[go: up one dir, main page]

JP5461959B2 - 神経膠腫予後予測方法、およびそれに用いるキット - Google Patents

神経膠腫予後予測方法、およびそれに用いるキット Download PDF

Info

Publication number
JP5461959B2
JP5461959B2 JP2009252022A JP2009252022A JP5461959B2 JP 5461959 B2 JP5461959 B2 JP 5461959B2 JP 2009252022 A JP2009252022 A JP 2009252022A JP 2009252022 A JP2009252022 A JP 2009252022A JP 5461959 B2 JP5461959 B2 JP 5461959B2
Authority
JP
Japan
Prior art keywords
prognosis
genes
postoperative
gene
expression level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009252022A
Other languages
English (en)
Other versions
JP2010131006A (ja
Inventor
菊也 加藤
充章 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNA Chip Research Inc
Original Assignee
DNA Chip Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DNA Chip Research Inc filed Critical DNA Chip Research Inc
Priority to JP2009252022A priority Critical patent/JP5461959B2/ja
Publication of JP2010131006A publication Critical patent/JP2010131006A/ja
Application granted granted Critical
Publication of JP5461959B2 publication Critical patent/JP5461959B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、神経膠腫患者の術後予後を予測する方法に関する。
3大成人病の一つである癌において、癌の一種である脳腫瘍は悪性となってしまう恐れが高い腫瘍の一つである。この脳腫瘍は、脳組織自体から発生する原発性脳腫瘍と、他の臓器の癌が脳に転移してきた転移性脳腫瘍との2種類に分類される。
この原発性脳腫瘍の中で最も発生し易い腫瘍が神経膠腫であり、悪性の神経膠腫は最も予後不良な悪性腫瘍の一つとされている。神経膠腫は、脳実質に浸潤する特徴があるため、腫瘍を完全に摘出するのは非常に困難である。そのため、術後に放射線療法や化学療法を追加することが多いが、5年生存率は38.6%と原発性脳腫瘍全体の5年生存率(75.7%)の約半分となっており、中でも最も悪性型である膠芽腫(グレードIV)に限れば、その5年生存率は10%以下になってしまう。
従来、このような神経膠腫の術後予後を予測するために、予後関連分子を分類し、病理的に予後を診断しているが、他の予後因子と比較して臨床的有効性を確認する手法は確立されていない。なお、神経膠腫の予後を予測する方法としては特許文献1等が知られている。
特願2008−545929
本発明は、このような状況を鑑みてなされたものであり、神経膠腫患者の術後予後を予測する方法を提供することを目的とする。
本発明者等は、上記課題を解決するため、鋭意研究を重ねた結果、本発明を成し得たものである。具体的には、本発明者らは、神経膠腫患者152症例、3456遺伝子の発現量をアダプター付加競合PCR法で測定した。そして、このデータマトリックスは主成分分析による特徴抽出が有効であり、コックス回帰を用いたsupervised PCAにより58遺伝子からなる予後診断方法を確立できることを見出した。
すなわち、本願発明の第1の主要な観点によれば、
神経膠腫患者の術後予後を予測するための方法であって、(a)前記神経膠腫患者由来の腫瘍組織又は腫瘍細胞における表1中の任意の遺伝子群の発現量を測定する工程と、(b)前記測定した発現量を標準化し、この標準化した発現量から術後予後予測スコアを計算する工程と、(c)前記計算した術後予後予測スコアが0以下の場合に予後良好と決定し、前記計算した術後予後予測スコアが0以上の場合に予後不良と決定する工程とから成ることを特徴とする方法が提供される。
Figure 0005461959
このような構成によれば、所定の遺伝子の発現量から術後予後予測スコアを計算することにしたため、神経膠腫患者の術後予後を、当該患者由来の組織または細胞における遺伝子の発現量を元に予測することができる。
本発明の一の実施形態によれば、この方法において、前記術後予後予測スコアは、以下の式Iによって計算されるものである。
Figure 0005461959
また本発明の他の実施形態によれば、この方法は、表1中の任意の10個以上の遺伝子を使用するものである。
別の実施形態によれば、この方法は、表1中の任意の20個以上の遺伝子を使用するものである。
