[go: up one dir, main page]

JP5424629B2 - 絶対位置を測定するための位置測定装置と方法 - Google Patents

絶対位置を測定するための位置測定装置と方法 Download PDF

Info

Publication number
JP5424629B2
JP5424629B2 JP2008316402A JP2008316402A JP5424629B2 JP 5424629 B2 JP5424629 B2 JP 5424629B2 JP 2008316402 A JP2008316402 A JP 2008316402A JP 2008316402 A JP2008316402 A JP 2008316402A JP 5424629 B2 JP5424629 B2 JP 5424629B2
Authority
JP
Japan
Prior art keywords
unit
code
signal
code word
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008316402A
Other languages
English (en)
Other versions
JP2009150879A (ja
Inventor
ヨーハン・オーバーハウザー
トーマス・シュールマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Publication of JP2009150879A publication Critical patent/JP2009150879A/ja
Application granted granted Critical
Publication of JP5424629B2 publication Critical patent/JP5424629B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34792Absolute encoders with analogue or digital scales with only digital scales or both digital and incremental scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、請求項1の上位概念にもとづく絶対位置を測定するための位置測定装置と請求項14の上位概念にもとづく絶対位置測定方法とに関する。
多くの分野において、符号エレメントが測定方向に対して順番に配置された符号トラックから絶対位置情報を導き出す絶対位置測定装置が益々用いられて来ている。その場合符号エレメントは、擬似ランダム目盛として配備されており、その結果所定の数の連続する符号エレメントがそれぞれ一つのビットパターンを生成している。符号トラックに対して単一の符号エレメントだけ走査機器をシフトさせることによって、それぞれ新しいビットパターンが生成されるとともに、絶対的に計測すべき測定領域全体に渡っては、一連の異なるビットパターンが得られる。
そのようなシーケンシャル符号は、チェーンコード又は擬似ランダム符号(PRC)と呼ばれている。符号エレメントが所謂(符号エレメントが互いに相補的な特性を持つ同じ大きさの二つの部分領域を有することを意味する)マンチェスターコーディングを有する場合、擬似ランダム符号の特に妨害に強い変化形態が得られる。ここで、二進情報は、部分領域の順序によって決まる。
特許文献1には、そのような形式の位置測定装置が記載されており、その絶対符号トラックは、マンチェスターコーディングを有する擬似ランダム配列の符号エレメントから構成されている。一方では、検出器エレメントの走査信号が位置情報を評価するのに有効な値を持っているか否かを決定するために、絶対符号トラックに対して平行に延びる増分トラックの走査信号を使用して、絶対トラックの評価に必要な検出器エレメントを選択することが提案されている。他方では、検出器信号の信頼性を評価するために、検出器エレメントを偶数番号の検出器エレメントのグループと奇数番号の検出器エレメントのグループに分けて、それぞれ各グループにおいて直に連続する検出器エレメントの差分信号を生成して、比較値と比較することが提案されている。最終的に、位置の値は、比較結果として得られた有効な走査信号から生成されている。
広く普及している動作原理は、光学式走査方式である。その場合、光源から照射された光をコリメートして、基準尺に取り付けられた測定目盛を一定数の光検出器上に投影している。基準尺は、光の光路内において移動可能な形で配置されており、測定目盛が光源及び光検出器に対して相対的に移動された場合に光を変調すものである。位置情報は、光検出器の出力信号を評価することによって算出されている。位置測定器がロータリー式かリニア式であるのかに応じて、基準尺は、円形の目盛円盤又は直線的な測定尺となる。測定目盛は、例えば、透過性/非透過性又は反射性/非反射性などの光学特性が異なる領域を有する一つ以上のトラックから構成することができる。
符号トラックがPRCとして構成されている絶対位置測定器は、符号エレメントの読み取りのために、読み取るべき符号エレメントに依存する精確に定められた相互間隔で配置された多くの数の検出器エレメントが必要である。有利には、検出器エレメントは、半導体チップ上に検出器配列として組み上げられている。そのような光学式走査原理では、符号トラックを読み取る信頼性が、符号トラックの読み取りに関連する部分を検出器配列上に投影する精度に依存することが特に問題である。それは、光源、符号トラック及び検出器エレメントの幾何学的な配置に依存する。例えば、光の向きが、符号トラック及び検出器配列によって決まる所要の方向からずれている場合、その時々の位置を算出するために使用される全ての検出器エレメントが、同じ光量を受けなくなる。それによって、不明な状態が出現する場合が有り、それどころか誤った位置の値を算出してしまう可能性さえ有る。
ドイツ特許公開第10244235号明細書
本発明の課題は、信頼性又は動作の確実性が改善された位置測定装置を実現することである。更に、本発明の課題は、信頼性又は動作の確実性が改善された絶対位置測定方法を提示することである。
この課題は、位置測定装置に関して、請求項1の特徴によって解決される。
