[go: up one dir, main page]

JP5487701B2 - Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell - Google Patents

Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5487701B2
JP5487701B2 JP2009105565A JP2009105565A JP5487701B2 JP 5487701 B2 JP5487701 B2 JP 5487701B2 JP 2009105565 A JP2009105565 A JP 2009105565A JP 2009105565 A JP2009105565 A JP 2009105565A JP 5487701 B2 JP5487701 B2 JP 5487701B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst
membrane
electrode assembly
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009105565A
Other languages
Japanese (ja)
Other versions
JP2010257715A (en
Inventor
早織 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009105565A priority Critical patent/JP5487701B2/en
Publication of JP2010257715A publication Critical patent/JP2010257715A/en
Application granted granted Critical
Publication of JP5487701B2 publication Critical patent/JP5487701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、膜電極接合体及びその製造方法並びに固体高分子形燃料電池に関し、特に、固体高分子形燃料電池に用いる膜電極接合体及びその製造方法並びに固体高分子形燃料電池に関する。   The present invention relates to a membrane electrode assembly, a manufacturing method thereof, and a polymer electrolyte fuel cell, and more particularly to a membrane electrode assembly used in a polymer electrolyte fuel cell, a manufacturing method thereof, and a polymer electrolyte fuel cell.

燃料電池は水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す発電システムである。これは、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。燃料電池に用いる電解質により燃料電池を分類することができる。燃料電池の種類には、溶融炭酸塩形燃料電池、リン酸形燃料電池、固体酸化物形燃料電池、固体高分子形燃料電池等がある。   A fuel cell is a power generation system that generates electricity by using hydrogen and oxygen as fuel and causing reverse reaction of water electrolysis. This has features such as high efficiency, low environmental load and low noise compared with the conventional power generation method, and is attracting attention as a clean energy source in the future. Fuel cells can be classified according to the electrolyte used in the fuel cell. The types of fuel cells include molten carbonate fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, solid polymer fuel cells, and the like.

燃料電池の中でも、固体高分子形燃料電池は低温領域での運転が可能であり、80℃〜100℃の運転温度で使用されるのが一般的であり、車載用電源や家庭据置用電源などへの使用が有望視されている。固体高分子形燃料電池は、膜電極接合体(Membrane Electrolyte Assembly、以下、「MEA」という場合がある。)と呼ばれる高分子電解質膜の両面に一対の電極触媒層を配置させた接合体を備え、一方の電極触媒層に水素を含有する燃料ガスを供給し、他方の電極触媒層に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。ここで、燃料ガスを供給する電極を燃料極といい、酸化剤ガスを供給する電極を空気極という。   Among the fuel cells, the polymer electrolyte fuel cell can be operated in a low temperature region, and is generally used at an operating temperature of 80 ° C. to 100 ° C., such as an in-vehicle power source or a household stationary power source. Promising use. BACKGROUND ART A polymer electrolyte fuel cell includes a joined body in which a pair of electrode catalyst layers are arranged on both surfaces of a polymer electrolyte membrane called a membrane electrode assembly (hereinafter sometimes referred to as “MEA”). The battery is sandwiched between a pair of separator plates in which a gas flow path for supplying a fuel gas containing hydrogen to one electrode catalyst layer and an oxidant gas containing oxygen to the other electrode catalyst layer is formed. . Here, the electrode for supplying the fuel gas is called a fuel electrode, and the electrode for supplying the oxidant gas is called an air electrode.

燃料極及び空気極には、それぞれ触媒物質が備えられる。触媒物質としては、白金や白金合金のような金属触媒粒子等の触媒活性物質を炭素粒子などの導電性材料に担持させたものが一般的である。触媒物質として用いられている白金等の金属触媒は非常に高価な材料であるため、燃料電池の実用化にあたり、白金使用量の低下が望まれている。   Each of the fuel electrode and the air electrode is provided with a catalyst material. As the catalyst material, a material in which a catalytically active material such as metal catalyst particles such as platinum or platinum alloy is supported on a conductive material such as carbon particles is generally used. Since a metal catalyst such as platinum used as a catalyst material is a very expensive material, a reduction in the amount of platinum used is desired in the practical application of fuel cells.

また、高価な白金触媒の代替材料として、窒素や炭素等を含む4及び5族遷移金属酸化物が優れた安定性と酸素還元触媒能を持つことが報告されている。   In addition, as an alternative material for an expensive platinum catalyst, it has been reported that group 4 and 5 transition metal oxides containing nitrogen, carbon and the like have excellent stability and oxygen reduction catalytic ability.

従来、燃料電池の出力性能を向上させるために様々な試みがなされている。例えば、特許文献1では、電極触媒層において、高分子電解質量が多い側を高分子電解質膜と接合させ、電極触媒層と高分子電解質膜の界面でのプロトン伝導性を高めた燃料電池が開示されている。また特許文献2では、電極触媒層において、塊状の高分子電解質を含有することで、塊状の高分子電解質が大きなプロトン伝導パスとして機能する。そのため、高温低加湿条件下においても高いプロトン伝導性を示す。また、触媒層内のイオン伝導度が大きくなるので、IR損が小さくなり、高い出力特性が得られる燃料電池が開示されている。   Conventionally, various attempts have been made to improve the output performance of fuel cells. For example, Patent Document 1 discloses a fuel cell in which the side of the electrode catalyst layer having a larger amount of polymer electrolysis is joined to the polymer electrolyte membrane to increase proton conductivity at the interface between the electrode catalyst layer and the polymer electrolyte membrane. Has been. In Patent Document 2, the electrode catalyst layer contains a massive polymer electrolyte, so that the massive polymer electrolyte functions as a large proton conduction path. Therefore, high proton conductivity is exhibited even under high temperature and low humidification conditions. Moreover, since the ionic conductivity in the catalyst layer is increased, an IR loss is reduced, and a fuel cell capable of obtaining high output characteristics is disclosed.

特開平11−126615号公報Japanese Patent Laid-Open No. 11-126615 特開2005−85611号公報JP 2005-85611 A

本発明は、電極触媒層において、高分子電解質と触媒物質と電子伝導性物質を有する複合触媒粒子と高分子電解質粒子からなり、触媒物質表面へのガス拡散性と電極触媒層内におけるプロトン伝導性の両方を兼ね備えた膜電極接合体及びその製造方法並びに固体高分子形燃料電池を提供することである。   The present invention comprises a composite catalyst particle having a polymer electrolyte, a catalyst material, and an electron conductive material, and a polymer electrolyte particle in the electrode catalyst layer, and has gas diffusibility to the surface of the catalyst material and proton conductivity in the electrode catalyst layer. The present invention also provides a membrane electrode assembly, a method for producing the same, and a polymer electrolyte fuel cell.

本発明者は鋭意検討を重ねた結果、上記課題を解決することができ、本発明を完成するに至った。   As a result of intensive studies, the present inventor has been able to solve the above-mentioned problems and has completed the present invention.