さらに別の実施形態によれば、この方法は、表1中の任意の30個以上の遺伝子を使用するものである。
さらに別の実施形態によれば、この方法は、表1中の任意の40個以上の遺伝子を使用するものである。
また更なる別の実施形態によれば、この方法は、表1中の任意の50個以上の遺伝子を使用するものである。
また別の実施形態によれば、この方法は、表1中の58個全ての遺伝子を使用するものである。
また別の実施形態によれば、この方法は、表3に示す遺伝子の30個全てを使用するものである。
また、この発明の第2の主要な観点によれば、神経膠腫患者の術後予後を予測するために用いるキットであって、表1中の任意の遺伝子群の少なくとも一部の塩基配列から成るポリヌクレオチド又はオリゴヌクレオチドを有することを特徴とするキットが提供される。
このような構成によれば、上述の神経膠腫患者の術後予後を予測する方法を行うためのキットが提供される。
本発明の一の実施形態によれば、このキットにおいて、前記ポリヌクレオチド又はオリゴヌクレオチドは標識されているものである。
また他の実施形態によれば、このキットは、表1中の任意の10個以上の遺伝子セットを有するものである。
また別の実施形態によれば、このキットは、表1中の任意の30個以上の遺伝子セットを有するものである。
さらに別の実施形態によれば、このキットは、表1中の遺伝子の58個全ての遺伝子セットを有するものである。
さらに別の実施形態によれば、このキットは、表3中の遺伝子の30個全ての遺伝子セットを有するものである。
なお、上記した以外の本発明の特徴及び顕著な作用・効果は、次の発明の実施形態の項及び図面を参照することで、当業者にとって明確となる。
図1は、本発明に係る方法の各構成要素の作用を示すフローチャートである。
図2は、Kaplan−Meieranalysisの結果を示すグラフである。
図3は、MGH(Massachusetts General Hospital)及びMDA(MDAnderson)のデータセットを用いた場合のKaplan−Meieranalysisの結果を示すグラフである。
図4は、表3に示される30遺伝子を用いた場合の、Kaplan−Meieranalysisの結果を示すグラフである。
以下、本願発明の一実施形態および実施例を、添付図面を参照して説明する。
本発明は、上述したように、神経膠腫患者の術後予後を予測するための方法であって、(a)前記神経膠腫患者由来の腫瘍組織又は腫瘍細胞における表1中の任意の遺伝子群の発現量を測定する工程と、(b)前記測定した発現量を標準化し、この標準化した発現量から術後予後予測スコアを計算する工程と、(c)前記計算した術後予後予測スコアが0以下の場合に予後良好と決定し、前記計算した術後予後予測スコアが0以上の場合に予後不良と決定する工程とから成ることを特徴とする方法である。すなわち、本発明の要旨は、所定の工程を経ることによって、神経膠腫患者由来の腫瘍組織又は腫瘍細胞から当該神経膠腫患者の術後予後を予測することにある。
具体的には、本発明は、図1に示すフローチャートに従って行われる。
図1は、本発明に係る方法の各構成要素の作用を示すフローチャートである。なお、図中の各符号S1〜S7は、以下の説明中の各ステップS1〜ステップS7に対応するものである。
まず、ステップS1において、神経膠腫患者から腫瘍組織又は腫瘍細胞が採取される。なお、当該腫瘍組織又は腫瘍細胞は従来周知の方法によって採取されることができ、採取されるサンプル数、大きさ、等は特に限定されるものではない。
その後、この採取された腫瘍組織又は腫瘍細胞における下記表1中の遺伝子の発現量が、従来周知の遺伝子発現量測定方法によって測定される(ステップS2)。次にステップS3において、この測定された遺伝子発現量が標準化される。ステップ4では、この標準化された遺伝子発現量と回帰係数であるCoxBetaとを用いて術後予後予測スコアを示すPC1スコアを算出する。なお、各遺伝子についてのCoxBetaは表1中に示した。
そして、このステップ4で算出したPC1スコアが0以下の場合、当該神経膠腫患者の術後予後は良好と決定し、PC1スコアが0以上の場合、当該神経膠腫患者の術後予後は不良と決定する(ステップS5〜ステップS7)。
なお、上述したような神経膠腫患者の術後予後を予測する方法は、通常の演算処理能力を有するPC等によって実行されることもできる。例えば、上述した式Iの計算をソフトウェアプログラムとして有する演算処理装置を用いて、上記したPC1スコア出力することができる。
また、例えば、上記したPC1スコアは、上述した式Iの計算を実行できるソフトウェアプログラム等を組み込んだPCに、上述の標準化遺伝子発現量を入力し、又は発現解析および標準化が終了次第、自動的に当該PCがその発現量を受信することによって、出力するようにしても良い。さらに、当該PCは、上記のようにして出力したPC1スコアを、その数値に基づいて、自動的に予後良好か予後不良かに分類するようにしておいても良い。なお、この場合、出力されたPC1スコアがどの症例に係るものなのかを関連づけて記憶しておく構成を備えていても良い。
以下に、本実施形態に係る実施例を説明する。
本実施例において、京都大学脳神経外科主導の第二相臨床試験(the KNOG study)の症例を用いた。152症例、3456遺伝子の発現量をアダプター付加競合PCR法で測定した。このデータマトリックスは主成分分析による特徴抽出が有効であり、コックス回帰を用いたsupervised PCAにより58遺伝子からなる予後診断システムを開発した(以下、58−gene profileと称する)。