符号と走査ユニットを備えた位置測定装置を提案する。その符号は、測定方向に対して順番に配置された一連の符号エレメントから構成され、少なくとも二つの連続する符号エレメントが、それぞれ位置情報を持つ一つの符号ワードを生成する。その走査ユニットは、符号の方向に向けられた光を送出して、少なくとも符号ワードを生成する符号エレメントを検出器ユニット上に投影させる照明ユニットと、検出器エレメントの検出信号から、その時々の位置情報を持つ符号ワードを算出することが可能な評価ユニットとを有し、この検出器ユニットは、測定方向に対して、符号ワードを生成する符号エレメント当り少なくとも二つの検出器エレメントを備えている。走査ユニットと符号は、測定方向に対して、互いに相対的に移動可能な形で配置されている。本発明は、評価機器内において、符号ワードを生成する符号エレメントが検出器ユニット上に投影された状態に依存して、符号ワードを生成するために評価すべき検出信号を選択することが可能であることを特徴とする。
本発明による絶対位置測定方法は、請求項14の特徴によって規定される。
本発明の有利な実施形態は、それぞれ請求項1又は14に従属する請求項に記載されている。
本発明を図面にもとづき詳しく説明する。
先ずは、図1aと1bにもとづき、符号の読み取りに使用される光の方向が位置の値を算出する信頼性に如何なる影響を与える可能性が有るのかを詳しく説明する。図1aは、照明ユニット30、検出器ユニット40及び評価ユニット50を備えた走査ユニット20を用いて符号10を走査する光学式位置測定装置を模式的に図示している。符号10は、基準尺上に取り付けられている。位置測定装置が直線的な位置を測定する役割を果たすのか、或いは回転位置を測定する役割を果たすのかに応じて、基準尺を、例えば、測定尺又は符号円盤とすることができる。
符号10は、測定方向Xに対して順番に配置された一連の同じ長さの符号エレメントCから構成され、位置情報は、符号エレメントCの光学的な特性によって符号化されている。そのような符号10は、「擬似ランダムコード」又は短く「PRC」とも呼ばれている。符号化は、例えば、符号エレメントCを互いに相補的に構成することによって実現することができる。この場合、相補的とは、互いに逆の光学的な特性を持つこと、即ち、例えば、図示されている透過光式走査の場合には、透過性と非透過性であり、或いは反射光式走査の場合には、反射性と非反射性である。
符号10が、図示されている通り、所謂マンチェスターコーディングを有することが、特に有利である。その場合符号エレメントCは、測定方向に対して順番に配置された、光学的な特性が相補的に形成された二つの部分領域CA,CBから構成されている。そのような符号エレメントCのデジタル値は、部分領域CA,CBの順序によって決定される。即ち、互いに相補的に形成された部分領域CA,CBの第一の順番は、第一のデジタル値に割り当てられ、互いに相補的に形成された部分領域CA,CBの第二の順番は、第二のデジタル値に割り当てられる。例えば、不透明から透明に変わる順番は、「0」の値に割り当てられ、透明から不透明に変わる順番は、「1」の値に割り当てられる。
照明ユニット30は、光源31とコリメータレンズ32から構成されている。この照明ユニットは、符号10の方向に向けられた光を送出する。有利には、光は、図1aに図示されている通り、平行な光路を有する。符号10は、光の向きに応じて、検出器ユニット40上に投影される。
検出器ユニット40は、一連の検出器エレメントDが測定方向Xに対して配置されたラインセンサーである。検出器ユニット40上での符号10の投影をより良好に図示することができるように、本来照明ユニット30の方向に表面を向けている検出器ユニット40は、像平面を回転させた形で図示されている。陰の領域は、斜線で表示されている。図示されている相対位置では、矢印A1は、例えば、検出器ユニット40の左の領域における符号情報を読み取るのに特に好適な一つの検出器エレメントDを指し示している。同様に、矢印A2とA3は、それぞれ検出器ユニット40の中央と右の領域における一つの検出器エレメントを指し示している。
検出信号Sは、符号10と走査ユニット20間のその時々の相対位置を表す符号ワードCWを算出する評価ユニット50に供給される。
検出器エレメントDの幅は、符号エレメントCの幅の四分の一に等しい。符号エレメントCの値を求めるためには、二つの部分領域CA,CBを読み取らなければならないので、走査ユニット20が符号10に対して相対的に移動した場合、測定方向Xに対して連続する四つの検出器対が、位置情報を読み取るのに最適な位置に有ることとなる。移動を続けると、それに続く符号エレメントCを用いた処理が巡回して繰り返される。特許文献1は、符号エレメントCの値を読み取るために、それぞれ如何なる検出器対を使用すべきかを決定するには、増分トラック200を符号10に対して平行に配置すべきであることを既に提案している。更に、増分トラック200は、符号ワードCWと組み合わせて位置測定機器の分解能を向上させる詳細位置値FPを生成する役割も果たしている。この場合、増分トラック200を、その周期的な目盛が符号10の符号エレメントCの長さに等しい周期の長さBを持つように構成するのが、特に有利である。そのような場合には、簡単な四回の補間によって、その時々の相対位置に対して最適な位置に有る検出器対の選択を行うことを可能とする詳細位置値FPを生成することができる。この詳細位置値FPは、2ビットで符号化することができる。しかし、実際には、位置測定機器の分解能を大幅に向上することができるように、より大きな補間係数が採用されており、例えば、詳細位置値FPは、8ビットの分解能を有する。そのような場合には、その時々の相対位置に対して最適な位置に有る検出器対を選択するために、詳細位置値FPの最上位の2ビットを用いることができる。
増分トラック200の構成及び評価は、従来技術において広く普及しており、本出願の一部を構成するものではない。そのため、詳細位置値FPを生成するための詳細位置評価ユニット210は、簡単にしか図示されていない。そのユニットは、増分トラック200の走査に必要な検出器も、信号処理部と補間部も備えている。この実施例では、有利には、光学式走査原理を使用しており、増分トラック200は、同じ基準尺上に、符号10に対して平行に配置されている。
照明ユニット30から送出された光の向きは、とりわけ、その幾何学的な構造、特に、光源31とコリメータレンズ32の間隔によって決定される。図1bは、光源31とコリメータレンズ32の間隔が大きくなった誤った調整によって、照明ユニット30が相当収斂した光を照射している図1aの位置測定装置を図示している。その結果、図1aでは、矢印A1で示された検出器エレメントDが、全体的に陰影を付けられている一方、この場合には部分的にしか照明されていない。それに対して、検出器ユニット40の右の領域における矢印A3で示された検出器エレメントDは、部分的にしか陰影を付けられていない。更に、中央の領域における矢印A2で示された検出器エレメントDは、そこでは光の収斂された向きが僅かしか作用しないので、全体的に陰影が付けられている。従って、照明ユニット30が誤って調整されている結果、検出器ユニット40の外側の領域において、検出信号Sの信号振幅が変化して、符号10の誤った読み取りを引き起こす可能性が有る。
それと同様に、光源31をコリメータレンズ32の近くに配置した照明ユニット30は、相当発散した光を照射する。
検出器ユニット40上での符号10の投影は、当然のことながら、別の原因、例えば、符号10に対する走査ユニット20の向きが不正確であることによっても影響を受ける可能性が有る。そのような場合でも本発明を採用することが可能である。
図2は、本発明による位置測定装置の評価ユニット50のブロック図を図示している。評価ユニット50の入力側には、検出器ユニット40の検出信号Sが供給される。評価ユニットは、測定方向Xにおける符号10と走査ユニット20間の相対位置を表す符号ワードCWを出力する。
評価ユニット50は、信号処理ユニット60と、補正ユニット80によって制御することが可能な選択ユニット70と、符号ワード・計算ユニット90とを有する。更に、評価ユニット50には、詳細位置値FPが供給される。従って、評価ユニット50は、符号10によって決まる絶対位置内における相対位置に関する情報を入手している。
信号処理ユニット60は、光学式走査では大抵信号振幅の小さい電流信号である検出信号Sから、デジタル位置信号、有利には、所定のレベルの電圧信号を生成する役割を果たしている。そのことは、例えば、走査される符号10が簡単なPRCである場合、トリガー閾値以内では論理的に低い信号を出力し、トリガー閾値以上では論理的に高い信号を出力するように設定された電流比較器を用いて実現することができる。
有利には、符号10として、マンチェスターコーディングを有するPRCを採用する。その場合、既に特許文献1に記載されている通り、検出信号Sを処理するために、入力における検出信号対の信号差に応じて、出力に高い又は低い信号を出力するトリガーモジュールを用いることができる。この信号差の評価によって、より高い信号対雑音比が達成される。更に、誤り検査機器において、信号差の信号レベルの絶対値を所定のトリガー閾値と比較して、それを下回った場合にエラー信号を出力することを提案する。従って、信号処理ユニット60の出力には、高い信号、低い信号及びエラー信号の三つの所定の状態を取ることが可能な位置信号Pが提供されることとなる。
信号処理ユニット60の出力における位置信号Pは、選択ユニット70に供給される。選択ユニットは、補正ユニット80によって制御される形で、位置信号Pの中から、符号ワード・計算ユニット90での更なる評価のための補正済み位置信号PKを選択して、それに切り換えている。
位置信号Pの中からの補正済み位置信号PKの選択は、詳細位置値FPと補正情報を用いて行われる。その場合、詳細位置値FPは、位置測定装置が最適に構成されている時の補正済み位置信号PKを符号ワード・計算ユニット90によって切り換える、或いは符号ワードCWとして出力させるための情報を含んでいる。更に、詳細位置値FPは、位置信号Pの中からの補正済み位置信号PKの選択に関する出力情報を構成している。そのために、補正ユニット80は、補正情報と詳細位置値FPを用いて、位置信号Pと補正済み位置信号PK間の正しい割当を計算して、それに対応して選択ユニット70を切り換えている。
補正情報は、補正を必要とする様々なエラーの原因を包含することができる。それは、検出器ユニット40における、位置信号Pを発生する検出信号Sに対応する検出器Dの位置に依存する。
最も簡単な場合、補正情報は、位置測定装置の組立後の校正プロセスの間に計算される統計的な割当情報を含む。それは、検出器ユニット40上での符号10の投影が検出器ユニット40における検出器Dの位置に依存して如何なる幅だけずれているのかに関する情報を含む。統計的な割当情報を保存するために、評価ユニット50には、例えば、補正ユニット80から読み取ることが可能な記憶ユニット100が配備されている。その場合、検出器ユニット40の各検出器Dに関して、統計的な割当情報が存在することができるが、それぞれ隣接する複数の検出器Dを一つのグループに纏めて、共通の統計的な割当情報を配分することも可能である。有利には、符号ワードCWの1ビットを読み取る際に対象となる検出器Dのグループに対して、それぞれ共通の統計的な割当情報が存在する。
位置測定装置の機械的な構造、特に、走査ユニット20が符号10に対して移動する際の機械的な許容範囲に依存して、位置信号Pの中から補正済み位置信号PKを選択するための補正情報は、位置に依存した割当情報を含むこともできる。従って、補正情報は、絶対位置に依存する、検出器ユニット40上における符号10の投影の変化をも考慮したものとなっている。そのような場合、記憶ユニット100には、絶対位置に依存して、又もや検出器D毎に、或いは検出器Dのグループ毎に存在することができる、少なくとも二つの割当情報を保存することが可能であるともに、走査ユニット20に対する符号10のその時々の絶対位置に依存して、補正済み位置信号PKの選択が行われる。そのために、補正ユニット80には、符号ワードCWが供給される。ここで、補正ユニット80は、符号ワードCWに依存して、その時々の位置に関して有効な検出器又は検出器グループ毎の割当情報を記憶ユニット100から読み取って、それに対応して選択ユニット70を切り換えることができる。
実際には、補正済み位置信号PKに対する位置信号Pの割当が温度に関する依存性を持つ可能性が有ることが分かっている。そのため、補正情報は、温度に依存した割当情報を含むこともできる。従って、特に有利な実施形態では、位置測定機器内における補正済み位置信号PKの選択に関連する少なくとも一つの場所の温度を計測して、その温度値を補正ユニット80に伝える少なくとも一つの温度センサー110が配備される。ここで、補正ユニット80は、例えば、記憶ユニット100に保存された、基準温度に関して有効な統計的な割当情報を出発点として、温度センサー110の温度に依存して、補正済み位置信号PKに対する位置信号Pの割当を補正して、それに対応して選択ユニット70を切り換えることができる。
符号ワード・計算ユニット90は、補正済み位置信号PKから符号ワードCWを算出する。符号ワードCWの計算は、符号10と走査ユニット20間のその時々の相対位置において、符号エレメントCを最適に読み取るための補正済み位置信号PKを選択することによって行われる。そのために、符号ワード・計算ユニット90には、詳細位置値FPが供給される。その選択は、既に前述した通り、詳細位置値FPの最上位の2ビットによって行われる。
ここで述べた実施例では、位置信号Pからの符号ワードCWの算出は、2段階で行われ、先ずは、選択ユニット70において、位置信号Pの中から補正済み位置信号PKを選択し、次に、符号ワード・計算ユニット90において、補正済み位置信号PKから符号ワードCWを算出している。別の実施構成では、選択ユニット70と符号ワード・計算ユニット90が一つの切換ユニット120に統合される。その場合、符号ワードCWの算出は、先ずは、補正ユニット80において、符号ワードCWの各ビットに関する詳細位置値FPにもとづき、それに対応する未補正の位置信号Pを計算し、次に、詳細位置値FPと補正情報を用いて、計算した位置信号Pが符号ワードのビットを生成するのに適しているのか、或いは隣接する位置信号Pを選択しなければならないのかを決定する形で行われる。
ここで、図3a〜3cにもとづき、本発明の位置測定装置において、光の向きが平行である場合、収斂する場合又は発散する場合の検出信号の選択を詳しく説明する。図3a〜3cは、検出器ユニット40上に投影される符号10、信号処理ユニット60及び選択ユニット70の一部を図示している。分かり易くするために、照明ユニット30の図は省略している。その代わりに、光の向きを矢印で表示している。
符号10の中の左の符号エレメントCL、右の符号エレメントCR及び中央の符号エレメントCMを一つずつ図示している。符号10は、マンチェスターコーディングされたPRCであり、従って、左の符号エレメントCLは、左の検出器エレメントDL1〜DL6上に投影される二つの部分領域CLAとCLBから構成され、右の符号エレメントCRは、右の検出器エレメントDR1〜DR6上に投影される二つの部分領域CRAとCRBから構成され、中央の符号エレメントCMは、中央の検出器エレメントDM1〜DM6上に投影される二つの部分領域CMAとCMBから構成される。部分領域CLA,CLB;CRA,CRB;CMA,CMB毎に、二つの検出器エレメントDが配備されており、そのため、測定方向Xに対して連続する偶数番号の検出器エレメントDL2,DL4,DL6;DR2,DR4,DR6;DM2,DM4,DM6と測定方向Xに対して連続する奇数番号の検出器エレメントDL1,DL3,DL5;DR1,DR3,DR5;DM1,DM3,DM5とは、符号エレメントの測定方向に対して順番に配置された二つの部分領域CLA,CLB;CRA,CRB;CMA,CMBと同じ相互の間隔を有する。そのようにして、走査ユニット20に対する符号10の各相対位置において、各部分領域CLA,CLB;CRA,CRB;CMA,CMBには、少なくとも一つの検出器エレメントが一義的に割り当てられる。それは、各相対位置において、一義的な符号ワードCWを算出することが可能であることを意味する。
信号処理ユニット60において、検出信号Sは、それぞれ対にして(測定方向に対して順番に配置された奇数番号の二つの検出器又は測定方向に対して順番に配置された偶数番号の二つの検出器からの検出信号として)トリガーモジュールに供給され、トリガーモジュールの出力には、差分演算及び目標差との絶対値による比較によって、論理「1」に対応する高い信号と、論理「0」に対応する低い信号と、検出信号の差の絶対値が目標差を下回った場合のエラー信号との三つの値を取ることができるデジタル位置信号Pが出力される。選択された配列によって、各相対位置において、少なくとも一つの検出器対の各符号エレメントCを最適に読み取ることが保証される。
位置信号Pは、位置信号Pの中から補正済み位置信号PKを選択することを可能とする切換エレメントSWを備えた選択ユニット70に供給される。
図3a,3b,3cにおいて、左の補正済み位置信号PKL、右の補正済み位置信号PKR及び中央の補正済み位置信号PKMだけにもとづき、選択ユニット70の機能を説明し、この場合左の切換エレメントSWL、中央の切換エレメントSWM及び右の切換エレメントSWRを用いた選択が行われる。隣接する補正済み位置信号PKに対して、それぞれ更に別の切換エレメントSWも示されているが、詳しくは説明しない。しかし、当業者には、ここでの説明が更に別の全ての補正済み位置信号PKに適用することが可能であることは明らかである。
図3aでは、符号10を検出器ユニット40上に投影させるための照明ユニット30から送出された光が、ほぼ平行な方向を向いている。ここで説明する位置測定装置では、その方向は、符号10を検出器ユニット40上に最適に投影させることとなる光の目標とする向きと一致する。図示されている符号10と検出器ユニット40間の相対位置では、検出器ユニット40の左側の検出器エレメントDL2とDL4が、符号エレメントCLの位置情報を読み取るのに最適な位置に有る。それに対応して、(図示されていない)補正ユニット80は、左の補正済み位置信号PKLに割り当てられた左の切換エレメントSWLに切り換え、その結果トリガーモジュールTL2から出力される位置信号は、左の補正済み位置信号PKLの出力と接続される。同様に、右の切換エレメントSWRは、トリガーモジュールTR2の出力を右の補正済み位置信号PKRの出力に切り換え、中央の切換エレメントSWMは、トリガーモジュールTM2の出力を中央の補正済み位置信号PKMの出力に切り換える。
それに対して、図3bでは、照明ユニット30からの光は、相当収斂した光路を有する。その結果検出器ユニット40上での符号10の投影が変化し、そのため相対位置が同じ場合、検出器ユニット40の左側では、検出器エレメントDL3とDL5が、符号エレメントCLの位置情報を読み取るのに特に好適であり、右側では、検出器エレメントDR1とDR3が符号エレメントCRの位置情報を読み取るのに適しており、中央では、光の向きが大きく変化していないので、そこでは、検出器エレメントDM2とDM4が、引き続き符号エレメントCMの位置情報を読み取るのに適している。確実な読み取りを保証するために、(図示されていない)補正ユニット80は、左の切換エレメントSWLを切り換えて、それによりトリガーモジュールTL3の出力を左の補正済み位置信号PKLに切り換えるとともに、右の切換エレメントSWRを切り換えて、それによりトリガーモジュールTR1の出力を右の補正済み位置信号PKRに切り換えるようにしている。切換エレメントSWMの位置は、変更の無いまま保持されている。
最後に、図3cでは、照明ユニット30からの光は、相当発散した方向を向いている。それは、検出器ユニット40と符号10の相対位置が同じ場合、検出器ユニット40の左側では、検出器エレメントDL1とDL3が最適に照明される、或いは全体的に陰影を付けられる一方、検出器エレメントDL2とDL4は、部分的にしか陰影を付けられていない、或いは一部しか照明されない。それに対応して、検出器ユニット40の右側では、位置情報を求めるためには、検出器エレメントDR3とDR5を選択すべきである。そのために、場合によっては、検出器ユニット40を更に別の検出器エレメントDで補完する必要が有る。この場合でも、切換エレメントSWMの位置は、変更の無いまま保持されている。
ここで説明した実施例では、選択ユニット70が、信号処理ユニット60と符号ワード・計算ユニット90の間に配置されている。従って、符号ワードCWを算出するために、どの検出信号Sを使用するのかとの選択は、信号処理ユニット60において検出信号Sの対から生成されたデジタル位置信号Pから行われる。しかし、選択ユニット70は、検出信号Sの符号ワードCWへの処理プロセスにおける別の位置、特に、検出器ユニット40と信号処理ユニット60の間に配置することも可能である。その場合、符号ワードCWの算出に使用される検出信号Sは、直接選択することが可能である。
図4は、位置信号Pの中からの補正済み位置信号PK又は符号ワードCWの個々のビットの選択が如何に行われるのかを再度図解している。そのために、この例では、8ビットの幅を有する詳細位置値FPがベクトル図で図示されている。走査ユニット20と符号10が測定方向Xに対して相対的に動いた場合、詳細位置値FPの指針が、符号エレメントCを読み取るのに最適な順番に配置された四つの検出器対に対応する図の四つの象限を順番に移動して行く。指針が四つの象限の中のどの象限に有るのかは、詳細位置値FPの最上位の2ビットによって決定される。
ここで、補正ユニット80は、記憶ユニット100に保存されている統計的な割当情報又は位置に依存する割当情報と、場合によっては、温度センサー110から導き出された温度に依存する割当情報とから、例えば、同じく8ビットのワードから構成される補正情報KORR1又はKORR2を算出する。その時々の位置において、位置信号Pに対する補正済み位置信号PKの割当が、図3aに図示されている通り、符号ワードCWの個々のビットを計算するのに相応しいか、或いは図3bと3cにもとづく補正が必要であるのかを決定するために、補正ユニット80は、補正情報KORR1,KORR2を詳細位置値FPに加え、そのようにして補正済み位置信号FPK1又はFPK2を取得する。ここで、最上位の2ビットが、第一の補正情報KORR1を詳細位置値FPに加えた場合と変わらない時には、詳細位置値FPとその結果得られる第一の補正済み詳細位置値FPK1の指針が同じ象限に有るので、補正は不要である。それに対して、最上位の2ビットの中の少なくとも一方が、第二の補正情報KORR2を詳細位置値FPに加えた場合から変化している時には、詳細位置値FPとその結果得られる第二の補正済み詳細位置値FPK2の指針が異なる象限に有るので、補正しなければならない。
符号ワードCWを如何なる形式で出力するのかは、本発明には関係しない。即ち、出力は、図示されている通り、並列式でも、直列式でも行うことができる。同様に、例えば、工作機械の制御部に、結果を出力するために、走査ユニット20に更に別のモジュールを配備することもできる。
有利には、走査ユニット20、特に、検出器ユニット40と評価ユニット50は、全体的又は部分的に、高集積特定用途向けモジュール(ASIC)として実現される。
本発明による絶対位置測定装置は、直線運動又は回転運動の計測に用いることができ、その場合符号10を互いに動く物体の中の一方に取り付け、走査ユニット20を測定すべき物体の他方に取り付ける。この場合、符号10は、測定すべき物体に直に取り付けるか、或いは測定すべき物体と更に結合されている測定尺に取り付けることができる。
この場合、測定すべき物体は、工作機械又は座標計測機械のテーブル及びスライダーとするか、或いは電気モーターのローター及びステーターとすることができる。
位置測定装置の模式図 照明ユニットが誤って調整された位置測定装置の模式図 本発明による位置測定装置の評価ユニットのブロック図 本発明による位置測定装置において、光が平行な方向を向いている場合の検出信号の選択図 本発明による位置測定装置において、光が収斂する方向を向いている場合の検出信号の選択図 本発明による位置測定装置において、光が発散する方向を向いている場合の検出信号の選択図 詳細位置値のベクトル図
符号の説明
10 符号
20 走査ユニット
30 照明ユニット
31 光源
32 コリメータレンズ
40 検出器ユニット
50 評価ユニット
60 信号処理ユニット
70 選択ユニット
80 補正ユニット
90 符号ワード・計算ユニット
100 記憶ユニット
110 温度センサー
120 切換ユニット
200 増分トラック
210 詳細位置評価ユニット
A1〜A3 矢印
B 周期の長さ
C 符号エレメント
CA,CB 部分領域
CL 左の符号エレメント
CLA,CLB 部分領域
CM 中央の符号エレメント
CMA,CMB 部分領域
CR 右の符号エレメント
CRA,CRB 部分領域
CW 符号ワード
D 検出器又は検出器エレメント
DL1〜DL6 左の検出器エレメント
DM1〜DM6 中央の検出器エレメント
DR1〜DR6 右の検出器エレメント
FP 詳細位置値
FPK1,FPK2 補正済み詳細位置値
KORR1,KORR2 補正情報
P 位置信号
PK 補正済み位置信号
PKL 左の補正済み位置信号
PKM 中央の補正済み位置信号
PKR 右の補正済み位置信号
S 検出信号
SWL 左の切換エレメント
SWM 中央の切換エレメント
SWR 右の切換エレメント
TL1〜TL4 左のトリガーモジュール
TM1〜TM4 中央のトリガーモジュール
TR1〜TR4 右のトリガーモジュール
X 測定方向
I〜IV 象限

Claims (16)

  1. 測定方向(X)に対して順番に配置された一連の符号エレメント(C,CL,CR,CM)から構成される、少なくとも二つの連続する符号エレメント(C,CL,CR,CM)がそれぞれ位置情報を持つ一つの符号ワード(CW)を生成する符号(10)と、
    検出器ユニット(40)が、符号ワード(CW)を生成する符号エレメント(C,CL,CR,CM)毎に、測定方向(X)に対して少なくとも二つの検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)を有し、符号(10)の方向に向けられた光を送出して、少なくとも符号ワード(CW)を生成する符号エレメント(C,CL,CR,CM)を検出器ユニット(40)上に投影する照明ユニット(30)と、検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)の検出信号(S)から、その時々の位置情報を持つ符号ワード(CW)を算出することが可能な評価ユニット(50)とを有する走査ユニット(20)と、
    を備えた、走査ユニット(20)と符号(10)が測定方向(X)に対して互いに相対的に移動可能な形に配置された位置測定装置において、
    評価ユニット(50)では、符号ワード(CW)を生成する符号エレメント(C,CL,CR,CM)が検出器ユニット(40)上に投影される状態に応じて、符号ワード(CW)を生成するために評価すべき検出信号(S)を選択することが可能であることと、
    符号エレメント(C,CL,CR,CM)が、測定方向(X)に対して連続する、互いに相補的な特性を有する二つの部分領域(CA,CB;CLA,CLB;CRA,CRB;CMA,CMB)から構成され、部分領域(CA,CB;CLA,CLB;CRA,CRB;CMA,CMB)毎に、少なくとも二つの検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)が配備されていることと、
    評価ユニット(50)は、検出信号(S)を供給される信号処理ユニット(60)を有し、信号処理ユニット(60)において、検出信号(S)からデジタル位置信号(P)を生成することが可能であることと、
    信号処理ユニット(60)は、検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)からそれぞれ二つの検出信号(S)を供給される、測定方向(X)に対して順番に配置された二つの部分領域(CA,CB;CLA,CLB;CRA,CRB;CMA,CMB)と同じ間隔を測定方向(X)に対して有するトリガーモジュール(TL1〜TL4;TR1〜TR4;TM1〜TM4)を備えており、これらのトリガーモジュール(TL1〜TL4;TR1〜TR4;TM1〜TM4)が、差分演算によって、検出信号(S)からデジタル位置信号(P)を生成することと、
    評価ユニット(50)は、補正情報(KORR1,KORR2)と詳細位置値(FP)にもとづき位置信号(P)を選択することによって、符号ワード(CW)を生成するための手段を有することと、
    を特徴とする位置測定装置。
  2. デジタル位置信号(P)が、補正済み位置信号(PK)を出力する選択ユニット(70)に供給されて、補正ユニット(80)が、補正情報(KORR1,KORR2)と詳細位置値(FP)にもとづき、位置信号(P)の中からの補正済み位置信号(PK)の選択を決定することを特徴とする請求項に記載の位置測定装置。
  3. 補正情報(KORR1,KORR2)が統計的な割当情報を含むことを特徴とする請求項に記載の位置測定装置。
  4. 補正情報(KORR1,KORR2)が位置に依存する割当情報を含むことを特徴とする請求項又はに記載の位置測定装置。
  5. 評価ユニット(50)が、当該の割当情報を保存することが可能な記憶ユニット(100)を更に有することを特徴とする請求項又はに記載の位置測定装置。
  6. 評価ユニット(50)が、少なくとも一つの温度センサー(110)を更に有することと、
    補正情報(KORR1,KORR2)が、温度に依存する割当情報を更に含んでいることと、
    を特徴とする請求項からまでのいずれか一つに記載の位置測定装置。
  7. 評価ユニット(50)が、符号ワード(CW)を生成するために、補正済み位置信号(PK)と詳細位置値(FP)を供給される符号ワード・計算ユニット(90)を更に有することを特徴とする請求項からまでのいずれか一つに記載の位置測定装置。
  8. 補正済み位置信号(PK)からの符号ワード(CW)の算出が、詳細位置値(FP)の最上位のビットにもとづき行われることを特徴とする請求項に記載の位置測定装置。
  9. 詳細位置値(FP)は、符号(10)に対して平行に延びる増分トラック(200)を評価することによって算出することが可能であることを特徴とする請求項に記載の位置測定装置。
  10. 測定方向(X)に対して順番に配置された一連の符号エレメント(C,CL,CR,CM)から構成される、少なくとも二つの連続する符号エレメント(C,CL,CR,CM)がそれぞれ位置情報を持つ一つの符号ワード(CW)を生成する符号(10)と、
    検出器ユニット(40)が、符号ワード(CW)を生成する符号エレメント(C,CL,CR,CM)毎に、測定方向(X)に対して少なくとも二つの検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)を有し、符号(10)の方向に向けられた光を送出して、少なくとも符号ワード(CW)を生成する符号エレメント(C,CL,CR,CM)を検出器ユニット(40)上に投影する照明ユニット(30)と、検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)の検出信号(S)から、その時々の位置情報を持つ符号ワード(CW)を算出する評価ユニット(50)とを有する走査ユニット(20)と、
    を備えた、走査ユニット(20)と符号(10)が測定方向(X)に対して互いに相対的に移動可能な形に配置されている位置測定装置を用いた絶対位置測定方法において、
    評価ユニット(50)では、符号ワード(CW)を生成する符号エレメント(C,CL,CR,CM)が検出器ユニット(40)上に投影される状態に応じて、符号ワード(CW)を生成するために評価すべき検出信号(S)を選択することと、
    符号エレメント(C,CL,CR,CM)が、測定方向(X)に対して連続する、互いに相補的な特性を有する二つの部分領域(CA,CB;CLA,CLB;CRA,CRB;CMA,CMB)から構成され、部分領域(CA,CB;CLA,CLB;CRA,CRB;CMA,CMB)毎に、少なくとも二つの検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)が配備されていることと、
    評価ユニット(50)は、検出器エレメント(D;DL1〜DL6;DR1〜DR6;DM1〜DM6)からそれぞれ二つの検出信号(S)を供給される、測定方向(X)に対して順番に配置された二つの部分領域(CA,CB;CLA,CLB;CRA,CRB;CMA,CMB)と同じ間隔を測定方向(X)に対して有するトリガーモジュール(TL1〜TL4;TR1〜TR4;TM1〜TM4)を備えた信号処理ユニット(60)を有し、これらのトリガーモジュール(TL1〜TL4;TR1〜TR4;TM1〜TM4)が、差分演算によって検出信号(S)からデジタル位置信号(P)を生成することと、
    評価ユニット(50)において、補正情報(KORR1,KORR2)と詳細位置値(FP)にもとづきデジタル位置信号(P)を選択することによって、符号ワード(CW)を生成することと、
    を特徴とする方法。
  11. デジタル位置信号(P)が、補正済み位置信号(PK)を出力する選択ユニット(70)に供給されて、補正ユニット(80)が、補正情報(KORR1,KORR2)と詳細位置値(FP)にもとづき、位置信号(P)からの補正済み位置信号(PK)の選択を決定することを特徴とする請求項10に記載の方法。
  12. 補正情報(KORR1,KORR2)が統計的な割当情報を含むことを特徴とする請求項11に記載の方法。
  13. 補正情報(KORR1,KORR2)が位置に依存する割当情報を含むことを特徴とする請求項11又は12に記載の方法。
  14. 評価ユニット(50)が、少なくとも一つの温度センサー(110)を更に有することと、
    補正情報(KORR1,KORR2)が、温度に依存する割当情報を更に含んでいることと、
    を特徴とする請求項11から13までのいずれか一つに記載の方法。
  15. 評価ユニット(50)が、符号ワード(CW)を生成するために、補正済み位置信号(PK)と詳細位置値(FP)を供給される符号ワード・計算ユニット(90)を更に有することを特徴とする請求項11から14までのいずれか一つに記載の方法。
  16. 補正済み位置信号(PK)からの符号ワード(CW)の算出が、詳細位置値(FP)の最上位のビットにもとづき行われることを特徴とする請求項15に記載の方法。
JP2008316402A 2007-12-19 2008-12-12 絶対位置を測定するための位置測定装置と方法 Active JP5424629B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007061287A DE102007061287A1 (de) 2007-12-19 2007-12-19 Positionsmesseinrichtung und Verfahren zur absoluten Positionsbestimmung
DE102007061287.9 2007-12-19

Publications (2)

Publication Number Publication Date
JP2009150879A JP2009150879A (ja) 2009-07-09
JP5424629B2 true JP5424629B2 (ja) 2014-02-26

Family

ID=40451268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316402A Active JP5424629B2 (ja) 2007-12-19 2008-12-12 絶対位置を測定するための位置測定装置と方法

Country Status (6)

Country Link
US (1) US7770304B2 (ja)
EP (1) EP2072965B1 (ja)
JP (1) JP5424629B2 (ja)
CN (1) CN101464131B (ja)
DE (1) DE102007061287A1 (ja)
ES (1) ES2542348T3 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605981B1 (en) 2015-09-22 2017-03-28 Mitsubishi Electric Corporation Absolute encoder

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045362A1 (de) * 2007-09-22 2009-04-02 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
KR101612842B1 (ko) * 2010-02-26 2016-04-15 한화테크윈 주식회사 엔코더
JP2011247745A (ja) * 2010-05-27 2011-12-08 Iai Corp アブソリュート型リニアエンコーダとアクチュエータ
CN102003976B (zh) * 2010-08-27 2012-07-25 中国科学院长春光学精密机械与物理研究所 单码道绝对位置编码方法、解码方法及测量装置
DE102011083042A1 (de) * 2010-11-29 2012-05-31 Dr. Johannes Heidenhain Gmbh Überwachungseinheit und Verfahren zur Überwachung von Positionssignalen inkrementaler Positionsmesseinrichtungen
JP5832088B2 (ja) * 2010-12-15 2015-12-16 キヤノン株式会社 ロータリーエンコーダ
CN103459991A (zh) * 2011-01-31 2013-12-18 维泰克实验室技术股份有限公司 具有数字的体积显示的瓶式分配器
US20140002642A1 (en) 2012-06-15 2014-01-02 Elmar SWIEGOT Absolute position detection
JP6149740B2 (ja) * 2014-01-23 2017-06-21 三菱電機株式会社 アブソリュートエンコーダ
JP6320149B2 (ja) 2014-04-21 2018-05-09 キヤノン株式会社 アブソリュートエンコーダ
JP2016014574A (ja) * 2014-07-01 2016-01-28 キヤノン株式会社 アブソリュートエンコーダ
US9792688B2 (en) 2015-10-02 2017-10-17 Mitsubishi Electric Corporation Position detection device
JP5974154B2 (ja) * 2015-10-28 2016-08-23 キヤノン株式会社 ロータリーエンコーダ
DE102015121474A1 (de) * 2015-12-09 2017-06-14 Balluff Gmbh Absolut messendes Längenmesssystem und Verfahren zu seinem Betrieb
DE102016214456A1 (de) * 2016-08-04 2018-02-08 Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung Positionsmesseinrichtung und Verfahren zum Betreiben einer Positionsmesseinrichtung
WO2018163424A1 (ja) * 2017-03-10 2018-09-13 三菱電機株式会社 アブソリュートエンコーダ
WO2019169623A1 (zh) * 2018-03-09 2019-09-12 日立电梯(中国)有限公司 轿厢绝对位置的检测系统及其自检方法
US10875753B2 (en) * 2018-09-20 2020-12-29 Manitou Equipment America, Llc Telehandler boom extension monitoring system
WO2023028966A1 (zh) * 2021-09-02 2023-03-09 北京精雕科技集团有限公司 单码道绝对式位置测量装置
CN113447051B (zh) * 2021-09-02 2021-12-07 北京精雕科技集团有限公司 单码道绝对式位置测量装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3148910C1 (de) * 1981-12-10 1983-03-10 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Lichtelektrische inkrementale Laengen- oder Winkelmesseinrichtung
GB2197146B (en) * 1986-11-04 1991-05-29 Canon Kk An encoder for detecting the displacement of an object to be measured
DE3825097A1 (de) * 1988-07-23 1990-02-08 Stahl R Foerdertech Gmbh Vorrichtung zur positionsmessung bei kran- und elektrohaengebahnen
US5068529A (en) * 1988-12-22 1991-11-26 Nikon Corporation Absolute position detection encoder
DE4229575C1 (de) * 1992-09-04 1993-11-25 Heidenhain Gmbh Dr Johannes Verfahren bei Längen- oder Winkelmeßeinrichtungen
JP3506778B2 (ja) * 1994-08-18 2004-03-15 サムタク株式会社 絶対値エンコーダ
JP3474938B2 (ja) * 1994-09-14 2003-12-08 サムタク株式会社 絶対値エンコーダ
US6093928A (en) * 1994-12-22 2000-07-25 Ohtomo; Fumio Position measuring rotary incremental optical encoder
DE19507613C2 (de) * 1995-03-04 1997-01-23 Heidenhain Gmbh Dr Johannes Längen- oder Winkelmeßeinrichtung
JP3659029B2 (ja) * 1998-11-04 2005-06-15 富士電機機器制御株式会社 アブソリュートエンコーダ
US6170162B1 (en) * 1999-05-27 2001-01-09 Sarcos, L.C. Rotary displacement system using differential measuring
DE10201496A1 (de) * 2002-01-17 2003-07-31 Heidenhain Gmbh Dr Johannes Maßstab und Positionsmesseinrichtung zur absoluten Positionsbestimmung
DE10244235A1 (de) 2002-09-23 2004-03-25 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE50203793D1 (de) * 2002-01-17 2005-09-01 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
GB0316921D0 (en) * 2003-07-19 2003-08-27 Renishaw Plc Reader for a scale marking
JP4416544B2 (ja) * 2004-03-12 2010-02-17 株式会社ミツトヨ 光学式変位測定装置
DE102006007184A1 (de) * 2006-02-15 2007-08-16 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102006021484A1 (de) * 2006-05-09 2007-11-15 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
DE102006048628A1 (de) * 2006-10-13 2008-04-17 Siemens Ag Messelement mit einer als Maßverkörperung fungierenden Spur und korrespondierendes, mit einem solchen Messelement ausführbares Messverfahren
US7971487B2 (en) * 2008-05-02 2011-07-05 Carlen Controls, Inc. Linear position transducer with wireless read head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605981B1 (en) 2015-09-22 2017-03-28 Mitsubishi Electric Corporation Absolute encoder

Also Published As

Publication number Publication date
EP2072965A2 (de) 2009-06-24
CN101464131A (zh) 2009-06-24
EP2072965A3 (de) 2013-10-16
CN101464131B (zh) 2012-11-14
US7770304B2 (en) 2010-08-10
DE102007061287A1 (de) 2009-06-25
US20090161121A1 (en) 2009-06-25
ES2542348T3 (es) 2015-08-04
JP2009150879A (ja) 2009-07-09
EP2072965B1 (de) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5424629B2 (ja) 絶対位置を測定するための位置測定装置と方法
US7461464B2 (en) Position measuring arrangement
JP5611998B2 (ja) 単一の光トラックを用いる3チャネルエンコーダ
US7013575B2 (en) Position measuring device
JP4503822B2 (ja) 位置測定装置
JP4927532B2 (ja) スケールまたはディスクの取り付け誤差の影響を受けにくい絶対光学エンコーダ用の方法および装置
US7164120B2 (en) Position measuring instrument
JP4620330B2 (ja) 絶対的な位置設定をするための位置測定装置
US7571552B2 (en) Scale reading apparatus
US7112781B2 (en) Absolute encoder
JP5379761B2 (ja) アブソリュートエンコーダ
JPS6331722B2 (ja)
US20100245839A1 (en) Detector element matrix for an optical position measuring instrument
JP4274751B2 (ja) エンコーダ
US5294793A (en) System for measuring lengths or angles with a high-velocity movable scanning unit
JP4327735B2 (ja) 光回転角度トランスミッタ及び回転角度トランスミッタのコード円板を走査する方法
JP5030404B2 (ja) 光学的エンコーダ用検出器アレイ
CN101441062A (zh) 光学位置测量装置
JP3262842B2 (ja) 光エンコーダ
JP5550213B2 (ja) 光学式アブソリュートエンコーダ
US20050006571A1 (en) Vernier-scaled high-resolution encoder
JP5164264B2 (ja) アブソリュート型リニアエンコーダとアクチュエータ
US6822219B1 (en) Timing device
JP2007071732A (ja) 光学式絶対値エンコーダ
US9322675B2 (en) Absolute encoder and method of obtaining absolute position by a plurality of quantized data based on a plurality of extrema

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250