本発明の請求項1に係る発明は、固体高分子電解質膜と、固体高分子電解質膜の両面に形成された一対の高分子電解質、触媒物質及び電子伝導性物質を有する複合触媒粒子と高分子電解質粒子からなる電極触媒層と、備え、前記複合触媒粒子の平均粒子径が1μm以上10μm以下であり、前記高分子電解質粒子の平均粒子径が100nm以上1μm以下であることを特徴とする膜電極接合体としたものである。 The invention according to claim 1 of the present invention includes a solid polymer electrolyte membrane, a composite catalyst particle having a pair of polymer electrolytes formed on both sides of the solid polymer electrolyte membrane, a catalyst material and an electron conductive material, and a polymer. comprising an electrode catalyst layer made of the electrolyte particles, an average particle diameter of the composite catalyst particles is at 1μm or more 10μm or less, an average particle diameter of the polymer electrolyte particles are characterized der Rukoto least 1μm below 100nm This is a membrane electrode assembly.

本発明の請求項2に係る発明は、触媒物質の触媒粒径が0.5nm以上20nm以下であり、電子伝導性物質の粒径が10nm以上1μm以下であることを特徴とする請求項1に記載の膜電極接合体としたものである。The invention according to claim 2 of the present invention is characterized in that the catalyst particle size of the catalyst material is 0.5 nm or more and 20 nm or less, and the particle size of the electron conductive material is 10 nm or more and 1 μm or less. The membrane electrode assembly described is used.

本発明の請求項3に係る発明は、高分子電解質が前記固体高分子電解質膜と同一の材料であることを特徴とする請求項1又は2に記載の膜電極接合体としたものである。The invention according to claim 3 of the present invention is the membrane electrode assembly according to claim 1 or 2, wherein the polymer electrolyte is the same material as the solid polymer electrolyte membrane.

本発明の請求項に係る発明は、請求項1乃至請求項のいずれかに記載の膜電極接合体が一対のガス拡散層で挟持され、さらに、一対のガス拡散層は一対のセパレータで挟持されることを特徴とする固体高分子形燃料電池としたものである。 According to a fourth aspect of the present invention, the membrane electrode assembly according to any one of the first to third aspects is sandwiched between a pair of gas diffusion layers, and the pair of gas diffusion layers is a pair of separators. The polymer electrolyte fuel cell is characterized by being sandwiched.

本発明の請求項に係る発明は、固体高分子電解質膜を形成し、高分子電解質と触媒物質と電子伝導性物質と溶媒を混合して触媒インクを作製して、高分子電解質が分散した高分子電解質溶液を作製し、触媒インクをスプレードライにより、複合触媒粒子を造粒して、高分子電解質溶液をスプレードライすることで高分子電解質粒子を造粒し、前記複合触媒粒子を1μm以上10μm以下の平均粒子径に分級し、前記高分子電解質粒子を100nm以上1μm以下の平均粒子径に分級し、複合触媒粒子と高分子電解質粒子を混合して、固体高分子電解質膜の両面に一対の電極触媒層を形成することを特徴とする膜電極接合体の製造方法としたものである。 In the invention according to claim 5 of the present invention, a solid polymer electrolyte membrane is formed, a polymer electrolyte, a catalyst material, an electron conductive material, and a solvent are mixed to produce a catalyst ink, and the polymer electrolyte is dispersed. A polymer electrolyte solution is prepared, the catalyst ink is spray-dried, the composite catalyst particles are granulated, the polymer electrolyte solution is spray-dried to granulate the polymer electrolyte particles, and the composite catalyst particles are 1 μm or more Classifying to an average particle size of 10 μm or less , classifying the polymer electrolyte particles to an average particle size of 100 nm or more and 1 μm or less, mixing composite catalyst particles and polymer electrolyte particles, and forming a pair on both sides of the solid polymer electrolyte membrane The electrode catalyst layer is formed as a method for producing a membrane electrode assembly.

本発明の請求項6に係る発明は、前記触媒インクに混合する前記触媒物質の触媒粒径が0.5nm以上20nm以下であり、前記電子伝導性物質の粒径が10nm以上1μm以下であることを特徴とする請求項5に記載の膜電極接合体の製造方法としたものである。In the invention according to claim 6 of the present invention, the catalyst substance mixed with the catalyst ink has a catalyst particle diameter of 0.5 nm to 20 nm, and the electron conductive substance particle diameter of 10 nm to 1 μm. The method for producing a membrane electrode assembly according to claim 5, wherein:

本発明の請求項7に係る発明は、前記触媒インクに混合する前記高分子電解質は、前記固体高分子電解質膜と同一の材料であることを特徴とする請求項5又は6に記載の膜電極接合体の製造方法としたものである。The invention according to claim 7 of the present invention is the membrane electrode according to claim 5 or 6, wherein the polymer electrolyte mixed with the catalyst ink is the same material as the solid polymer electrolyte membrane. This is a method for manufacturing a joined body.

本発明の請求項に係る発明は、請求項乃至請求項のいずれかに記載の膜電極接合体の製造方法により製造されることを特徴とする膜電極接合体としたものである。 The invention according to claim 8 of the present invention is a membrane electrode assembly manufactured by the method for manufacturing a membrane electrode assembly according to any one of claims 5 to 7 .

本発明の請求項に係る発明は、請求項に記載の膜電極接合体を一対のガス拡散層で挟持し、さらに、一対のガス拡散層を一対のセパレータで挟持することを特徴とする固体高分子形燃料電池の製造方法としたものである。 The invention according to claim 9 of the present invention is characterized in that the membrane electrode assembly according to claim 8 is sandwiched between a pair of gas diffusion layers, and further, the pair of gas diffusion layers is sandwiched between a pair of separators. This is a method for producing a polymer electrolyte fuel cell.

本発明によれば、電極触媒層において、高分子電解質と触媒物質と電子伝導性物質を有する複合触媒粒子と高分子電解質粒子からなり、触媒物質表面へのガス拡散性と電極触媒層内におけるプロトン伝導性の両方を兼ね備えた膜電極接合体及びその製造方法並びに固体高分子形燃料電池を提供することができる。   According to the present invention, the electrode catalyst layer comprises a composite catalyst particle having a polymer electrolyte, a catalyst material, and an electron conductive material, and a polymer electrolyte particle. The gas diffusivity to the surface of the catalyst material and the protons in the electrode catalyst layer are It is possible to provide a membrane electrode assembly having both conductivity, a method for producing the same, and a polymer electrolyte fuel cell.

本発明の実施の形態に係る膜電極接合体を示す概略断面図である。It is a schematic sectional drawing which shows the membrane electrode assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る膜電極接合体を示す概略断面図である。It is a schematic sectional drawing which shows the membrane electrode assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る固体高分子形燃料電池を示す概略分解模式図である。1 is a schematic exploded view showing a polymer electrolyte fuel cell according to an embodiment of the present invention.

以下に、本発明の実施の形態に係る膜電極接合体(MEA)及び燃料電池について説明する。なお、本発明の実施の形態は、以下に記載する実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の実施の形態の範囲に含まれうるものである。   Below, the membrane electrode assembly (MEA) and fuel cell which concern on embodiment of this invention are demonstrated. The embodiments of the present invention are not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which is added can also be included in the scope of the embodiments of the present invention.