このシステムでは58遺伝子の標準化された発現量からPC1スコアを計算し、0を閾値として予後良好群と不良群に分類した。各遺伝子とPC1スコア計算方法とについては表1に示した。
Figure 0005461959
表1には、回帰係数を示すCoxBeta、単変量解析値を示すCoxP、GS number、Gene Symbol、RefSeq ID、descriptionを示した。
図2はKaplan−Meieranalysisの結果を示すグラフである(Aはすべての神経膠腫、BはグレードIVのみ)。縦軸はprogression−free survivalを示す。Bのグラフから、従来のグレード分類よりも予後を反映した分類法であることがわかった。なお、この図2は学習データセット(110症例)を示すが、テストデータセット(42症例)でも同様の結果が得られた。
次にコックス回帰分析により他の強力な予後因子、すなわち手術摘出度、年齢、グレード分類と比較した。PFSについては58−gene profileが唯一の強力な予後因子であった。Overall survival については単変量解析では手術摘出度、年齢、58−gene profile が有意であったが、多変量解析では手術摘出度と58−geneprofile が独立した予後因子であった。詳細は表2に示した。
Figure 0005461959
次に、既に公表されている他のグループの発現データを用いて58−gene profileの有効性を検討した。MGH(Massachusetts General Hospital)及びMDA(MDAnderson)の両者のデータセットともにグレード分類よりも予後と高い相関を示した(図3)。
神経膠腫の予後関連分子分類の論文は過去にもあったが、他予後因子と比較し臨床的有効性を確立したのは、本発明が初めてである。今回の成果は、遺伝子発現による分類法が従来の病理分類よりすぐれた診断法になる可能性を強く示している。
同様にして、表1に記載される58遺伝子から任意に選択された30遺伝子を用いて、その標準化された発現量からPC1スコアを計算し、0を閾値として予後良好群と不良群とに分類した。選択された30遺伝子を表3に示す。
Figure 0005461959
表3に記載された30遺伝子群を用いて、Kaplan−Meieranalysisを行った結果が図4である。図2と同様、縦軸はprogression−free survivalである。図4は37症例の術後予後を予測した結果を示すが、本発明に係る方法を用いて行った分子分類では、p値が0.003を示しており、従来の組織分類の0.0404よりも低い値を示すことがわかる。
このことは、表1に記載された遺伝子群のうち、任意に選択された30遺伝子を用いて本発明に係る方法を実施しても58遺伝子を用いた場合と同様の結果を得ることができることを示すものである。
(変形例、用語の説明)
本願発明において、「遺伝子の発現」とは、RNA又はタンパク質等の遺伝子産物を当該遺伝子自身が産生することを意味する。従って、遺伝子の発現量は、遺伝子から転写されたmRNA、又は当該mRNAから翻訳されたタンパク質の量を測定することによって行うことができる。本発明に係る方法において、腫瘍組織または腫瘍細胞における遺伝子の発現量は、当業者に公知の任意の方法・手段で測定することが出来る。
また、本発明の方法に用いられる遺伝子群は、アミノ酸配列により特定される各遺伝子産物と実質的に同一の生物学的機能を有するものであれば、公知のアミノ酸配列において、1個ないし数個のアミノ酸が置換、挿入、又は欠失した変異アミン酸配列を有する遺伝子産物であっても差し支えない。
例えば、発現したmRNA量の測定としては、DNAマイクロアレイ(又は、DNAチップ)、オリゴヌクレオチドマイクロアレイ、ノザンハイブリダイゼーション、In situハイブリダイゼーション、または逆転写ポリメラーゼ連鎖反応(RT−PCR)等を用いることができるが、これらの測定手段に限定されるものではなく、当業者が利用可能な方法であればいかなる手法を用いてもよい。
一方、タンパク質量の測定としては、ウェスタンブロッティング、ELISAアッセイ、免疫組織染色、またはイーストツーハイブリッド(Yeast Two Hybrid)等の方法を採用することができる。
また本発明に係るキットは、腫瘍組織または腫瘍細胞における遺伝子及び/若しくは当該遺伝子がコードするタンパク質の発現量を測定する方法・手段に応じて、適当な構成をとることができる。例えば、本発明キットに含まれる表1中の任意の遺伝子の少なくとも一部の塩基配列から成るポリヌクレオチド又はオリゴヌクレオチドの長さは数十塩基対であっても良く、それらの塩基配列は、例えば、Genbank等の各種のデータベースから容易に入手できる情報に基づいて、当業者が適宜選択・設計して調製することができる。
また、それらはDNAチップ又はノーザンブロッティングにおけるプロ−ブ、PCRにおけるプライマー等の形態で使用することができる。更に、必要に応じて、ポリヌクレオチド又はオリゴヌクレオチドは放射性物質、蛍光物質、色素等の適当な標識物質によって標識されていても良い。
上記キットには、その構成・使用目的などに応じて、当業者に公知の他の要素又は成分、例えば、各種試薬、酵素、緩衝液、反応プレート(容器)等が含まれる。
その他、この発明は、上述した一実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々変形可能であることは言うまでもない。

Claims (3)

  1. 神経膠腫患者の術後予後を予測するための方法であって、
    (a)前記神経膠腫患者由来の腫瘍組織又は腫瘍細胞における表1に示す遺伝子の58個全て、または表3に示す遺伝子の30個全ての遺伝子群の発現量を測定する工程と、
    (b)前記測定した発現量を標準化し、この標準化した発現量から術後予後予測スコアを計算する工程と、
    (c)前記計算した術後予後予測スコアが0以下の場合に予後良好と決定し、前記計算した術後予後予測スコアが0以上の場合に予後不良と決定する工程と
    を有し、前記術後予後予測スコアは以下の式Iによって計算されるものであり、
    Figure 0005461959
    式中、各遺伝子のCoxBetaは表1に示すものであることを特徴とする方法。
  2. 神経膠腫患者の術後予後を予測するために用いるキットであって、
    表1中の遺伝子の58個全て、または表3中の遺伝子の30個全ての遺伝子群のそれぞれ少なくとも一部の塩基配列から成り、当該遺伝子群に対するプローブまたはプライマーとして使用し得るポリヌクレオチド又はオリゴヌクレオチドを有することを特徴とするキット。
  3. 前記ポリヌクレオチド又はオリゴヌクレオチドが標識されていることを特徴とする、請求項記載のキット。
JP2009252022A 2008-10-31 2009-11-02 神経膠腫予後予測方法、およびそれに用いるキット Expired - Fee Related JP5461959B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252022A JP5461959B2 (ja) 2008-10-31 2009-11-02 神経膠腫予後予測方法、およびそれに用いるキット

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008281279 2008-10-31
JP2008281279 2008-10-31
JP2009252022A JP5461959B2 (ja) 2008-10-31 2009-11-02 神経膠腫予後予測方法、およびそれに用いるキット

Publications (2)

Publication Number Publication Date
JP2010131006A JP2010131006A (ja) 2010-06-17
JP5461959B2 true JP5461959B2 (ja) 2014-04-02

Family

ID=42342994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252022A Expired - Fee Related JP5461959B2 (ja) 2008-10-31 2009-11-02 神経膠腫予後予測方法、およびそれに用いるキット

Country Status (1)

Country Link
JP (1) JP5461959B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762903B (zh) * 2019-01-31 2022-02-01 山东大学齐鲁医院 miR-1246和/或TERF2IP在诊治胶质瘤中的应用
CN111537424B (zh) * 2020-04-26 2022-10-28 北京市神经外科研究所 基于外周血细胞评估脊髓胶质瘤患者预后性的系统
CN113481298B (zh) * 2021-06-18 2024-06-18 广东中科清紫医疗科技有限公司 免疫相关基因在预测弥漫性胶质瘤预后的试剂盒和系统中的应用
CN117385040A (zh) * 2022-09-03 2024-01-12 昂凯生命科技(苏州)有限公司 用于预测肿瘤进展及预后的基因标志物组合、试剂盒及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2556890C (en) * 2004-02-20 2017-04-25 Veridex, Llc Breast cancer prognostics
WO2006110264A2 (en) * 2005-03-16 2006-10-19 Sidney Kimmel Cancer Center Methods and compositions for predicting death from cancer and prostate cancer survival using gene expression signatures
CN101336300A (zh) * 2005-12-16 2008-12-31 健泰科生物技术公司 神经胶质瘤的诊断、预后和治疗方法
EP1961825A1 (en) * 2007-02-26 2008-08-27 INSERM (Institut National de la Santé et de la Recherche Medicale) Method for predicting the occurrence of metastasis in breast cancer patients

Also Published As

Publication number Publication date
JP2010131006A (ja) 2010-06-17

Similar Documents

Publication Publication Date Title
US20220033915A1 (en) Gene expression panel for prognosis of prostate cancer recurrence
EP3967775B1 (en) Analysis of fragmentation patterns of cell-free dna
JP6246845B2 (ja) 遺伝子発現を用いた前立腺癌の予後を定量化する方法
Wittenberger et al. DNA methylation markers for early detection of women’s cancer: promise and challenges
JP6147755B2 (ja) 乳癌の予後を予測する方法
US20220112554A1 (en) Method of nuclear dna and mitochondrial dna analysis
EP2365092A1 (en) Identification of tumors and tissues
US20210104297A1 (en) Systems and methods for determining tumor fraction in cell-free nucleic acid
US11053551B2 (en) Method and apparatus for determining a probability of colorectal cancer in a subject
JP5461959B2 (ja) 神経膠腫予後予測方法、およびそれに用いるキット
AU2018428853A1 (en) Methods and compositions for the analysis of cancer biomarkers
Ye et al. Molecular counting enables accurate and precise quantification of methylated ctDNA for tumor-naive cancer therapy response monitoring
KR20220131083A (ko) 갑상선암 진단을 위한 microRNA 바이오마커 및 이의 용도
BR112020012280A2 (pt) composições e métodos para diagnosticar cânceres de pulmão usando perfis de expressão de gene
WO2024258639A1 (en) Methods and systems of classifying tumor tissue samples
Luong Predicting Formalin-fixed Paraffin-embedded (FFPE) Sequencing Artefacts from Breast Cancer Exome Sequencing Data Using Machine Learning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5461959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees