維と組み合わせた場合のみに発現されるというように限定されたものであった。
特開平04−361619号公報 米国特許第3,957,716号明細書 特開昭57−171767号公報 特開平07−009444号公報 特開2000−336577号公報 特開昭61−028074号公報 特開平01−272867号公報 特開昭57−128266号公報 米国特許第4,555,446号明細書 特開昭62−033872号公報 米国特許第4,496,671号明細書 特開2010−31424号公報 特開2005−320641号公報 特開昭52−059794号公報 特開昭52−045673号公報 特開2005−146429号公報 特開昭52−045672号公報 特開平09−217281号公報 米国特許第5,691,055号明細書
そこで本発明の目的は、上記の従来技術における問題点に鑑み、炭素繊維と熱可塑性樹脂との界面接着性に優れるとともに、高力学特性を有する成形材料ならびに炭素繊維強化複合材料を提供することにある。
本発明者らは、(A)特定のエポキシ化合物と(B)特定の3級アミン化合物および/または3級アミン塩、4級アンモニウム塩、4級ホスホニスム塩および/またはホスフィン化合物、を特定比率で含むサイジング剤を炭素繊維に塗布し、特定の温度で熱処理したところ、炭素繊維と熱可塑性樹脂との接着性を高められ、これにより成形材料および炭素繊維強化複合材料の力学特性を向上できることを見出し、本発明に想到した。
すなわち、本発明は、少なくとも次の(A)、(B)成分、炭素繊維および熱可塑性樹脂から構成される柱状をなす成形材料であって、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じであることを特徴とする。
(A)成分:2個以上のエポキシ基を有するエポキシ化合物(A1)、および/または1個以上のエポキシ基と、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、およびスルホ基から選ばれる、少なくとも1個以上の官能基を有するエポキシ化合物(A2)
(B)成分:(A)成分100質量部に対して、下記[a]、[b]および[c]からなる群から選択される少なくとも1種の反応促進剤が0.1〜25質量部
[a]少なくとも(B)成分として用いられる、分子量が100g/mol以上の3級アミン化合物および/または3級アミン塩(B1)
[b]少なくとも(B)成分として用いられる、次の一般式(I)
Figure 0005533849
(式中、R〜Rは、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、または一般式(II)
Figure 0005533849
(式中、Rは、炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。RとRは、それぞれ水素、または炭素数1〜8の炭化水素基を表し、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。)のいずれかで示されるカチオン部位を有する4級アンモニウム塩(B2)
[c]少なくとも(B)成分として用いられる、4級ホスホニウム塩および/またはホスフィン化合物(B3)
また、本発明の成形材料の好ましい態様によれば、上記発明において、(B)成分が炭素繊維100質量部に対して、0.001〜0.3質量部含まれることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記[a]の(B1)分子量が100g/mol以上の3級アミン化合物および/または3級アミン塩が、次の一般式(III)
Figure 0005533849
(式中、Rは炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。Rは、炭素数2〜22のアルキレン基、炭素数2〜22のアルケニレン基、または炭素数2〜22のアルキニレン基のいずれかを表す。R10は、水素または炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。または、RとR10は結合して炭素数2〜11のアルキレン基を形成してもよい)、一般式(IV)
Figure 0005533849
(式中、R11〜R14は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、一般式(V)
Figure 0005533849
(式中、R15〜R20は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。R21は、水酸基または炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、一般式(VI)
Figure 0005533849
(式中、R22〜R24は、それぞれ炭素数1〜8の炭化水素基を表し、該炭化水素基は水酸基を有していてもよい)、一般式(VII)
Figure 0005533849
(式中、R25は、炭素数1〜8の炭化水素基を表し、該炭化水素基は水酸基を有していてもよい)、または一般式(VIII)
Figure 0005533849
(式中、R26〜R28は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。さらに、R26〜R28のいずれかに、次の一般式(IX)または(X)で示される1以上の分岐構造を有し、かつ少なくとも1以上の水酸基を含む)であることを特徴とする。
Figure 0005533849
(式中、R29、R30は、それぞれ炭素数1〜20の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。但し、R29とR30の炭素数の合算値が21以下である。)
Figure 0005533849
(式中、R31〜R33は、それぞれ水酸基または炭素数1〜19の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。但し、R31とR32とR33の炭素数の合算値が21以下である。)
また、本発明の成形材料の好ましい態様によれば、上記発明において、一般式(III)で示される化合物が、1,5−ジアザビシクロ[4,3,0]−5−ノネンもしくはその塩、または、1,8−ジアザビシクロ[5,4,0]−7−ウンデセンもしくはその塩であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、一般式(VIII)で示される化合物が、少なくとも2以上の分岐構造を有することを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、一般式(VIII)で示される化合物が、トリイソプロパノールアミンもしくはその塩であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記[b]の一般式(I)において、RおよびRは、それぞれ炭素数2〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよいことを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記[b]の(B2)カチオン部位を有する4級アンモニウム塩のアニオン部位がハロゲンイオンであることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記[c]の(B3)4級ホスホニウム塩および/またはホスフィン化合物が、次の一般式(XI)
Figure 0005533849
(式中、R34〜R37は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)で示されるカチオン部位を有する4級ホスホニウム塩、または一般式(XII)
Figure 0005533849
(式中、R38〜R40は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)で示されるホスフィン化合物から選択される1つ以上であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、(A)成分のエポキシ当量が360g/mol未満であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、(A)成分が3個以上のエポキシ基を有するエポキシ化合物であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、(A)成分が分子内に芳香環を含むものであることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、(A1)成分がフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはテトラグリシジルジアミノジフェニルメタンのいずれかであることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記熱可塑性樹脂がポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、ポリオキシメチレン樹脂、ポリアミド樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、スチレン系樹脂、およびポリオレフィン系樹脂からなる群から選択される少なくとも1種の熱可塑性樹脂であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記炭素繊維のX線光電子分光法により測定される表面酸素濃度O/Cが、0.05〜0.5であることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、(A)成分および(B)成分を含んでなるサイジング剤が炭素繊維100質量部に対して、0.1〜10質量部付着されてなるサイジング剤塗布炭素繊維1〜80質量%、および熱可塑性樹脂20〜99質量%からなることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記炭素繊維が、アルカリ性電解液中で液相電解酸化された後、または酸性電解液中で液相電解酸化された後、続いてアルカリ性水溶液で洗浄されたものであることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記炭素繊維を主成分とする構造Bが芯構造であり、前記熱可塑性樹脂を主成分とする構造Aが鞘構造であって、構造Bの周囲を構造Aが被覆した芯鞘構造を有することを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記柱状をなす成形材料の長さが1〜50mmであることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記成形材料の形態が長繊維ペレットであることを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記熱可塑性樹脂がポリアリーレンスルフィド樹脂であって、(C)成分として、[d]質量平均分子量が10,000以上であり、かつ質量平均分子量/数平均分子量で表される分散度が2.5以下であるポリアリーレンスルフィドを、炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記熱可塑性樹脂がポリアミド樹脂であって、さらに、(C)成分として、[e]フェノール系重合体を、炭素繊維100質量部に対して0.1〜100質量部含むことを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記熱可塑性樹脂がポリオレフィン系樹脂であって、さらに、(C)成分として、[f]テルペン系樹脂を炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、前記熱可塑性樹脂がポリオレフィン系樹脂であって、さらに、(C)成分として、[g]第1のプロピレン系樹脂および、[h]アシル基を側鎖に有する第2のプロピレン系樹脂の混合物を炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする。
また、本発明の成形材料の好ましい態様によれば、上記発明において、(C)成分の一部または全部が炭素繊維に含浸されてなることを特徴とする。
また、本発明の炭素繊維強化複合材料の好ましい態様によれば、上記のいずれかに記載の成形材料を成形してなることを特徴とする。
本発明によれば、(A)特定のエポキシ化合物を主成分とするサイジング剤において、(B)特定の3級アミン化合物および/または3級アミン塩、4級アンモニウム塩、4級ホスホニスム塩および/またはホスフィン化合物を特定量配合し、なおかつ、特定の条件で熱処理を施した場合において、前記エポキシ化合物と、炭素繊維表面に元来含まれる酸素含有官能基、あるいは、酸化処理により導入されるカルボキシル基および水酸基等の酸素含有官能基との間に共有結合形成が促進され、熱可塑性樹脂との接着性が大幅に優れる成形材料、ならびに炭素繊維強化複合材料を得ることができる。
図1は、本発明の実施の形態にかかる成形材料の一例を示す斜視図である。 図2は、本発明の実施の形態にかかる成形材料の他の一例を示す斜視図である。
以下、更に詳しく、本発明にかかる成形材料、ならびに該成形材料を成形してなる炭素繊維強化複合材料を実施するための形態について説明をする。本発明は、次の(A)、(B)成分を含むサイジング剤が塗布されてなる炭素繊維と熱可塑性樹脂から構成される柱状をなす成形材料であって、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じであることを特徴とする。まず、(A)、(B)成分を含むサイジング剤が塗布されてなる炭素繊維について説明する。
本発明において用いられる(A)成分とは、(A1)分子内に2個以上のエポキシ基を有する化合物、および/または、(A2)分子内に1個以上のエポキシ基と、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、およびスルホ基から選ばれる、少なくとも1個以上の官能基を有するエポキシ化合物をさす。
また、本発明で用いられる(B)成分とは、(B1)分子量が100g/mol以上である3級アミン化合物および/または3級アミン塩、(B2)一般式(I)
Figure 0005533849
(式中、R〜Rは、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、または一般式(II)
Figure 0005533849
(式中、Rは、炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。RとRは、それぞれ水素、または炭素数1〜8の炭化水素基を表し、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。)のいずれかで示されるカチオン部位を有する4級アンモニウム塩、(B3)4級ホスホニウム塩および/またはホスフィン化合物から選択される少なくとも1種の化合物をさす。
本発明において、(A)成分と(B)成分とは、(A)成分100質量部に対し、前記(B1)、(B2)、(B3)から選択される少なくとも1種の(B)成分を0.1〜25質量部を配合してなるサイジング剤を使用することが好ましい。
(A)成分と(B)成分を特定量配合したサイジング剤を炭素繊維に塗布し、160〜260℃の温度範囲で30秒〜600秒熱処理することにより接着性が向上するメカニズムは確かではないが、まず、(B)成分が本発明で用いられる炭素繊維のカルボキシル基および水酸基等の酸素含有官能基に作用し、これらの官能基に含まれる水素イオンを引き抜きアニオン化した後、このアニオン化した官能基と(A)成分に含まれるエポキシ基が求核反応するものと考えられる。これにより、本発明で用いられる炭素繊維とサイジング剤中のエポキシ基の強固な結合が形成される。一方、熱可塑性樹脂との関係においては、(A1)、(A2)それぞれについて、以下のとおりに説明される。
(A1)の場合、本発明で用いられる炭素繊維との共有結合に関与しない残りのエポキシ基が熱可塑性樹脂含有官能基と反応し共有結合を形成するか、もしくは、水素結合を形成するものと考えられる。また、(A1)の構造中に1個以上の不飽和基を含むことが好ましく、熱可塑性樹脂が、ポリエチレンやポリプロピレンのようなラジカル重合系樹脂の場合、(A1)の不飽和基と熱可塑性樹脂の不飽和基がラジカル反応し強固な界面を形成することが可能である。
(A2)の場合、(A2)のエポキシ基は本発明で用いられる炭素繊維のカルボキシル基および水酸基等の酸素含有官能基と共有結合を形成するが、残りの官能基である、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基は熱可塑性樹脂に応じて、共有結合や水素結合などの相互作用を形成するものと考えられる。また、熱可塑性樹脂がポリアミド、ポリエステルおよび酸変性されたポリオレフィンであれば、(A2)の水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基と、これら熱可塑性樹脂に含まれるアミド基、エステル基、酸無水物基、末端などのカルボキシル基、水酸基、アミノ基との相互作用により、強固な界面を形成できると考えられる。
すなわち、(A1)の場合における、炭素繊維との共有結合に関与しない残りのエポキシ基が、(A2)の場合における、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基に相当する機能を有すると考えられる。
本発明において、(B)成分が炭素繊維100質量部に対して、好ましくは、0.001〜0.3質量部、より好ましくは、0.005〜0.2質量部、さらに好ましくは、0.01〜0.1質量部含むことが好ましい。(B)成分が炭素繊維100質量部に対して、0.001〜0.3質量部の場合、炭素繊維のカルボキシル基および水酸基等の酸素含有官能基と(A)エポキシ化合物との反応が促進され、接着向上効果が大きくなる。
本発明において、(A)エポキシ化合物のエポキシ当量は、360g/mol未満であることが好ましく、より好ましくは270g/mol未満であり、さらに好ましくは180g/mol未満である。エポキシ当量が360g/mol未満であると、高密度で共有結合が形成され、炭素繊維と熱可塑性樹脂との接着性がさらに向上する。エポキシ当量の下限は特にないが、90g/mol未満で接着性が飽和する場合がある。
本発明において、(A)エポキシ化合物が、3個以上のエポキシ基を有するエポキシ樹脂であることが好ましく、4個以上のエポキシ基を有するエポキシ樹脂であることがより好ましい。(A)エポキシ化合物が、分子内に3個以上のエポキシ基を有するエポキシ樹脂であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基が熱可塑性樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上する。エポキシ基の数の上限は特にないが、10個以上では接着性が飽和する場合がある。
本発明において、(A)エポキシ化合物が、2種以上の官能基を3個以上有するエポキシ樹脂であることが好ましく、2種以上の官能基を4個以上有するエポキシ樹脂であることがより好ましい。エポキシ化合物が有する官能基は、エポキシ基以外に、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基から選択されるものが好ましい。(A)エポキシ化合物が、分子内に3個以上のエポキシ基または他の官能基を有するエポキシ樹脂であると、1個のエポキシ基が炭素繊維表面の酸素含有官能基と共有結合を形成した場合でも、残りの2個以上のエポキシ基または他の官能基が熱可塑性樹脂と共有結合または水素結合を形成することができ、接着性がさらに向上する。エポキシ基の数の上限は特にないが、10個以上では接着性が飽和する場合がある。
本発明において、(A)エポキシ化合物は、分子内に芳香環を1個以上有することが好ましく、芳香環を2個以上有することがより好ましい。炭素繊維と熱可塑性樹脂とからなる炭素繊維強化複合材料において、炭素繊維近傍のいわゆる界面層は、炭素繊維あるいはサイジング剤の影響を受け、熱可塑性樹脂とは異なる特性を有する場合がある。(A)エポキシ化合物が芳香環を1個以上有すると、剛直な界面層が形成され、炭素繊維と熱可塑性樹脂との間の応力伝達能力が向上し、炭素繊維強化複合材料の0°引張強度等の力学特性が向上する。芳香環の数の上限は特にないが、10個以上では力学特性が飽和する場合がある。
本発明において、(A1)エポキシ化合物は、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはテトラグリシジルジアミノジフェニルメタンのいずれかであることが好ましい。これらのエポキシ樹脂は、エポキシ基数が多く、エポキシ当量が小さく、かつ、2個以上の芳香環を有しており、炭素繊維と熱可塑性樹脂との接着性を向上させることに加え、繊維強化複合材料の0°引張強度等の力学特性を向上させる。2官能以上のエポキシ樹脂は、より好ましくは、フェノールノボラック型エポキシ樹脂およびクレゾールノボラック型エポキシ樹脂である。
本発明において、(A1)2個以上のエポキシ基を有するエポキシ化合物の具体例としては、例えば、ポリオールから誘導されるグリシジルエーテル型エポキシ樹脂、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ樹脂、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ樹脂、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ樹脂が挙げられる。
グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラブロモビスフェノールA、フェノールノボラック、クレゾールノボラック、ヒドロキノン、レゾルシノール、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、1,6−ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、トリス(p−ヒドロキシフェニル)メタン、およびテトラキス(p−ヒドロキシフェニル)エタンとエピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ樹脂が挙げられる。また、グリシジルエーテル型エポキシ樹脂として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ポリブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ樹脂も例示される。また、グリシジルエーテル型エポキシ樹脂として、ジシクロペンタジエン骨格を有するグリシジルエーテル型エポキシ樹脂、およびビフェニルアラルキル骨格を有するグリシジルエーテル型エポキシ樹脂も例示される。
グリシジルアミン型エポキシ樹脂としては、例えば、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、1,3−ビス(アミノメチル)シクロヘキサン、m−キシリレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタンおよび9,9−ビス(4−アミノフェニル)フルオレンが挙げられる。
さらに、例えば、グリシジルアミン型エポキシ樹脂として、m−アミノフェノール、p−アミノフェノール、および4−アミノ−3−メチルフェノールのアミノフェノール類の水酸基とアミノ基の両方を、エピクロロヒドリンと反応させて得られるエポキシ樹脂が挙げられる。
グリシジルエステル型エポキシ樹脂としては、例えば、フタル酸、テレフタル酸、ヘキサヒドロフタル酸、およびダイマー酸を、エピクロロヒドリンと反応させて得られるグリシジルエステル型エポキシ樹脂が挙げられる。
分子内に複数の2重結合を有する化合物を酸化させて得られるエポキシ樹脂としては、例えば、分子内にエポキシシクロヘキサン環を有するエポキシ樹脂が挙げられる。さらに、このエポキシ樹脂としては、エポキシ化大豆油が挙げられる。
本発明に使用する(A1)エポキシ化合物として、これらのエポキシ樹脂以外にも、トリグリシジルイソシアヌレートのようなエポキシ樹脂が挙げられる。さらには、上に挙げたエポキシ樹脂を原料として合成されるエポキシ樹脂、例えば、ビスフェノールAジグリシジルエーテルとトリレンジイソシアネートからオキサゾリドン環生成反応により合成されるエポキシ樹脂が挙げられる。
本発明において、(A2)1個以上のエポキシ基と、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、およびスルホ基から選ばれる、少なくとも1個以上の官能基を有するエポキシ化合物の具体例として、例えば、エポキシ基と水酸基を有する化合物、エポキシ基とアミド基を有する化合物、エポキシ基とイミド基を有する化合物、エポキシ基とウレタン基を有する化合物、エポキシ基とウレア基を有する化合物、エポキシ基とスルホニル基を有する化合物、エポキシ基とスルホ基を有する化合物が挙げられる。
エポキシ基と水酸基を有する化合物としては、例えば、ソルビトール型ポリグリシジルエーテルおよびグリセロール型ポリグリシジルエーテル等が挙げられ、具体的には“デナコール(登録商標)”EX−611、EX−612、EX−614、EX−614B、EX−622、EX−512、EX−521、EX−421、EX−313、EX−314およびEX−321(ナガセケムテックス株式会社製)等が挙げられる。
エポキシ基とアミド基を有する化合物としては、例えば、グリシジルベンズアミド、アミド変性エポキシ樹脂等が挙げられる。アミド変性エポキシはジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ樹脂のエポキシ基を反応させることによって得ることができる。
エポキシ基とイミド基を有する化合物としては、例えば、グリシジルフタルイミド等が挙げられる。具体的には“デナコール(登録商標)”EX−731(ナガセケムテックス株式会社製)等が挙げられる。
エポキシ基とウレタン基を有する化合物としては、例えば、ウレタン変性エポキシ樹脂が挙げられ、具体的には“アデカレジン(登録商標)”EPU−78−13S、EPU−6、EPU−11、EPU−15、EPU−16A、EPU−16N、EPU−17T−6、EPU−1348およびEPU−1395(株式会社ADEKA製)等が挙げられる。または、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の多価イソシアネートを反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ樹脂内の水酸基と反応させることによって得ることができる。ここで、用いられる多価イソシアネートとしては、2,4−トリレンジイソシアネート、メタフェニレンジイソシアネート、パラフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、トリフェニルメタントリイソシアネートおよびビフェニル−2,4,4’−トリイソシアネートなどが挙げられる。
エポキシ基とウレア基を有する化合物としては、例えば、ウレア変性エポキシ樹脂等が挙げられる。ウレア変性エポキシはジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有するエポキシ樹脂のエポキシ基を反応させることによって得ることができる。
エポキシ基とスルホニル基を有する化合物としては、例えば、ビスフェノールS型エポキシ等が挙げられる。
エポキシ基とスルホ基を有する化合物としては、例えば、p−トルエンスルホン酸グリシジルおよび3−ニトロベンゼンスルホン酸グリシジル等が挙げられる。
以下、(B)成分の(B1)〜(B3)について順に説明する。
本発明で用いられる(B1)分子量が100g/mol以上の3級アミン化合物および/または3級アミン塩は、(A)エポキシ化合物100質量部に対して、0.1〜25質量部配合することが必要であり、0.5〜20質量部配合することが好ましく、2〜15質量部配合することがより好ましく、2〜8質量部配合することがさらに好ましい。配合量が0.1質量部未満であると、(A)エポキシ化合物と炭素繊維表面の酸素含有官能基との間の共有結合形成が促進されず、炭素繊維と熱可塑性樹脂との接着性が不十分となる。一方、配合量が25質量部を超えると、(B1)が炭素繊維表面を覆い、共有結合形成が阻害され、炭素繊維と熱可塑性樹脂との接着性が不十分となる。
本発明において用いられる、(B1)分子量が100g/mol以上である3級アミン化合物および/または3級アミン塩は、その分子量が100g/mol以上であることが必要であり、分子量は100〜400g/molの範囲内であることが好ましく、より好ましくは100〜300g/molの範囲内であり、さらに好ましくは100〜200g/molの範囲内である。分子量が100g/mol以上であると、熱処理中にも揮発が抑えられ、少量でも大きな接着性向上効果が得られる。一方、分子量が400g/mol以下であると、分子中における活性部位の比率が高く、やはり少量でも大きな接着性向上効果が得られる。
本発明において用いられる3級アミン化合物とは、分子内に3級アミノ基を有する化合物を示す。また、本発明で用いられる3級アミン塩とは、3級アミノ基を有する化合物をプロトン供与体で中和した塩のことを示す。ここで、プロトン供与体とは、3級アミノ基を有する化合物にプロトンとして供与できる活性水素を有する化合物のことをさす。なお、活性水素とは、塩基性の化合物にプロトンとして供与される水素原子のことをさす。
プロトン供与体としては、無機酸、カルボン酸、スルホン酸およびフェノール類などの有機酸、アルコール類、メルカプタン類および1,3−ジカルボニル化合物などが挙げられる。
無機酸の具体例としては、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、硝酸、リン酸、亜リン酸、次亜リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸およびアミド硫酸等が挙げられる。中でも、硫酸、塩酸、硝酸およびリン酸が好ましく用いられる。
カルボン酸類としては、脂肪族ポリカルボン酸、芳香族ポリカルボン酸、S含有ポリカルボン酸、脂肪族ヒドロキシカルボン酸、芳香族ヒドロキシカルボン酸、脂肪族モノカルボン酸および芳香族モノカルボン酸に分類され、以下の化合物が挙げられる。
脂肪族ポリカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバチン酸、ウンデンカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、メチルマロン酸、エチルマロン酸、プロピルマロン酸、ブチルマロン酸、ペンチルマロン酸、ヘキシルマロン酸、ジメチルマロン酸、ジエチルマロン酸、メチルプロピルマロン酸、メチルブチルマロン酸、エチルプロピルマロン酸、ジプロピルマロン酸、メチルコハク酸、エチルコハク酸、2,2−ジメチルコハク酸、2,3−ジメチルコハク酸、2−メチルグルタル酸、3−メチルグルタル酸、3−メチル−3−エチルグルタル酸、3,3−ジエチルグルタル酸、3,3−ジメチルグルタル酸、3−メチルアジピン酸、マレイン酸、フマル酸、イタコン酸およびシトラコン酸等が挙げられる。
芳香族ポリカルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸およびピロメリット酸等が挙げられる。
S含有ポリカルボン酸の具体例としては、チオジプロピオン酸等が挙げられる。
脂肪族ヒドロキシカルボン酸の具体例としては、グリコール酸、乳酸、酒石酸およびひまし油脂肪酸等が挙げられる。
芳香族ヒドロキシカルボン酸の具体例としては、サリチル酸、マンデル酸、4−ヒドロキシ安息香酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸および6−ヒドロキシ−2−ナフトエ酸等が挙げられる。
脂肪族モノカルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、オクチル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、ステアリン酸、ベヘン酸、ウンデカン酸、アクリル酸、メタクリル酸、クロトン酸およびオレイン酸等が挙げられる。
芳香族モノカルボン酸の具体例としては、安息香酸、ケイ皮酸、ナフトエ酸、トルイル酸、エチル安息香酸、プロピル安息香酸、イソプロピル安息香酸、ブチル安息香酸、イソブチル安息香酸、第2ブチル安息香酸、第3ブチル安息香酸、メトキシ安息香酸、エトキシ安息香酸、プロポキシ安息香酸、イソプロポキシ安息香酸、ブトキシ安息香酸、イソブトキシ安息香酸、第2ブトキシ安息香酸、第3ブトキシ安息香酸、アミノ安息香酸、N−メチルアミノ安息香酸、N−エチルアミノ安息香酸、N−プロピルアミノ安息香酸、N−イソプロピルアミノ安息香酸、N−ブチルアミノ安息香酸、N−イソブチルアミノ安息香酸、N−第2ブチルアミノ安息香酸、N−第3ブチルアミノ安息香酸、N,N−ジメチルアミノ安息香酸、N,N−ジエチルアミノ安息香酸、ニトロ安息香酸およびフロロ安息香酸等が挙げられる。
以上のカルボン酸類のうち、芳香族ポリカルボン酸、脂肪族モノカルボン酸、芳香族カルボン酸が好ましく用いられ、具体的には、フタル酸、ギ酸、オクチル酸が好ましく用いられる。
スルホン酸としては、脂肪族スルホン酸と芳香族スルホン酸に分類でき、以下の化合物が挙げられる。
脂肪族スルホン酸の中でも、1価の飽和脂肪族スルホン酸の具体例としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、イソプロピルスルホン酸、ブタンスルホン酸、イソブチルスルホン酸、tert−ブチルスルホン酸、ペンタンスルホン酸、イソペンチルスルホン酸、ヘキサンスルホン酸、ノナンスルホン酸、デカンスルホン酸、ウンデカンスルホン酸、ドデカンスルホン酸、トリデカンスルホン酸、テトラデカンスルホン酸、n−オクチルスルホン酸、ドデシルスルホン酸およびセチルスルホン酸等が挙げられる。
脂肪族スルホン酸は不飽和脂肪族スルホン酸であってもよく、不飽和脂肪族スルホン酸の具体例としては、エチレンスルホン酸および1−プロペン−1−スルホン酸等が挙げられる。
脂肪族スルホン酸の中でも、2価以上の脂肪族スルホン酸の具体例としては、メチオン酸、1,1−エタンジスルホン酸、1,2−エタンジスルホン酸、1,1−プロパンジスルホン酸、1,3−プロパンジスルホン酸およびポリビニルスルホン酸等が挙げられる。
脂肪族スルホン酸は水酸基を有するオキシ脂肪族スルホン酸であってもよく、オキシ脂肪族スルホン酸の具体例としては、イセチオン酸および3−オキシ−プロパンスルホン酸等が挙げられる。
脂肪族スルホン酸はスルホ脂肪族カルボン酸であってもよく、スルホ脂肪族カルボン酸の具体例としては、スルホ酢酸およびスルホコハク酸等が挙げられる。
脂肪族スルホン酸はスルホ脂肪族カルボン酸エステルであってもよく、スルホ脂肪族カルボン酸エステルの具体例としては、ジ(2−エチルヘキシル)スルホコハク酸等が挙げられる。
脂肪族スルホン酸はフルオロスルホン酸であってもよく、フルオロスルホン酸の具体例としては、トリフルオロメタンスルホン酸、パーフルオロエタンスルホン酸、パーフルオロプロパンスルホン酸、パーフルオロイソプロピルスルホン酸、パーフルオロブタンスルホン酸、パーフルオロイソブチルスルホン酸、パーフルオロ−tert−ブチルスルホン酸、パーフルオロペンタンスルホン酸、パーフルオロイソペンチルスルホン酸、パーフルオロヘキサンスルホン酸、パーフルオロノナンスルホン酸、パーフルオロデカンスルホン酸、パーフルオロウンデカンスルホン酸、パーフルオロドデカンスルホン酸、パーフルオロトリデカンスルホン酸、パーフルオロテトラデカンスルホン酸、パーフルオロ−n−オクチルスルホン酸、パーフルオロドデシルスルホン酸およびパーフルオロセチルスルホン酸等が挙げられる。
芳香族スルホン酸の中でも、1価の芳香族スルホン酸の具体例としては、ベンゼンスルホン酸、p−トルエンスルホン酸、o−トルエンスルホン酸、m−トルエンスルホン酸、o−キシレン−4−スルホン酸、m−キシレン−4−スルホン酸、4−エチルベンゼンスルホン酸、4−プロピルベンゼンスルホン酸、4−ブチルベンゼンスルホン酸、4−ドデシルベンゼンスルホン酸、4−オクチルベンゼンスルホン酸、2−メチル−5−イソプロピルベンゼンスルホン酸、2−ナフタレンスルホン酸、ブチルナフタレンスルホン酸、t−ブチルナフタレンスルホン酸、2,4,5−トリクロロベンゼンスルホン酸、ベンジルスルホン酸およびフェニルエタンスルホン酸等が挙げられる。
芳香族スルホン酸の中でも、2価以上の芳香族スルホン酸の具体例としては、m−ベンゼンジスルホン酸、1,4−ナフタレンジスルホン酸、1,5−ナフタレンジスルホン酸、1,6−ナフタレンジスルホン酸、2,6−ナフタレンジスルホン酸、2,7−ナフタレンジスルホン酸、1,3,6−ナフタレントリスルホン酸およびスルホン化ポリスチレン等が挙げられる。
芳香族スルホン酸はオキシ芳香族スルホン酸であってもよく、オキシ芳香族スルホン酸の具体例としては、フェノール−2−スルホン酸、フェノール−3−スルホン酸、フェノール−4−スルホン酸、アニソール−o−スルホン酸、アニソール−m−スルホン酸、フェネトール−o−スルホン酸、フェネトール−m−スルホン酸、フェノール−2,4−ジスルホン酸、フェノール−2,4,6−トリスルホン酸、アニソール−2,4−ジスルホン酸、フェネトール−2,5−ジスルホン酸、2−オキシトルエン−4−スルホン酸、ピロカテキン−4−スルホン酸、ベラトロール−4−スルホン酸、レゾルシン−4−スルホン酸、2−オキシ−1−メトキシベンゼン−4−スルホン酸、1,2−ジオキシベンゼン−3,5−ジスルホン酸、レゾルシン−4,6−ジスルホン酸、ヒドロキノンスルホン酸、ヒドロキノン−2,5−ジスルホン酸および1,2,3−トリオキシベンゼン−4−スルホン酸等が挙げられる。
芳香族スルホン酸はスルホ芳香族カルボン酸であってもよく、スルホ芳香族カルボン酸の具体例としては、o−スルホ安息香酸、m−スルホ安息香酸、p−スルホ安息香酸、2,4−ジスルホ安息香酸、3−スルホフタル酸、3,5−ジスルホフタル酸、4−スルホイソフタル酸、2−スルホテレフタル酸、2−メチル−4−スルホ安息香酸、2−メチル−3、5−ジスルホ安息香酸、4−プロピル−3−スルホ安息香酸、2,4,6−トリメチル−3−スルホ安息香酸、2−メチル−5−スルホテレフタル酸、5−スルホサリチル酸および3−オキシ−4−スルホ安息香酸等が挙げられる。
芳香族スルホン酸はチオ芳香族スルホン酸であってもよく、チオ芳香族スルホン酸の具体例としては、チオフェノールスルホン酸、チオアニソール−4−スルホン酸およびチオフェネトール−4−スルホン酸等が挙げられる。
芳香族スルホン酸の中でも、その他官能基を有する具体例としては、ベンズアルデヒド−o−スルホン酸、ベンズアルデヒド−2,4−ジスルホン酸、アセトフェノン−o−スルホン酸、アセトフェノン−2,4−ジスルホン酸、ベンゾフェノン−o−スルホン酸、ベンゾフェノン−3,3'−ジスルホン酸、4−アミノフェノール−3−スルホン酸、アントラキノン−1−スルホン酸、アントラキノン−2−スルホン酸、アントラキノン−1,5−ジスルホン酸、アントラキノン−1,8−ジスルホン酸、アントラキノン−2,6−ジスルホン酸および2−メチルアントラキノン−1−スルホン酸等が挙げられる。
以上のスルホン酸類のうち、1価の芳香族スルホン酸が好ましく用いられ、具体的には、ベンゼンスルホン酸、p−トルエンスルホン酸、o−トルエンスルホン酸およびm−トルエンスルホン酸が好ましく用いられる。
また、フェノール類としては、1分子中に1個の活性水素を含むものの具体例としては、フェノール、クレゾール、エチルフェノール、n−プロピルフェノール、イソプロピルフェノール、n−ブチルフェノール、sec−ブチルフェノール、tert−ブチルフェノール、シクロヘキシルフェノール、ジメチルフェノール、メチル−tert−ブチルフェノール、ジ−tert−ブチルフェノール、クロロフェノール、ブロモフェノール、ニトロフェノール、メトキシフェノールおよびサリチル酸メチル等が挙げられる。
1分子中に2個の活性水素を含むフェノール類の具体例としては、ヒドロキノン、レゾルシノール、カテコール、メチルヒドロキノン、tert−ブチルヒドロキノン、ベンジルヒドロキノン、フェニルヒドロキノン、ジメチルヒドロキノン、メチル−tert−ブチルヒドロキノン、ジ−tert−ブチルヒドロキノン、トリメチルヒドロキノン、メトキシヒドロキノン、メチルレゾルシノール、tert−ブチルレゾルシノール、ベンジルレゾルシノール、フェニルレゾルシノール、ジメチルレゾルシノール、メチル−tert−ブチルレゾルシノール、ジ−tert−ブチルレゾルシノール、トリメチルレゾルシノール、メトキシレゾルシノール、メチルカテコール、tert−ブチルカテコール、ベンジルカテコール、フェニルカテコール、ジメチルカテコール、メチル−tert−ブチルカテコール、ジ−tert−ブチルカテコール、トリメチルカテコール、メトキシカテコール、ビフェノール、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラ−tert−ブチルビフェニル等のビフェノール類、ビスフェノールA、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビスフェノールA、4,4’−ジヒドロキシ−3,3’,5,5’−テトラ−tert−ブチルビスフェノールA、ビスフェノールF、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビスフェノールF、4,4’−ジヒドロキシ−3,3’,5,5’−テトラ−tert−ブチルビスフェノールF、ビスフェノールAD、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビスフェノールAD、4,4’−ジヒドロキシ−3,3’,5,5’−テトラ−tert−ブチルビスフェノールADが挙げられる。
さらに、1分子中に2個の活性水素を含むフェノール類として、下記の構造式(XIII)、
Figure 0005533849
構造式(XIV)、
Figure 0005533849
構造式(XV)、
Figure 0005533849
構造式(XVI)、
Figure 0005533849
構造式(XVII)、
Figure 0005533849
構造式(XVIII)、
Figure 0005533849
または構造式(XIX)
Figure 0005533849
で示されるビスフェノール類等、テルペンフェノール、構造式(XX)
Figure 0005533849
構造式(XXI)
Figure 0005533849
で示される化合物等が挙げられる。1分子中に3個の活性水素を含むフェノール類の具体例としては、トリヒドロキシベンゼンおよびトリス(p−ヒドロキシフェニル)メタン等が挙げられる。1分子中に4個の活性水素を含むフェノール類の具体例として、テトラキス(p−ヒドロキシフェニル)エタン等が挙げられる。また、それ以外の具体例として、フェノール、アルキルフェノールおよびハロゲン化フェノール等とホルムアルデヒドとの反応により得られるフェノールノボラックが挙げられる。
以上のフェノール類のうち、フェノールおよびフェノールノボラックが好ましく用いられる。
また、アルコール類としては、1分子中に2個の水酸基を含むものが例示され、例えば、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,1−ジメチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、2−メチル−2,4−ペンタンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ドデカヒドロビスフェノールA、構造式(XXII)
Figure 0005533849
で表されるビスフェノールAのエチレンオキサイド付加物、構造式(XXIII)
Figure 0005533849
で表されるビスフェノールAのプロピレンオキサイド付加物、構造式(XXIV)
Figure 0005533849
で表されるドデカヒドロビスフェノールAのエチレンオキサイド付加物、構造式(XXV)
Figure 0005533849
で表されるドデカヒドロビスフェノールAのプロピレンオキサイド付加物、グリセリン、トリメチロールエタンおよびトリメチロールプロパン等が挙げられる。また、1分子中に4個の水酸基を含むアルコール類の具体例としては、ペンタエリスリトール等が挙げられる。
また、メルカプタン類としては、1分子中に1個の活性水素を含むメルカプタン類が例示され、例えば、メタンチオール、エタンチオール、1−プロパンチオール、2−プロパンチオール、1−ブタンチオール、2−メチル−1−プロパンチオール、2−ブタンチオール、2−メチル−2−プロパンチオール、1−ペンタンチオール、1−ヘキサンチオール、1−ヘプタンチオール、1−オクタンチオール、シクロペンタンチオール、シクロヘキサンチオール、ベンジルメルカプタン、ベンゼンチオール、トルエンチオール、クロロベンゼンチオール、ブロモベンゼンチオール、ニトロベンゼンチオールおよびメトキシベンゼンチオール等が挙げられる。
1分子中に2個の活性水素を含むメルカプタン類の具体例としては、1,2−エタンジチオール、1,3−プロパンジチオール、1,4−ブタンジチオール、1,5−ペンタンジチオール、2,2’−オキシジエタンチオール、1,6−ヘキサンジチオール、1,2−シクロヘキサンジチオール、1,3−シクロヘキサンジチオール、1,4−シクロヘキサンジチオール、1,2−ベンゼンジチオール、1,3−ベンゼンジチオールおよび1,4−ベンゼンチオール等が挙げられる。
また、1,3−ジカルボニル化合物類としては、2,4−ペンタンジオン、3−メチル−2,4−ペンタンジオン、3−エチル−2,4−ペンタンジオン、3,5−ヘプタンジオン、4,6−ノナンジオン、2,6−ジメチル−3,5−ヘプタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1−フェニル−1,3−ブタンジオン、1,3−ジフェニル−1,3−プロパンジオン、1,3−シクロペンタンジオン、2−メチル−1,3−シクロペンタンジオン、2−エチル−1,3−シクロペンタンジオン、1,3−シクロヘキサンジオン、2−メチル−1,3−シクロヘキサンジオン、2−エチル−シクロヘキサンジオン、1,3−インダンジオン、アセト酢酸エチルおよびマロン酸ジエチル等が挙げられる。
本発明において用いられる、(B1)分子量が100g/mol以上の3級アミン化合物および/または3級アミン塩は、次の一般式(III)
Figure 0005533849
(式中、Rは炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。Rは、炭素数2〜22のアルキレン基、炭素数2〜22のアルケニレン基、または炭素数2〜22のアルキニレン基のいずれかを表す。R10は、水素または炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。または、RとR10は結合して炭素数2〜11のアルキレン基を形成してもよい)、次の一般式(IV)
Figure 0005533849
(式中、R11〜R14は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、または、次の一般式(V)
Figure 0005533849
(式中、R15〜R20は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。R21は、水酸基、または炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、一般式(VI)
Figure 0005533849
(式中、R22〜R24は、それぞれ炭素数1〜8の炭化水素基を表し、該炭化水素基は水酸基を有していてもよい)、一般式(VII)
Figure 0005533849
(式中、R25は、炭素数1〜8の炭化水素基を表し、該炭化水素基は水酸基を有していてもよい)、一般式(VIII)
Figure 0005533849
(式中、R26〜R28は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。さらに、R26〜R28のいずれかに、次の一般式(IX)または(X)で示される1以上の分岐構造を有し、かつ少なくとも1以上の水酸基を含む)であることを特徴とする。
Figure 0005533849
(式中、R29、R30は、それぞれ炭素数1〜20の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。但し、R29とR30の炭素数の合算値が21以下である。)
Figure 0005533849
(式中、R31〜R33は、それぞれ水酸基または炭素数1〜19の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。但し、R31とR32とR33の炭素数の合算値が21以下である。)
本発明の上記一般式(III)〜(V)、および(VIII)のR、R11〜R20、R26〜R28は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。炭素数を1〜22の間にすることで、分子構造の立体障害が適度に小さく反応促進効果が高くなり、接着性が向上する。より好ましくは1〜14の範囲内であり、さらに好ましくは1〜8の範囲内である。一方、炭素数が22を超える場合、分子構造の立体障害がやや大きく反応促進効果が低くなる場合がある。
本発明の上記一般式(V)のR21は、水酸基、または炭素数1〜22の炭化水素基であり、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。炭素数を1〜22の間にすることで、分子構造の立体障害が適度に小さく反応促進効果が高くなり、接着性が向上する。より好ましくは1〜14の範囲内であり、さらに好ましくは1〜8の範囲内である。一方、炭素数が22を超える場合、分子構造の立体障害がやや大きく反応促進効果が低くなる場合がある。
本発明の上記一般式(III)のRは、炭素数2〜22のアルキレン基、炭素数2〜22のアルケニレン基、または炭素数2〜22のアルキニレン基のいずれかを表す。炭素数を2〜22の間にすることで、分子構造の立体障害が適度に小さく反応促進効果が高くなり、接着性が向上する。好ましくは3〜22の範囲内であり、より好ましくは3〜14の範囲内であり、さらに好ましくは3〜8の範囲内である。一方、炭素数が22を超える場合、分子構造の立体障害がやや大きく反応促進効果が低くなる場合がある。
本発明の上記一般式(III)のR10は、水素または炭素数1〜22の炭化水素基であり、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。炭素数を1〜22の間にすることで、分子構造の立体障害が適度に小さく反応促進効果が高くなり、接着性が向上する。より好ましくは1〜14の範囲内であり、さらに好ましくは1〜8の範囲内である。一方、炭素数が22を超える場合、分子構造の立体障害がやや大きく反応促進効果が低くなる場合がある。
ここで、炭素数1〜22の炭化水素基とは、炭素原子と水素原子のみからなる基であり、飽和炭化水素基および不飽和炭化水素基のいずれでも良く、環構造を含んでも含まなくても良い。炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、オレイル基、ドコシル基、ベンジル基およびフェニル基等が挙げられる。