図1は、本発明の実施の形態に係る膜電極接合体(MEA)12を示す概略断面図である。図1に示すように、本発明の実施の形態に係る膜電極接合体(MEA)12は、固体高分子電解質膜1と、固体高分子電解質膜1の一方の面に電極触媒層(空気極側)2と、固体高分子電解質膜1のもう一方の面に電極触媒層(燃料極側)3を備えている。   FIG. 1 is a schematic cross-sectional view showing a membrane electrode assembly (MEA) 12 according to an embodiment of the present invention. As shown in FIG. 1, a membrane electrode assembly (MEA) 12 according to an embodiment of the present invention includes a solid polymer electrolyte membrane 1 and an electrode catalyst layer (air electrode) on one surface of the solid polymer electrolyte membrane 1. Side) 2 and an electrode catalyst layer (fuel electrode side) 3 on the other surface of the solid polymer electrolyte membrane 1.

次に、図2を参照して電極触媒層2(空気極側)及び電極触媒層(燃料極側)3について説明する。図2は、本発明の実施の形態に係る膜電極接合体(MEA)12を示す概略断面図である。図2に示すように、本発明の実施の形態に係る膜電極接合体(MEA)12は、電極触媒層(空気極側)2及び電極触媒層(燃料極側)3において、高分子電解質と触媒物質と電子伝導性物質を有する複合触媒粒子2a、3a及び高分子電解質粒子2b、3bが混合して形成されている。高分子電解質粒子2b、3bによって、電極触媒層2、3内及び電極触媒層2、3と固体高分子電解質膜1の界面におけるプロトン伝導性を高めることができる。また、複合触媒粒子2a、3aの高分子電解質の含有割合を少なくすることができ、触媒物質表面へのガス供給を確保することができる。更に、平均粒子径が制御された複合触媒粒子2a、3a及び高分子電解質粒子2b、3bを用いることで、電極触媒層2、3内のガス拡散性をも十分に確保することができる。さらに、電極触媒層2上に空気極側ガス拡散層4、電極触媒層3上に燃料極側ガス拡散層5を備えている。   Next, the electrode catalyst layer 2 (air electrode side) and the electrode catalyst layer (fuel electrode side) 3 will be described with reference to FIG. FIG. 2 is a schematic sectional view showing a membrane electrode assembly (MEA) 12 according to the embodiment of the present invention. As shown in FIG. 2, the membrane electrode assembly (MEA) 12 according to the embodiment of the present invention includes a polymer electrolyte and an electrode catalyst layer (air electrode side) 2 and an electrode catalyst layer (fuel electrode side) 3. Composite catalyst particles 2a and 3a having a catalyst material and an electron conductive material and polymer electrolyte particles 2b and 3b are mixed and formed. The polymer electrolyte particles 2b and 3b can enhance proton conductivity in the electrode catalyst layers 2 and 3 and at the interface between the electrode catalyst layers 2 and 3 and the solid polymer electrolyte membrane 1. Moreover, the content rate of the polymer electrolyte of the composite catalyst particles 2a and 3a can be reduced, and the gas supply to the catalyst substance surface can be ensured. Furthermore, by using the composite catalyst particles 2a and 3a and the polymer electrolyte particles 2b and 3b whose average particle diameter is controlled, the gas diffusibility in the electrode catalyst layers 2 and 3 can be sufficiently secured. Further, an air electrode side gas diffusion layer 4 is provided on the electrode catalyst layer 2, and a fuel electrode side gas diffusion layer 5 is provided on the electrode catalyst layer 3.

本発明の実施の形態に係る電極触媒層2、3の複合触媒粒子2a、3aにおける触媒物質及び電子伝導性物質としては、白金を担持したカーボンブラックが好適に用いられるが、触媒物質として、白金触媒の代替材料として窒素や炭素等を含む4及び5族遷移金属酸化物を用いても何ら問題はない。   As the catalyst material and the electron conductive material in the composite catalyst particles 2a and 3a of the electrode catalyst layers 2 and 3 according to the embodiment of the present invention, carbon black carrying platinum is preferably used. There is no problem even if a group 4 or 5 transition metal oxide containing nitrogen, carbon or the like is used as an alternative material for the catalyst.

本発明の実施の形態に係る電極触媒層2、3の複合触媒粒子2a、3aの平均粒子径が0.5μm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。平均粒径が0.5μm未満であると、複合触媒粒子2a、3a間において十分な細孔が確保できず、フラッディングを生じてしまう。一方、平均粒径が20μmを超えると、複合触媒粒子2a、3aの内部の触媒を有効に使用することができず、触媒利用率が低下してしまう。一方、複合触媒粒子2a、3aの平均粒子径が1μm以上10μm以下であると、触媒物質表面へのガス拡散性と電極触媒層2、3内におけるプロトン伝導性の両方を兼ね備えることができる。   The average particle diameter of the composite catalyst particles 2a and 3a of the electrode catalyst layers 2 and 3 according to the embodiment of the present invention is preferably 0.5 μm or more and 20 μm or less, and more preferably 1 μm or more and 10 μm or less. If the average particle size is less than 0.5 μm, sufficient pores cannot be secured between the composite catalyst particles 2a and 3a, resulting in flooding. On the other hand, if the average particle diameter exceeds 20 μm, the catalyst inside the composite catalyst particles 2a and 3a cannot be used effectively, and the catalyst utilization rate decreases. On the other hand, when the average particle diameter of the composite catalyst particles 2a and 3a is 1 μm or more and 10 μm or less, both the gas diffusibility to the catalyst material surface and the proton conductivity in the electrode catalyst layers 2 and 3 can be provided.

また、電子伝導性物質であるカーボンブラックの粒径をガス拡散層側で大きく、固体高分子電解質膜側で小さくする方法が提案されているが、それによる電極触媒層内で形成される細孔(気孔)は数十nmと小さなものであり、ガス拡散性が十分ではなく、また生成水を排出しがたい。これに対して、本発明の実施の形態においては、電極触媒層2、3内で形成される細孔(気孔)は、カーボンブラックに由来する従来の数十nm程度のものに加えて、粒子間空隙に由来する0.1μm〜5μmレベルの大きなものも含み、十分なガス拡散性を確保し、スムーズな生成水排出を行うことができる。   In addition, a method has been proposed in which the particle size of carbon black, which is an electron conductive material, is increased on the gas diffusion layer side and decreased on the solid polymer electrolyte membrane side. The (pores) are as small as several tens of nm, the gas diffusibility is not sufficient, and the generated water is difficult to discharge. On the other hand, in the embodiment of the present invention, the pores (pores) formed in the electrode catalyst layers 2 and 3 are particles in addition to the conventional ones of about several tens of nm derived from carbon black. Including large ones of 0.1 μm to 5 μm level derived from the interstices, sufficient gas diffusibility can be ensured and smooth generated water can be discharged.

本発明の実施の形態に係る電極触媒層2、3の高分子電解質粒子2b、3bの平均粒子径は100nm以上1μm以下であることが好ましい。平均粒子径が100nm未満であると、電極触媒層2、3中の細孔を塞いでしまい、ガス拡散性を確保することができなくなってしまう。一方、平均粒子径が1μmを超えると、表面積が小さくなり、電極反応の効率が低下してしまう。   The average particle diameter of the polymer electrolyte particles 2b and 3b of the electrode catalyst layers 2 and 3 according to the embodiment of the present invention is preferably 100 nm or more and 1 μm or less. If the average particle diameter is less than 100 nm, the pores in the electrode catalyst layers 2 and 3 are blocked, and gas diffusibility cannot be ensured. On the other hand, when the average particle diameter exceeds 1 μm, the surface area becomes small and the efficiency of the electrode reaction decreases.

次に、本発明の実施の形態に係る膜電極接合体12を用いた固体高分子形燃料電池13について説明する。図3は、本発明の実施の形態に係る固体高分子形燃料電池13を示す概略分解模式図である。図3に示すように、本発明の実施の形態に係る固体高分子形燃料電池13は、固体高分子電解質膜1の両面に電極触媒層2及び電極触媒層3を有する膜電極接合体12を備え、電極触媒層2及び電極触媒層3と対向して空気極側ガス拡散層4及び燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6及び燃料極7が構成される。そしてガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつ不透過性の材料よりなる1組のセパレータ10が配置される。燃料極7側のセパレータ10のガス流路8からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極6側のセパレータ10のガス流路8からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。   Next, the polymer electrolyte fuel cell 13 using the membrane electrode assembly 12 according to the embodiment of the present invention will be described. FIG. 3 is a schematic exploded view showing the polymer electrolyte fuel cell 13 according to the embodiment of the present invention. As shown in FIG. 3, a polymer electrolyte fuel cell 13 according to an embodiment of the present invention includes a membrane electrode assembly 12 having an electrode catalyst layer 2 and an electrode catalyst layer 3 on both sides of a solid polymer electrolyte membrane 1. The air electrode side gas diffusion layer 4 and the fuel electrode side gas diffusion layer 5 are disposed so as to face the electrode catalyst layer 2 and the electrode catalyst layer 3. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. Then, a set of separators 10 made of a conductive and impermeable material, which is provided with a gas flow path 8 for gas flow and is provided with a cooling water flow path 9 for cooling water flow on the opposing main surface, is disposed. For example, hydrogen gas is supplied as a fuel gas from the gas flow path 8 of the separator 10 on the fuel electrode 7 side. On the other hand, a gas containing oxygen, for example, is supplied as an oxidant gas from the gas flow path 8 of the separator 10 on the air electrode 6 side.

図3に示すように、本発明の実施の形態に係る固体高分子形燃料電池13は、一組のセパレータ10に固体高分子電解質膜1、電極触媒層2及び電極触媒層3、ガス拡散層4及びガス拡散層5を持するいわゆる単セル構造の固体高分子形燃料電池13であるが、本発明の実施の形態においては、セパレータ10を介して複数のセルを直列に積層して積層スタック構造とすることもできる。
As shown in FIG. 3, a polymer electrolyte fuel cell 13 according to an embodiment of the present invention includes a set of separators 10 and a polymer electrolyte membrane 1, an electrode catalyst layer 2, an electrode catalyst layer 3, and a gas diffusion layer. 4 and is a gas diffusion layer 5 which is a solid polymer electrolyte fuel cell 13 of the so-called single cell structure for clamping, in the embodiment of the present invention, by laminating a plurality of cells in series via the separators 10 stacked It can also be a stack structure.

次に、本発明の実施の形態に係る膜電極接合体(MEA)12の製造方法及び固体高分子形燃料電池13の製造方法について説明する。   Next, the manufacturing method of the membrane electrode assembly (MEA) 12 and the manufacturing method of the polymer electrolyte fuel cell 13 according to the embodiment of the present invention will be described.

まず、図1に示すように、本発明の実施の形態に係る膜電極接合体(MEA)12の固体高分子電解質膜1を用意する。固体高分子電解質膜1は、プロトン伝導性に優れ、且つ電子を流さない材料からなるものであれば特に限定されない。特に、パーフルオロ型のスルホン酸膜、例えば、デュポン社製Nafion(登録商標)、旭硝子社製フレミオン(登録商標)、旭硝子社製アシプレックス(登録商標)、ジャパンゴアテックス製ゴアセレクト(登録商標)等を用いることができる。その他、プロトン伝導基を有するポリイミド等の炭化水素系樹脂など等も用いることができる。   First, as shown in FIG. 1, a solid polymer electrolyte membrane 1 of a membrane electrode assembly (MEA) 12 according to an embodiment of the present invention is prepared. The solid polymer electrolyte membrane 1 is not particularly limited as long as it is made of a material that is excellent in proton conductivity and does not flow electrons. In particular, perfluoro-type sulfonic acid membranes such as Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Glass Co., Ltd. and Gore Select (registered trademark) manufactured by Japan Gore-Tex Etc. can be used. In addition, a hydrocarbon resin such as polyimide having a proton conductive group can also be used.

本発明の実施の形態に係る膜電極接合体(MEA)12の固体高分子電解質膜1は、電極触媒層2及び電極触媒層3に用いられる高分子電解質と同一の材料からなることが好ましい。   The polymer electrolyte membrane 1 of the membrane electrode assembly (MEA) 12 according to the embodiment of the present invention is preferably made of the same material as the polymer electrolyte used for the electrode catalyst layer 2 and the electrode catalyst layer 3.

次に、用意した固体高分子電解質膜1の両面には電極触媒層2及び電極触媒層3を形成する。電極触媒層2及び電極触媒層3を形成するにあっては、高分子電解質と触媒物質と触媒物質を担持するカーボン担体と分散媒を含む触媒インクを調整する。   Next, the electrode catalyst layer 2 and the electrode catalyst layer 3 are formed on both surfaces of the prepared solid polymer electrolyte membrane 1. In forming the electrode catalyst layer 2 and the electrode catalyst layer 3, a catalyst ink containing a polymer electrolyte, a catalyst material, a carbon carrier carrying the catalyst material, and a dispersion medium is prepared.

触媒インク中に含まれる高分子電解質には様々なものが用いられるが、固体高分子電解質膜1と同様の材料を用いることができ、固体高分子電解質膜1と同一の材料を用いることが好ましい。デュポン社製Nafion(登録商標)を固体高分子電解質膜1として用いた場合には、触媒インクに含まれる高分子電解質としてはNafionを使用するのが好ましい。固体高分子電解質膜1にNafion以外の材料を用いた場合は、触媒インク中に固体高分子電解質膜1と同じ成分を溶解させるなど最適化をはかることが好ましい。   Various polymer electrolytes are used in the catalyst ink, but the same material as the solid polymer electrolyte membrane 1 can be used, and the same material as the solid polymer electrolyte membrane 1 is preferably used. . When Nafion (registered trademark) manufactured by DuPont is used as the solid polymer electrolyte membrane 1, it is preferable to use Nafion as the polymer electrolyte contained in the catalyst ink. When a material other than Nafion is used for the solid polymer electrolyte membrane 1, it is preferable to optimize such as dissolving the same components as the solid polymer electrolyte membrane 1 in the catalyst ink.

本発明の実施の形態に係る膜電極接合体(MEA)12の触媒物質は一般的に用いられているものを使用することができ、特に限定されるものではない。具体的に、例えば、白金担持カーボンの白金は、白金単体もしくは白金合金が担持されたカーボン粒子などを用いることができる。合金としては、パラジウム、ルテニウム、モリブデンなどが挙げられるが、特にルテニウムが望ましい。また、タングステン、スズ、レニウムなどが白金合金に添加物として含まれていてもよい。上記添加物が含まれているとCO耐被毒性を高めることができる。上記添加金属は、白金合金の金属間化合物として存在してもよいし、合金を形成してもよい。またこれらの触媒粒径は、0.5nm以上20nm以下が好ましい。更に好ましくは1nm以上5nm以下がよい。触媒粒径が20nmを超えると触媒の活性が低下してしまい、0.5nm未満だと触媒の安定性が低下してしまう。   As the catalyst material of the membrane electrode assembly (MEA) 12 according to the embodiment of the present invention, those generally used can be used, and are not particularly limited. Specifically, for example, as platinum of platinum-supported carbon, carbon particles or the like on which platinum alone or a platinum alloy is supported can be used. Examples of the alloy include palladium, ruthenium, and molybdenum, and ruthenium is particularly desirable. Moreover, tungsten, tin, rhenium, etc. may be contained as an additive in the platinum alloy. When the additive is contained, the CO poisoning resistance can be increased. The additive metal may exist as an intermetallic compound of a platinum alloy or may form an alloy. The catalyst particle size is preferably 0.5 nm or more and 20 nm or less. More preferably, it is 1 nm or more and 5 nm or less. If the catalyst particle diameter exceeds 20 nm, the activity of the catalyst decreases, and if it is less than 0.5 nm, the stability of the catalyst decreases.

上述した触媒物質は、カーボン担体に担持される。カーボン担体の種類は、微粒子状で導電性を有し、触媒に侵されないものであればどのようなものでも構わないが、黒鉛質炭素、炭素繊維、カーボンナノチューブ、ナノホーン、フラーレンを好適に用いることができる。カーボン担体の粒径は、10nm以上1μm以下程度が好ましい。更に好ましくは、10nm以上100nm以下が好ましい。カーボン担体の粒径が10nm未満だと電子伝導パスが形成されにくくなってしまい、1μmを超えると電極触媒層2及び電極触媒層3のガス拡散性が低下し、触媒の利用率が低下してしまう。   The catalyst material described above is supported on a carbon support. The type of the carbon carrier may be any fine particle that is electrically conductive and is not affected by the catalyst. Graphite carbon, carbon fiber, carbon nanotube, nanohorn, and fullerene are preferably used. Can do. The particle size of the carbon support is preferably about 10 nm to 1 μm. More preferably, it is 10 nm or more and 100 nm or less. When the particle size of the carbon support is less than 10 nm, it becomes difficult to form an electron conduction path. When the particle size exceeds 1 μm, the gas diffusibility of the electrode catalyst layer 2 and the electrode catalyst layer 3 decreases, and the utilization rate of the catalyst decreases. End up.

触媒インクの分散媒として使用される溶媒は、触媒粒子や水素イオン伝導性樹脂を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はないが、発性の液体有機溶媒が少なくとも含まれることが望ましく、特に限定されるものではない。触媒インクの分散媒として使用される溶媒には、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、ペンタノール、2−ヘプタノール、ベンジルアルコール等のアルコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンなどのアミン類、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルなどのエステル類、その他酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1−メトキシ−2−プロパノール等の極性溶媒等が使用される。また、これらの溶媒のうち二種以上を混合させたものも使用できる。   The solvent used as the dispersion medium for the catalyst ink is not particularly limited as long as it does not erode the catalyst particles or the hydrogen ion conductive resin, and can dissolve or disperse the proton conductive polymer in a highly fluid state as a fine gel. Although there is no restriction | limiting, it is desirable that at least the emissive liquid organic solvent is included, and it is not specifically limited. Examples of the solvent used as a dispersion medium for the catalyst ink include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentanol, 2-heptanol, Alcohols such as benzyl alcohol, acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, methyl cyclohexanone, acetonyl acetone, diethyl ketone, dipropyl ketone, diisobutyl Ketones such as ketones, tetrahydrofuran, tetrahydropyran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, diethyl ether , Ethers such as dipropyl ether and dibutyl ether, amines such as isopropylamine, butylamine, isobutylamine, cyclohexylamine, diethylamine and aniline, propyl formate, isobutyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, acetic acid Esters such as butyl, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, butyl propionate, other acetic acid, propionic acid, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, propylene Glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diacetone alcohol Lumpur, polar solvents such as 1-methoxy-2-propanol is used. Moreover, what mixed 2 or more types of these solvents can also be used.

これらの溶媒の中でも誘電率が異なる2種類の溶媒を用いることで、触媒インク中の高分子電解質の分散状態を制御することができる。これらの溶媒または溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。また、高分子電解質となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。   By using two types of solvents having different dielectric constants among these solvents, the dispersion state of the polymer electrolyte in the catalyst ink can be controlled. These solvents or those using lower alcohols as the solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water. Further, water that is compatible with the polymer electrolyte may be contained. The amount of water added is not particularly limited as long as the proton conductive polymer is not separated to cause white turbidity or gelation.

また、触媒インクにあっては、触媒物質を担持したカーボン担体を分散させるために、分散剤が含まれていても良い。分散剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などを用いることができる。   Further, the catalyst ink may contain a dispersant in order to disperse the carbon carrier carrying the catalyst substance. As the dispersant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or the like can be used.

また、触媒インクに造孔剤が含まれても良い。造孔剤は、電極触媒層2、3の形成後に除去することで、細孔を形成することができる。酸やアルカリ、水に溶ける物質や、ショウノウなどの昇華する物質、熱分解する物質などを挙げることができる。温水で溶ける物質であれば、発電時に発生する水で取り除いても良い。   The catalyst ink may contain a pore forming agent. By removing the pore-forming agent after the electrode catalyst layers 2 and 3 are formed, pores can be formed. Examples include substances that are soluble in acids, alkalis, and water, substances that sublime such as camphor, and substances that thermally decompose. If the substance is soluble in hot water, it may be removed with water generated during power generation.

酸やアルカリ、水に溶ける造孔剤としては、例えば、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等の酸可溶性無機塩類、アルミナ、シリカゲル、シリカゾル等のアルカリ水溶液に可溶性の無機塩類、アルミニウム、亜鉛、スズ、ニッケル、鉄等の酸またはアルカリに可溶性の金属類、塩化ナトリウム、塩化カリウム、塩化アンモニウム、炭酸ナトリウム、硫酸ナトリウム、リン酸一ナトリウム等の水溶性無機塩類、ポリビニルアルコール、ポリエチレングリコール等の水溶性有機化合物類などが挙げられ、2種以上併用することも有効である。   Examples of pore-forming agents that are soluble in acids, alkalis, and water include, for example, acid-soluble inorganic salts such as calcium carbonate, barium carbonate, magnesium carbonate, magnesium sulfate, and magnesium oxide, and inorganic salts that are soluble in an alkaline aqueous solution such as alumina, silica gel, and silica sol. , Metals soluble in acids or alkalis such as aluminum, zinc, tin, nickel and iron, water-soluble inorganic salts such as sodium chloride, potassium chloride, ammonium chloride, sodium carbonate, sodium sulfate and monosodium phosphate, polyvinyl alcohol, Examples include water-soluble organic compounds such as polyethylene glycol, and it is also effective to use two or more kinds in combination.

触媒インクの粘度は0.1cP以上100cP以下であることが好ましい。触媒インクの粘度が100cPを超えると、スプレードライの送液ライン中及びスプレーノズル部で、インクがつまり、噴霧が困難になってしまう。一方、触媒インクの粘度が0.1cP未満だと、造粒レートが非常に遅く、生産性が低下してしまう。粘度は溶媒の種類、固形分濃度を変化させることで最適化する。またインキの分散時に分散剤を添加することで、粘度の制御をすることもできる。   The viscosity of the catalyst ink is preferably from 0.1 cP to 100 cP. If the viscosity of the catalyst ink exceeds 100 cP, it becomes difficult to spray the ink in the spray-drying liquid feed line and in the spray nozzle portion. On the other hand, when the viscosity of the catalyst ink is less than 0.1 cP, the granulation rate is very slow and the productivity is lowered. The viscosity is optimized by changing the type of solvent and the solid content concentration. Further, the viscosity can be controlled by adding a dispersing agent when the ink is dispersed.

また、高分子電解質と触媒物質と触媒物質を担持するカーボン担体と分散媒を含む触媒インクは公知の方法により適宜分散処理がおこなわれる。   The catalyst ink containing the polymer electrolyte, the catalyst material, the carbon carrier carrying the catalyst material, and the dispersion medium is appropriately dispersed by a known method.

上記の触媒インクをスプレードライ法にて、噴霧乾燥させることにより複合触媒粒子を造粒する。噴霧乾燥温度は用いる触媒インク中の溶媒の沸点や、高分子電解質のガラス転移温度に合わせて最適化する必要がある。特に、噴霧乾燥温度がガラス転移温度より高いと、均一な粒子径の複合触媒粒子が得られないばかりでなく、高分子電解質中のプロトン伝導性が低下する恐れがある。   Composite catalyst particles are granulated by spray drying the above catalyst ink by spray drying. The spray drying temperature needs to be optimized in accordance with the boiling point of the solvent in the catalyst ink used and the glass transition temperature of the polymer electrolyte. In particular, when the spray drying temperature is higher than the glass transition temperature, not only composite catalyst particles having a uniform particle diameter can be obtained, but also proton conductivity in the polymer electrolyte may be lowered.

スプレードライ法においては、触媒インク粘度や、噴霧乾燥時の温度、噴霧液量、噴霧圧力等を変化させることで、所望の粒子径をもつ複合触媒粒子を造粒することができる。   In the spray drying method, composite catalyst particles having a desired particle diameter can be granulated by changing the viscosity of the catalyst ink, the temperature during spray drying, the amount of spray liquid, the spray pressure, and the like.

造粒された複合触媒粒子2a、3aは、静電スクリーン法などの乾式塗布法にて、固体高分子電解質膜1上または、ガス拡散層4、5上に塗布することで、電極触媒層2及び電極触媒層3は形成される。また、転写基材を用い、転写基材上に複合触媒粒子2a、3aを塗布し、転写基材上に電極触媒層2及び電極触媒層3を一旦形成した後、転写法により固体高分子電解質膜1上に電極触媒層2及び電極触媒層3を形成しても良い。   The granulated composite catalyst particles 2a and 3a are applied onto the solid polymer electrolyte membrane 1 or the gas diffusion layers 4 and 5 by a dry coating method such as an electrostatic screen method. And the electrode catalyst layer 3 is formed. Also, using a transfer substrate, the composite catalyst particles 2a and 3a are coated on the transfer substrate, and the electrode catalyst layer 2 and the electrode catalyst layer 3 are once formed on the transfer substrate. The electrode catalyst layer 2 and the electrode catalyst layer 3 may be formed on the membrane 1.

電極触媒層2、電極触媒層3及び固体高分子電解質膜1は熱圧着により接合される。さらに、その電極触媒層2、電極触媒層3及びプロトン伝導性高分子の間には、接合性を高める為に、プロトン伝導性高分子を含む溶液を結着剤として塗布することもできる。   The electrode catalyst layer 2, the electrode catalyst layer 3, and the solid polymer electrolyte membrane 1 are joined by thermocompression bonding. Further, a solution containing a proton conductive polymer can be applied as a binder between the electrode catalyst layer 2, the electrode catalyst layer 3 and the proton conductive polymer in order to improve the bonding property.

さらに、本発明の実施の形態に係る固体高分子形燃料電池13のガス拡散層4、ガス拡散層5及びセパレータ10としては通常の燃料電池に用いられているものを用いることができる。具体的にはガス拡散層4及びガス拡散層5としては、カーボンクロス、カーボンペーパ、不織布などのポーラスカーボン材が用いられる。セパレータ10としては、カーボンタイプのもの金属タイプのもの等を用いることができる。また、燃料電池としては、ガス供給装置、冷却装置などその他付随する装置を組み立てることにより製造される。   Further, as the gas diffusion layer 4, the gas diffusion layer 5 and the separator 10 of the polymer electrolyte fuel cell 13 according to the embodiment of the present invention, those used in ordinary fuel cells can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and nonwoven fabric are used for the gas diffusion layer 4 and the gas diffusion layer 5. As the separator 10, a carbon type metal type or the like can be used. The fuel cell is manufactured by assembling other accompanying devices such as a gas supply device and a cooling device.

本発明の実施の形態に係る固体高分子形燃料電池13は、膜電極接合体12の電極触媒層2、3において、高分子電解質と触媒物質と電子伝導性物質を有する複合触媒粒子と高分子電解質粒子からなり、触媒物質表面へのガス拡散性と電極触媒層2、3内におけるプロトン伝導性の両方を兼ね備えることができ、良好な発電特性を得ることができる。   In the polymer electrolyte fuel cell 13 according to the embodiment of the present invention, in the electrode catalyst layers 2 and 3 of the membrane electrode assembly 12, composite catalyst particles and polymer having a polymer electrolyte, a catalyst material, and an electron conductive material are used. It consists of electrolyte particles, and can have both gas diffusibility to the surface of the catalyst material and proton conductivity in the electrode catalyst layers 2 and 3, and good power generation characteristics can be obtained.

以下、本発明を実施例により説明する。なお、本発明は実施例に限定されるものではない。   The present invention will be described below with reference to examples. In addition, this invention is not limited to an Example.

[触媒インクの調製]
触媒物質として白金を50wt%担持したケッチェンブラックを用いて、純水及びデュポン社製Nafion(登録商標)の溶液をFritsch社製Pulverisette7の遊星型ボールミルで分散処理を行った。ボールミルのポット及びボールには、ジルコニア製のものを用いて触媒インクを得た。このとき、ケッチェンブラックの重量(C)1に対して、Nafion溶液中の電解質重量(N)が0.3となるように調整した。
[Preparation of catalyst ink]
Using Ketjen Black carrying 50 wt% platinum as a catalyst material, pure water and a solution of Nafion (registered trademark) manufactured by DuPont were dispersed using a planetary ball mill of Pulversette 7 manufactured by Fritsch. A catalyst ink was obtained using a ball mill pot and balls made of zirconia. At this time, the electrolyte weight (N) in the Nafion solution was adjusted to 0.3 with respect to the weight (C) 1 of ketjen black.

[複合触媒粒、高分子電解質粒子の造粒]
調整した触媒インクを用いて、スプレードライヤ法により、触媒インクを造粒し、複合触媒粒子を作製した。噴霧温度は80℃であり、送液ガスはNを用いた。得られた複合触媒粒子を分級した。得られた複合触媒粒子径を走査型電子顕微鏡にて観察を行ったところ、平均粒子径が4μmであった。また、高分子電解質の分散溶液をスプレードライすることで、高分子電解質粒子を作製した。
[Granulation of composite catalyst particles and polymer electrolyte particles]
Using the prepared catalyst ink, the catalyst ink was granulated by a spray dryer method to produce composite catalyst particles. The spraying temperature was 80 ° C., and N 2 was used as the liquid feeding gas. The obtained composite catalyst particles were classified. When the obtained composite catalyst particle diameter was observed with a scanning electron microscope, the average particle diameter was 4 μm. Moreover, the polymer electrolyte particle was produced by spray-drying the dispersion solution of a polymer electrolyte.

[電極触媒層を備える転写シートの作製方法]
転写基材上に、複合触媒粒子と高分子電解質粒子を混合塗布し電極触媒層を形成した。このとき、単位面積あたりの電極触媒層のPt(白金)質量が0.3mg/cmとなるように電極触媒層を形成した。形成後、所定の電極サイズに打ち抜き、転写シートとした。
[Method for producing transfer sheet having electrode catalyst layer]
On the transfer substrate, composite catalyst particles and polymer electrolyte particles were mixed and applied to form an electrode catalyst layer. At this time, the electrode catalyst layer was formed so that the Pt (platinum) mass of the electrode catalyst layer per unit area was 0.3 mg / cm 2 . After the formation, it was punched into a predetermined electrode size to obtain a transfer sheet.

[膜電極接合体12の作製]
固体高分子電解質膜1としては、プロトン伝導性高分子膜、デュポン社製Nafion(登録商標)212を用いた。固体高分子電解質膜1の両面に、準備をした転写基材上に電極触媒層を備える転写シートで挟持し、130℃、6.0MPaの条件で熱圧着を行い、転写基材のみを剥がし、膜電極接合体12を得た。
[Preparation of membrane electrode assembly 12]
As the solid polymer electrolyte membrane 1, a proton conductive polymer membrane, Nafion (registered trademark) 212 manufactured by DuPont was used. The solid polymer electrolyte membrane 1 is sandwiched on both sides of a prepared transfer base material by a transfer sheet having an electrode catalyst layer, and thermocompression bonded under conditions of 130 ° C. and 6.0 MPa, and only the transfer base material is peeled off. A membrane electrode assembly 12 was obtained.

得られた膜電極接合体12の両面に、ガス拡散層としてカーボンペーパを配置し、更に、一対の焼成カーボン製のセパレータ10で挟持し、単セルの固体高分子形燃料電池13を作製した。   Carbon paper was disposed as a gas diffusion layer on both surfaces of the membrane electrode assembly 12 thus obtained, and was further sandwiched between a pair of calcined carbon separators 10 to produce a single-cell solid polymer fuel cell 13.

[比較例]
実施例と同様の触媒インクを用いて、転写基材上に触媒インクを塗布した後、溶媒を乾燥させ電極触媒層を形成した。このとき単位面積あたりのPt(白金)質量が0.3mg/cmとなるように電極触媒層を形成した。固体高分子電解質膜1としては、プロトン伝導性高分子膜、デュポン社製Nafion212を用いた。固体高分子電解質膜1の両面に、先に準備をした転写基材上に電極触媒層を順に備える転写シートで挟持し、130℃、6.0MPaの条件で熱圧着を行い、転写基材のみを剥がし、膜電極接合体12を得た。得られた膜電極接合体12の両面に、実施例と同様に、ガス拡散層としてカーボンペーパを配置し、更に、一対の焼成カーボン製のセパレータ10で挟持し、単セルの固体高分子形燃料電池13を作製した。
[Comparative example]
Using the same catalyst ink as in the example, the catalyst ink was applied onto the transfer substrate, and then the solvent was dried to form an electrode catalyst layer. At this time, the electrode catalyst layer was formed so that the mass of Pt (platinum) per unit area was 0.3 mg / cm 2 . As the solid polymer electrolyte membrane 1, a proton conductive polymer membrane, Nafion 212 manufactured by DuPont was used. The solid polymer electrolyte membrane 1 is sandwiched between transfer electrodes each having an electrode catalyst layer in order on a transfer substrate prepared in advance, and thermocompression bonded under conditions of 130 ° C. and 6.0 MPa. The membrane electrode assembly 12 was obtained. Similarly to the example, carbon paper was disposed as a gas diffusion layer on both surfaces of the obtained membrane electrode assembly 12, and was further sandwiched between a pair of calcined carbon separators 10 to provide a single cell solid polymer fuel. A battery 13 was produced.

[発電特性の評価]
東陽テクニカ社製GFT−SG1の燃料電池測定装置にて発電特性評価を行った。燃料として水素ガス、酸化剤として空気を使用した。
[Evaluation of power generation characteristics]
The power generation characteristics were evaluated with a GFT-SG1 fuel cell measuring device manufactured by Toyo Technica. Hydrogen gas was used as the fuel and air was used as the oxidant.

実施例及び比較例の膜電極接合体12を用いて作製した固体高分子形燃料電池13の発電評価を行ったところ、実施例の固体高分子形燃料電池13は、フラッディング等が発生することなく、良好な発電特性を得ることができた。   When the power generation evaluation of the polymer electrolyte fuel cell 13 produced using the membrane electrode assembly 12 of the example and the comparative example was performed, the polymer electrolyte fuel cell 13 of the example did not generate flooding or the like. Good power generation characteristics could be obtained.

1…固体高分子電解質膜、2…電極触媒層(空気極側)、3…電極触媒層(燃料極側)、4…空気極側ガス拡散層、5…燃料極側ガス拡散層、6…空気極、7…燃料極、8…ガス流路、9…冷却水流路、10…セパレータ、12…膜電極接合体、13…固体高分子形燃料電池   DESCRIPTION OF SYMBOLS 1 ... Solid polymer electrolyte membrane, 2 ... Electrode catalyst layer (air electrode side), 3 ... Electrode catalyst layer (fuel electrode side), 4 ... Air electrode side gas diffusion layer, 5 ... Fuel electrode side gas diffusion layer, 6 ... Air electrode, 7 ... Fuel electrode, 8 ... Gas flow path, 9 ... Cooling water flow path, 10 ... Separator, 12 ... Membrane electrode assembly, 13 ... Solid polymer fuel cell

Claims (9)

固体高分子電解質膜と、
前記固体高分子電解質膜の両面に形成された一対の高分子電解質、触媒物質及び電子伝導性物質を有する複合触媒粒子と高分子電解質粒子からなる電極触媒層と、を備え、
前記複合触媒粒子の平均粒子径が1μm以上10μm以下であり、
前記高分子電解質粒子の平均粒子径が100nm以上1μm以下であることを特徴とする膜電極接合体。
A solid polymer electrolyte membrane;
A pair of polymer electrolytes formed on both surfaces of the solid polymer electrolyte membrane, a composite catalyst particle having a catalyst substance and an electron conductive substance, and an electrode catalyst layer comprising the polymer electrolyte particles,
The composite catalyst particles have an average particle size of 1 μm or more and 10 μm or less,
The membrane electrode assembly, wherein the polymer electrolyte particles have an average particle diameter of 100 nm to 1 μm.
前記触媒物質の触媒粒径が0.5nm以上20nm以下であり、
前記電子伝導性物質の粒径が10nm以上1μm以下であることを特徴とする請求項1に記載の膜電極接合体。
The catalyst particle diameter of the catalyst material is 0.5 nm or more and 20 nm or less,
2. The membrane electrode assembly according to claim 1, wherein a particle diameter of the electron conductive material is 10 nm or more and 1 μm or less.
前記高分子電解質は、前記固体高分子電解質膜と同一の材料であることを特徴とする請求項1又は2に記載の膜電極接合体。   The membrane electrode assembly according to claim 1 or 2, wherein the polymer electrolyte is made of the same material as the solid polymer electrolyte membrane. 請求項1乃至請求項3のいずれかに記載の膜電極接合体が一対のガス拡散層で挟持され、さらに、前記一対のガス拡散層は一対のセパレータで挟持されることを特徴とする固体高分子形燃料電池。   The membrane electrode assembly according to any one of claims 1 to 3, wherein the membrane electrode assembly is sandwiched between a pair of gas diffusion layers, and the pair of gas diffusion layers is sandwiched between a pair of separators. Molecular fuel cell. 固体高分子電解質膜を形成し、
高分子電解質と触媒物質と電子伝導性物質と溶媒を混合して触媒インクを作製して、前記高分子電解質が分散した高分子電解質溶液を作製し、
前記触媒インクをスプレードライにより、複合触媒粒子を造粒して、前記高分子電解質溶液をスプレードライすることで高分子電解質粒子を造粒し、
前記複合触媒粒子を1μm以上10μm以下の平均粒子径に分級し、
前記高分子電解質粒子を100nm以上1μm以下の平均粒子径に分級し、
前記複合触媒粒子と前記高分子電解質粒子を混合して、前記固体高分子電解質膜の両面に一対の電極触媒層を形成することを特徴とする膜電極接合体の製造方法。
Forming a solid polymer electrolyte membrane,
A polymer electrolyte, a catalyst material, an electron conductive material and a solvent are mixed to prepare a catalyst ink, and a polymer electrolyte solution in which the polymer electrolyte is dispersed is prepared.
The catalyst ink is granulated by spray drying the composite catalyst particles, and the polymer electrolyte particles are granulated by spray drying the polymer electrolyte solution,
Classifying the composite catalyst particles into an average particle size of 1 μm or more and 10 μm or less;
Classifying the polymer electrolyte particles to an average particle size of 100 nm to 1 μm;
A method for producing a membrane electrode assembly, comprising mixing the composite catalyst particles and the polymer electrolyte particles to form a pair of electrode catalyst layers on both surfaces of the solid polymer electrolyte membrane.
前記触媒インクに混合する前記触媒物質の触媒粒径が0.5nm以上20nm以下であり、
前記電子伝導性物質の粒径が10nm以上1μm以下であることを特徴とする請求項5に記載の膜電極接合体の製造方法。
The catalyst particle diameter of the catalyst substance mixed in the catalyst ink is 0.5 nm or more and 20 nm or less,
6. The method for producing a membrane / electrode assembly according to claim 5, wherein a particle diameter of the electron conductive material is 10 nm or more and 1 μm or less.
前記触媒インクに混合する前記高分子電解質は、前記固体高分子電解質膜と同一の材料であることを特徴とする請求項5又は6に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 5 or 6, wherein the polymer electrolyte to be mixed with the catalyst ink is the same material as the solid polymer electrolyte membrane. 請求項5乃至請求項7のいずれかに記載の膜電極接合体の製造方法により製造されることを特徴とする膜電極接合体。   A membrane / electrode assembly produced by the method for producing a membrane / electrode assembly according to claim 5. 請求項8に記載の膜電極接合体を一対のガス拡散層で挟持し、さらに、前記一対のガス拡散層を一対のセパレータで挟持することを特徴とする固体高分子形燃料電池の製造方法。   9. A method for producing a polymer electrolyte fuel cell, comprising sandwiching the membrane electrode assembly according to claim 8 with a pair of gas diffusion layers, and further sandwiching the pair of gas diffusion layers with a pair of separators.
JP2009105565A 2009-04-23 2009-04-23 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell Active JP5487701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105565A JP5487701B2 (en) 2009-04-23 2009-04-23 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105565A JP5487701B2 (en) 2009-04-23 2009-04-23 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2010257715A JP2010257715A (en) 2010-11-11
JP5487701B2 true JP5487701B2 (en) 2014-05-07

Family

ID=43318423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105565A Active JP5487701B2 (en) 2009-04-23 2009-04-23 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5487701B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190656A (en) * 2011-03-10 2012-10-04 Toppan Printing Co Ltd Membrane electrode assembly and manufacturing method therefor and solid polymer fuel cell
JP5790049B2 (en) * 2011-03-17 2015-10-07 凸版印刷株式会社 Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP7108476B2 (en) * 2018-06-20 2022-07-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング MEMBRANE ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURING FUEL CELL

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564975B2 (en) * 1997-10-23 2004-09-15 トヨタ自動車株式会社 Fuel cell electrode and method of manufacturing fuel cell electrode
US7255954B2 (en) * 1998-08-27 2007-08-14 Cabot Corporation Energy devices
JP3738723B2 (en) * 2001-10-19 2006-01-25 トヨタ自動車株式会社 ELECTRODE FOR FUEL CELL AND FUEL CELL USING THE SAME
JP2004281305A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Fuel cell and its manufacturing method
JP2008031465A (en) * 2006-07-04 2008-02-14 Sumitomo Chemical Co Ltd Method for producing polyelectrolyte emulsion

Also Published As

Publication number Publication date
JP2010257715A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
KR100874112B1 (en) Catalytic ink for fuel cell and manufacturing method of membrane-electrode composite using same
KR20090058406A (en) Independent electrode catalyst layer for fuel cell and manufacturing method of membrane-electrode assembly using same
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
JP2010092609A (en) Microporous layer and gas diffusion layer with the same
JP5428493B2 (en) Method for producing polymer electrolyte fuel cell
JP5581583B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP5740889B2 (en) Carbon-coated catalyst material for polymer electrolyte fuel cell, its production method, electrode catalyst layer, and membrane electrode assembly
JP4858658B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
JP2010086674A (en) Inkjet ink for forming catalyst layer for fuel cell, catalyst layer for fuel cell and its manufacturing method, and catalyst layer-electrolyte film laminate
JP5487701B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
KR101561101B1 (en) Polymer catalyst Slurry composition, porous electrodes produced thereby, membrane-electrode assembly comprising the porous electrodes, and method for the MEA
JP5672645B2 (en) Electrocatalyst ink for fuel cell
JP5790049B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
KR20180036212A (en) Method for manufacturing electrode, electrode manufactured by using the same, membrane-electrode assembly comprising the electrode, and fuel cell comprising the membrane-electrode assembly
JP4918753B2 (en) Electrode, battery, and manufacturing method thereof
JP5907065B2 (en) Fuel cell electrode catalyst layer slurry, electrode catalyst layer manufacturing method, membrane electrode assembly manufacturing method, and fuel cell manufacturing method
JP5928072B2 (en) Manufacturing method of membrane electrode assembly
JP2009193910A (en) Membrane-electrode assembly and solid polymer fuel cell
JP5434051B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP7315079B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP5682390B2 (en) Electrode catalyst layer and production method thereof, membrane electrode assembly and production method thereof, polymer electrolyte fuel cell, composite particle and production method thereof
JP2012190656A (en) Membrane electrode assembly and manufacturing method therefor and solid polymer fuel cell
JP5228339B2 (en) Electrode catalyst layer for fuel cell, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell comprising the same
JP2009245932A (en) Electrode catalyst ink for fuel cell, electrode catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5487701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250