また、炭素数1〜22の炭化水素基は、炭化水素基中のCH基が−O−により置換されたものであってもよい。炭素数1〜22の炭化水素基中のCH基が−O−により置換された場合の例としては、直鎖状のものとして、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシエトキシメチル基、メトキシエトキシエチル基、ポリエチレングリコール基およびポリプロピレングリコール基等のポリエーテル基が挙げられる。環状のものとして、例えば、エチレンオキシド、テトラヒドロフラン、オキセパン、1,3−ジオキソランなどが挙げられる。
また、炭素数1〜22の炭化水素基は、炭化水素基中のCH基が−O−CO−または−CO−O−により置換されたものであってもよい。炭素数1〜22の炭化水素基中のCH基が−O−CO−または−CO−O−により置換された場合の例としては、例えば、アセトキシメチル基、アセトキシエチル基、アセトキシプロピル基、アセトキシブチル基、メタクロイルオキシエチル基およびベンゾイルオキシエチル基、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
また、炭素数1〜22の炭化水素基は、水酸基を有していてもよく、炭素数1〜22の炭化水素基が水酸基を有する場合の例としては、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシシクロヘキシル基、ヒドロキシオクチル基、ヒドロキシデシル基、ヒドロキシドデシル基、ヒドロキシテトラデシル基、ヒドロキシヘキサデシル基、ヒドロキシオクタデシル基、ヒドロキシオレイル基およびヒドロキシドコシル基等が挙げられる。
本発明において、(B1)の3級アミン化合物は、その共役酸の酸解離定数pKaが9以上のものが好ましく、より好ましくは11以上のものである。酸解離定数pKaが9以上の場合、(B1)成分が炭素繊維のカルボキシル基および水酸基等の酸素含有官能基から水素イオンを引き抜きやすくなるため、炭素繊維表面の官能基と(A)成分のエポキシ基との反応が促進され、接着向上効果が大きくなる。このような3級アミン化合物としては、具体的には、DBU(pKa12.5)、DBN(pKa12.7)や1,8−ビス(ジメチルアミノ)ナフタレン(pKa12.3)等が該当する。
本発明において、(B1)の3級アミン化合物および/または3級アミン塩は、沸点が160℃以上のものが好ましく、より好ましくは160〜350℃の範囲内であり、さらに好ましくは160〜260℃の範囲内である。沸点が160℃未満の場合、160〜260℃の温度範囲で30〜600秒熱処理する工程において、揮発が激しくなり反応促進効果が低下する場合がある。
本発明において用いられる、(B1)の3級アミン化合物および/または3級アミン塩としては、脂肪族3級アミン類、芳香族含有脂肪族3級アミン類、芳香族3級アミン類および複素環式3級アミン類と、それらの塩が挙げられる。次に、具体例を挙げる。
脂肪族3級アミン類の具体例としては、例えば、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルペンチルアミン、ジメチルヘキシルアミン、ジメチルシクロヘキシルアミン、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルドデシルアミン、ジメチルテトラデシルアミン、ジメチルヘキサデシルアミン、ジメチルオクタデシルアミン、ジメチルオレイルアミン、ジメチルドコシルアミン、ジエチルプロピルアミン、ジエチルブチルアミン、ジエチルペンチルアミン、ジエチルヘキシルアミン、ジエチルシクロヘキシルアミン、ジエチルオクチルアミン、ジエチルデシルアミン、ジエチルドデシルアミン、ジエチルテトラデシルアミン、ジエチルヘキサデシルアミン、ジエチルオクタデシルアミン、ジエチルオレイルアミン、ジエチルドコシルアミン、ジプロピルメチルアミン、ジイソプロピルエチルアミン、ジプロピルエチルアミン、ジプロピルブチルアミン、ジブチルメチルアミン、ジブチルエチルアミン、ジブチルプロピルアミン、ジヘキシルメチルアミン、ジヘキシルメチルアミン、ジヘキシルプロピルアミン、ジヘキシルブチルアミン、ジシクロヘキシルメチルアミン、ジシクロヘキシルエチルアミン、ジシクロヘキシルプロピルアミン、ジシクロヘキシルブチルアミン、ジオクチルメチルアミン、ジオクチルエチルアミン、ジオクチルプロピルアミン、ジデシルメチルアミン、ジデシルエチルアミン、ジデシルプロピルアミン、ジデシルブチルアミン、ジドデシルメチルアミン、ジドデシルエチルアミン、ジドデシルプロピルアミン、ジドデシルブチルアミン、ジテトラデシルメチルアミン、ジテトラデシルエチルアミン、ジテトラデシルプロピルアミン、ジテトラデシルブチルアミン、ジヘキサデシルメチルアミン、ジヘキサデシルエチルアミン、ジヘキサデシルプロピルアミン、ジヘキサデシルブチルアミン、トリメタノールアミン、トリエタノールアミン、トリイソプロパノールアミン、トリブタノールアミン、トリヘキサノールアミン、ジエチルメタノールアミン、ジプロピルメタノールアミン、ジイソプロピルメタノールアミン、ジブチルメタノールアミン、ジイソブチルメタノールアミン、ジターシャリブチルメタノールアミン、ジ(2−エチルヘキシル)メタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、ジプロピルエタノールアミン、ジイソプロピルエタノールアミン、ジブチルエタノールアミン、ジイソブチルエタノールアミン、ジターシャリブチルエタノールアミン、ジ(2−エチルヘキシル)エタノールアミン、ジメチルプロパノールアミン、ジエチルプロパノールアミン、ジプロピルプロパノールアミン、ジイソプロピルプロパノールアミン、ジブチルプロパノールアミン、ジイソブチルプロパノールアミン、ジターシャリブチルプロパノールアミン、ジ(2−エチルヘキシル)プロパノールアミン、メチルジメタノールアミン、エチルジメタノールアミン、プロピルジメタノールアミン、イソプロピルジメタノールアミン、ブチルジメタノールアミン、イソブチルジメタノールアミン、ターシャリブチルジメタノールアミン、(2−エチルヘキシル)ジメタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、プロピルジエタノールアミン、イソプロピルジエタノールアミン、ブチルジエタノールアミン、イソブチルジエタノールアミン、ターシャリブチルジエタノールアミン、(2−エチルヘキシル)ジエタノールアミン、ジメチルアミノエトキシエタノールなどが挙げられる。
脂肪族3級アミン類は、3級アミノ基を分子内に2個以上もつ化合物であってもよく、3級アミノ基を分子内に2個以上もつ化合物としては、N,N,N’,N’−テトラメチル−1,3−プロパンジアミン、N,N,N’,N’−テトラエチル−1,3−プロパンジアミン、N,N−ジエチル−N’,N’−ジメチル−1,3−プロパンジアミン、テトラメチル−1,6−ヘキサメチレンジアミン、ペンタメチルジエチレントリアミン、ビス(2−ジメチルアミノエチル)エーテル、およびトリメチルアミノエチルエタノールアミンなどが挙げられる。
芳香族含有脂肪族3級アミン類の具体例としては、例えば、N,N−ジメチルベンジルアミン、N,N−ジエチルベンジルアミン、N,N−ジプロピルベンジルアミン、N,N’−ジブチルベンジルアミン、N,N−ジヘキシルベンジルアミン、N,N−ジシクロヘキシルベンジルアミン、N,N−ジオクチルベンジルアミン、N,N−ジドデシルベンジルアミン、N,N−ジオレイルベンジルアミン、N,N−ジベンジルメチルアミン、N,N−ジベンジルエチルアミン、N,N−ジベンジルプロピルアミン、N,N−ジベンジルブチルアミン、N,N−ジベンジルヘキシルアミン、N,N−ジベンジルシクロヘキシルアミン、N,N−ジベンジルオクチルアミン、N,N−ジベンジルドデシルアミン、N,N−ジベンジルオレイルアミン、トリベンジルアミン、N,N−メチルエチルベンジルアミン、N,N−メチルプロピルベンジルアミン、N,N−メチルブチルベンジルアミン、N,N−メチルヘキシルベンジルアミン、N,N−メチルシクロヘキシルベンジルアミン、N,N−メチルオクチルベンジルアミン、N,N−メチルドデシルベンジルアミン、N,N−メチルオレイルベンジルアミン、N,N−メチルヘキサデシルベンジルアミン、N,N−メチルオクタデシルベンジルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジエチルアミノメチル)フェノール、2,4,6−トリス(ジプロピルアミノメチル)フェノール、2,4,6−トリス(ジブチルアミノメチル)フェノール、2,4,6−トリス(ジペンチルアミノメチル)フェノール、および2,4,6−トリス(ジヘキシルアミノメチル)フェノールなどが挙げられる。
芳香族3級アミン類の具体例としては、例えば、トリフェニルアミン、トリ(メチルフェニル)アミン、トリ(エチルフェニル)アミン、トリ(プロピルフェニル)アミン、トリ(ブチルフェニル)アミン、トリ(フェノキシフェニル)アミン、トリ(ベンジルフェニル)アミン、ジフェニルメチルアミン、ジフェニルエチルアミン、ジフェニルプロピルアミン、ジフェニルブチルアミン、ジフェニルヘキシルアミン、ジフェニルシクロヘキシルアミン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、N,N−ジプロピルアニリン、N,N−ジブチルアニリン、N,N−ジヘキシルアニリン、N,N−ジシクロヘキシルアニリン、(メチルフェニル)ジメチルアミン、(エチルフェニル)ジメチルアミン、(プロピルフェニル)ジメチルアミン、(ブチルフェニル)ジメチルアミン、ビス(メチルフェニル)メチルアミン、ビス(エチルフェニル)メチルアミン、ビス(プロピルフェニル)メチルアミン、ビス(ブチルフェニル)メチルアミン、N,N−ジ(ヒドロキシエチル)アニリン、N,N−ジ(ヒドロキシプロピル)アニリン、N,N−ジ(ヒドロキシブチル)アニリン、およびジイソプロパノール−p−トルイジンなどが挙げられる。
複素環式3級アミン類の具体例としては、例えば、ピコリン、イソキノリン、キノリン等のピリジン系化合物、イミダゾール系化合物、ピラゾール系化合物、モルホリン系化合物、ピペラジン系化合物、ピペリジン系化合物、ピロリジン系化合物、シクロアミジン系化合物、およびプロトンスポンジ誘導体、ヒンダードアミン系化合物が挙げられる。
ピリジン系化合物としては、N,N−ジメチル−4−アミノピリジン、ビピリジンおよび2,6−ルチジンなどが挙げられる。イミダゾール系化合物としては、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−イミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾリウムトリメリテート、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、1−ベンジル−2−フェニルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール、1−ベンジル−2−フォルミルイミダゾール、1−ベンジル−イミダゾールおよび1−アリルイミダゾールなどが挙げられる。
ピラゾール系化合物としては、ピラゾールや1,4−ジメチルピラゾールなどが挙げられる。モルホリン系化合物としては、4−(2−ヒロドキシエチル)モルホリン、N−エチルモルホリン、N−メチルモルホリンおよび2,2’−ジモルホリンジエチルエーテルなどが挙げられる。ピペラジン系化合物としては、1−(2−ヒドロキシエチル)ピペラジンやN,N−ジメチルピペラジンなどが挙げられる。ピペリジン系化合物としては、N−(2−ヒドロキシエチル)ピペリジン、N−エチルピペリジン、N−プロピルピペリジン、N−ブチルピペリジン、N−ヘキシルピペリジン、N−シクロヘキシルピペリジンおよびN−オクチルピペリジンなどが挙げられる。ピロリジン系化合物としては、N−ブチルピロリジンおよびN−オクチルピロリジンなどが挙げられる。シクロアミジン系化合物としては、1,8−ジアザビシクロ〔5,4,0〕−7−ウンデセン(DBU)、1,5−ジアザビシクロ〔4,3,0〕−5−ノネン(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン、および5、6−ジブチルアミノ−1,8−ジアザ−ビシクロ〔5,4,0〕ウンデセン−7(DBA)を挙げることができる。その他の複素環式アミン類として、ヘキサメチレンテトラミン、ヘキサエチレンテトラミンおよびヘキサプロピルテトラミンを挙げることができる。
上記のDBU塩としては、具体的には、DBUのフェノール塩(U−CAT SA1、サンアプロ株式会社製)、DBUのオクチル酸塩(U−CAT SA102、サンアプロ株式会社製)、DBUのp−トルエンスルホン酸塩(U−CAT SA506、サンアプロ株式会社製)、DBUのギ酸塩(U−CAT SA603、サンアプロ株式会社製)、DBUのオルソフタル酸塩(U−CAT SA810)、およびDBUのフェノールノボラック樹脂塩(U−CAT SA810、SA831、SA841、SA851、881、サンアプロ株式会社製)などが挙げられる。
前記のプロトンスポンジ誘導体の具体例としては、例えば、1,8−ビス(ジメチルアミノ)ナフタレン、1,8−ビス(ジエチルアミノ)ナフタレン、1,8−ビス(ジプロピルアミノ)ナフタレン、1,8−ビス(ジブチルアミノ)ナフタレン、1,8−ビス(ジペンチルアミノ)ナフタレン、1,8−ビス(ジヘキシルアミノ)ナフタレン、1−ジメチルアミノ−8−メチルアミノ−キノリジン、1−ジメチルアミノ−7−メチル−8−メチルアミノ−キノリジン、1−ジメチルアミノ−7−メチル−8−メチルアミノ−イソキノリン、7−メチル−1,8−メチルアミノ−2,7−ナフチリジン、および2,7−ジメチル−1,8−メチルアミノ−2,7−ナフチリジンなどが挙げられる。
前記のヒンダードアミン系化合物としては、ブタン−1,2,3,4−テトラカルボン酸テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)(例えば、LA−52(ADEKA社製))、セバシン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)(例えば、LA−72(ADEKA社製)、TINUVIN765(BASF社製))、炭酸=ビス(2,2,6,6−テトラメチル−1−ウンデシルオキシピペリジン−4−イル)(例えば、LA−81(ADEKA社製))、メタクリル酸−1,2,2,6,6−ペンタメチル−4−ピペリジル(例えば、LA−82(ADEKA社製))、マロン酸−2−((4−メトキシフェニル)メチレン)、1,3−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)エステル、Chimassorb119、2−ドデシル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジニル)スクシン−イミド、1,2,3,4−ブタンテトラカルボン酸−1−ヘキサデシル−2,3,4−トリス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)、1,2,3,4−ブタンテトラカルボン酸−1,2,3−トリス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)−4−トリデシル、デカン二酸−1−メチル−10−(1,2,2,6,6−ペンタメチル−4−ピペリジニル)、4−(エテニルオキシ)−1,2,2,6,6−ペンタメチルピペリジン、2−((3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル)メチル)−2−ブチルプロパン二酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)、4−ヒドロキシ−1,2,2,6,6−ペンタメチルピペリジン、1,2,2,6,6−ペンタメチルピペリジン、LA−63P(ADEKA社製)、LA−68(ADEKA社製)、TINUVIN622LD(BASF社製)、TINUVIN144(BASF社製)などが挙げられる。
これらの3級アミン化合物と3級アミン塩は、単独で用いても良いし、複数種を併用しても良い。
本発明の上記一般式(VIII)のR26〜R28のうちの少なくとも1つの炭素数は、2以上であることが好ましく、より好ましくは3以上であり、さらに好ましくは4以上である。R11〜R13のうちの少なくとも1つの炭素数が2以上であると、3級アミン化合物および/または3級アミン塩が開始剤として働く副反応、例えば、エポキシ樹脂の単独重合が抑えられ、接着性がさらに向上する。また、本発明の上記一般式(VIII)で示される化合物は、少なくとも1以上の水酸基を有することが好ましい。1以上の水酸基を有することで炭素繊維表面官能基への相互作用が高まり、効率的に炭素繊維表面官能基のプロトンを引き抜き、エポキシ基との反応性を高めることができる。
本発明において、前記の一般式(III)で示される化合物は、N−ベンジルイミダゾール、1,8−ジアザビシクロ〔5,4,0〕−7−ウンデセン(DBU)およびその塩、または、1,5−ジアザビシクロ〔4,3,0〕−5−ノネン(DBN)およびその塩が好ましく、1,8−ジアザビシクロ〔5,4,0〕−7−ウンデセン(DBU)およびその塩、または、1,5−ジアザビシクロ〔4,3,0〕−5−ノネン(DBN)およびその塩が好適である。
本発明において、前記の一般式(IV)で示される化合物は、1,8−ビス(ジメチルアミノ)ナフタレンであることが好ましい。
本発明において、前記の一般式(V)で示される化合物は、2,4,6−トリス(ジメチルアミノメチル)フェノールであることが好ましい。
本発明において、前記の一般式(VI)で示される化合物は、2,6−ルチジン、4−ピリジンメタノールであることが好ましい。
本発明において、前記の一般式(VII)で示される化合物は、N−エチルモルホリンであることが好ましい。
本発明において、前記の一般式(VIII)で示される化合物は、トリブチルアミンまたはN,N−ジメチルベンジルアミン、ジイソプロピルエチルアミン、トリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、トリエタノールアミン、N,N−ジイソプロピルエチルアミンが好ましい。
また、本発明の上記一般式(VIII)で示される化合物は、少なくとも1以上の水酸基を有することが好ましい。1以上の水酸基を有することで炭素繊維表面官能基への相互作用が高まり、効率的に炭素繊維表面官能基のプロトンを引き抜き、エポキシ基との反応性を高めることができる。また、本発明の上記一般式(VIII)のR26〜R28のうちの少なくとも2つ、好適には3つが、一般式(IX)または一般式(X)で示される分岐構造を含むことが好ましい。分岐構造を有することで立体障害性が高まり、エポキシ環同士の反応を抑え、炭素繊維表面官能基とエポキシとの反応促進効果を高めることができる。さらに、本発明の上記一般式(VIII)のR26〜R28のうちの少なくとも2つ、好適には3つが、水酸基を有するものが好ましい。水酸基を有することで、炭素繊維表面官能基への相互作用が高まり、効率的に炭素繊維表面官能基のプロトンを引き抜き、エポキシとの反応性を高めることができる。
これらの3級アミン化合物および3級アミン塩の中でも、炭素繊維表面官能基とエポキシ樹脂との反応促進効果が高く、かつ、エポキシ環同士の反応を抑制できるという観点から、トリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、ジイソプロピルエチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、2,6−ルチジン、DBU、DBU塩、DBN、DBN塩および1,8−ビス(ジメチルアミノ)ナフタレンが好ましく用いられる。
次に、(B2)について説明する。
本発明で用いられる(B2)上記の一般式(I)または(II)のいずれかで示される、カチオン部位を有する4級アンモニウム塩は、(A)エポキシ化合物100質量部に対して、0.1〜25質量部配合することが必要であり、0.1〜10質量部配合することが好ましく、0.1〜8質量部配合することがより好ましい。配合量が0.1質量部未満であると、(A)エポキシ化合物と炭素繊維表面の酸素含有官能基との間の共有結合形成が促進されず、炭素繊維と熱可塑性樹脂との接着性が不十分となる。一方、配合量が25質量部を超えると、(B2)が炭素繊維表面を覆い共有結合形成が阻害され、炭素繊維と熱可塑性樹脂との接着性が不十分となる。
本発明で用いられる(B2)上記の一般式(I)または(II)のいずれかで示される、カチオン部位を有する4級アンモニウム塩の配合により共有結合形成が促進されるメカニズムは明確ではないが、特定の構造を有する4級アンモニウム塩のみでかかる効果が得られる。したがって、上記一般式(I)または(II)のR〜Rが、それぞれ炭素数1〜22の炭化水素基であることが必要であり、該炭化水素基は水酸基を有していてもよく、また、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。炭素数が23以上になると、理由は明確ではないが、接着性が不十分となる。ここで、炭素数1〜22の炭化水素基とは、炭素原子と水素原子のみからなる基であり、飽和炭化水素基および不飽和炭化水素基のいずれでも良く、環構造を含んでも含まなくても良い。炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、オレイル基、ドコシル基、ベンジル基およびフェニル基等が挙げられる。
また、炭素数1〜22の炭化水素基中のCH基が−O−により置換された場合の例としては、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシエトキシメチル基、メトキシエトキシエチル基、ポリエチレングリコール基およびポリプロピレングリコール基等のポリエーテル基が挙げられる。
また、炭素数1〜22の炭化水素基中のCH基が−O−CO−または−CO−O−により置換された場合の例としては、炭素数1〜22の炭化水素とエステル構造を含む基としては、例えば、アセトキシメチル基、アセトキシエチル基、アセトキシプロピル基、アセトキシブチル基、メタクロイルオキシエチル基およびベンゾイルオキシエチル基、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
また、炭素数1〜22の炭化水素基が水酸基を有する場合の例としては、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシシクロヘキシル基、ヒドロキシオクチル基、ヒドロキシデシル基、ヒドロキシドデシル基、ヒドロキシテトラデシル基、ヒドロキシヘキサデシル基、ヒドロキシオクタデシル基、ヒドロキシオレイル基、ヒドロキシドコシル基等が挙げられる。
なかでも、(B2)カチオン部位を有する4級アンモニウム塩のR〜Rの炭素数は、1〜14の範囲内であることが好ましく、より好ましくは1〜8の範囲内である。炭素数が14未満であると、4級アンモニウム塩が反応促進剤として働く際に、立体障害が適度に小さく反応促進効果が高くなり、接着性がさらに向上する。
また、本発明において、上記一般式(I)で示される(B2)カチオン部位を有する4級アンモニウム塩のRとRの炭素数は、2以上であることが好ましく、より好ましくは3以上であり、さらに好ましくは4以上である。炭素数が2以上であると、4級アンモニウム塩が開始剤としてはたらくことによるエポキシ樹脂の単独重合が抑えられ、接着性がさらに向上する。
また、本発明において、上記一般式(II)で示される(B2)カチオン部位を有する4級アンモニウム塩のRとRは、それぞれ水素、または炭素数1〜8の炭化水素基であることが好ましく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。水素または炭素数が8未満であると、分子中における活性部位の比率が高く、少量でも大きな接着性向上効果が得られる。
本発明において、(B2)カチオン部位を有する4級アンモニウム塩のカチオン部位の分子量は、100〜400g/molの範囲内であることが好ましく、より好ましくは100〜300g/molの範囲内であり、さらに好ましくは100〜200g/molの範囲内である。カチオン部位の分子量が100g/mol以上であると、熱処理中にも揮発が抑えられ、少量でも大きな接着性向上効果が得られる。一方、カチオン部位の分子量が400g/mol以下であると、分子中における活性部位の比率が高く、やはり少量でも大きな接着性向上効果が得られる。
本発明において、上記の一般式(I)で示される4級アンモニウム塩のカチオン部位としては、例えば、テトラメチルアンモニウム、エチルトリメチルアンモニウム、トリメチルプロピルアンモニウム、ブチルトリメチルアンモニウム、トリメチルペンチルアンモニウム、ヘキシルトリメチルアンモニウム、シクロヘキシルトリメチルアンモニウム、トリメチルオクチルアンモニウム、デシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、テトラデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、トリメチルオクタデシルアンモニウム、トリメチルオレイルアンモニウム、ドコシルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、トリメチルフェニルアンモニウム、ジエチルジメチルアンモニウム、ジメチルジプロピルアンモニウム、ジブチルジメチルアンモニウム、ジメチルジペンチルアンモニウム、ジヘキシルジメチルアンモニウム、ジシクロヘキシルジメチルアンモニウム、ジメチルジオクチルアンモニウム、ジデシルジメチルアンモニウム、エチルデシルジメチルアンモニウム、ジドデシルジメチルアンモニウム、エチルドデシルジメチルアンモニウム、ジテトラデシルジメチルアンモニウム、エチルテトラデシルジメチルアンモニウム、ジヘキサデシルジメチルアンモニウム、エチルヘキサデシルジメチルアンモニウム、ジメチルジオクタデシルアンモニウム、エチルオクタデシルジメチルアンモニウム、ジメチルジオレイルアンモニウム、エチルジメチルオレイルアンモニウム、ジドコシルジメチルアンモニウム、ドコシルエチルジメチルアンモニウム、ジベンジルジメチルアンモニウム、ベンジルエチルジメチルアンモニウム、ベンジルジメチルプロピルアンモニウム、ベンジルブチルジメチルアンモニウム、ベンジルデシルジメチルアンモニウム、ベンジルドデシルジメチルアンモニウム、ベンジルテトラデシルジメチルアンモニウム、ベンジルヘキサデシルジメチルアンモニウム、ベンジルオクタデシルジメチルアンモニウム、ベンジルジメチルオレイルアンモニウム、ジメチルジフェニルアンモニウム、エチルジメチルフェニルアンモニウム、ジメチルプロピルフェニルアンモニウム、ブチルジメチルフェニルアンモニウム、デシルジメチルフェニルアンモニウム、ドデシルジメチルフェニルアンモニウム、テトラデシルジメチルフェニルアンモニウム、ヘキサデシルジメチルフェニルアンモニウム、ジメチルオクタデシルフェニルアンモニウム、ジメチルオレイルフェニルアンモニウム、テトラエチルアンモニウム、トリエチルメチルアンモニウム、トリエチルプロピルアンモニウム、ブチルトリエチルアンモニウム、トリエチルペンチルアンモニウム、トリエチルヘキシルアンモニウム、トリエチルシクロヘキシルアンモニウム、トリエチルオクチルアンモニウム、デシルトリエチルアンモニウム、ドデシルトリエチルアンモニウム、テトラデシルトリエチルアンモニウム、ヘキサデシルトリエチルアンモニウム、トリエチルオクタデシルアンモニウム、トリエチルオレイルアンモニウム、ベンジルトリエチルアンモニウム、トリエチルフェニルアンモニウム、ジエチルジプロピルアンモニウム、ジブチルジエチルアンモニウム、ジエチルジペンチルアンモニウム、ジエチルジヘキシルアンモニウム、ジエチルジシクロヘキシルアンモニウム、ジエチルジオクチルアンモニウム、ジデシルジエチルアンモニウム、ジドデシルジエチルアンモニウム、ジテトラデシルジエチルアンモニウム、ジエチルジヘキサデシルアンモニウム、ジエチルジオクタデシルアンモニウム、ジエチルジオレイルアンモニウム、ジベンジルジエチルアンモニウム、ジエチルジフェニルアンモニウム、テトラプロピルアンモニウム、メチルトリプロピルアンモニウム、エチルトリプロピルアンモニウム、ブチルトリプロピルアンモニウム、ベンジルトリプロピルアンモニウム、フェニルトリプロピルアンモニウム、テトラブチルアンモニウム、トリブチルメチルアンモニウム、トリブチルエチルアンモニウム、トリブチルプロピルアンモニウム、ベンジルトリブチルアンモニウム、トリブチルフェニルアンモニウム、テトラペンチルアンモニウム、テトラヘキシルアンモニウム、テトラヘプチルアンモニウム、テトラオクチルアンモニウム、メチルトリオクチルアンモニウム、エチルトリオクチルアンモニウム、トリオクチルプロピルアンモニウム、ブチルトリオクチルアンモニウム、ジメチルジオクチルアンモニウム、ジエチルジオクチルアンモニウム、ジオクチルジプロピルアンモニウム、ジブチルジオクチルアンモニウム、テトラデシルアンモニウム、テトラドデシルアンモニウム、2−ヒドロキシエチルトリメチルアンモニウム、2−ヒドロキシエチルトリエチルアンモニウム、2−ヒドロキシエチルトリプロピルアンモニウム、2−ヒドロキシエチルトリブチルアンモニウム、ポリオキシエチレントリメチルアンモニウム、ポリオキシエチレントリエチルアンモニウム、ポリオキシエチレントリプロピルアンモニウム、ポリオキシエチレントリブチルアンモニウム、ビス(2−ヒドロキシエチル)ジメチルアンモニウム、ビス(2−ヒドロキシエチル)ジエチルアンモニウム、ビス(2−ヒドロキシエチル)ジプロピルアンモニウム、ビス(2−ヒドロキシエチル)ジブチルアンモニウム、ビス(ポリオキシエチレン)ジメチルアンモニウム、ビス(ポリオキシエチレン)ジエチルアンモニウム、ビス(ポリオキシエチレン)ジプロピルアンモニウム、ビス(ポリオキシエチレン)ジブチルアンモニウム、トリス(2−ヒドロキシエチル)メチルアンモニウム、トリス(2−ヒドロキシエチル)エチルアンモニウム、トリス(2−ヒドロキシエチル)プロピルアンモニウム、トリス(2−ヒドロキシエチル)ブチルアンモニウム、トリス(ポリオキシエチレン)メチルアンモニウム、トリス(ポリオキシエチレン)エチルアンモニウム、トリス(ポリオキシエチレン)プロピルアンモニウム、およびトリス(ポリオキシエチレン)ブチルアンモニウムが挙げられる。
また、上記一般式(II)で示される4級アンモニウム塩のカチオン部位としては、例えば、1−メチルピリジニウム、1−エチルピリジニウム、1−エチル−2−メチルピリジニウム、1−エチル−4−メチルピリジニウム、1−エチル−2,4−ジメチルピリジニウム、1−エチル−2,4,6−トリメチルピリジニウム、1−プロピルピリジニウム、1−ブチルピリジニウム、1−ブチル−2−メチルピリジニウム、1−ブチル−4−メチルピリジニウム、1−ブチル−2,4−ジメチルピリジニウム、1−ブチル−2,4,6−トリメチルピリジニウム、1−ペンチルピリジニウム、1−ヘキシルピリジニウム、1−シクロヘキシルピリジニウム、1−オクチルピリジニウム、1−デシルピリジニウム、1−ドデシルピリジニウム、1−テトラデシルピリジニウム、1−ヘキサデシルピリジニウム、1−オクタデシルピリジニウム、1−オレイルピリジニウム、および1−ドコシルピリジニウム、および1−ベンジルピリジニウムが挙げられる。
本発明において、(B2)カチオン部位を有する4級アンモニウム塩のアニオン部位としては、例えば、フッ化物アニオン、塩化物アニオン、臭化物アニオンおよびヨウ化物アニオンのハロゲンイオンが挙げられる。また、例えば、水酸化物アニオン、酢酸アニオン、シュウ酸アニオン、硫酸アニオン、安息香酸アニオン、ヨウ素酸アニオン、メチルスルホン酸アニオン、ベンゼンスルホン酸アニオン、およびトルエンスルホン酸アニオンが挙げられる。
なかでも、対イオンとしては、サイズが小さく、4級アンモニウム塩の反応促進効果を阻害しないという観点から、ハロゲンイオンであることが好ましい。
本発明において、これらの4級アンモニウム塩は、単独で用いても良いし複数種を併用しても良い。
本発明において、(B2)カチオン部位を有する4級アンモニウム塩としては、例えば、トリメチルオクタデシルアンモニウムクロリド、トリメチルオクタデシルアンモニウムブロミド、トリメチルオクタデシルアンモニウムヒドロキシド、トリメチルオクタデシルアンモニウムアセタート、トリメチルオクタデシルアンモニウム安息香酸塩、トリメチルオクタデシルアンモニウム−p−トルエンスルホナート、トリメチルオクタデシルアンモニウム塩酸塩、トリメチルオクタデシルアンモニウムテトラクロロヨウ素酸塩、トリメチルオクタデシルアンモニウム硫酸水素塩、トリメチルオクタデシルアンモニウムメチルスルファート、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムアセタート、ベンジルトリメチルアンモニウム安息香酸塩、ベンジルトリメチルアンモニウム−p−トルエンスルホナート、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムヒドロキシド、テトラブチルアンモニウムアセタート、テトラブチルアンモニウム安息香酸塩、テトラブチルアンモニウム−p−トルエンスルホナート、(2−メトキシエトキシメチル)トリエチルアンモニウムクロリド、(2−メトキシエトキシメチル)トリエチルアンモニウムブロミド、(2−メトキシエトキシメチル)トリエチルアンモニウムヒドロキシド、(2−メトキシエトキシメチル)トリエチルアンモニウム−p−トルエンスルホナート、(2−アセトキシエチル)トリメチルアンモニウムクロリド、(2−アセトキシエチル)トリメチルアンモニウムブロミド、(2−アセトキシエチル)トリメチルアンモニウムヒドロキシド、(2−アセトキシエチル)トリメチルアンモニウム−p−トルエンスルホナート、(2−ヒドロキシエチル)トリメチルアンモニウムクロリド、(2−ヒドロキシエチル)トリメチルアンモニウムブロミド、(2−ヒドロキシエチル)トリメチルアンモニウムヒドロキシド、(2−ヒドロキシエチル)トリメチルアンモニウム−p−トルエンスルホナート、ビス(ポリオキシエチレン)ジメチルアンモニウムクロリド、ビス(ポリオキシエチレン)ジメチルアンモニウムブロミド、ビス(ポリオキシエチレン)ジメチルアンモニウムヒドロキシド、ビス(ポリオキシエチレン)ジメチルアンモニウム−p−トルエンスルホナート、1−ヘキサデシルピリジニウムクロリド、1−ヘキサデシルピリジニウムブロミド、1−ヘキサデシルピリジニウムヒドロキシド、および1−ヘキサデシルピリジニウム−p−トルエンスルホナート等が挙げられる。
本発明において、前記の一般式(I)で示される化合物は、ベンジルトリメチルアンモニウムブロミド、テトラブチルアンモニウムブロミド、トリメチルオクタデシルアンモニウムブロミド、(2−メトキシエトキシメチル)トリエチルアンモニウムクロリド、(2−アセトキシエチル)トリメチルアンモニウムクロリド、(2−ヒドロキシエチル)トリメチルアンモニウムブロミドが好ましく、テトラブチルアンモニウムブロミド、(2−メトキシエトキシメチル)トリエチルアンモニウムクロリドが好適である。
本発明において、前記の一般式(II)で示される化合物は、1−ヘキサデシルピリジニウムクロリドが好ましい。
次に、(B3)について説明する。
本発明で用いられる(B3)4級ホスホニウム塩および/またはホスフィン化合物は、(A)エポキシ化合物100質量部に対して、0.1〜25質量部配合することが必要であり、0.1〜10質量部配合することが好ましく、0.1〜8質量部配合することがより好ましい。配合量が0.1質量部未満であると、(A)エポキシ化合物と炭素繊維表面の酸素含有官能基との間の共有結合形成が促進されず、炭素繊維と熱可塑性樹脂との接着性が不十分となる。一方、配合量が25質量部を超えると、(B3)が炭素繊維表面を覆い、共有結合形成が阻害され、炭素繊維と熱可塑性樹脂との接着性が不十分となる。
本発明で用いられる(B3)4級ホスホニウム塩またはホスフィン化合物は、好ましくは、次の一般式(XI)または(XII)
Figure 0005533849
Figure 0005533849
(上記化学式中、R34〜R40は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)のいずれかで示されるカチオン部位を有する4級アンモニウム塩またはホスフィン化合物である。
本発明者等は、上記(A)成分100質量部に対し、(B3)4級ホスホニウム塩および/またはホスフィン化合物、好ましくは上記一般式(XI)または(XII)のいずれかで示される(B3)4級ホスホニウム塩および/またはホスフィン化合物を0.1〜25質量部配合したサイジング剤を用い、これを炭素繊維に塗布し、かつ、特定の条件で熱処理を施した場合においてのみ、2官能以上のエポキシ樹脂と、炭素繊維表面に元来含まれる、あるいは、酸化処理により導入されるカルボキシル基、水酸基等の酸素含有官能基との間に共有結合形成が促進される結果、熱可塑性樹脂との接着性が大幅に向上することを見出した。
本発明において、4級ホスホニウム塩またはホスフィン化合物の配合により共有結合形成が促進されるメカニズムは明確ではないが、特定の構造を有する4級ホスホニウム塩またはホスフィン化合物を用いることにより、好適に本発明の効果が得られる。すなわち、本発明に用いられる(B3)4級ホスホニウム塩および/またはホスフィン化合物として、上記一般式(XI)または(XII)のR34〜R40が、それぞれ炭素数1〜22の炭化水素基であることが好ましく、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。炭素数が23以上になると、理由は明確ではないが、接着性が不十分となる場合がある。ここで、炭素数1〜22の炭化水素基とは、炭素原子と水素原子のみからなる基であり、飽和炭化水素基および不飽和炭化水素基のいずれでも良く、環構造を含んでも含まなくても良い。炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、オレイル基、ドコシル基、ビニル基、2−プロピニル基、ベンジル基、フェニル基、シンナミル基、およびナフチルメチル基等が挙げられる。
また、炭素数1〜22の炭化水素基中のCH基が−O−により置換された場合の例としては、直鎖状のものとして、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、フェノキシエチル基、メトキシエトキシメチル基、メトキシエトキシエチル基、ポリエチレングリコール基、およびポリプロピレングリコール基等のポリエーテル基が挙げられる。また、環状のものとして、例えば、エチレンオキシド、テトラヒドロフラン、オキセパン、および1,3−ジオキソラン等が挙げられる。
また、炭素数1〜22の炭化水素基中のCH基が−O−CO−または−CO−O−により置換された場合の例としては、例えば、アセトキシメチル基、アセトキシエチル基、アセトキシプロピル基、アセトキシブチル基、メタクロイルオキシエチル基、およびベンゾイルオキシエチル基、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
また、炭素数1〜22の炭化水素基が水酸基を有する場合の例としては、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシシクロヘキシル基、ヒドロキシオクチル基、ヒドロキシデシル基、ヒドロキシドデシル基、ヒドロキシテトラデシル基、ヒドロキシヘキサデシル基、ヒドロキシオクタデシル基、ヒドロキシオレイル基、およびヒドロキシドコシル基等が挙げられる。
なかでも、(B3)4級ホスホニウム塩またはホスフィン化合物のR34〜R40の炭素数は、1〜14の範囲内であることが好ましい。炭素数が14未満であると、4級アンモニウム塩が反応促進剤として働く際に、立体障害が適度に小さく反応促進効果が高くなり、接着性がさらに向上する。
また、本発明において、上記一般式(XI)で示される(B3)4級ホスホニウム塩のR34〜R37の炭素数は、2以上であることが好ましく、より好ましくは3以上であり、さらに好ましくは4以上である。炭素数が2以上であると、4級ホスホニウム塩が開始剤としてはたらくことによるエポキシ樹脂の単独重合が抑えられ、接着性がさらに向上する。
また、本発明において、上記一般式(XII)で示される(B3)ホスフィン化合物のR39とR40は、それぞれ、炭素数1〜8の炭化水素基であることが好ましく、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。炭素数が8未満であると、分子中における活性部位の比率が高く、少量でも大きな接着性向上効果が得られる。
本発明において、(B3)4級ホスホニウム塩のカチオン部位の分子量は、100〜400g/molの範囲内であることが好ましく、より好ましくは100〜300g/molの範囲内であり、さらに好ましくは100〜200g/molの範囲内である。カチオン部位の分子量が100g/mol以上であると、熱処理中にも揮発が抑えられ、少量でも大きな接着性向上効果が得られる。一方、カチオン部位の分子量が400g/mol以下であると、分子中における活性部位の比率が高く、やはり少量でも大きな接着性向上効果が得られる。
本発明において、上記の一般式(VII)で示される脂肪族系4級ホスホニウム塩のカチオン部位としては、例えば、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラプロピルホスホニウム、テトラブチルホスホニウム、メチルトリエチルホスホニウム、メチルトリプロピルホスホニウム、メチルトリブチルホスホニウム、ジメチルジエチルホスホニウム、ジメチルジプロピルホスホニウム、ジメチルジブチルホスホニウム、トリメチルエチルホスホニウム、トリメチルプロピルホスホニウム、トリメチルブチルホスホニウム、(2−メトキシエトキシメチル)トリエチルホスホニウム、(2−アセトキシエチル)トリメチルホスホニウムクロリド、(2−アセトキシエチル)トリメチルホスホニウム、(2−ヒドロキシエチル)トリメチルホスホニウム、トリブチル−n−オクチルホスホニウム、トリブチルドデシルホスホニウム、トリブチルヘキサデシルホスホニウム、トリブチル(1,3−ジオキソラン−2−イルメチル)ホスホニウム、ジ−t−ブチルジメチルホスホニウム、およびトリヘキシルテトラデシルホスホニウムおよびビス(ポリオキシエチレン)ジメチルホスホニウム等が挙げられる。
また、上記の一般式(VII)で示される芳香族系4級ホスホニウム塩のカチオン部位としては、テトラフェニルホスホニウム、トリフェニルメチルホスホニウム、ジフェニルジメチルホスホニウム、エチルトリフェニルホスホニウム、n−ブチルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、イソプロピルトリフェニルホスホニウム、ビニルトリフェニルホスホニウム、アリルトリフェニルホスホニウム、トリフェニルプロパギルホスホニウム、t−ブチルトリフェニルホスホニウム、ヘプチルトリフェニルホスホニウム、トリフェニルテトラデシルホスホニウム、ヘキシルトリフェニルホスホニウム、(メトキシメチル)トリフェニルホスホニウム、2−ヒドロキシベンジルトリフェニルホスホニウム、(4−カルボキシブチル)トリフェニルホスホニウム、(3−カルボキシプロピル)トリフェニルホスホニウム、シンナミルトリフェニルホスホニウム、シクロプロピルトリフェニルホスホニウム、2−(1,3−ジオキサン−2−イル)エチルトリフェニルホスホニウム、1−(1,3−ジオキソラン−2−イル)エチルトリフェニルホスホニウム、(1,3−ジオキソラン−2−イル)メチルトリフェニルホスホニウム、4−エトキシベンジルトリフェニルホスホニウム、およびエトキシカルボニルメチル(トリフェニル)ホスホニウム等が挙げられる。
本発明において、(B3)4級ホスホニウム塩のアニオン部位としては、例えば、フッ化物アニオン、塩化物アニオン、臭化物アニオンおよびヨウ化物アニオンのハロゲンイオンが挙げられる。また、例えば、水酸化物アニオン、酢酸アニオン、シュウ酸アニオン、硫酸水素アニオン、安息香酸アニオン、ヨウ素酸アニオン、メチルスルホン酸アニオン、ベンゼンスルホン酸アニオン、テトラフェニルボレートイオン、テトラフルオロボレートイオン、ヘキサフルオロホスフェートイオン、ビス(トリフルオロメチルスルホニル)イミドイオン、およびトルエンスルホン酸アニオンが挙げられる。
本発明において、これらの4級ホスホニウム塩は、単独で用いても良いし複数種を併用しても良い。
本発明において、(B3)4級ホスホニウム塩としては、例えば、トリメチルオクタデシルホスホニウムクロリド、トリメチルオクタデシルホスホニウムブロミド、トリメチルオクタデシルホスホニウムヒドロキシド、トリメチルオクタデシルホスホニウムアセタート、トリメチルオクタデシルホスホニウム安息香酸塩、トリメチルオクタデシルホスホニウム−p−トルエンスルホナート、トリメチルオクタデシルホスホニウム塩酸塩、トリメチルオクタデシルホスホニウムテトラクロロヨウ素酸塩、トリメチルオクタデシルホスホニウム硫酸水素塩、トリメチルオクタデシルホスホニウムメチルスルファート、ベンジルトリメチルホスホニウムクロリド、ベンジルトリメチルホスホニウムブロミド、ベンジルトリメチルホスホニウムヒドロキシド、ベンジルトリメチルホスホニウムアセタート、ベンジルトリメチルホスホニウム安息香酸塩、ベンジルトリメチルホスホニウム−p−トルエンスルホナート、テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド、テトラブチルホスホニウムヒドロキシド、テトラブチルホスホニウムアセタート、テトラブチルホスホニウム安息香酸塩、テトラブチルホスホニウム−p−トルエンスルホナート、(2−メトキシエトキシメチル)トリエチルホスホニウムクロリド、(2−メトキシエトキシメチル)トリエチルホスホニウムブロミド、(2−メトキシエトキシメチル)トリエチルホスホニウムヒドロキシド、(2−メトキシエトキシメチル)トリエチルホスホニウム−p−トルエンスルホナート、(2−アセトキシエチル)トリメチルホスホニウムクロリド、(2−アセトキシエチル)トリメチルホスホニウムブロミド、(2−アセトキシエチル)トリメチルホスホニウムヒドロキシド、(2−アセトキシエチル)トリメチルホスホニウム−p−トルエンスルホナート、(2−ヒドロキシエチル)トリメチルホスホニウムクロリド、(2−ヒドロキシエチル)トリメチルホスホニウムブロミド、(2−ヒドロキシエチル)トリメチルホスホニウムヒドロキシド、(2−ヒドロキシエチル)トリメチルホスホニウム−p−トルエンスルホナート、ビス(ポリオキシエチレン)ジメチルホスホニウムクロリド、ビス(ポリオキシエチレン)ジメチルホスホニウムブロミド、ビス(ポリオキシエチレン)ジメチルホスホニウムヒドロキシド、ビス(ポリオキシエチレン)ジメチルホスホニウム−p−トルエンスルホナート、テトラフェニルホスホニウムブロミド、およびテトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。
また、上記一般式(XI)以外の(B3)4級ホスホニウム塩として、アセトニトリルトリフェニルホスホニウムクロリド、1H−ベンゾトリアゾール−1−イルオキシトリピロリジノホスホニウムヘキサフルオロホスファート、1H−ベンゾトリアゾール−1−イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファート、トランス−2−ブテン−1,4−ビス(トリフェニルホスホニウムクロリド)、(4−カルボキシブチル)トリフェニルホスホニウムブロミド、(3−カルボキシプロピル)トリフェニルホスホニウムブロミド、(2,4−ジクロロベンジル)トリフェニルホスホニウムクロリド、2−ジメチルアミノエチルトリフェニルホスホニウムブロミド、エトキシカルボニルメチル(トリフェニル)ホスホニウムブロミド、(ホルミルメチル)トリフェニルホスホニウムクロリド、N−メチルアニリノトリフェニルホスホニウムヨージド、およびフェナシルトリフェニルホスホニウムブロミド等が例示され、これらの4級ホスホニウム塩も本発明の(B3)4級ホスホニウム塩として使用可能である。
また、上記一般式(XII)で示されるホスフィン化合物としては、例えば、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリ−t−ブチルホスフィン、トリペンチルホスフィン、トリヘキシルホスフィン、トリシクロペンチルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリ(2−フリル)ホスフィン、ジメチルプロピルホスフィン、ジメチルブチルホスフィン、ジメチルペンチルホスフィン、ジメチルヘキシルホスフィン、ジメチルシクロヘキシルホスフィン、ジメチルオクチルホスフィン、ジメチルデシルホスフィン、ジメチルドデシルホスフィン、ジメチルテトラデシルホスフィン、ジメチルヘキサデシルホスフィン、ジメチルオクタデシルホスフィン、ジメチルオレイルホスフィン、ジメチルドコシルホスフィン、ジエチルプロピルホスフィン、ジエチルブチルホスフィン、ジエチルペンチルホスフィン、ジエチルヘキシルホスフィン、ジエチルシクロヘキシルホスフィン、ジエチルオクチルホスフィン、ジエチルデシルホスフィン、ジエチルドデシルホスフィン、ジエチルテトラデシルホスフィン、ジエチルヘキサデシルホスフィン、ジエチルオクタデシルホスフィン、ジエチルオレイルホスフィン、ジエチルドコシルホスフィン、ジエチルフェニルホスフィン、エチルジフェニルホスフィン、ジプロピルメチルホスフィン、ジプロピルエチルホスフィン、ジプロピルブチルホスフィン、ジブチルメチルホスフィン、ジブチルエチルホスフィン、ジブチルプロピルホスフィン、ジヘキシルメチルホスフィン、ジヘキシルエチルホスフィン、ジヘキシルプロピルホスフィン、ジヘキシルブチルホスフィン、ジシクロヘキシルメチルホスフィン、ジシクロヘキシルエチルホスフィン、ジシクロヘキシルプロピルホスフィン、ジシクロヘキシルブチルホスフィン、ジシクロヘキシルフェニルホスフィン、ジオクチルメチルホスフィン、ジオクチルエチルホスフィン、ジオクチルプロピルホスフィン、ジデシルメチルホスフィン、ジデシルエチルホスフィン、ジデシルプロピルホスフィン、ジデシルブチルホスフィン、ジドデシルメチルホスフィン、ジドデシルエチルホスフィン、ジドデシルプロピルホスフィン、ジドデシルブチルホスフィン、ジテトラデシルメチルホスフィン、ジテトラデシルエチルホスフィン、ジテトラデシルプロピルホスフィン、ジテトラデシルブチルホスフィン、ジヘキサデシルメチルホスフィン、ジヘキサデシルエチルホスフィン、ジヘキサデシルプロピルホスフィン、ジヘキサデシルブチルホスフィン、トリメタノールホスフィン、トリエタノールホスフィン、トリプロパノールホスフィン、トリブタノールホスフィン、トリヘキサノールホスフィン、ジエチルメタノールホスフィン、ジプロピルメタノールホスフィン、ジイソプロピルメタノールホスフィン、ジブチルメタノールホスフィン、ジイソブチルメタノールホスフィン、ジ−t−ブチルメタノールホスフィン、ジ(2−エチルヘキシル)メタノールホスフィン、ジメチルエタノールホスフィン、ジエチルエタノールホスフィン、ジプロピルエタノールホスフィン、ジイソプロピルエタノールホスフィン、ジブチルエタノールホスフィン、ジイソブチルエタノールホスフィン、ジ−t−ブチルエタノールホスフィン、ジ−t−ブチルフェニルホスフィン、ジ(2−エチルヘキシル)エタノールホスフィン、ジメチルプロパノールホスフィン、ジエチルプロパノールホスフィン、ジプロピルプロパノールホスフィン、ジイソプロピルプロパノールホスフィン、ジブチルプロパノールホスフィン、ジイソブチルプロパノールホスフィン、ジ−t−ブチルプロパノールホスフィン、ジ(2−エチルヘキシル)プロパノールホスフィン、メチルジメタノールホスフィン、エチルジメタノールホスフィン、プロピルジメタノールホスフィン、イソプロピルジメタノールホスフィン、ブチルジメタノールホスフィン、イソブチルジメタノールホスフィン、t−ブチルジメタノールホスフィン、(2−エチルヘキシル)ジメタノールホスフィン、メチルジエタノールホスフィン、エチルジエタノールホスフィン、プロピルジエタノールホスフィン、イソプロピルジエタノールホスフィン、ブチルジエタノールホスフィン、イソブチルジエタノールホスフィン、t−ブチルジエタノールホスフィン、(2−エチルヘキシル)ジエタノールホスフィン、イソプロピルフェニルホスフィン、メトキシジフェニルホスフィン、エトキシジフェニルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルエチルホスフィン、ジフェニルシクロヘキシルホスフィン、ジフェニルプロピルホスフィン、ジフェニルブチルホスフィン、ジフェニル−t−ブチルホスフィン、ジフェニルペンチルホスフィン、ジフェニルヘキシルホスフィン、ジフェニルオクチルホスフィン、ジフェニルベンジルホスフィン、フェノキシジフェニルホスフィン、ジフェニル−1−ピレニルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリ−n−オクチルホスフィン、トリ−o−トリルホスフィン、トリ−m−トリルホスフィン、およびトリス−2,6−ジメトキシフェニルホスフィン等が挙げられる。
また、上記一般式(XII)以外の(B3)ホスフィンとして、フェニル−2−ピリジルホスフィン、トリフェニルホスフィンオキサイド、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、および1,4−ビス(ジフェニルホスフィノ)ブタン等が挙げられる。
本発明において、前記の一般式(XI)で示される化合物は、テトラブチルホスホニウムブロミド、テトラフェニルホスホニウムブロミドが好ましい。
本発明において、前記の一般式(XII)で示される化合物は、トリブチルホスフィン、トリフェニルホスフィンが好ましい。
本発明において、サイジング剤は、(A)成分と、(B)成分以外の成分を1種類以上含んでも良い。例えば、ポリエチレンオキサイドやポリプロピレンオキサイド等のポリアルキレンオキサイド、高級アルコール、多価アルコール、アルキルフェノール、およびスチレン化フェノール等にポリエチレンオキサイドやポリプロピレンオキサイド等のポリアルキレンオキサイドが付加した化合物、およびエチレンオキサイドとプロピレンオキサイドとのブロック共重合体等のノニオン系界面活性剤が好ましく用いられる。また、本発明の効果に影響しない範囲で、適宜、ポリエステル樹脂、および不飽和ポリエステル化合物等を添加してもよい。
本発明において、サイジング剤を溶媒で希釈して用いることができる。このような溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド、およびジメチルアセトアミドが挙げられるが、なかでも、取扱いが容易であり、安全性の観点から有利であることから、水が好ましく用いられる。
本発明において、サイジング剤の付着量は、炭素繊維100質量部に対して、0.1〜10質量部の範囲であることが好ましく、より好ましくは0.2〜3質量部の範囲である。サイジング剤の付着量が0.1質量部以上であると、炭素繊維を成形材料にする際に、通過する金属ガイド等による摩擦に耐えることができ、毛羽発生が抑えられ、炭素繊維シートの平滑性などの品位が優れる。一方、サイジング剤の付着量が10質量部以下であると、炭素繊維束周囲のサイジング剤膜に阻害されることなくエポキシ樹脂等の熱可塑性樹脂が炭素繊維束内部に含浸され、得られる複合材料においてボイド生成が抑えられ、複合材料の品位が優れ、同時に機械物性が優れる。
本発明において、炭素繊維に塗布され乾燥されたサイジング剤層の厚さは、2〜20nmの範囲内で、かつ、厚さの最大値が最小値の2倍を超えないことが好ましい。このような厚さの均一なサイジング剤層により、安定して大きな接着性向上効果が得られ、さらには、安定して高次加工性が優れる。
本発明において、サイジング剤を塗布する炭素繊維としては、例えば、ポリアクリロニトリル(PAN)系、レーヨン系およびピッチ系の炭素繊維が挙げられる。なかでも、強度と弾性率のバランスに優れたPAN系炭素繊維が好ましく用いられる。
次に、PAN系炭素繊維の製造方法について説明する。
炭素繊維の前駆体繊維を得るための紡糸方法としては、湿式、乾式および乾湿式等の紡糸方法を用いることができる。なかでも、高強度の炭素繊維が得られやすいという観点から、湿式あるいは乾湿式紡糸方法を用いることが好ましい。紡糸原液には、ポリアクリロニトリルのホモポリマーあるいは共重合体の溶液や懸濁液等を用いることができる。
上記の紡糸原液を口金に通して紡糸、凝固、水洗、延伸して前駆体繊維とし、得られた前駆体繊維を耐炎化処理と炭化処理し、必要によってはさらに黒鉛化処理をすることにより炭素繊維を得る。炭化処理と黒鉛化処理の条件としては、最高熱処理温度が1100℃以上であることが好ましく、より好ましくは1400〜3000℃である。
本発明において、強度と弾性率の高い炭素繊維を得られるという観点から、細繊度の炭素繊維が好ましく用いられる。具体的には、炭素繊維の単繊維径が、7.5μm以下であることが好ましく、6μm以下であることがより好ましく、さらには5.5μm以下であることが好ましい。単繊維径の下限は特にないが、4.5μm以下では工程における単繊維切断が起きやすく生産性が低下する場合がある。
得られた炭素繊維は、熱可塑性樹脂との接着性を向上させるために、通常、酸化処理が施され、酸素含有官能基が導入される。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。
本発明において、液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられる。
酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。
アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、熱可塑性樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウムおよび炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。
本発明において、(A)エポキシ化合物と、炭素繊維表面の酸素含有官能基との共有結合形成が促進され、接着性がさらに向上するという観点から、炭素繊維をアルカリ性電解液で電解処理した後、または酸性水溶液中で電解処理し、続いてアルカリ性水溶液で洗浄した後、サイジング剤を塗布することが好ましい。電解処理した場合、炭素繊維表面において過剰に酸化された部分が脆弱層となって界面に存在し、複合材料にした場合の破壊の起点となる場合があるため、過剰に酸化された部分をアルカリ性水溶液で溶解除去することにより共有結合形成が促進されるものと考えられる。また、炭素繊維表面に酸性電解液の残渣が存在すると、残渣中のプロトンが(B)成分に補足され、本来果たすべき役割である(B)成分による炭素繊維表面の酸素含有官能基の水素イオンを引き抜く効果が低下する場合がある。このため、酸性水溶液中で電解処理し、続いてアルカリ性水溶液で酸性電解液を中和洗浄することが好ましい。上記の理由から、特定の処理を施した炭素繊維とサイジング剤の組み合わせにより、さらなる接着向上を得ることができる。
本発明において用いられる電解液の濃度は、0.01〜5モル/リットルの範囲内であることが好ましく、より好ましくは0.1〜1モル/リットルの範囲内である。電解液の濃度が0.01モル/リットル以上であると、電解処理電圧が下げられ、運転コスト的に有利になる。一方、電解液の濃度が5モル/リットル以下であると、安全性の観点から有利になる。
本発明において用いられる電解液の温度は、10〜100℃の範囲内であることが好ましく、より好ましくは10〜40℃の範囲内である。電解液の温度が10℃以上であると、電解処理の効率が向上し、運転コスト的に有利になる。一方、電解液の温度が100℃以下であると、安全性の観点から有利になる。
本発明において、液相電解酸化における電気量は、炭素繊維の炭化度に合わせて最適化することが好ましく、高弾性率の炭素繊維に処理を施す場合、より大きな電気量が必要である。
本発明において、液相電解酸化における電流密度は、電解処理液中の炭素繊維の表面積1m当たり1.5〜1000アンペア/mの範囲内であることが好ましく、より好ましくは3〜500アンペア/mの範囲内である。電流密度が1.5アンペア/m以上であると、電解処理の効率が向上し、運転コスト的に有利になる。一方、電流密度が1000アンペア/m以下であると、安全性の観点から有利になる。
本発明において、(A)エポキシ化合物と、炭素繊維表面の酸素含有官能基との共有結合形成が促進され、接着性がさらに向上するという観点から、酸化処理の後、炭素繊維をアルカリ性水溶性で洗浄することが好ましい。なかでも、酸性電解液で液相電解処理し、続いてアルカリ性水溶液で洗浄することが好ましい。
本発明において、洗浄に用いられるアルカリ性水溶液のpHは、7〜14の範囲内であることが好ましく、より好ましくは10〜14の範囲内である。アルカリ性水溶液としては、具体的には水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、熱可塑性樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウム、炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。
本発明において、炭素繊維をアルカリ性水溶液で洗浄する方法としては、例えば、ディップ法とスプレー法を用いることができる。なかでも、洗浄が容易であるという観点から、ディップ法を用いることが好ましく、さらには、炭素繊維を超音波で加振させながらディップ法を用いることが好ましい態様である。
本発明において、炭素繊維を電解処理またはアルカリ性水溶液で洗浄した後、水洗および乾燥することが好ましい。この場合、乾燥温度が高すぎると炭素繊維の最表面に存在する官能基は熱分解により消失し易いため、できる限り低い温度で乾燥することが望ましく、具体的には乾燥温度が好ましくは250℃以下、さらに好ましくは210℃以下で乾燥することが好ましい。
サイジング剤の炭素繊維への付与(塗布)手段としては、例えば、ローラを介してサイジング液に炭素繊維を浸漬する方法、サイジング液の付着したローラに炭素繊維を接する方法、サイジング液を霧状にして炭素繊維に吹き付ける方法などがある。また、サイジング剤の付与手段は、バッチ式と連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましく用いられる。この際、炭素繊維に対するサイジング剤有効成分の付着量が適正範囲内で均一に付着するように、サイジング液濃度、温度および糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に、炭素繊維を超音波で加振させることも好ましい態様である。
本発明においては、炭素繊維にサイジング剤を塗布した後、160〜260℃の温度範囲で30〜600秒間熱処理することが必要である。熱処理条件は、好ましくは170〜250℃の温度範囲で30〜500秒間であり、より好ましくは180〜240℃の温度範囲で30〜300秒間である。熱処理条件が、160℃未満および/または30秒未満であると、サイジング剤のエポキシ樹脂と炭素繊維表面の酸素含有官能基との間の共有結合形成が促進されず、炭素繊維と熱可塑性樹脂との接着性が不十分となる。一方、熱処理条件が、260℃を超えるおよび/または600秒を超える場合、3級アミン化合物および/または3級アミン塩の揮発が起きて、共有結合形成が促進されず、炭素繊維と熱可塑性樹脂との接着性が不十分となる。
また、前記熱処理は、マイクロ波照射および/または赤外線照射で行うことも可能である。マイクロ波照射および/または赤外線照射により炭素繊維を加熱処理した場合、マイクロ波が炭素繊維内部に侵入し、吸収されることにより、短時間に被加熱物である炭素繊維を所望の温度に加熱できる。また、マイクロ波照射および/または赤外線照射により、炭素繊維内部の加熱も速やかに行うことができるため、炭素繊維束の内側と外側の温度差を小さくすることができ、サイジング剤の接着ムラを小さくすることが可能となる。
本発明において、得られた炭素繊維束のストランド強度が、3.5GPa以上であることが好ましく、より好ましくは4GPa以上であり、さらに好ましくは5GPaである。また、得られた炭素繊維束のストランド弾性率が、220GPa以上であることが好ましく、より好ましくは240GPa以上であり、さらに好ましくは280GPa以上である。
本発明において、上記の炭素繊維束のストランド引張強度と弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めることができる。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、130℃、30分を用いる。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。
本発明において、炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.05〜0.50の範囲内であるものが好ましく、より好ましくは0.06〜0.30の範囲内のものであり、さらに好ましくは0.07〜0.20の範囲内のものである。表面酸素濃度(O/C)が0.05以上であることにより、炭素繊維表面の酸素含有官能基を確保し、熱可塑性樹脂との強固な接着を得ることができる。また、表面酸素濃度(O/C)が0.5以下であることにより、酸化による炭素繊維自体の強度の低下を抑えることができる。
炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順に従って求めたものである。まず、溶剤で炭素繊維表面に付着している汚れなどを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×10−8Torrに保つ。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を、1202eVに合わせる。C1sピーク面積を、K.E.として1191〜1205eVの範囲で直線のベースラインを引くことにより求める。O1sピーク面積を、K.E.として947〜959eVの範囲で直線のベースラインを引くことにより求める。
ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用い、上記装置固有の感度補正値は2.33であった。
続いて、本発明にかかる成形材料および炭素繊維強化複合材料について説明する。本発明にかかる成形材料は、上述のサイジング剤塗付炭素繊維と熱可塑性樹脂とから構成される。図1に示すように、本発明の成形材料1は、円柱状をなし、複数の炭素繊維2が、円柱の軸心方向にほぼ平行に配列し、炭素繊維の周囲は熱可塑性樹脂3で覆われている。すなわち、炭素繊維2が円柱の芯構造を構成し、熱可塑性樹脂3が炭素繊維2からなる芯構造を被覆する鞘構造をなしている。本発明の成形材料1は、炭素繊維2と熱可塑性樹脂3とにより芯鞘構造を構成すれば、円柱状のほか、角柱状、楕円柱状等その形状を問うものではない。なお、本明細書において、「ほぼ平行に配列」とは、炭素繊維の長軸の軸線と、成形材料1の長軸の軸線とが、同方向を指向している状態を意味し、軸線同士の角度のずれが、好ましくは20°以下であり、より好ましくは10°以下であり、さらに好ましくは5°以下である。
また、本発明の成形材料1において、炭素繊維の長さと成形材料の長さLが実質的に同じである長繊維ペレットであることが好ましい。なお、本明細書において、「長さが実質的に同じ」とは、ペレット状の成形材料1において、ペレット内部の途中で炭素繊維2が切断されていたり、成形材料1の全長よりも有意に短い炭素繊維2が実質的に含まれたりしないことを意味している。特に、成形材料1の長さLよりも短い炭素繊維の量について限定する必要はないが、成形材料1の長さLの50%以下の長さの炭素繊維の含有量が30質量%以下である場合には、成形材料1の全長よりも有意に短い炭素繊維束が実質的に含まれていないと評価する。さらに、成形材料1の全長の50%以下の長さの炭素繊維の含有量は20質量%以下であることが好ましい。なお、成形材料1の全長とは成形材料1中の炭素繊維配向方向の長さLである。炭素繊維2が成形材料1と同等の長さを持つことで、成形品中の炭素繊維長を長くすることが出来るため、優れた力学特性を得ることができる。
本発明の成形材料は、好ましくは1〜50mmの範囲の長さに切断して用いられる。前記の長さに調製することにより、成形時の流動性、取扱性を十分に高めることができる。また、本発明の成形材料は、連続、長尺のままでも成形法によっては使用可能である。例えば、熱可塑性ヤーンプリプレグとして、加熱しながらマンドレルに巻き付け、ロール状成形品を得たりすることができる。
本発明の成形材料に使用する熱可塑性樹脂3としては、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン、酸変性ポリエチレン(m−PE)、酸変性ポリプロピレン(m−PP)、酸変性ポリブチレン等のポリオレフィン系樹脂;ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)等のポリアリーレンスルフィド樹脂;ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN);ポリテトラフルオロエチレン等のフッ素系樹脂;液晶ポリマー(LCP)」等の結晶性樹脂、「ポリスチレン(PS)、アクリロニトリルスチレン(AS)、アクリロニトリルブタジエンスチレン(ABS)等のスチレン系樹脂、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、未変性または変性されたポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」等の非晶性樹脂;フェノール系樹脂、フェノキシ樹脂、さらにポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリブタジエン系エラストマー、ポリイソプレン系エラストマー、フッ素系樹脂およびアクリロニトリル系エラストマー等の各種熱可塑エラストマー等、これらの共重合体および変性体等から選ばれる少なくとも1種の熱可塑性樹脂が好ましく用いられる。なお、熱可塑性樹脂としては、本発明の目的を損なわない範囲で、これらの熱可塑性樹脂を複数種含む熱可塑性樹脂組成物が用いられても良い。
また、本発明の成形材料として、炭素繊維2と熱可塑性樹脂3との間に含浸助剤を設けたものが好適に使用できる。図2は、本発明に係る成形材料1Aの斜視図である。成形材料1Aは、複数の炭素繊維2が、円柱の軸心方向にほぼ平行に配列し、炭素繊維2の周囲を含浸助剤4で覆うとともに、含浸助剤4の周囲を熱可塑性樹脂3で被覆する構成をなす。成形材料を成形して得た成形品の力学特性を向上するためには、一般に高分子量の熱可塑性樹脂を使用することが好ましいが、高分子量の熱可塑性樹脂は、溶融粘度が高く、炭素繊維束中に含浸し難いという問題を有している。一方、炭素繊維束中への熱可塑性樹脂の含浸性を向上するためには、溶融粘度が低い低分子量の熱可塑性樹脂を使用することが好ましいが、低分子量の熱可塑性樹脂を使用した成形品は力学特性が大幅に低下してしまう。
そこで、比較的低分子量の樹脂(プレポリマー)を含浸助剤4として炭素繊維2束中に含浸させた後、比較的高分子量の熱可塑性樹脂3をマトリックス樹脂として使用することにより、力学的特性に優れた成形材料を生産性よく製造することができる。
以下、含浸助剤を使用する成形材料についての好適な形態を説明する。
熱可塑性樹脂としてポリアリーレンスルフィド樹脂を使用する場合、含浸助剤、すなわち(C)成分として、質量平均分子量が10,000以上であり、かつ質量平均分子量/数平均分子量で表される分散度が2.5以下であるポリアリーレンスルフィド[d](以下、PASと略する)を使用することが好ましく、含浸助剤であるPASは、炭素繊維100質量部に対して、0.1〜100質量部となるように使用することが好適である。
含浸助剤であるPASの分子量は、質量平均分子量で10,000以上、好ましくは15,000以上、より好ましくは18,000以上である。質量平均分子量が10,000未満では、より高温(例えば、360℃)での成形加工時に低分子量成分が熱分解反応を起こし、分解ガスを発生させて成形設備周辺の環境汚染を引き起こす場合がある。質量平均分子量の上限に特に制限は無いが、1,000,000以下を好ましい範囲として例示でき、より好ましくは500,000以下、さらに好ましくは200,000以下であり、この範囲内では高い含浸性、ならびに成形加工性を得ることができる。
PASの分子量分布の広がり、すなわち質量平均分子量と数平均分子量の比(質量平均分子量/数平均分子量)で表される分散度は2.5以下であり、2.3以下が好ましく、2.1以下がより好ましく、2.0以下がさらに好ましい。分散度が大きくなるにともない、PASに含まれる低分子成分の量が多くなる傾向があり、前記同様に成形設備周辺の環境汚染を引き起こす場合がある。なお、前記質量平均分子量および数平均分子量は例えば示差屈折率検出器を具備したSEC(サイズ排除クロマトグラフィー)を使用して求めることができる。
PASは、炭素繊維100質量部に対して、好ましくは0.1〜100質量部、より好ましくは10〜70質量部、さらに好ましくは15〜30質量部とする。PASを炭素繊維100質量部に対して0.1〜100質量部とすることにより、高力学特性の成形品を生産性よく製造することができる。
熱可塑性樹脂としてポリアミド樹脂を使用する場合、含浸助剤、すなわち(C)成分として、[e]フェノール系重合体を使用することが好ましく、[e]フェノール系重合体を、炭素繊維100質量部に対して0.1〜100質量部となるように使用することが好適である。
含浸助剤として使用するフェノール系重合体としては、例えば、フェノールもしくはフェノールの置換基誘導体(前駆体a)と、二重結合を2個有する炭化水素(前駆体b)の縮合反応により得られるフェノール系重合体が挙げられる。
上記前駆体aとしては、フェノールのベンゼン環上に、アルキル基、ハロゲン原子、水酸基より選ばれる置換基を1〜3個有するものが好ましく用いられる。具体的には、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、t−ブチルフェノール、ノニルフェノール、3,4,5−トリメチルフェノール、クロロフェノール、ブロモフェノール、クロロクレゾール、ヒドロキノン、レゾルシノール、オルシノールなどの例が挙げられ、これらは1種もしくは2種以上を併用しても良い。特に、フェノール、クレゾールが好ましく用いられる。
上記前駆体bとしては、ブタジエン、イソプレン、ペンタジエン、ヘキサジエンなどの脂肪族炭化水素、シクロヘキサジエン、ビニルシクロヘキセン、シクロヘプタジエン、シクロオクタジエン、2,5−ノルボルナジエン、テトラヒドロインデン、ジシクロペンタジエン、単環式モノテルペン(ジペンテン、リモネン、テルピノレン、テルピネン、フェランドレン)、二環式セスキテルペン(カジネン、セリネン、カリオフィレン)などの脂環式炭化水素が挙げられ、これらは1種または2種以上を併用しても良い。特に、単環式モノテルペン、ジシクロペンタジエンが好ましく用いられる。
フェノール系重合体は、炭素繊維100質量部に対して、好ましくは0.1〜100質量部、より好ましくは10〜70質量部、さらに好ましくは15〜30質量部とする。フェノール系重合体を炭素繊維100質量部に対して0.1〜100質量部とすることにより、高力学特性の成形品を生産性よく製造することができる。
熱可塑性樹脂としてポリオレフィン系樹脂を使用する場合、含浸助剤、すなわち(C)成分として、[f]テルペン系樹脂を使用することが好ましく、[f]テルペン系樹脂を炭素繊維100質量部に対して、0.1〜100質量部となるように使用することが好適である。
含浸助剤として使用するテルペン系樹脂として、有機溶媒中でフリーデルクラフツ型触媒存在下、テルペン単量体単独若しくは、テルペン単量体と芳香族単量体等と共重合体して得られる重合体からなる樹脂が挙げられる。
テルペン系樹脂は、ポリオレフィン系樹脂よりも溶融粘度が低い熱可塑性重合体であり、射出成形やプレス成形などの最終形状への成形工程において、樹脂組成物の粘度を下げ、成形性を向上することが可能である。この際、テルペン系樹脂は、ポリオレフィン系樹脂との相溶性が良いことから、効果的に成形性向上することができる。
テルペン単量体としては、α−ピネン、β−ピネン、ジペンテン、d−リモネン、ミルセン、アロオシメン、オシメン、α−フェランドレン、α−テルピネン、γ−テルピネン、テルピノーレン、1,8−シネオール、1,4−シネオール、α−テルピネオール、β−テルピネオール、γ−テルピネオール、サビネン、パラメンタジエン類、カレン類等の単環式モノテルペンが挙げられる。また、芳香族単量体としては、スチレン、α−メチルスチレン等が挙げられる。
中でも、α−ピネン、β−ピネン、ジペンテン、d−リモネンがポリオレフィン系樹脂との相溶性がよく好ましく、さらに、該化合物の単独重合体がより好ましい。また、該テルペン系樹脂を水素添加処理して得られた水素化テルペン系樹脂が、よりポリオレフィン系樹脂との相溶性がよくなるため好ましい。
また、テルペン系樹脂のガラス転移温度は、30〜100℃であることが好ましい。これは、本発明の樹脂組成物の取扱性を良好にするためである。ガラス転移温度が30℃以下であると、成形加工時にテルペン系樹脂が半固形、もしくは液状になり、定量的に材料投入できないことがある。また、ガラス転移温度が100℃以上であると、成形加工時のテルペン系樹脂の固化が早く、成形性を向上できないことがある。
また、テルペン系樹脂の数平均分子量は、500〜5000であることが好ましい。数平均分子量が500以下では、テルペン系樹脂の機械強度が低いために、成形品の機械特性を損ねることがある。また、5000以上ではテルペン系樹脂の粘度が上がり、成形性を向上できないことがあり、本発明の成形材料を用いて成形加工を行う際に、含浸助剤の数平均分子量を低くすることで、含浸助剤が炭素繊維、含浸助剤、ポリオレフィン樹脂の混合物内を最も流動し、移動しやすくするためである。
さらに、テルペン系樹脂は、ポリオレフィン系樹脂組成物の成形性を効果的に向上させるために、ポリオレフィン系樹脂と相溶する必要がある。ここで、ポリオレフィン系樹脂のSP値は種類によるが、この値は通常8〜9程度であることから、テルペン系樹脂のSP値は、6.5〜9.5であることを必要とする。より好ましくは、7.5〜9である。SP値が6.5〜9.5の範囲以外では、ポリオレフィン系樹脂と相溶しにくい傾向にあり、成形性向上しにくい。
ここでSP値とは、溶解度パラメーターであり、2成分のSP値が近いほど溶解度が大となることが経験的に得られている。SP値の決定法は幾種類か知られているが、比較においては同一の決定法を用いればよい。具体的には、Fedorsの方法を用いることが望ましい(参照 SP値基礎・応用と計算、2005年3月31日 第1版、発行者 谷口彰敏、発行 株式会社情報機構、66〜67頁)。
テルペン系樹脂は、炭素繊維100質量部に対して、好ましくは0.1〜100質量部、より好ましくは10〜70質量部、さらに好ましくは15〜30質量部とする。テルペン系樹脂を炭素繊維100質量部に対して0.1〜100質量部とすることにより、高力学特性の成形品を生産性よく製造することができる。
さらに熱可塑性樹脂がポリオレフィン系樹脂を使用する場合、含浸助剤、すなわち(C)成分として、[g]第1のプロピレン系樹脂および、[h]アシル基を側鎖に有する第2のプロピレン系樹脂の混合物を使用することが好ましく、[g]第1のプロピレン系樹脂と[h]アシル基を側鎖に有する第2のプロピレン系樹脂の混合物とを、炭素繊維100質量部に対して、0.1〜100質量部とすることが好適である。
含浸助剤として使用する[g]第1のプロピレン系樹脂は、プロピレンの単独重合体またはプロピレンと少なくとも1種のα−オレフィン、共役ジエン、非共役ジエンなどとの共重合体が挙げられる。
α−オレフィンを構成する単量体繰り返し単位には、例えば、エチレン、1−ブテン、3−メチル−1−ブテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4ジメチル−1−ヘキセン、1−ノネン、1−オクテン、1−ヘプテン、1−ヘキセン、1−デセン、1−ウンデセン、1−ドデセン等のプロピレンを除く炭素数2〜12のα−オレフィン、共役ジエン、非共役ジエンを構成する単量体繰り返し単位にはブタジエン、エチリデンノルボルネン、ジシクロペンタジエン、1,5−ヘキサジエン等が挙げられ、これらその他の単量体繰り返し単位には、1種類または2種類以上を選択することができる。
[g]第1のプロピレン系樹脂の骨格構造としては、プロピレンの単独重合体、プロピレンと前記その他の単量体のうちの1種類または2種類以上のランダムあるいはブロック共重合体、または他の熱可塑性単量体との共重合体等を挙げることができる。例えば、ポリプロピレン、エチレン・プロピレン共重合体、プロピレン・1−ブテン共重合体、エチレン・プロピレン・1−ブテン共重合体などが好適なものとして挙げられる。
とりわけ、ポリオレフィン系樹脂との親和性を高めるために、[g]第1のプロピレン系樹脂はプロピレンから導かれる構成単位を50モル%以上有してなることが好ましい。さらに、[g]第1のプロピレン系樹脂の結晶性を落として[h]第2のプロピレン系樹脂との親和性を高め、得られる成形品の強度を高めるために、[g]第1のプロピレン系樹脂はプロピレンから導かれる構成単位を50〜99モル%有してなることが好ましく、より好ましくは55〜98モル%、さらに好ましくは60〜97モル%を有してなることである。 プロピレン系樹脂における前記単量体繰り返し単位の同定には、IR、NMR、質量分析および元素分析等の通常の高分子化合物の分析手法を用いて行うことができる。
[h]第2のプロピレン系樹脂の原料としては、ポリプロピレン、エチレン・プロピレン共重合体、プロピレン・1−ブテン共重合体、エチレン・プロピレン・1−ブテン共重合体で代表される、プロピレンとα−オレフィンの単独または2種類以上との共重合体に、中和されているか、中和されていないアシル基を有する単量体、および/またはケン化されているか、ケン化されていないカルボン酸エステルを有する単量体を、グラフト重合することにより得ることができる。上記プロピレンとα−オレフィンの単独または2種類以上との共重合体の単量体繰り返し単位および骨格構造は、[g]第1のプロピレン系樹脂と同様の考えで選定することができる。
ここで、中和されているか、中和されていないアシル基を有する単量体、およびケン化されているか、ケン化されていないカルボン酸エステル基を有する単量体としては、たとえば、エチレン系不飽和カルボン酸、その無水物が挙げられ、またこれらのエステル、さらにはオレフィン以外の不飽和ビニル基を有する化合物なども挙げられる。
エチレン系不飽和カルボン酸としては、(メタ)アクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸などが例示され、その無水物としては、ナジック酸(登録商標)(エンドシス−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸)、無水マレイン酸、無水シトラコン酸などが例示できる。
強化繊維との相互作用を高める観点から、[h]第2のプロピレン系樹脂の重合体鎖に結合したカルボン酸塩の含有量は、[h]第2のプロピレン系樹脂1g当たり、−C(=O)−O−で表されるアシル基換算で総量0.05〜5ミリモル当量であることが好ましい。より好ましくは0.1〜4ミリモル当量、さらに好ましくは0.3〜3ミリモル当量である。上記のようなカルボン酸塩の含有量を分析する手法としては、ICP発光分析で塩を形成している金属種の検出を定量的に行う方法や、IR、NMRおよび元素分析等を用いてカルボン酸塩のカルボニル炭素の定量をおこなう方法が挙げられる。
本発明の成形材料において、[g]第1のプロピレン系樹脂および[h]第2のプロピレン系樹脂との混合物を炭素繊維束に含浸することで、本発明の成形材料を射出成形すると、射出成形機のシリンダー内で溶融混練された、[g]第1のプロピレン系樹脂および[h]第2のプロピレン系樹脂との混合物が、ポリオレフィン系樹脂に拡散し、炭素繊維束がポリオレフィン系樹脂に分散することを助け、同時にポリオレフイン系樹脂が炭素繊維束に置換、含浸することを助ける。この役割を達成するうえで、[g]第1のプロピレン系樹脂、[h]第2のプロピレン系樹脂、ポリオレフィン系樹脂の質量平均分子量の序列がポリオレフィン系樹脂>[g]第1のプロピレン系樹脂>[h]第2のプロピレン系樹脂であれば、[g]第1のプロピレン系樹脂、[h]第2のプロピレン系樹脂成分が容易にポリオレフィン系樹脂中に拡散可能となる。
上記した含浸性・分散性を奏する観点および[g]第1のプロピレン系樹脂との分子鎖同士の絡み合いを形成し、[g]第1のプロピレン系樹脂との相互作用を高める観点とから、[h]第2のプロピレン系樹脂の質量平均分子量Mwは、1,000〜50,000であることが好ましい。より好ましくは2,000〜40,000、さらに好ましくは5,000〜30,000である。なお質量平均分子量の測定はゲルパーミエーションクロマトグラフィー(GPC)を用いて測定する。
また、[g]第1のプロピレン系樹脂は、上記した含浸性・分散性を奏する観点およびポリオレフィン系樹脂との親和性の観点から、質量平均分子量Mwが30,000以上150,000未満であるプロピレン系樹脂(g−1)を30〜100質量%と、質量平均分子量Mwが150,000以上500,000以下であるプロピレン系樹脂(g−2)を0〜70質量%とを有してなることが好ましい。プロピレン系樹脂(g−2)の質量平均分子量Mwが大きくなりすぎると、含浸性・分散性を奏することが困難になる場合があり、上記する範囲内とすることが好ましい。
[g]第1のプロピレン系樹脂と[h]アシル基を側鎖に有する第2のプロピレン系樹脂の混合物は、炭素繊維100質量部に対して、好ましくは0.1〜100質量部、より好ましくは10〜70質量部、さらに好ましくは15〜30質量部とする。[g]第1のプロピレン系樹脂と[h]アシル基を側鎖に有する第2のプロピレン系樹脂の混合物を炭素繊維100質量部に対して0.1〜100質量部とすることにより、高力学特性の成形品を生産性よく製造することができる。
以下、上記好ましい熱可塑性樹脂を用いた場合の(A)との相互作用について説明する。
ポリアリーレンスルフィド樹脂の場合、末端にあるチオール基やカルボキシル基と、(A1)に含まれるエポキシ基との共有結合、主鎖にあるスルフィド基と(A1)に含まれるエポキシ基や(A2)に含まれる水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。
また、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂またはポリオキシメチレン樹脂の場合、末端にある水酸基と、(A1)に含まれるエポキシ基との共有結合、主鎖にあるエーテル基と、(A1)に含まれるエポキシ基や(A2)に含まれる水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。
また、ポリアミド樹脂の場合、末端にあるカルボキシル基やアミノ基と、(A1)に含まれるエポキシ基との共有結合、主鎖にあるアミド基と(A1)に含まれるエポキシ基や(A2)に含まれる水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。
また、ポリエステル系樹脂やポリカーボネート樹脂の場合、末端にあるカルボキシル基や水酸基と、(A1)に含まれるエポキシ基との共有結合、主鎖にあるエステル基と、(A1)に含まれるエポキシ基や(A2)に含まれる水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。
また、ABS樹脂のようなスチレン系樹脂の場合、側鎖にあるシアノ基と、(A1)に含まれるエポキシ基や(A2)に含まれる水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。
また、ポリオレフィン系樹脂の中で、特に酸変性されたポリオレフィン系樹脂の場合、側鎖にある酸無水物基やカルボキシル基と、(A1)に含まれるエポキシ基との共有結合、(A2)に含まれる水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、またはスルホ基との水素結合により強固な界面を形成することができると考えられる。
また、本発明において用いられる熱可塑性樹脂は、耐熱性の観点からは、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂が好ましい。寸法安定性の観点からは、ポリフェニレンエーテル樹脂が好ましい。摩擦・磨耗特性の観点からは、ポリオキシメチレン樹脂が好ましい。強度の観点からは、ポリアミド樹脂が好ましい。表面外観の観点からは、ポリカーボネートやスチレン系樹脂のような非晶性樹脂が好ましい。軽量性の観点からは、ポリオレフィン系樹脂が好ましい。
次に、本発明の成形材料を製造するための好ましい態様について説明する。
本発明の成形材料を製造する方法として、例えば、サイジング剤を塗布した炭素繊維を引きながら熱可塑性樹脂を炭素繊維に含浸させる引き抜き成形法(プルトルージョン法)が例示される。引き抜き成形法では、熱可塑性樹脂に必要に応じて樹脂添加剤を加えて、連続炭素繊維をクロスヘッドダイを通して引きながら、熱可塑性樹脂を押出機から溶融状態でクロスヘッドダイに供給して連続炭素繊維に、熱可塑性樹脂を含浸させ、溶融樹脂が含浸した連続炭素繊維を加熱し、冷却後、引き抜き方向と直角に切断して成形材料1を得る。成形材料1は、長さ方向に炭素繊維が同一長さで平行配列している。引き抜き成形は、基本的には連続した炭素繊維束を引きながら熱可塑性樹脂を含浸するものであり、上記クロスヘッドの中を炭素繊維束を通しながら押出機等からクロスヘッドに熱可塑性樹脂を供給し含浸する方法の他に、熱可塑性樹脂のエマルジョン、サスペンジョンあるいは溶液を入れた含浸浴の中を炭素繊維束を通し含浸する方法、熱可塑性樹脂の粉末を炭素繊維束に吹きつけるか粉末を入れた槽の中を炭素繊維束を通し、炭素繊維に熱可塑性樹脂粉末を付着させたのち熱可塑性樹脂を溶融し含浸する方法等も使用することができる。特に好ましいのはクロスヘッド方法である。また、これらの引き抜き成形における樹脂の含浸操作は1段で行うのが一般的であるが、これを2段以上に分けてもよく、さらに含浸方法を異にして行ってもかまわない。
また、含浸助剤、すなわち(C)成分を有する成形材料は、含浸助剤、すなわち(C)成分をサイジング剤塗付炭素繊維に含浸させた後、(C)成分が含浸した炭素繊維を上記の引き抜き成形法により熱可塑性樹脂で被覆することにより製造される。
本発明の成形材料を成形してなる炭素繊維強化複合材料の用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体およびトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、部材および外板、風車の羽根などが挙げられる。特に、航空機部材、風車の羽根、自動車外板および電子機器の筐体およびトレイやシャーシなどに好ましく用いられる。
次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。
<炭素繊維束のストランド引張強度と弾性率>
炭素繊維束のストランド引張強度とストランド弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めた。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いた。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度およびストランド弾性率とした。
<炭素繊維の表面酸素濃度(O/C)>
炭素繊維の表面酸素濃度(O/C)は、次の手順に従いX線光電子分光法により求めた。まず、溶媒で表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げる。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10−8Torrに保つ。続いて、X線源としてAlKαを用い、光電子脱出角度を90°として測定を行った。なお、測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせた。C1sピーク面積を、K.E.として1191〜1205eVの範囲で直線のベースラインを引くことにより求めた。また、O1sピーク面積を、K.E.として947〜959eVの範囲で直線のベースラインを引くことにより求めた。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA−1600を用い、上記装置固有の感度補正値は2.33であった。
<サイジング付着量の測定方法>
約2gのサイジング付着炭素繊維束を秤量(W1)(少数第4位まで読み取り)した後、50ミリリットル/分の窒素気流中、450℃の温度に設定した電気炉(容量120cm)に15分間放置し、サイジング剤を完全に熱分解させる。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)(少数第4位まで読み取り)して、W1−W2によりサイジング付着量を求める。このサイジング付着量を炭素繊維束100質量部に対する量に換算した値(小数点第3位を四捨五入)を、付着したサイジング剤の質量部とした。測定は2回おこない、その平均値をサイジング剤の質量部とした。
<射出成形品の曲げ特性評価方法>
得られた射出成形品から、長さ130±1mm、幅25±0.2mmの曲げ強度試験片を切り出した。ASTM D−790(2004)に規定する試験方法に従い、3点曲げ試験冶具(圧子10mm、支点10mm)を用いて支持スパンを100mmに設定し、クロスヘッド速度5.3mm/分で曲げ強度を測定した。なお、本実施例においては、試験機として“インストロン(登録商標)”万能試験機4201型(インストロン社製)を用いた。測定数はn=5とし、平均値を曲げ強度とした。
(参考例1)
<ポリフェニレンスルフィドプレポリマーの調製>
撹拌機付きの1000リットルオートクレーブに、47.5%水硫化ナトリウム118kg(1000モル)、96%水酸化ナトリウム42.3kg(1014モル)、N−メチル−2−ピロリドン(以下NMPと略する場合もある)を163kg(1646モル)、酢酸ナトリウム24.6kg(300モル)、およびイオン交換水150kgを仕込み、常圧で窒素を通じながら240℃まで3時間かけて徐々に加熱し、精留塔を介して水211kgおよびNMP4kgを留出した後、反応容器を160℃に冷却した。なお、この脱液操作の間に仕込んだイオウ成分1モル当たり0.02モルの硫化水素が系外に飛散した。
次に、p−ジクロロベンゼン147kg(1004モル)、NMP129kg(1300モル)を加え、反応容器を窒素ガス下に密封した。240rpmで撹拌しながら、0.6℃/分の速度で270℃まで昇温し、この温度で140分保持した。水を18kg(1000モル)を15分かけて圧入しながら250℃まで1.3℃/分の速度で冷却した。その後220℃まで0.4℃/分の速度で冷却してから、室温近傍まで急冷し、スラリー(E)を得た。このスラリー(E)を376kgのNMPで希釈しスラリー(F)を得た。
80℃に加熱したスラリー(F)14.3kgをふるい(80mesh、目開き0.175mm)で濾別し、粗PPS樹脂とスラリー(G)を10kg得た。スラリー(G)をロータリーエバポレーターに仕込み、窒素で置換後、減圧下100〜160℃で1.5時間処理した後、真空乾燥機で160℃、1時間処理した。得られた固形物中のNMP量は3質量%であった。
この固形物にイオン交換水12kg(スラリー(G)の1.2倍量)を加えた後、70℃で30分撹拌して再スラリー化した。このスラリーを目開き10〜16μmのガラスフィルターで吸引濾過した。得られた白色ケークにイオン交換水12kgを加えて70℃で30分撹拌して再スラリー化し、同様に吸引濾過後、70℃で5時間真空乾燥してポリフェニレンスルフィドオリゴマー100gを得た。ポリフェニレンスルフィドプレポリマーが所定量に達するまで上記操作を繰り返した。
得られたポリフェニレンスルフィドオリゴマーを4g分取してクロロホルム120gで3時間ソックスレー抽出した。得られた抽出液からクロロホルムを留去して得られた固体に再度クロロホルム20gを加え、室温で溶解しスラリー状の混合液を得た。これをメタノール250gに撹拌しながらゆっくりと滴下し、沈殿物を目開き10〜16μmのガラスフィルターで吸引濾過し、得られた白色ケークを70℃で3時間真空乾燥して白色粉末を得た。
この白色粉末の質量平均分子量は900であった。この白色粉末の赤外分光分析における吸収スペクトルより、白色粉末はポリフェニレンスルフィド(PAS)であることが判明した。また、示差走査型熱量計を用いてこの白色粉末の熱的特性を分析した結果(昇温速度40℃/分)、約200〜260℃にブロードな吸熱を示し、ピーク温度は215℃であることがわかった。
また高速液体クロマトグラフィーより成分分割した成分のマススペクトル分析、さらにMALDI−TOF−MSによる分子量情報より、この白色粉末は繰り返し単位数4〜11の環式ポリフェニレンスルフィドおよび繰り返し単位数2〜11の直鎖状ポリフェニレンスルフィドからなる混合物であり、環式ポリフェニレンスルフィドと直鎖状ポリフェニレンスルフィドの質量比は9:1であることがわかった。
(参考例2)
<プロピレン系樹脂の混合物PPの調整>
第1のプロピレン系樹脂(g)として、プロピレン・ブテン・エチレン共重合体(g−1)(プロピレンから導かれる構成単位(以下「C3」とも記載する)=66モル%、Mw=90,000)91質量部、第2のプロピレン系樹脂(h)の原料として、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=25,000、酸含有量=0.81ミリモル当量)9質量部、界面活性剤として、オレイン酸カリウム3質量部を混合した。この混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM−30,L/D=40)のホッパーより3000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、20%の水酸化カリウム水溶液を90g/時間の割合で連続的に供給し、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入してエマルジョンを得た。得られたエマルジョンは固形分濃度:45%であった。
なお、無水マレイン酸変性プロピレン・エチレン共重合体(C3=98モル%、Mw=25,000、酸含有量=0.81ミリモル当量)は、プロピレン・エチレン共重合体 96質量部、無水マレイン酸 4質量部、および重合開始剤としてパーヘキシ25B(日本油脂(株)製)0.4質量部を混合し、加熱温度160℃、2時間で変性を行って得られた。
各実施例および各比較例で用いた材料と成分は、下記のとおりである。
・(A1)成分:A−1〜A−7
A−1:“jER(登録商標)”152(三菱化学(株)製)
フェノールノボラックのグリシジルエーテル
エポキシ当量:175g/mol、エポキシ基数:3
A−2:“EPICLON(登録商標)”N660(DIC(株)製)
クレゾールノボラックのグリシジルエーテル
エポキシ当量:206g/mol、エポキシ基数:3
A−3:“アラルダイト(登録商標)”MY721(ハンツマン・アドバンスト・マテリアルズ社製)
N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン
エポキシ当量:113g/mol、エポキシ基数:4
A−4:“jER(登録商標)”828(三菱化学(株)製)
ビスフェノールAのジグリシジルエーテル
エポキシ当量:189g/mol、エポキシ基数:2
A−5:“jER(登録商標)”1001(三菱化学(株)製)
ビスフェノールAのジグリシジルエーテル
エポキシ当量:475g/mol、エポキシ基数:2
A−6:“デナコール(登録商標)”EX−810(ナガセケムテックス(株)製)
エチレングリコールのジグリシジルエーテル
エポキシ当量:113g/mol、エポキシ基数:2
A−7:TETRAD−X(三菱ガス化学(株)製)
テトラグリシジルメタキシレンジアミン
エポキシ当量:100g/mol、エポキシ基数:4
・(A1)成分、(A2)成分の両方に該当:A−8
A−8:“デナコール(登録商標)”EX−611(ナガセケムテックス(株)製)
ソルビトールポリグリシジルエーテル
エポキシ当量:167g/mol、エポキシ基数:4
水酸基数:2
・(A2)成分:A−9、A−10
A−9:“デナコール(登録商標)”EX−731(ナガセケムテックス(株)製)
N−グリシジルフタルイミド
エポキシ当量:216g/mol、エポキシ基数:1
イミド基数:1
A−10:“アデカレジン(登録商標)”EPU−6((株)ADEKA製)
ウレタン変性エポキシ
エポキシ当量:250g/mol、エポキシ基数:1以上
ウレタン基:1以上
・(B1)成分:B−1〜B−7
B−1:“DBU(登録商標)”(サンアプロ(株)製)
1,8−ジアザビシクロ〔5,4,0〕−7−ウンデセン、分子量:152、式(III)に該当
B−2:N,N−ジメチルベンジルアミン(東京化成工業(株)製)、分子量:135.21、式(VIII)に該当
B−3:1,8−ビス(ジメチルアミノ)ナフタレン(アルドリッチ社製)
別名:プロトンスポンジ、分子量:214.31、式(IV)に該当
B−4:2,4,6−トリス(ジメチルアミノメチル)フェノール(東京化成工業(株)製)
別名:DMP−30、分子量:265.39、式(V)に該当
B−5:DBN(サンアプロ(株)製)、分子量:124、式(III)に該当
1,5−ジアザビシクロ〔4,3,0〕−5−ノネン
B−6:トリイソプロパノールアミン(東京化成工業(株)製)、分子量:191.27、式(VIII)に該当
B−7:U−CAT SA506(サンアプロ(株)製)、式(III)に該当
DBU−p−トルエンスルホン酸塩、分子量:324.44
・(B2)成分:B−8〜B−14
B−8:ベンジルトリメチルアンモニウムブロミド(Rの炭素数が7、R〜Rの炭素数がそれぞれ1、アニオン部位が臭化物アニオン、東京化成工業(株)製、式(I)に該当)
B−9:テトラブチルアンモニウムブロミド(R〜Rの炭素数がそれぞれ4、アニオン部位が臭化物アニオン、東京化成工業(株)製、式(I)に該当)
B−10:トリメチルオクタデシルアンモニウムブロミド(Rの炭素数が18、R〜Rの炭素数がそれぞれ1、アニオン部位が臭化物アニオン、東京化成工業(株)製、式(I)に該当)
B−11:(2−メトキシエトキシメチル)トリエチルアンモニウムクロリド(Rの炭素数が4、R〜Rの炭素数がそれぞれ2、アニオン部位が塩化物アニオン、東京化成工業(株)製、式(I)に該当)
B−12:(2−アセトキシエチル)トリメチルアンモニウムクロリド(Rの炭素数が4、R〜Rの炭素数がそれぞれ1、アニオン部位が塩化物アニオン、東京化成工業(株)製、式(I)に該当)
B−13:(2−ヒドロキシエチル)トリメチルアンモニウムブロミド(Rの炭素数が2、R〜Rの炭素数がそれぞれ1、アニオン部位が臭化物アニオン、東京化成工業(株)製、式(I)に該当)
B−14:1−ヘキサデシルピリジニウムクロリド(Rの炭素数が16、RとRがそれぞれ水素原子、アニオン部位が塩化物アニオン、東京化成工業(株)製、式(II)に該当)
・(B3)成分:B−15〜B−17
B−15:テトラブチルホスホニウムブロミド(R25〜R28の炭素数がそれぞれ4、アニオン部位が臭化物アニオン、東京化成工業(株)製、式(XI)に該当)分子量:339
B−16:テトラフェニルホスホニウムブロミド(R25〜R28の炭素数がそれぞれ6、アニオン部位が臭化物アニオン、東京化成工業(株)製、式(XI)に該当)、分子量: 419
B−17:トリフェニルホスフィン(R29〜R31の炭素数がそれぞれ6、東京化成工業(株)製、式(XII)に該当)、分子量: 262
・(C)成分:C−1〜C−4
C−1:参考例1で調整したポリフェニレンスルフィドプレポリマー
C−2:テルペンフェノール重合体(単環式モノテルペンフェノールとフェノールの付加物、ヤスハラケミカル(株)製YP902)
C−3:テルペン樹脂(主成分としてα−ピネン、β−ピネンを用いて重合された重合体からなる樹脂、ヤスハラケミカル(株)製YSレジンPX1250樹脂)
C−4:参考例4で調整したプロピレン系樹脂の混合物
・(D)成分(その他成分):D−1、D−2
D−1:“デナコール(登録商標)”EX−141(ナガセケムテックス(株)製)
フェニルグリシジルエーテル エポキシ当量:151g/mol、エポキシ基数:1
D−2:ヘキサメチレンジアミン(東京化成工業(株)製)、分子量:116。
・熱可塑性樹脂
ポリアリーレンスルフィド(PPS)樹脂ペレット:“トレリナ(登録商標)”A900(東レ(株)製)
ポリアミド6(PA6)樹脂ペレット:“アミラン(登録商標)”CM1001(東レ(株)製)
ポリプロピレン(PP)樹脂ペレット(ポリオレフィン系樹脂):未変性PP樹脂ペレットと酸変性PP樹脂ペレットの混合物、未変性PP樹脂ペレット:“プライムポリプロ(登録商標)”J830HV((株)プライムポリマー製)50質量部、酸変性PP樹脂ペレット:“アドマー(登録商標)”QE800(三井化学(株)製)50質量部
ポリカーボネート(PC)樹脂ペレット:“レキサン(登録商標)”141R(SABIC)
ABS樹脂ペレット(スチレン系樹脂):“トヨラック(登録商標)”T−100A(東レ(株)製)。
(実施例1)
本実施例は、次の第I〜IVの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
アクリロニトリル99モル%とイタコン酸1モル%からなる共重合体を紡糸し、焼成し、総フィラメント数24,000本、総繊度1,000テックス、比重1.8、ストランド引張強度6.2GPa、ストランド引張弾性率300GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり100クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このときの表面酸素濃度O/Cは、0.20であった。これを炭素繊維Aとした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)と(B−1)を質量比100:1で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
単軸押出機の先端部分に、連続したサイジング剤塗布炭素繊維が通過可能な波状に加工したクロスヘッドダイを装着した。次いで、連続したサイジング剤塗布炭素繊維を5m/分の速度でクロスヘッドダイに通して引きながら、PPS樹脂ペレットを押出機から溶融状態でクロスヘッドダイに供給して、連続したサイジング剤塗布炭素繊維にPPS樹脂を含浸させ、溶融含浸物を加熱し、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである長繊維ペレット(形態A)を得た。なお、押出機は、バレル温度320℃、回転数150rpmで十分混練し、さらに下流の真空ベントより脱気を行った。PPS樹脂ペレットの供給は、サイジング剤塗布炭素繊維が20質量部に対して、PPS樹脂80質量部になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:330℃、金型温度:100℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表1にまとめた。この結果、曲げ強度が280MPaであり、力学特性が十分に高いことがわかった。
(実施例2〜5)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例1の第IIの工程で、(A−4)と(B−1)の質量比を表1に示すように、100:3〜100:20の範囲で変更したこと以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表1にまとめた。この結果、曲げ強度が279〜285MPaであり、力学特性が十分に高いことがわかった。
(比較例1〜5)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例1の第IIの工程で、(A)成分、(B)成分、(D)成分(その他成分)の質量比を表1に示すように変更したこと以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表1にまとめた。この結果、曲げ強度が250〜268MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例6〜15)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例1の第IIの工程で、(A)成分と(B)成分の質量比を表2に示すように変更したこと以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が272〜303MPaであり、力学特性が十分に高いことがわかった。
(実施例16)
・第Iの工程:原料となる炭素繊維を製造する工程
電解液として濃度0.05モル/lの硫酸水溶液を用い、電気量を炭素繊維1g当たり20クーロンで電解表面処理したこと以外は、実施例1と同様とした。このときの表面酸素濃度O/Cは、0.20であった。これを炭素繊維Bとした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)と(B−7)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が271MPaであり、力学特性が十分に高いことがわかった。
(実施例17)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例16で得られた炭素繊維Bをテトラエチルアンモニウムヒドロキシド水溶液(pH=14)に浸漬し、超音波で加振させながら引き上げた。このときの表面酸素濃度O/Cは、0.17であった。これを炭素繊維Cとした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)と(B−7)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が279MPaであり、力学特性が十分に高いことがわかった。
(比較例6)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例16と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が251MPaであり、力学特性が不十分であることがわかった。
(比較例7)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例17と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表2にまとめた。この結果、曲げ強度が255MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例18〜24)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例1の第IIの工程で、(A)成分と(B)成分を表3−1に示すように変更したこと以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表3−1にまとめた。この結果、曲げ強度が286〜300MPaであり、力学特性が十分に高いことがわかった。
Figure 0005533849
(実施例25)
・第Iの工程:原料となる炭素繊維を製造する工程
電解液として濃度0.05モル/lの硫酸水溶液を用い、電気量を炭素繊維1g当たり20クーロンで電解表面処理したこと以外は、実施例1と同様とした。このときの表面酸素濃度O/Cは、0.20であった。これを炭素繊維Bとした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−1)と(B−8)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表3−1にまとめた。この結果、曲げ強度が285MPaであり、力学特性が十分に高いことがわかった。
(実施例26)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例25で得られた炭素繊維Bをテトラエチルアンモニウムヒドロキシド水溶液(pH=14)に浸漬し、超音波で加振させながら引き上げた。このときの表面酸素濃度O/Cは、0.17であった。これを炭素繊維Cとした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−1)と(B−8)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表3−1にまとめた。この結果、曲げ強度が292MPaであり、力学特性が十分に高いことがわかった。
(実施例27〜35)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例1の第IIの工程で、(A)成分と(B)成分を表3−2に示すように変更したこと以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表3−2にまとめた。この結果、曲げ強度が280〜296MPaであり、力学特性が十分に高いことがわかった。
(比較例8)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−1)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例1と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表3−2にまとめた。この結果、曲げ強度が270MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例36)
本実施例は、次の第I〜IVの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)と(B−3)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
参考例1で調整した(C−1)を、240℃の溶融バス中で溶融させ、ギアポンプにてキスコーターに供給する。230℃に加熱されたロール上にキスコーターから(C−1)を塗布し、被膜を形成させた。
このロール上にサイジング剤塗布炭素繊維を接触させながら通過させて、サイジング剤塗布炭素繊維の単位長さあたりに一定量の(C−1)を付着させた。
(C−1)を付着させたサイジング剤塗布炭素繊維を、350℃に加熱された炉内へ供給し、ベアリングで自由に回転する、一直線上に上下交互に配置された10個のロール(φ50mm)間に通過させ、かつ葛折り状に炉内に設置された10個のロールバー(φ200mm)を通過させて(C−1)をサイジング剤塗布炭素繊維に十分に含浸させながらPASに高重合度体に転化させた。次に、炉内から引き出した炭素繊維ストランドにエアを吹き付けて冷却した後、ドラムワインダーで巻き取った。
なお、巻き取った炭素繊維ストランドから、10mm長のストランドを10本カットし、炭素繊維とポリアリーレンスルフィドを分離するために、ソックスレー抽出器を用い、1−クロロナフタレンを用いて、210℃で6時間還流を行い、抽出したポリアリーレンスルフィドを分子量の測定に供した。得られたPPSの質量平均分子量(Mw)は26,800、数平均分子量(Mn)14,100、分散度(Mw/Mn)は1.90であった。次に、抽出したポリアリーレンスルフィドの質量減少率△Wrを測定したところ、0.09%であった。また、(C−1)の付着量は、炭素繊維100質量部に対して20質量部であった。
続いて、PPS樹脂を360℃で単軸押出機にて溶融させ、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、(C−1)を含浸させたサイジング剤塗布炭素繊維も上記クロスヘッドダイ中に連続的に供給(速度:30m/分)することによって、溶融したPPS樹脂を(C−1)を含浸させたサイジング剤塗布炭素繊維に被覆した。次いで、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである芯鞘構造の長繊維ペレット(形態B)を得た。PPS樹脂ペレットの供給は、サイジング剤塗布炭素繊維が全体に対して20質量%になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:330℃、金型温度:100℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表4にまとめた。この結果、曲げ強度が285MPaであり、力学特性が十分に高いことがわかった。
(実施例37〜42)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例36の第IIの工程で、(A)成分と(B)成分を表4に示すように変更したこと以外は、実施例36と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例36と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表4にまとめた。この結果、曲げ強度が284〜290MPaであり、力学特性が十分に高いことがわかった。
(比較例9)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−4)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例36と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表4にまとめた。この結果、曲げ強度が266MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例43)
本実施例は、次の第I〜IVの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−8)と(B−1)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
(C−2)を、190℃の溶融バス中で溶融させ、ギアポンプにてキスコーターに供給する。180℃に加熱されたロール上にキスコーターから(C−2)を塗布し、被膜を形成させた。
このロール上にサイジング剤塗布炭素繊維を接触させながら通過させて、サイジング剤塗布炭素繊維の単位長さあたりに一定量の(C−2)を付着させた。
(C−2)を付着させたサイジング剤塗布炭素繊維を、180℃に加熱された炉内へ供給し、ベアリングで自由に回転する、一直線上に上下交互に配置された10個のロール(φ50mm)間に通過させ、かつ葛折り状に炉内に設置された10個のロールバー(φ200mm)を通過させて(C−2)をサイジング剤塗布炭素繊維に十分に含浸させた。(C−2)の付着量は、炭素繊維100質量部に対して20質量部であった。
続いて、PA6樹脂を300℃で単軸押出機にて溶融させ、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、(C−2)を含浸させたサイジング剤塗布炭素繊維も上記クロスヘッドダイ中に連続的に供給(速度:30m/分)することによって、溶融したPA6樹脂を(C−2)を含浸させたサイジング剤塗布炭素繊維に被覆した。次いで、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである芯鞘構造の長繊維ペレット(形態B)を得た。PA6樹脂ペレットの供給は、サイジング剤塗布炭素繊維が全体に対して30質量%になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:300℃、金型温度:70℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表5にまとめた。この結果、曲げ強度が381MPaであり、力学特性が十分に高いことがわかった。
(実施例44〜48)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例43の第IIの工程で、(A)成分と(B)成分を表5に示すように変更したこと以外は、実施例43と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例43と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表5にまとめた。この結果、曲げ強度が372〜379MPaであり、力学特性が十分に高いことがわかった。
(比較例10)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−8)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例43と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表5にまとめた。この結果、曲げ強度が362MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例49)
本実施例は、次の第I〜Vの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−8)と(B−6)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
(C−3)を、190℃の溶融バス中で溶融させ、ギアポンプにてキスコーターに供給する。180℃に加熱されたロール上にキスコーターから(C−3)を塗布し、被膜を形成させた。
このロール上にサイジング剤塗布炭素繊維を接触させながら通過させて、サイジング剤塗布炭素繊維の単位長さあたりに一定量の(C−3)を付着させた。
(C−3)を付着させたサイジング剤塗布炭素繊維を、180℃に加熱された炉内へ供給し、ベアリングで自由に回転する、一直線上に上下交互に配置された10個のロール(φ50mm)間に通過させ、かつ葛折り状に炉内に設置された10個のロールバー(φ200mm)を通過させて(C−3)をサイジング剤塗布炭素繊維に十分に含浸させた。(C−3)の付着量は、炭素繊維100質量部に対して20質量部であった。
続いて、PP樹脂を240℃で単軸押出機にて溶融させ、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、(C−3)を含浸させたサイジング剤塗布炭素繊維も上記クロスヘッドダイ中に連続的に供給(速度:30m/分)することによって、溶融したPP樹脂を(C−3)を含浸させたサイジング剤塗布炭素繊維に被覆した。次いで、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである芯鞘構造の長繊維ペレット(形態B)を得た。PP樹脂ペレットの供給は、サイジング剤塗布炭素繊維が全体に対して20質量%になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:240℃、金型温度:60℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表6−1にまとめた。この結果、曲げ強度が155MPaであり、力学特性が十分に高いことがわかった。
(実施例50〜54)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例49の第IIの工程で、(A)成分と(B)成分を表6−1に示すように変更したこと以外は、実施例49と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例49と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表6−1にまとめた。この結果、曲げ強度が145〜159MPaであり、力学特性が十分に高いことがわかった。
(比較例11)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−8)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例49と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表6−1にまとめた。この結果、曲げ強度が135MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例55)
本実施例は、次の第I〜Vの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−8)と(B−6)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
(C−4)のエマルジョンを固形分濃度27質量%に調整してローラ含浸法にて付着させた後、210℃で2分間乾燥し、水分を除去してサイジング剤塗布炭素繊維と第1および第2のプロピレン系樹脂との複合体を得た。(C−4)の付着量は、炭素繊維100質量部に対して20質量部であった。
続いて、PP樹脂を300℃で単軸押出機にて溶融させ、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、(C−4)を付着させたサイジング剤塗布炭素繊維も上記クロスヘッドダイ中に連続的に供給(速度:30m/分)することによって、溶融したPP樹脂を(C−4)を付着させたサイジング剤塗布炭素繊維に被覆した。次いで、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである芯鞘構造の長繊維ペレット(形態B)を得た。PP樹脂ペレットの供給は、サイジング剤塗布炭素繊維が全体に対して20質量%になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:240℃、金型温度:60℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表6−2にまとめた。この結果、曲げ強度が158MPaであり、力学特性が十分に高いことがわかった。
(実施例56〜60)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例55の第IIの工程で、(A)成分と(B)成分を表6−2に示すように変更したこと以外は、実施例55と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例55と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表6−2にまとめた。この結果、曲げ強度が145〜162MPaであり、力学特性が十分に高いことがわかった。
(比較例12)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−8)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例55と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表6−2にまとめた。この結果、曲げ強度が135MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例61)
本実施例は、次の第I〜IVの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−10)と(B−6)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
単軸押出機の先端部分に、連続したサイジング剤塗布炭素繊維が通過可能な波状に加工したクロスヘッドダイを装着した。次いで、連続したサイジング剤塗布炭素繊維を5m/分の速度でクロスヘッドダイに通して引きながら、PC樹脂ペレットを押出機から溶融状態でクロスヘッドダイに供給して、連続したサイジング剤塗布炭素繊維にPC樹脂を含浸させ、溶融含浸物を加熱し、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである長繊維ペレット(形態A)を得た。なお、押出機は、バレル温度300℃、回転数150rpmで十分混練し、さらに下流の真空ベントより脱気を行った。PC樹脂ペレットの供給は、サイジング剤塗布炭素繊維が20質量部に対して、PC樹脂が80質量部になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:320℃、金型温度:70℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表7にまとめた。この結果、曲げ強度が210MPaであり、力学特性が十分に高いことがわかった。
(実施例62〜66)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例61の第IIの工程で、(A)成分と(B)成分を表7に示すように変更したこと以外は、実施例61と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例61と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表7にまとめた。この結果、曲げ強度が200〜209MPaであり、力学特性が十分に高いことがわかった。
(比較例13)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−10)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例61と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表7にまとめた。この結果、曲げ強度が190MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
(実施例67)
本実施例は、次の第I〜IVの工程からなる。
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−1)と(B−1)を質量比100:3で混合し、さらにアセトンを混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第IIIの工程:長繊維ペレットを製造する工程
単軸押出機の先端部分に、連続したサイジング剤塗布炭素繊維が通過可能な波状に加工したクロスヘッドダイを装着した。次いで、連続したサイジング剤塗布炭素繊維を5m/分の速度でクロスヘッドダイに通して引きながら、ABS樹脂ペレットを押出機から溶融状態でクロスヘッドダイに供給して、連続したサイジング剤塗布炭素繊維にABS樹脂を含浸させ、溶融含浸物を加熱し、冷却後、引き抜き方向と直角に7mmに切断して、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じである長繊維ペレット(形態A)を得た。なお、押出機は、バレル温度250℃、回転数150rpmで十分混練し、さらに下流の真空ベントより脱気を行った。ABS樹脂ペレットの供給は、サイジング剤塗布炭素繊維が20質量部に対して、PC樹脂が80質量部になるように調整した。
・第IVの工程:射出成形工程:
前工程で得られた長繊維ペレットを、日本製鋼所(株)製J350EIII型射出成形機を用いて、シリンダー温度:260℃、金型温度:60℃で特性評価用試験片を成形した。得られた試験片は、温度23℃、50%RHに調整された恒温恒湿室に24時間放置後に特性評価試験に供した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表8にまとめた。この結果、曲げ強度が180MPaであり、力学特性が十分に高いことがわかった。
(実施例68〜72)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
実施例67の第IIの工程で、(A)成分と(B)成分を表8に示すように変更したこと以外は、実施例67と同様の方法でサイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対していずれも0.5質量部であった。
・第III、IVの工程:
実施例67と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表8にまとめた。この結果、曲げ強度が165〜180MPaであり、力学特性が十分に高いことがわかった。
(比較例14)
・第Iの工程:原料となる炭素繊維を製造する工程
実施例1と同様とした。
・第IIの工程:サイジング剤を炭素繊維に付着させる工程
(A−1)のみをアセトンに混合し、サイジング剤が均一に溶解した約1質量%のアセトン溶液を得た。このサイジング剤のアセトン溶液を用い、浸漬法によりサイジング剤を表面処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維を得た。サイジング剤の付着量は、表面処理された炭素繊維100質量部に対して0.5質量部となるように調整した。
・第III、IVの工程:
実施例67と同様の方法で特性評価用試験片を成形した。次に、得られた特性評価用試験片を上記の射出成形品評価方法に従い評価した。結果を表8にまとめた。この結果、曲げ強度が155MPaであり、力学特性が不十分であることがわかった。
Figure 0005533849
以上のように、本発明の成形材料および炭素繊維強化複合材料は、軽量でありながら強度、弾性率が優れるため、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に好適に用いることができる。

Claims (26)

  1. 少なくとも次の(A)、(B)成分、炭素繊維および熱可塑性樹脂から構成される柱状をなす成形材料であって、炭素繊維が軸心方向にほぼ平行に配列し、かつ炭素繊維の長さが成形材料の長さと実質的に同じであることを特徴とする成形材料。
    (A)成分:2個以上のエポキシ基を有するエポキシ化合物(A1)、および/または1個以上のエポキシ基と、水酸基、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、およびスルホ基から選ばれる、少なくとも1個以上の官能基を有するエポキシ化合物(A2)
    (B)成分:(A)成分100質量部に対して、下記[a]、[b]および[c]からなる群から選択される少なくとも1種の反応促進剤が0.1〜25質量部
    [a]少なくとも(B)成分として用いられる、分子量が100g/mol以上の3級アミン化合物および/または3級アミン塩(B1)
    [b]少なくとも(B)成分として用いられる、次の一般式(I)
    Figure 0005533849
    (式中、R〜Rは、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、または一般式(II)
    Figure 0005533849
    (式中、Rは、炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。RとRは、それぞれ水素、または炭素数1〜8の炭化水素基を表し、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。)のいずれかで示されるカチオン部位を有する4級アンモニウム塩(B2)
    [c]少なくとも(B)成分として用いられる、4級ホスホニウム塩および/またはホスフィン化合物(B3)
  2. (B)成分が炭素繊維100質量部に対して、0.001〜0.3質量部含むことを特徴とする、請求項1に記載の成形材料。
  3. 前記[a]の(B1)分子量が100g/mol以上の3級アミン化合物および/または3級アミン塩が、次の一般式(III)
    Figure 0005533849
    (式中、Rは炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。Rは、炭素数2〜22のアルキレン基、炭素数2〜22のアルケニレン基、または炭素数2〜22のアルキニレン基のいずれかを表す。R10は、水素または炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。または、RとR10は結合して炭素数2〜11のアルキレン基を形成してもよい)、一般式(IV)
    Figure 0005533849
    (式中、R11〜R14は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、一般式(V)
    Figure 0005533849
    (式中、R15〜R20は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。R21は、水酸基または炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)、一般式(VI)
    Figure 0005533849
    (式中、R22〜R24は、それぞれ炭素数1〜8の炭化水素基を表し、該炭化水素基は水酸基を有していてもよい)、一般式(VII)
    Figure 0005533849
    (式中、R25は、炭素数1〜8の炭化水素基を表し、該炭化水素基は水酸基を有していてもよい)、または一般式(VIII)
    Figure 0005533849
    (式中、R26〜R28は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。さらに、R26〜R28のいずれかに、次の一般式(IX)または(X)で示される1以上の分岐構造を有し、かつ少なくとも1以上の水酸基を含む)であることを特徴とする請求項1に記載の成形材料。
    Figure 0005533849
    (式中、R29、R30は、それぞれ炭素数1〜20の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。但し、R29とR30の炭素数の合算値が21以下である。)
    Figure 0005533849
    (式中、R31〜R33は、それぞれ水酸基または炭素数1〜19の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい。但し、R31とR32とR33の炭素数の合算値が21以下である。)
  4. 一般式(III)で示される化合物が、1,5−ジアザビシクロ[4,3,0]−5−ノネンもしくはその塩、または、1,8−ジアザビシクロ[5,4,0]−7−ウンデセンもしくはその塩であることを特徴とする、請求項3に記載の成形材料。
  5. 一般式(VIII)で示される化合物が、少なくとも2以上の分岐構造を有することを特徴とする、請求項3に記載の成形材料。
  6. 一般式(VIII)で示される化合物が、トリイソプロパノールアミンもしくはその塩であることを特徴とする、請求項3または5に記載の成形材料。
  7. 前記[b]の一般式(I)において、RおよびRは、それぞれ炭素数2〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよいことを特徴とする、請求項1に記載の成形材料。
  8. 前記[b]の(B2)カチオン部位を有する4級アンモニウム塩のアニオン部位がハロゲンイオンであることを特徴とする、請求項1または7に記載の成形材料。
  9. 前記[c]の(B3)4級ホスホニウム塩および/またはホスフィン化合物が、次の一般式(XI)
    Figure 0005533849
    (式中、R34〜R37は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)で示されるカチオン部位を有する4級ホスホニウム塩、または一般式(XII)
    Figure 0005533849
    (式中、R38〜R40は、それぞれ炭素数1〜22の炭化水素基を表し、該炭化水素基は水酸基を有していてもよく、該炭化水素基中のCH基は、−O−、−O−CO−または−CO−O−により置換されていてもよい)で示されるホスフィン化合物から選択される1つ以上であることを特徴とする、請求項1に記載の成形材料。
  10. (A)成分のエポキシ当量が360g/mol未満であることを特徴とする、請求項1〜9のいずれかに記載の成形材料。
  11. (A)成分が3個以上のエポキシ基を有するエポキシ化合物であることを特徴とする、請求項1〜10のいずれかに記載の成形材料。
  12. (A)成分が分子内に芳香環を含むものであることを特徴とする、請求項1〜11のいずれかに記載の成形材料。
  13. (A1)成分がフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはテトラグリシジルジアミノジフェニルメタンのいずれかであることを特徴とする、請求項1〜12のいずれかに記載の成形材料。
  14. 熱可塑性樹脂がポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンエーテル樹脂、ポリオキシメチレン樹脂、ポリアミド樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、スチレン系樹脂、およびポリオレフィン系樹脂からなる群から選択される少なくとも1種の熱可塑性樹脂であることを特徴とする、請求項1〜13のいずれかに記載の成形材料。
  15. 炭素繊維のX線光電子分光法により測定される表面酸素濃度O/Cが、0.05〜0.5であることを特徴とする、請求項1〜14のいずれかに記載の成形材料。
  16. (A)成分および(B)成分を含んでなるサイジング剤が炭素繊維100質量部に対して、0.1〜10質量部付着されてなるサイジング剤塗布炭素繊維1〜80質量%、および熱可塑性樹脂20〜99質量%からなることを特徴とする、請求項1〜15のいずれかに記載の成形材料。
  17. 炭素繊維が、アルカリ性電解液中で液相電解酸化された後、または酸性電解液中で液相電解酸化された後、続いてアルカリ性水溶液で洗浄されたものであることを特徴とする、請求項1〜16のいずれかに記載の成形材料。
  18. 炭素繊維を主成分とする構造Bが芯構造であり、熱可塑性樹脂を主成分とする構造Aが鞘構造であって、構造Bの周囲を構造Aが被覆した芯鞘構造を有することを特徴とする、請求項1〜17のいずれかに記載の成形材料。
  19. 前記柱状をなす成形材料の長さが1〜50mmであることを特徴とする、請求項1〜18のいずれかに記載の成形材料。
  20. 成形材料の形態が長繊維ペレットであることを特徴とする、請求項1〜19のいずれかに記載の成形材料。
  21. 熱可塑性樹脂がポリアリーレンスルフィド樹脂であって、(C)成分として、[d]質量平均分子量が10,000以上であり、かつ質量平均分子量/数平均分子量で表される分散度が2.5以下であるポリアリーレンスルフィドを炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする、請求項1〜20のいずれかに記載の成形材料。
  22. 熱可塑性樹脂がポリアミド樹脂であって、さらに、(C)成分として、[e]フェノール系重合体を炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする、請求項1〜20のいずれかに記載の成形材料。
  23. 熱可塑性樹脂がポリオレフィン系樹脂であって、さらに、(C)成分として、[f]テルペン系樹脂を炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする、請求項1〜20のいずれかに記載の成形材料。
  24. 熱可塑性樹脂がポリオレフィン系樹脂であって、さらに、(C)成分として、[g]第1のプロピレン系樹脂および、[h]アシル基を側鎖に有する第2のプロピレン系樹脂の混合物を炭素繊維100質量部に対して、0.1〜100質量部含むことを特徴とする、請求項1〜20のいずれかに記載の成形材料。
  25. (C)成分の一部または全部が炭素繊維に含浸されてなることを特徴とする、請求項21〜24のいずれかに記載の成形材料。
  26. 請求項1〜25のいずれかに記載の成形材料を成形してなることを特徴とする、炭素繊維強化複合材料。
JP2011266149A 2011-10-04 2011-12-05 成形材料および炭素繊維強化複合材料 Expired - Fee Related JP5533849B2 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2011266149A JP5533849B2 (ja) 2011-12-05 2011-12-05 成形材料および炭素繊維強化複合材料
US14/345,889 US9249295B2 (en) 2011-10-04 2012-09-21 Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
MX2014004007A MX349435B (es) 2011-10-04 2012-09-21 Composición de resina termoplástica reforzada con fibra de carbono, material de moldeo, preimpregnado y métodos para producir los mismos.
CN201280048242.7A CN103890056B (zh) 2011-10-04 2012-09-21 碳纤维增强热塑性树脂组合物、成型材料、预浸料坯、及它们的制造方法
CA 2850719 CA2850719A1 (en) 2011-10-04 2012-09-21 Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
PCT/JP2012/074215 WO2013051404A1 (ja) 2011-10-04 2012-09-21 炭素繊維強化熱可塑性樹脂組成物、成形材料、プリプレグ、およびそれらの製造方法
EP12838484.9A EP2765155B1 (en) 2011-10-04 2012-09-21 Carbon fiber-reinforced thermoplastic resin molding material and methods for producing same
KR1020147007473A KR101528115B1 (ko) 2011-10-04 2012-09-21 탄소 섬유 강화 열가소성 수지 조성물, 성형 재료, 프리프레그, 및 이들의 제조 방법
IN3279CHN2014 IN2014CN03279A (ja) 2011-10-04 2012-09-21
HUE12838484A HUE039223T2 (hu) 2011-10-04 2012-09-21 Szénszál-erõsítésû termoplasztikus gyanta formázóanyag és eljárások elõállítására
MX2015004114A MX349437B (es) 2011-10-04 2012-09-21 Composicion de resina termoplastica reforzada con fibra de carbono, material de moldeo, preimpregnado y metodos para producir los mismos.
RU2014117512/05A RU2014117512A (ru) 2011-10-04 2012-09-21 Композиция термопластической смолы, армированной углеродными волокнами, формовочный материал, препрег и способы их получения
KR1020157011183A KR101635717B1 (ko) 2011-10-04 2012-09-21 탄소 섬유 강화 열가소성 수지 조성물, 성형 재료, 프리프레그, 및 이들의 제조 방법
TR2018/07712T TR201807712T4 (tr) 2011-10-04 2012-09-21 Karbon fiber takviyeli termoplastik reçine kalıplama malzemesi ve bunun üretimi için yöntemler.
MX2015004113A MX349436B (es) 2011-10-04 2012-09-21 Composición de resina termoplástica reforzada con fibra de carbono, material de moldeo, preimpregnado y métodos para producir los mismos.
BR112014006820A BR112014006820A2 (pt) 2011-10-04 2012-09-21 composição de resina termoplástica, artigo, material de moldagem, método de produção, material compósito e pré-impregado
TW101136485A TWI545240B (zh) 2011-10-04 2012-10-03 碳纖維強化熱塑性樹脂組成物、成形材料、半固化片及彼等之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266149A JP5533849B2 (ja) 2011-12-05 2011-12-05 成形材料および炭素繊維強化複合材料

Publications (2)

Publication Number Publication Date
JP2013117000A JP2013117000A (ja) 2013-06-13
JP5533849B2 true JP5533849B2 (ja) 2014-06-25

Family

ID=48711773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266149A Expired - Fee Related JP5533849B2 (ja) 2011-10-04 2011-12-05 成形材料および炭素繊維強化複合材料

Country Status (1)

Country Link
JP (1) JP5533849B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179752B1 (ko) 2013-10-29 2020-11-17 도레이 카부시키가이샤 성형품 및 성형 재료
JP6737939B1 (ja) * 2019-08-09 2020-08-12 住友化学株式会社 液晶ポリエステル樹脂組成物及びその製造方法並びに成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245672A (en) * 1975-10-08 1977-04-11 Asahi Chemical Ind Treated material for reinforcement and its treating method
JPS60139875A (ja) * 1983-12-27 1985-07-24 住友化学工業株式会社 無機繊維用サイジング剤組成物
DE3942858A1 (de) * 1989-12-23 1991-06-27 Basf Ag Reaktiv-emulgatoren enthaltende waessrige reaktionsharzdispersionen als schlichtemittel fuer kohlenstoff-fasern
US5242958A (en) * 1991-07-12 1993-09-07 Ppg Industries, Inc. Chemical treating composition for glass fibers having emulsified epoxy with good stability and the treated glass fibers
JPH09217281A (ja) * 1996-02-08 1997-08-19 Toray Ind Inc チョップドストランド用炭素繊維束およびその製造方法
JP2005146429A (ja) * 2003-11-11 2005-06-09 Mitsubishi Rayon Co Ltd 炭素繊維束
BR112012030308A2 (pt) * 2010-06-30 2016-08-09 Toray Industries método para produção de fibras de carbono revestidas com agente de dimensionamento, método para produção de átomos de carbono revestidos com agente de dimensionamento e fibras de carbono revestidas com agente de dimensionamento

Also Published As

Publication number Publication date
JP2013117000A (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
US9249295B2 (en) Carbon fiber-reinforced thermoplastic resin composition, molding material, prepreg, and methods for producing same
TWI494479B (zh) 塗布上漿劑之碳纖維的製造方法及塗布上漿劑之碳纖維
JP5316618B2 (ja) 炭素繊維強化熱可塑性樹脂組成物および成形品
JP5929158B2 (ja) サイジング剤塗布炭素繊維
JP5578164B2 (ja) 成形材料、炭素繊維強化複合材料および成形材料の製造方法
JP5327405B1 (ja) 炭素繊維強化熱可塑性樹脂組成物および成形品
JP5783019B2 (ja) 成形用基材、成形材料および炭素繊維強化複合材料
JP5533849B2 (ja) 成形材料および炭素繊維強化複合材料
JP5578163B2 (ja) 成形材料、炭素繊維強化複合材料および成形材料の製造方法
JP5834884B2 (ja) サイジング剤塗布炭素繊維およびサイジング剤塗布炭素繊維の製造方法
JP4924766B2 (ja) サイジング剤塗布炭素繊維の製造方法
JP5533850B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP5327406B2 (ja) 炭素繊維強化熱可塑性樹脂組成物および成形品
JP5853670B2 (ja) サイジング剤塗布炭素繊維、炭素繊維強化熱可塑性樹脂組成物および成形品
JP5834899B2 (ja) サイジング剤塗布炭素繊維およびサイジング剤塗布炭素繊維の製造方法
JP5853671B2 (ja) サイジング剤塗布炭素繊維およびサイジング剤塗布炭素繊維の製造方法
JP5845864B2 (ja) サイジング剤塗布炭素繊維およびサイジング剤塗付炭素繊維の製造方法
JP5845865B2 (ja) サイジング剤塗布炭素繊維の製造方法
JP5899690B2 (ja) 炭素繊維

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140224

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees