JP5416153B2 - Conductive paste, manufacturing method thereof, and conductive connecting member - Google Patents
Conductive paste, manufacturing method thereof, and conductive connecting member Download PDFInfo
- Publication number
- JP5416153B2 JP5416153B2 JP2011055700A JP2011055700A JP5416153B2 JP 5416153 B2 JP5416153 B2 JP 5416153B2 JP 2011055700 A JP2011055700 A JP 2011055700A JP 2011055700 A JP2011055700 A JP 2011055700A JP 5416153 B2 JP5416153 B2 JP 5416153B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- conductive paste
- organic
- mass
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000002184 metal Substances 0.000 claims description 75
- 229910052751 metal Inorganic materials 0.000 claims description 75
- 239000011230 binding agent Substances 0.000 claims description 66
- 239000010419 fine particle Substances 0.000 claims description 65
- 239000003960 organic solvent Substances 0.000 claims description 64
- 239000002245 particle Substances 0.000 claims description 60
- 239000002612 dispersion medium Substances 0.000 claims description 51
- 239000007787 solid Substances 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 39
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000011146 organic particle Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 35
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 31
- 238000009835 boiling Methods 0.000 claims description 29
- 238000006722 reduction reaction Methods 0.000 claims description 28
- 239000011164 primary particle Substances 0.000 claims description 26
- 239000004065 semiconductor Substances 0.000 claims description 26
- 238000005245 sintering Methods 0.000 claims description 25
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 18
- 238000000859 sublimation Methods 0.000 claims description 18
- 230000008022 sublimation Effects 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 14
- 235000011187 glycerol Nutrition 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 150000005846 sugar alcohols Polymers 0.000 claims description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 12
- -1 carboxylic acid compounds Chemical class 0.000 claims description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 10
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 9
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 8
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 8
- 230000000630 rising effect Effects 0.000 claims description 7
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 6
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 claims description 6
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical group COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 claims description 6
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 6
- 239000004925 Acrylic resin Substances 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 6
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 6
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 6
- 239000012461 cellulose resin Substances 0.000 claims description 6
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 claims description 6
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 claims description 6
- 229920006122 polyamide resin Polymers 0.000 claims description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 6
- 150000003505 terpenes Chemical class 0.000 claims description 6
- 235000007586 terpenes Nutrition 0.000 claims description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 6
- 239000001856 Ethyl cellulose Substances 0.000 claims description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 5
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 5
- 229920001249 ethyl cellulose Polymers 0.000 claims description 5
- 229910021645 metal ion Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 claims description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 claims description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 claims description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 claims description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 3
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 claims description 3
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 claims description 3
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 claims description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 3
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 claims description 3
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 claims description 3
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 claims description 3
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 claims description 3
- WEEGYLXZBRQIMU-UHFFFAOYSA-N Eucalyptol Chemical compound C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000000020 Nitrocellulose Substances 0.000 claims description 3
- 229920002292 Nylon 6 Polymers 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical group CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 claims description 3
- 229940081735 acetylcellulose Drugs 0.000 claims description 3
- 229940091181 aconitic acid Drugs 0.000 claims description 3
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 3
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 claims description 3
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 claims description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- 229930007050 cineol Natural products 0.000 claims description 3
- 229960005233 cineole Drugs 0.000 claims description 3
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 3
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims description 3
- 239000001530 fumaric acid Substances 0.000 claims description 3
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 claims description 3
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 3
- 235000001510 limonene Nutrition 0.000 claims description 3
- 229940087305 limonene Drugs 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 3
- QJQAMHYHNCADNR-UHFFFAOYSA-N n-methylpropanamide Chemical compound CCC(=O)NC QJQAMHYHNCADNR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229920001220 nitrocellulos Polymers 0.000 claims description 3
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 claims description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 3
- 235000013772 propylene glycol Nutrition 0.000 claims description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 3
- 229960004889 salicylic acid Drugs 0.000 claims description 3
- 229940116411 terpineol Drugs 0.000 claims description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 3
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 claims description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 claims description 3
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 claims description 2
- 229920000571 Nylon 11 Polymers 0.000 claims description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- XYXCXCJKZRDVPU-UHFFFAOYSA-N hexane-1,2,3-triol Chemical compound CCCC(O)C(O)CO XYXCXCJKZRDVPU-UHFFFAOYSA-N 0.000 claims description 2
- 239000002243 precursor Substances 0.000 description 52
- 238000000034 method Methods 0.000 description 30
- 230000009467 reduction Effects 0.000 description 19
- 239000000843 powder Substances 0.000 description 16
- 239000012298 atmosphere Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 229910001873 dinitrogen Inorganic materials 0.000 description 11
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 10
- 229910001431 copper ion Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000007650 screen-printing Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- ZIVBAAWXJUAKAR-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;pyrrolidin-2-one Chemical compound O=C1CCCN1.C=CN1CCCC1=O ZIVBAAWXJUAKAR-UHFFFAOYSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- YPZMPEPLWKRVLD-PJEQPVAWSA-N D-Glycero-D-gulo-Heptose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C=O YPZMPEPLWKRVLD-PJEQPVAWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-threitol Chemical compound OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- YTBSYETUWUMLBZ-QWWZWVQMSA-N D-threose Chemical compound OC[C@@H](O)[C@H](O)C=O YTBSYETUWUMLBZ-QWWZWVQMSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- AYRXSINWFIIFAE-SCLMCMATSA-N Isomaltose Natural products OC[C@H]1O[C@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)[C@@H](O)[C@@H](O)[C@@H]1O AYRXSINWFIIFAE-SCLMCMATSA-N 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PYMYPHUHKUWMLA-VPENINKCSA-N aldehydo-D-xylose Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-VPENINKCSA-N 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- HEBKCHPVOIAQTA-NGQZWQHPSA-N d-xylitol Chemical compound OC[C@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-NGQZWQHPSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- UQPHVQVXLPRNCX-UHFFFAOYSA-N erythrulose Chemical compound OCC(O)C(=O)CO UQPHVQVXLPRNCX-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 150000002386 heptoses Chemical class 0.000 description 1
- VDRUPBBEDDAWMR-UHFFFAOYSA-N hexane-1,1,3-triol Chemical compound CCCC(O)CC(O)O VDRUPBBEDDAWMR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 150000002453 idose derivatives Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- DLRVVLDZNNYCBX-RTPHMHGBSA-N isomaltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-RTPHMHGBSA-N 0.000 description 1
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- JCQLYHFGKNRPGE-FCVZTGTOSA-N lactulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-FCVZTGTOSA-N 0.000 description 1
- 229960000511 lactulose Drugs 0.000 description 1
- PFCRQPBOOFTZGQ-UHFFFAOYSA-N lactulose keto form Natural products OCC(=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O PFCRQPBOOFTZGQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Wire Bonding (AREA)
Description
本発明は、半導体素子の電極端子又は回路基板の電極端子の接合面に形成される導電性バンプ、導電性ダイボンド部等の導電接続部材の作製に使用される導電性ペースト、及びその製造方法、並びに該導電性ペーストを加熱処理して得られる導電接続部材に関する。 The present invention relates to a conductive paste used for manufacturing a conductive connecting member such as a conductive bump formed on an electrode terminal of a semiconductor element or an electrode terminal of a circuit board, and a conductive die bond part, and a manufacturing method thereof, The present invention also relates to a conductive connecting member obtained by heat-treating the conductive paste.
近年電子機器の高機能、高性能化および小型化を実現するために半導体実装技術の高密度化が進められている。半導体素子同士の接合、半導体素子と回路基板との接合方法の代表的技術として、ワイヤボンディング技術(WB)、ワイヤレスボンディング技術であるテープオートメイテッドワイヤボンディング技術(TAB)やフリップチップボンディング技術(FCB)が挙げられる。これらの中でもコンピュータ機器などの半導体装置を高密度に実装する技術として、最も高密度化が可能であるフリップチップボンディング技術が多く用いられている。フリップチップボンディングは半導体素子等上に形成されたバンプ(突起状物)を、回路基板等へ接合するものであるが、そのバンプの形成にはメッキ法が主に採用されている。 In recent years, in order to realize high functions, high performance, and downsizing of electronic devices, the density of semiconductor mounting technology has been increased. As a representative technique for bonding between semiconductor elements and bonding method between a semiconductor element and a circuit board, wire bonding technique (WB), tape automated wire bonding technique (TAB), which is a wireless bonding technique, and flip chip bonding technique (FCB). Is mentioned. Among these, as a technology for mounting semiconductor devices such as computer equipment at a high density, a flip chip bonding technology that can achieve the highest density is often used. In flip chip bonding, bumps (projections) formed on a semiconductor element or the like are bonded to a circuit board or the like, and a plating method is mainly employed for forming the bumps.
メッキ法によるバンプの形成では、微細なパターンの形成が可能であり、条件設定によりバンプ高さ制御が試みられてはいるものの、バンプの高さに多少のバラつきが生じるのを避けられないという問題点がある。電極の接触不良を防止するために、このようなバンプ高さのバラつきに対する対策としては、接合時の加圧手段により全てのバンプを密着させる方法を採用することも可能であるが、過度に加圧するとバンプ内部に歪が残存したり、耐熱応力が低下して破損につながるそれがある。従って、金属製の微細パターン接続用バンプの構造を加圧時に変形し易い柔らかさを有する構造にすることが好ましい。 In bump formation by plating, it is possible to form a fine pattern, and although bump height control is attempted by setting conditions, it is inevitable that some variation in bump height will occur. There is a point. In order to prevent poor contact of the electrodes, it is possible to adopt a method in which all the bumps are brought into close contact with the pressure means at the time of bonding as a countermeasure against such bump height variation. If pressed, strain may remain inside the bump, or the heat stress may be reduced leading to breakage. Therefore, it is preferable that the metal fine pattern connecting bump has a soft structure that is easily deformed when pressed.
また、めっき法で形成したバンプには、使用過程において疲労破壊に起因すると考えられるクラックの発生、破断の問題がある。フリップチップボンディングにおいては、半導体素子の構成材料と半導体素子に実装する回路配線基板との間の構成材料が異なると、熱膨張係数の相異に起因してはんだバンプ電極に応力歪を発生させる。この応力歪ははんだバンプ電極を破壊させて信頼性寿命を低下させる。このような問題点を解消する手段として、金属微粒子を含む導電性ペーストを焼成して形成される多孔質体が知られている。 Moreover, the bump formed by the plating method has a problem of crack generation and fracture that is considered to be caused by fatigue failure in the use process. In flip chip bonding, if the constituent material between the semiconductor element and the circuit wiring board mounted on the semiconductor element is different, stress strain is generated in the solder bump electrode due to the difference in thermal expansion coefficient. This stress strain destroys the solder bump electrode and reduces the reliability life. As a means for solving such a problem, a porous body formed by firing a conductive paste containing metal fine particles is known.
特許文献1には、基板上に感光性樹脂等を用いて開口部を設け、該開口部内に平均粒子径が0.1μm〜50μmの金属微粒子を充填後焼成して形成された、基板上の導体配線回路と他の基板あるいは部品とを電気的に接続するための接続用バンプが開示されている。
特許文献2には、バンプに使用する材料を多孔質で比較的柔らかく弾力性を有する焼結体からなるバンプが提案されている。
特許文献3には、第一の金属層と、第二の金属層との間に第三の金属からなる多孔質金属層を介在させて、第一の金属層と該多孔質金属層、及び第二の金属層と該多孔質金属層との間に、平均直径が100nm以下の金属超微粒子を有機系溶媒中に分散させた金属ナノペーストを設置して、加熱により接合する接合方法が開示されている。特許文献4には、基板上に設けたフォトレジスト層の細孔内に金メッキ層(第1バンプ層)を設け、その上に金属ペーストとして金ペーストを滴下して充填した後焼結して焼結体(第2バンプ層)を設けたバンプが開示されている。又、特許文献5には、昇華性物質を有機溶媒に完全に溶解し、その溶解液を細孔から水中に噴出させて昇華性物質の微粒子を析出させ、得られる微粒子をフェライト粉体に添加して混合し、成形後に焼成するフェライト多孔体の製造方法が開示されている。
In Patent Document 1, an opening is formed on a substrate using a photosensitive resin or the like, and the opening is filled with metal fine particles having an average particle diameter of 0.1 μm to 50 μm and then fired and formed on the substrate. A connection bump for electrically connecting a conductor wiring circuit and another substrate or component is disclosed.
Patent Document 2 proposes a bump made of a sintered material that is porous, relatively soft, and elastic as a material used for the bump.
In Patent Document 3, a porous metal layer made of a third metal is interposed between the first metal layer and the second metal layer, and the first metal layer, the porous metal layer, and Disclosed is a bonding method in which a metal nanopaste in which ultrafine metal particles having an average diameter of 100 nm or less are dispersed in an organic solvent is placed between the second metal layer and the porous metal layer, and bonded by heating. Has been. In Patent Document 4, a gold plating layer (first bump layer) is provided in the pores of a photoresist layer provided on a substrate, and a gold paste is dropped and filled as a metal paste thereon, followed by sintering and baking. A bump provided with a bonded body (second bump layer) is disclosed. Patent Document 5 discloses that a sublimable substance is completely dissolved in an organic solvent, the solution is ejected from pores into water to precipitate fine particles of the sublimable substance, and the obtained fine particles are added to the ferrite powder. Then, a method for producing a porous ferrite body that is mixed and fired after molding is disclosed.
上記特許文献1に開示のミクロンサイズ(1μm以上1000μm未満のサイズをいう、以下同じ。)の金属粒子を焼結して得られる金属多孔質体はナノサイズ(ナノサイズとは1μm未満のサイズをいう、以下同じ。)の金属多孔質体と比較して耐熱応力が低いので熱サイクル特性が相対的に十分でないという問題点がある。すなわち、上記特許文献1に具体的に開示されている多孔質体はミクロンサイズの金属粒子の結合体の間にミクロンサイズの空孔が存在する構造である。
金属材料中のクラック(亀裂)の伝播の理論によれば、亀裂を空孔ととらえ、空孔サイズが十分に小さいとき大きい応力が働いても空孔(亀裂)の拡大が抑制されることが知られている(日本材料学会編、疲労設計便覧、1995年1月20日、養賢堂発行、148〜195頁参照)。この場合、例えばナノサイズの空孔を持つバンプは、ミクロンサイズの空孔を持つバンプよりおよそ100倍程度の耐応力性があると推測される。上記特許文献2に開示の焼結体からなるバンプを適用する場合には、実装の際に横方向の変形のおそれがあり、バンプ間隔(ピッチ)を損ねることがある。
The metal porous body obtained by sintering metal particles having a micron size (referring to a size of 1 μm or more and less than 1000 μm, the same applies hereinafter) disclosed in Patent Document 1 is a nano-size (a nanosize is a size less than 1 μm). The same shall apply hereinafter)), which has a problem that the thermal cycle characteristics are relatively insufficient because the thermal stress is lower than that of the metal porous body. That is, the porous body specifically disclosed in Patent Document 1 has a structure in which micron-sized pores are present between bonded bodies of micron-sized metal particles.
According to the theory of propagation of cracks in metal materials, cracks are regarded as vacancies, and when the pore size is sufficiently small, the expansion of vacancies (cracks) can be suppressed even if a large stress is applied. It is known (see Japan Society for Materials Science, Fatigue Design Handbook, January 20, 1995, published by Yokendo, pages 148-195). In this case, for example, a bump having nano-sized holes is estimated to have a stress resistance of about 100 times that of a bump having micron-sized holes. When a bump made of a sintered body disclosed in Patent Document 2 is applied, there is a risk of lateral deformation during mounting, which may impair the bump spacing (pitch).
上記特許文献3、及び特許文献4に開示のナノサイズからなる金属微粒子を焼結する際には、焼結温度近辺まで固体粉末が残存し分散媒から発生するガスの取り込みによる粗大ボイドの形成、膨れや亀裂を形成し易いという問題点がある。特許文献5に開示の昇華性物質は有機溶媒に溶解するので、導電性ペースト中に有機分散剤が含有されているペースト用組成物には適用できない。
優れた熱サイクル特性を有する導電性バンプは、ナノサイズの金属微粒子を含有する導電性ペーストを焼成して、該微粒子の表面が結合すると共にナノサイズの空孔が形成されている多孔質体とすることが好ましいが、導電性ペーストにおいて、導電性ペーストを加熱処理する際に有機分散媒が蒸発又は熱分解して生じた気泡が成長して、多孔質体内部に粗大ボイドやクラックを形成すると、機械的強度や熱サイクル特性が著しく低下する。
When sintering the nano-sized metal fine particles disclosed in Patent Document 3 and Patent Document 4 described above, formation of coarse voids due to the incorporation of gas generated from the dispersion medium in which the solid powder remains up to around the sintering temperature, There is a problem that blisters and cracks are easily formed. Since the sublimable substance disclosed in Patent Document 5 is dissolved in an organic solvent, it cannot be applied to a paste composition containing an organic dispersant in a conductive paste.
A conductive bump having excellent thermal cycle characteristics is obtained by firing a conductive paste containing nano-sized metal fine particles, and bonding a surface of the fine particles to form a porous body in which nano-sized pores are formed. In the conductive paste, when the conductive paste is heat-treated, when the organic dispersion medium evaporates or pyrolyzes, bubbles are generated and coarse voids and cracks are formed inside the porous body. , Mechanical strength and thermal cycle characteristics are significantly reduced.
本発明者らは、上記従来技術に鑑みて、導電性ペーストに、有機分散媒中に平均一次粒子径1〜150nmの導電性金属微粒子と、平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒の成分である有機溶媒に不溶である有機粒子とをそれぞれ一定割合配合させることにより粗大ボイドやクラックが発生しない金属多孔質体からなる導電性バンプ、導電性ダイボンド部等の導電接続部材が得られることを見出し、本発明を完成するに至った。即ち、本発明は、以下の(1)〜(24)に記載する発明を要旨とする。 In view of the above prior art, the inventors have made conductive paste, conductive metal fine particles having an average primary particle diameter of 1 to 150 nm in an organic dispersion medium, and sublimation or heat having an average particle diameter of 0.5 to 10 μm. Conductive bumps composed of a porous metal body that does not generate coarse voids or cracks by mixing a certain proportion of organic particles that are decomposable and insoluble in the organic solvent that is a component of the organic dispersion medium, and conductive The present inventors have found that a conductive connection member such as a die bond portion can be obtained, and have completed the present invention. That is, the gist of the present invention is the invention described in the following (1) to (24).
(1)固体粒子(P)と有機分散媒(D)とを含む導電性ペーストであって、該導電性ペースト中には固体粒子(P)と有機分散媒(D)との割合(P/D)が50〜85質量%/50〜15質量%(質量%の合計は100質量%)となるように配合されており、該固体粒子(P)が平均一次粒子径1〜150nmの導電性金属微粒子(P1)80〜95体積%と、平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒(D)に不溶である有機粒子(P2)20〜5体積%(体積%の合計は100体積%)とからなる、ことを特徴とする導電性ペースト(以下、第1の態様ということがある)。
(2)前記導電性金属微粒子(P1)の融点(バルク状態の融点)が1100℃未満であるとき、有機粒子(P2)の融点又は昇華温度(常圧下)が150℃以上で、かつ沸点(常圧下)又は熱分解温度が300℃以下であり、導電性金属微粒子(P1)の融点(バルク状態の融点)が1100℃以上であるとき、有機粒子(P2)の融点又は昇華温度(常圧下)が200℃以上で、かつ沸点(常圧下)又は熱分解温度が300℃以下であることを特徴とする、前記(1)に記載の導電性ペースト。
(3)前記有機粒子(P2)が、カルボキシル基を1つ以上有する有機カルボン酸化合物であることを特徴とする、前記(1)又は(2)に記載の導電性ペースト。
(4)前記有機カルボン酸化合物が、サリチル酸、フマル酸、コハク酸、フタル酸(オルソフタル酸、C6H4(COOH)2)、及びアコニット酸の中から選択される1種又は2種以上であることを特徴とする、前記(3)に記載の導電性ペースト。
(5)前記導電性金属微粒子(P1)が、銅、金、銀、ニッケル、コバルトの中から選択される1種又は2種以上であることを特徴とする、前記(1)から(4)のいずれかに記載の導電性ペースト。
(1) A conductive paste containing solid particles (P) and an organic dispersion medium (D), wherein the ratio of the solid particles (P) to the organic dispersion medium (D) (P / D) is blended so as to be 50 to 85% by mass / 50 to 15% by mass (a total of 100% by mass is 100% by mass), and the solid particles (P) have an average primary particle diameter of 1 to 150 nm. Organic particles (P2) 20 to 5 having a metal fine particle (P1) of 80 to 95% by volume, an average particle size of 0.5 to 10 μm, sublimation property or thermal decomposability, and insoluble in the organic dispersion medium (D). A conductive paste comprising: volume% (the total of volume% is 100 volume%) (hereinafter, also referred to as a first embodiment).
(2) When the melting point (bulk state melting point) of the conductive metal fine particles (P1) is less than 1100 ° C., the melting point or sublimation temperature (under normal pressure) of the organic particles (P2) is 150 ° C. or more and the boiling point ( Under normal pressure) or when the thermal decomposition temperature is 300 ° C. or lower, and the melting point (bulk melting point) of the conductive metal fine particles (P1) is 1100 ° C. or higher, the melting point or sublimation temperature of organic particles (P2) (under normal pressure) ) Is 200 ° C. or higher, and has a boiling point (under normal pressure) or a thermal decomposition temperature of 300 ° C. or lower. The conductive paste according to (1) above.
(3) The conductive paste according to (1) or (2), wherein the organic particles (P2) are organic carboxylic acid compounds having one or more carboxyl groups.
(4) The organic carboxylic acid compound is one or more selected from salicylic acid, fumaric acid, succinic acid, phthalic acid (orthophthalic acid, C6H4 (COOH) 2), and aconitic acid. The conductive paste according to (3) above, which is characterized.
(5) The conductive metal fine particles (P1) are one or more selected from copper, gold, silver, nickel and cobalt, (1) to (4) The electrically conductive paste in any one of.
(6)前記有機分散媒(D)が、有機溶媒(S)単独、又は有機溶媒(S)80〜100質量%と有機バインダー(R)20〜0質量%(質量%の合計は100質量%)とからなることを特徴とする、前記(1)から(5)のいずれかに記載の導電性ペースト。
(7)前記有機分散媒(D)が水を含有しており、該水の含有量が有機溶媒(S)と水(W)との割合(S/W)で75〜99.9質量%/25〜0.1質量%(質量%の合計は100質量%)である、ことを特徴とする前記(1)から(6)のいずれかに記載の導電性ペースト。
(8)前記有機溶媒(S)が、(i)常圧における沸点が100℃以上で、かつ分子中に1もしくは2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる有機溶媒(S1)、又は(ii)少なくとも、常圧における沸点が100℃以上で、かつ分子中に1もしくは2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる有機溶媒(S1)5〜95体積%、及びアミド基を有する有機溶媒(SA)95〜5体積%からなる有機溶媒(S2)、であることを特徴とする前記(6)又は(7)に記載の導電性ペースト。
(9)前記有機溶媒(S1)が、ヒドロキシル基を2つ以上有しており、該ヒドロキシル基が結合している炭素基部分が(−CH(OH)−)構造の多価アルコールを1種又は2種以上含有していることを特徴とする、前記(8)に記載の導電性ペースト。
(10)前記多価アルコールが、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオールの中から選択される1種又は2種以上である、ことを特徴とする、前記(8)又は(9)に記載の導電性ペースト。
(6) The organic dispersion medium (D) is the organic solvent (S) alone, or the organic solvent (S) is 80 to 100% by mass and the organic binder (R) is 20 to 0% by mass (the total of the mass% is 100% by mass). The conductive paste according to any one of (1) to (5), wherein
(7) The organic dispersion medium (D) contains water, and the water content is 75 to 99.9% by mass (S / W) of the organic solvent (S) and water (W). The conductive paste according to any one of (1) to (6), which is / 25 to 0.1% by mass (the total of the mass% is 100% by mass).
(8) The organic solvent (S) is (i) an organic solvent (S1) comprising an alcohol and / or a polyhydric alcohol having a boiling point of 100 ° C. or higher at normal pressure and having 1 or 2 or more hydroxyl groups in the molecule. ), Or (ii) at least an organic solvent (S1) of 5 to 95% by volume consisting of an alcohol and / or a polyhydric alcohol having a boiling point of 100 ° C. or higher at normal pressure and having 1 or 2 or more hydroxyl groups in the molecule. And an organic solvent (S2) comprising 95 to 5% by volume of an organic solvent (SA) having an amide group, and the conductive paste as described in (6) or (7) above.
(9) The organic solvent (S1) has two or more hydroxyl groups, and the carbon group portion to which the hydroxyl groups are bonded is one kind of a polyhydric alcohol having a (—CH (OH) —) structure. Or it contains 2 or more types, The electroconductive paste as described in said (8) characterized by the above-mentioned.
(10) The polyhydric alcohol is ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2 -Butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3 -One or more selected from propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1,2,4-butanetriol The conductive paste according to (8) or (9).
(11)前記有機溶媒(SA)がN−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリジノン、ε−カプロラクタム、及びアセトアミドの中から選択される1種又は2種以上である、ことを特徴とする、前記(8)から(10)のいずれかに記載の導電性ペースト。
(12)前記有機バインダー(R)が、セルロース樹脂系バインダー、アセテート樹脂系バインダー、アクリル樹脂系バインダー、ウレタン樹脂系バインダー、ポリビニルピロリドン樹脂系バインダー、ポリアミド樹脂系バインダー、ブチラール樹脂系バインダー、及びテルペン系バインダーの中から選択される1種又は2種以上であることを特徴とする、
前記(6)から(11)のいずれかに記載の導電性ペースト。
(13)前記セルロース樹脂系バインダーがアセチルセルロース、メチルセルロース、エチルセルロース、ブチルセルロース、及びニトロセルロース;アセテート樹脂系バインダーがメチルグリコールアセテート、エチルグリコールアセテート、ブチルグリコールアセテート、エチルジグリコールアセテート、及びブチルジグリコールアセテート;アクリル樹脂系バインダーがメチルメタクリレート、エチルメタクリレート、及びブチルメタクリレート;ウレタン樹脂系バインダーが2,4−トリレンジイソシアネート、及びp−フェニレンジイソシアネート;ポリビニルピロリドン樹脂系バインダーがポリビニルピロリドン、及びN−ビニルピロリドン;ポリアミド樹脂系バインダーがポリアミド6、ポリアミド6.6、及びポリアミド11;ブチラール樹脂系バインダーがポリビニルブチラール;テルペン系バインダーがピネン、シネオール、リモネン、及びテルピネオール、の中から選択される1種又は2種以上であることを特徴とする、前記(12)に記載の導電性ペースト。
(11) The organic solvent (SA) is N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, N -One or more selected from dimethylformamide, 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidinone, ε-caprolactam, and acetamide, The conductive paste according to any one of (8) to (10).
(12) The organic binder (R) is a cellulose resin binder, acetate resin binder, acrylic resin binder, urethane resin binder, polyvinyl pyrrolidone resin binder, polyamide resin binder, butyral resin binder, and terpene resin. 1 type or 2 types or more selected from binders,
The conductive paste according to any one of (6) to (11).
(13) The cellulose resin binder is acetyl cellulose, methyl cellulose, ethyl cellulose, butyl cellulose, and nitrocellulose; the acetate resin binder is methyl glycol acetate, ethyl glycol acetate, butyl glycol acetate, ethyl diglycol acetate, and butyl diglycol acetate. Acrylic resin binder is methyl methacrylate, ethyl methacrylate, and butyl methacrylate; urethane resin binder is 2,4-tolylene diisocyanate and p-phenylene diisocyanate; polyvinyl pyrrolidone resin binder is polyvinyl pyrrolidone and N-vinyl pyrrolidone; Polyamide resin binder is polyamide 6, polyamide 6.6, and polyamide 1 The butyral resin binder is polyvinyl butyral; the terpene binder is one or more selected from pinene, cineol, limonene, and terpineol, the conductive material according to (12) above Sex paste.
(14)前記(1)から(13)のいずれかに記載の導電性ペーストを製造するに際し、前記導電性金属微粒子(P1)と有機粒子(P2)とを混合後、有機分散媒(D)を添加して練り込むことを特徴とする、導電性ペーストの製造方法(以下、第2の態様ということがある)。
(15)前記有機粒子(P2)が遊星ボールミル装置で粉砕して粒子化されたものであることを特徴とする、前記(14)に記載の導電性ペーストの製造方法。
(16)前記導電性金属微粒子(P1)が水溶液中で金属イオンからの還元反応により形成された粒子であることを特徴とする、前記(14)又は(15)に記載の導電性ペーストの製造方法。
(14) In producing the conductive paste according to any one of (1) to (13), after mixing the conductive metal fine particles (P1) and the organic particles (P2), the organic dispersion medium (D) A method for producing a conductive paste, which is characterized by adding kneading (hereinafter sometimes referred to as a second embodiment).
(15) The method for producing a conductive paste as described in (14) above, wherein the organic particles (P2) are pulverized by a planetary ball mill device.
(16) The conductive paste according to (14) or (15), wherein the conductive metal fine particles (P1) are particles formed by a reduction reaction from metal ions in an aqueous solution. Method.
(17)請求項1から13のいずれかに記載の導電性ペーストを電子部品における半導体素子もしくは回路基板の電極端子又は導電性基板の接合面に載せた後、該導電性ペースト上に更に接続する他方の電極端子又は導電性基板の接合面を配置して加熱処理により焼結して形成された金属多孔質体からなる導電接続部材(以下、第3の態様ということがある)。
(18)前記導電接続部材が半導体素子間を接合するための導電性バンプであることを特徴とする前記(17)に記載の導電接続部材。
(19)前記導電接続部材が半導体素子と導電性基板間を接合するための導電性ダイボンド部であることを特徴とする前記(17)に記載の導電接続部材。
(20)前記加熱処理の温度が150〜400℃であることを特徴とする前記(17)から(19)のいずれかに記載の導電接続部材。
(21)前記導電性ペーストを焼成する際の昇温速度が10℃/分以下であることを特徴とする前記(17)から(20)のいずれかに記載の導電接続部材。
(22)前記加熱処理が両電極端子間を1〜15MPaで加圧した状態で行われることを特徴とする前記(17)から(21)のいずれかに記載の導電接続部材。
(23)前記金属多孔質体中の体積空隙率が5〜35%であることを特徴とする、前記(17)から(22)のいずれかに記載の導電接続部材。
(24)前記電極端子の接合面の面積が0.25〜400cm2であることを特徴とする前記(17)から(23)のいずれかに記載の導電接続部材。
(17) The conductive paste according to any one of claims 1 to 13 is placed on a semiconductor element in an electronic component, an electrode terminal of a circuit board, or a bonding surface of the conductive board, and then further connected on the conductive paste. A conductive connecting member made of a metal porous body formed by disposing a bonding surface of the other electrode terminal or the conductive substrate and sintering by heat treatment (hereinafter sometimes referred to as a third aspect).
(18) The conductive connection member according to (17), wherein the conductive connection member is a conductive bump for bonding between semiconductor elements.
(19) The conductive connection member according to (17), wherein the conductive connection member is a conductive die bond portion for bonding a semiconductor element and a conductive substrate.
(20) The conductive connection member according to any one of (17) to (19), wherein the temperature of the heat treatment is 150 to 400 ° C.
(21) The conductive connection member according to any one of (17) to (20), wherein a rate of temperature rise when firing the conductive paste is 10 ° C./min or less.
(22) The conductive connection member according to any one of (17) to (21), wherein the heat treatment is performed in a state in which a pressure between the electrode terminals is 1 to 15 MPa.
(23) The conductive connection member according to any one of (17) to (22), wherein a volume porosity in the metal porous body is 5 to 35%.
(24) The conductive connection member according to any one of (17) to (23), wherein an area of a bonding surface of the electrode terminal is 0.25 to 400 cm 2 .
(i)前記(1)に記載の導電性ペーストは、平均一次粒子径が1〜150nmの導電性金属微粒子(P1)と、昇華性又は熱分解性を有する、0.5〜10μmの有機粒子(P2)が有機分散媒(D)中に均一に分散しているので、加熱処理(焼結)して、金属多孔質体からなる導電接続部材を形成する際に、有機粒子(P2)が昇華して有機溶媒(S)、又は有機溶媒(S)と有機バインダー(R)から発生する気泡の抜け道が形成されるので、焼結された多孔質体中に有機分散媒(D)取り込みによる粗大ボイドやクラックは存在せず、均質な導電性バンプ、導電性ダイボンド部等の導電接続部材を作製することができる。
(ii)前記(14)に記載の導電性ペーストの製造方法により得られる導電性ペーストを電極端子の接合面等で加熱処理(焼結)して得られる導電接続部材は、上記(i)に記載したと同様の効果を得ることができる。
(iii)前記(17)に記載の導電性バンプ中には、粗大ボイドやクラックは存在せず、均質な導電接続部材である。
(I) The conductive paste according to (1) is composed of conductive metal fine particles (P1) having an average primary particle diameter of 1 to 150 nm and organic particles having a sublimation property or thermal decomposability of 0.5 to 10 μm. Since (P2) is uniformly dispersed in the organic dispersion medium (D), when the heat treatment (sintering) is performed to form a conductive connecting member made of a metal porous body, the organic particles (P2) By sublimation, a passage of bubbles generated from the organic solvent (S) or the organic solvent (S) and the organic binder (R) is formed, so that the organic dispersion medium (D) is taken into the sintered porous body. Coarse voids and cracks do not exist, and conductive connection members such as homogeneous conductive bumps and conductive die bond portions can be produced.
(Ii) The conductive connection member obtained by heat-treating (sintering) the conductive paste obtained by the method for producing a conductive paste according to (14) above on the joint surface of the electrode terminal is as described in (i) above. The same effect as described can be obtained.
(Iii) The conductive bumps described in the above (17) do not have coarse voids or cracks, and are homogeneous conductive connection members.
以下に、本発明の前記第1の態様ないし第3の態様について記載する。
〔1〕第1の態様の「導電性ペースト」について
本発明の第1の態様の「導電性ペースト」は、固体粒子(P)と有機分散媒(D)とを含む導電性ペーストであって、該導電性ペースト中には固体粒子(P)と有機分散媒(D)との割合(P/D)が50〜85質量%/50〜15質量%(質量%の合計は100質量%)となるように配合されており、該固体粒子(P)が平均一次粒子径1〜150nmの導電性金属微粒子(P1)80〜95体積%と、平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒(D)に不溶である有機粒子(P2)20〜5体積%(体積%の合計は100体積%)とからなる、ことを特徴とする。
The first to third aspects of the present invention will be described below.
[1] About the “conductive paste” of the first aspect The “conductive paste” of the first aspect of the present invention is a conductive paste containing solid particles (P) and an organic dispersion medium (D). In the conductive paste, the ratio (P / D) of the solid particles (P) to the organic dispersion medium (D) is 50 to 85% by mass / 50 to 15% by mass (the total of mass% is 100% by mass). The solid particles (P) are conductive metal fine particles (P1) having an average primary particle size of 1 to 150 nm and 80 to 95% by volume, and a sublimation property having an average particle size of 0.5 to 10 μm or It is characterized by comprising 20 to 5% by volume of organic particles (P2) having thermal decomposability and insoluble in the organic dispersion medium (D) (a total of 100% by volume).
(1)固体粒子(P)
固体粒子(P)は、平均一次粒子径1〜150nmの導電性金属微粒子(P1)が80〜95体積%、及び平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒(D)に不溶である有機粒子(P2)が20〜5体積%(体積%の合計は100体積%)からなる。固体粒子(P)中の有機粒子(P2)が5体積%未満では、導電性ペーストを加熱処理する際に有機分散媒(D)から発生する気泡の抜け道が形成されづらくなり、導電性ペーストを加熱処理(焼結)して得られる導電性バンプ、導電性ダイボンド部等の導電接続部材中に粗大ボイドやクラック発生の抑制効果が効果的に発揮されない、一方、有機粒子(P2)が20体積%を超えると、導電性ペーストを加熱処理(焼結)して得られる導電接続部材中の空隙率が増加して機械的強度が低下すると共に導電性も低下するおそれがある。
(1) Solid particles (P)
The solid particles (P) have 80 to 95% by volume of conductive metal fine particles (P1) having an average primary particle size of 1 to 150 nm and sublimation properties or thermal decomposability of an average particle size of 0.5 to 10 μm, and The organic particles (P2) insoluble in the organic dispersion medium (D) are composed of 20 to 5% by volume (the total of the volume% is 100% by volume). When the organic particles (P2) in the solid particles (P) are less than 5% by volume, it is difficult to form a passage for bubbles generated from the organic dispersion medium (D) when the conductive paste is heat-treated. In the conductive connection members such as conductive bumps and conductive die bond parts obtained by heat treatment (sintering), the effect of suppressing the generation of coarse voids and cracks is not effectively exhibited, while the organic particles (P2) are 20 volumes. If it exceeds%, the porosity in the conductive connecting member obtained by heat-treating (sintering) the conductive paste will increase, and the mechanical strength may decrease and the conductivity may also decrease.
(1−1)導電性金属微粒子(P1)
導電性金属微粒子(P1)は、平均一次粒子径が1〜150nmである。
導電性金属微粒子(P1)の平均一次粒子径が1〜150nmであることにより、加熱処理して得られる金属多孔質体は、金属微粒子同士が表面で接触して形成される結果、金属多孔質体中の空孔径も小さくなり、ミクロンサイズの金属粒子からなる金属多孔質体と比較して、熱サイクル特性が向上して優れた耐クラック性が得られる。前記導電性金属微粒子(P1)は、導電性、ナノ粒子の焼結性の点から銅、金、銀、ニッケル、コバルトの中から選択される1種又は2種以上であることが好ましい。
平均一次粒子径が1〜150nmある導電性金属微粒子(P1)の製造方法としては、特に制限はなく、例えば湿式化学還元法、アトマイズ法、めっき法、プラズマCVD法、MOCVD法等の方法を用いることができる。湿式化学還元法の例としては、金属イオンが存在する電解水溶液から、電解還元、無電解還元等の還元反応による製造方法が挙げられ、具体的には、特開2008−231564号公報に開示された方法を採用することができる。該公報に開示された製造方法を採用する際に、金属イオンの還元反応終了後に還元反応水溶液に凝集剤を添加して該水溶液から遠心分離等の操作により不純物を除去後回収された導電性金属微粒子(P1)に有機分散媒(D)等を混合、混練して、本発明の導電性ペーストを製造することができる。
(1-1) Conductive metal fine particles (P1)
The conductive metal fine particles (P1) have an average primary particle diameter of 1 to 150 nm.
When the average primary particle diameter of the conductive metal fine particles (P1) is 1 to 150 nm, the metal porous body obtained by the heat treatment is formed by bringing the metal fine particles into contact with each other on the surface. The pore diameter in the body is also reduced, and thermal cycle characteristics are improved and excellent crack resistance is obtained as compared with a metal porous body made of metal particles of micron size. The conductive metal fine particles (P1) are preferably one or more selected from copper, gold, silver, nickel and cobalt from the viewpoint of conductivity and sinterability of the nanoparticles.
There is no restriction | limiting in particular as a manufacturing method of electroconductive metal microparticles | fine-particles (P1) with an average primary particle diameter of 1-150 nm, For example, methods, such as a wet chemical reduction method, the atomizing method, a plating method, plasma CVD method, MOCVD method, are used. be able to. As an example of the wet chemical reduction method, a production method by electrolytic reduction, electroless reduction or other reduction reaction from an electrolytic aqueous solution in which metal ions are present can be mentioned, and specifically disclosed in Japanese Patent Application Laid-Open No. 2008-231564. Can be adopted. When adopting the production method disclosed in the publication, after the metal ion reduction reaction is completed, an aggregating agent is added to the aqueous reduction reaction solution, and impurities are removed from the aqueous solution by an operation such as centrifugation, and then recovered. The conductive paste of the present invention can be produced by mixing and kneading the organic dispersion medium (D) or the like with the fine particles (P1).
(1−2)有機粒子(P2)
有機粒子(P2)は、平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒(D)に不溶である有機化合物粒子である。有機粒子(P2)の平均粒子径が0.5μm以上であると、導電性ペーストを加熱処理して導電性金属微粒子(P1)を焼結する際に、有機分散媒(D)が蒸発、又は蒸発と加熱分解で発生する気泡の抜けが促進される空孔径が形成され、該気泡を取り込んで粗大ボイドやクラック発生の抑制効果が効果的に発揮される。一方、有機粒子(P2)の平均粒子径が10μmを超えると、導電性ペースト中で有機粒子(P2)同士の表面接触が生ずる結果、得られる金属多孔質体からなる導電性バンプ、導電性ダイボンド部等の導電接続部材の空孔径が粗大化して、機械的強度が低下するおそれがある。
又、前記導電性金属微粒子(P1)の融点(バルク状態の融点)が1100℃未満であるとき、有機粒子(P2)の融点又は昇華温度(常圧下)が150℃以上で、かつ沸点(常圧下)又は熱分解温度が300℃以下であり、導電性金属微粒子(P1)の融点(バルク状態の融点)が1100℃以上であるとき、有機粒子(P2)の融点又は昇華温度(常圧下)が200℃以上で、かつ沸点(常圧下)又は熱分解温度が300℃以下であることが好ましい。有機粒子(P2)の融点又は昇華温度、及び沸点又は分解温度が上記範囲であることにより、導電性ペーストを加熱処理する際に、平均一次粒子径が1〜150nmの導電性金属微粒子(P1)の焼結、有機粒子(P2)から空孔の形成、及び有機分散媒(D)から有機溶媒(S)の蒸発、又は該蒸発と有機バインダー(R)の熱分解が並行して進行する結果、有機粒子(P2)から形成される空孔により有機分散媒(D)から発生する気泡の抜けが容易になる。
(1-2) Organic particles (P2)
The organic particles (P2) are organic compound particles having a sublimation property or thermal decomposability with an average particle size of 0.5 to 10 μm and insoluble in the organic dispersion medium (D). When the average particle diameter of the organic particles (P2) is 0.5 μm or more, the organic dispersion medium (D) evaporates when the conductive paste is heated to sinter the conductive metal fine particles (P1), or A hole diameter that facilitates the removal of bubbles generated by evaporation and thermal decomposition is formed, and the effect of suppressing the generation of coarse voids and cracks is effectively exhibited by taking in the bubbles. On the other hand, when the average particle diameter of the organic particles (P2) exceeds 10 μm, surface contact between the organic particles (P2) occurs in the conductive paste, and as a result, conductive bumps made of a metal porous body, conductive die bond obtained. There is a possibility that the pore diameter of the conductive connecting member such as the portion becomes coarse and the mechanical strength is lowered.
When the conductive metal fine particles (P1) have a melting point (bulk state melting point) of less than 1100 ° C., the organic particles (P2) have a melting point or sublimation temperature (under normal pressure) of 150 ° C. or higher and a boiling point (normal) Pressure) or thermal decomposition temperature is 300 ° C. or lower, and when the melting point (bulk state melting point) of the conductive metal fine particles (P1) is 1100 ° C. or higher, the melting point or sublimation temperature of the organic particles (P2) (under normal pressure) Is 200 ° C. or higher and has a boiling point (under normal pressure) or a thermal decomposition temperature of 300 ° C. or lower. When the melting point or sublimation temperature and the boiling point or decomposition temperature of the organic particles (P2) are in the above ranges, the conductive metal fine particles (P1) having an average primary particle diameter of 1 to 150 nm when the conductive paste is heat-treated. As a result of the sintering, the formation of pores from the organic particles (P2), the evaporation of the organic solvent (S) from the organic dispersion medium (D), or the evaporation and the thermal decomposition of the organic binder (R) in parallel. In addition, air bubbles generated from the organic dispersion medium (D) are easily removed by the pores formed from the organic particles (P2).
有機粒子(P2)は上記物性を有するものであれば使用可能であるが有機分散媒(D)への不溶性、昇華性又は熱分解性、平均粒子径が0.5〜10μmの粒子の入手、及び取扱い性を考慮すると、カルボキシル基を1つ以上有する有機カルボン酸化合物であることが好ましい。該有機カルボン酸化合物の具体例としては、サリチル酸(昇華温度76℃)、フマル酸(昇華温度200℃)、コハク酸(分解温度235℃)、フタル酸(分解温度210℃)、及びアコニット酸(分解温度195℃)が例示でき、これらの1種又は2種以上の混合物を使用することができる。 The organic particles (P2) can be used as long as they have the above physical properties, but are insoluble in the organic dispersion medium (D), sublimable or thermally decomposable, obtaining particles having an average particle size of 0.5 to 10 μm, In consideration of handling properties, an organic carboxylic acid compound having one or more carboxyl groups is preferable. Specific examples of the organic carboxylic acid compound include salicylic acid (sublimation temperature 76 ° C.), fumaric acid (sublimation temperature 200 ° C.), succinic acid (decomposition temperature 235 ° C.), phthalic acid (decomposition temperature 210 ° C.), and aconitic acid ( A decomposition temperature of 195 ° C.), and one or a mixture of two or more thereof can be used.
(2)有機分散媒(D)
有機分散媒(D)は、有機溶媒(S)単独、又は有機溶媒(S)80〜100質量%と有機バインダー(R)20〜0質量%(質量%の合計は100質量%)とからなることが好ましい。有機分散媒(D)は、導電性ペースト中で主に固体粒子(P)を均一に分散させ、適度な粘度の調節、及び印刷(塗布)された導電性バンプ前駆体、導電性ダイボンド部前駆体等の導電接続部材前躯体が加熱処理される際に乾燥、焼成速度を調節する機能を発揮し、また導電性金属微粒子(P1)が通常の焼結温度より低い温度で焼結することを可能とする還元性機能を発揮することも期待することができる。
(2) Organic dispersion medium (D)
The organic dispersion medium (D) is composed of the organic solvent (S) alone or the organic solvent (S) 80 to 100% by mass and the organic binder (R) 20 to 0% by mass (the total of the mass% is 100% by mass). It is preferable. The organic dispersion medium (D) is a conductive bump precursor, conductive die bond part precursor, in which mainly solid particles (P) are uniformly dispersed in a conductive paste, moderate viscosity is adjusted, and printing (coating) is performed. When the precursor of the conductive connecting member such as the body is subjected to heat treatment, the function of adjusting the drying and firing rate is exhibited, and the conductive metal fine particles (P1) are sintered at a temperature lower than the normal sintering temperature. It can also be expected to exhibit a reducing function that can be achieved.
(2−1)有機溶媒(S)
前記有機溶媒(S)は、(i)常圧における沸点が100℃以上で、かつ分子中に1もしくは2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる還元性を有する有機溶媒(S1)、又は(ii)少なくとも、常圧における沸点が100℃以上で、かつ分子中に1もしくは2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる還元性を有する有機溶媒(S1)5〜95体積%、及びアミド基を有する有機溶媒(SA)95〜5体積%からなる有機溶媒(S2)、であることが好ましい。
有機分散媒(D)中に還元性を有する有機溶媒(S1)が含有されていると、導電性ペーストを加熱処理する際に、先ず金属微粒子表面の還元が促進され、その後に該微粒子の表面間で焼結に基づく結合は進行すると考えられるので、有機溶媒(S1)が連続的に蒸発して、液体および蒸気が存在する雰囲気で還元・焼成すると、焼結が促進されて良好な導電性を有する導電性バンプ、導電性ダイボンド部等の導電接続部材が形成される。従って、有機分散媒(D)中に還元性を有する有機溶媒(S1)が存在すると、加熱処理の際に非酸化性雰囲気が形成されて、金属微粒子(P)表面における還元、結合が促進される。尚、前記有機溶媒(S1)については、ヒドロキシル基を2つ以上有しており、該ヒドロキシル基が結合している炭素基部分が(−CH(OH)−)構造の多価アルコールが後述する還元機能を発揮し易い点からより好ましい。
かかる観点から、有機溶媒(S)は有機溶媒(S1)60〜95体積%、及びアミド基を有する有機溶媒(SA)40〜5体積%からなる有機溶媒(S2)がより好ましい。
(2-1) Organic solvent (S)
The organic solvent (S) is (i) an organic solvent having a reducibility comprising an alcohol and / or a polyhydric alcohol having a boiling point of 100 ° C. or higher at normal pressure and having 1 or 2 or more hydroxyl groups in the molecule. S1), or (ii) an organic solvent (S1) having a reducing property comprising at least an alcohol and / or a polyhydric alcohol having a boiling point of 100 ° C. or higher at normal pressure and having 1 or 2 or more hydroxyl groups in the molecule. The organic solvent (S2) is preferably composed of 5 to 95% by volume and 95 to 5% by volume of an organic solvent (SA) having an amide group.
When the organic dispersion medium (D) contains the reducing organic solvent (S1), when the conductive paste is heat-treated, the reduction of the metal fine particle surface is first promoted, and then the surface of the fine particle is promoted. Since the bonding based on sintering is considered to proceed, if the organic solvent (S1) continuously evaporates and is reduced and fired in an atmosphere containing liquid and vapor, the sintering is promoted and good conductivity is obtained. Conductive connection members such as conductive bumps and conductive die bond portions are formed. Therefore, when the organic solvent (S1) having reducibility exists in the organic dispersion medium (D), a non-oxidizing atmosphere is formed during the heat treatment, and reduction and bonding on the surface of the metal fine particles (P) are promoted. The In addition, about the said organic solvent (S1), it has two or more hydroxyl groups, The polyhydric alcohol whose carbon group part which this hydroxyl group has couple | bonded has a (-CH (OH)-) structure mentions later. It is more preferable from the viewpoint of easily exerting the reducing function.
From such a viewpoint, the organic solvent (S) is more preferably an organic solvent (S2) composed of 60 to 95% by volume of the organic solvent (S1) and 40 to 5% by volume of the organic solvent (SA) having an amide group.
有機溶媒(S2)中にアミド系有機溶媒(SA)を上記割合含有させると、有機溶媒(S1)との混ざりがよく、また有機溶媒(S1)として沸点の高い有機溶媒を使用する際に溶媒の蒸発を促進して粒子間の焼結を進行させるため、焼成後の焼結粒子と導電性基板との密着性と接合強度の向上が期待できる。また、前記有機分散媒(D)が水を含有して、該水の含有量が有機溶媒(S)と水(W)との割合(S/W)で75〜99.9質量%/25〜0.1質量%(質量%の合計は100質量%)とすることもできる。後述する有機溶媒(S)は水との親和性が良いものが多いので、水を吸収し易く、そのため予め水を添加しておくことで導電性ペーストの経時的な粘性変化が生ずるのを抑制することが可能になる。 When the above-mentioned proportion of the amide organic solvent (SA) is contained in the organic solvent (S2), the organic solvent (S1) is well mixed with the organic solvent (S1). Since the evaporation between the particles is promoted to promote the sintering between the particles, the adhesion between the sintered particles after firing and the conductive substrate and the improvement of the bonding strength can be expected. The organic dispersion medium (D) contains water, and the water content is 75 to 99.9% by mass / 25 in terms of the ratio (S / W) of the organic solvent (S) to water (W). -0.1 mass% (the total of mass% is 100 mass%). Many organic solvents (S) described later have good affinity with water, so they are easy to absorb water, and therefore pre-added water suppresses changes in the viscosity of the conductive paste over time. It becomes possible to do.
前記多価アルコールの具体例としては、エチレングリコ−ル(沸点197℃)、ジエチレングリコ−ル(沸点244℃)、1,2−プロパンジオ−ル(沸点188℃)、1,3−プロパンジオ−ル(沸点212℃)、1,2−ブタンジオ−ル(沸点192℃)、1,3−ブタンジオ−ル(沸点208℃)、1,4−ブタンジオ−ル(沸点230℃)、2−ブテン−1,4−ジオール(沸点235℃)、2,3−ブタンジオ−ル、ペンタンジオ−ル(沸点239℃)、ヘキサンジオ−ル(沸点250℃)、オクタンジオ−ル(沸点244℃)、グリセロール(沸点290℃)、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール(沸点161℃)、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール等が例示できる。 Specific examples of the polyhydric alcohol include ethylene glycol (boiling point 197 ° C.), diethylene glycol (boiling point 244 ° C.), 1,2-propanediol (boiling point 188 ° C.), 1,3-propanediol. (Boiling point 212 ° C), 1,2-butanediol (boiling point 192 ° C), 1,3-butanediol (boiling point 208 ° C), 1,4-butanediol (boiling point 230 ° C), 2-butene- 1,4-diol (boiling point 235 ° C), 2,3-butanediol, pentanediol (boiling point 239 ° C), hexanediol (boiling point 250 ° C), octanediol (boiling point 244 ° C), glycerol (boiling point 290) ° C), 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol (boiling point 161 ° C), 1,2,6-hexanetriol, , 2,3-hexanetriol, 1,2,4-butanetriol and the like.
また、有機溶媒(S1)として、トレイトール、エリトリト−ル(沸点331℃)、ペンタエリスリト−ル、ペンチト−ル、キシリトール(沸点216℃)、リビトール、アラビトール、ヘキシト−ル、マンニトール、ソルビトール、ズルシトール、グリセリンアルデヒド、ジオキシアセトン、トレオース、エリトルロース、エリトロース、アラビノース、リボース、リブロース、キシロース、キシルロース、リキソース、グルコ−ス、フルクト−ス、マンノース、イドース、ソルボース、グロース、タロース、タガトース、ガラクトース、アロース、アルトロース、ラクト−ス、キシロ−ス、アラビノ−ス、イソマルト−ス、グルコヘプト−ス、ヘプト−ス、マルトトリオース、ラクツロース、及びトレハロース、等の糖類も使用することが可能であるが、これらの中で融点が高いものについては他の有機溶媒(S1)と混合して使用することができる。尚、上記多価アルコールの例示において、カッコ内は常圧における沸点を示す。
有機溶媒(SA)の具体例として、N−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリジノン、ε−カプロラクタム、及びアセトアミド等が挙げられる。
Further, as the organic solvent (S1), threitol, erythritol (boiling point 331 ° C.), pentaerythritol, pentitol, xylitol (boiling point 216 ° C.), ribitol, arabitol, hexitol, mannitol, sorbitol, Dulcitol, glyceraldehyde, dioxyacetone, threose, erythrulose, erythrose, arabinose, ribose, ribulose, xylose, xylulose, lyxose, glucose, fructose, mannose, idose, sorbose, growth, talose, tagatose, galactose, allose Sugars such as altrose, lactose, xylos, arabinose, isomaltose, glucoheptose, heptose, maltotriose, lactulose, and trehalose It can be, but for having a high melting point among these may be used in admixture with other organic solvents (S1). In the examples of the polyhydric alcohol, the parentheses indicate the boiling point at normal pressure.
Specific examples of the organic solvent (SA) include N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, N -Dimethylformamide, 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidinone, ε-caprolactam, acetamide and the like.
(2−2)有機バインダー(R)
有機バインダー(R)は、導電性ペースト中で固体粒子(P)の凝集の抑制、導電性ペーストの粘度の調節、及びバンプ前躯体、導電性ダイボンド部前躯体等の導電接続部材前躯体の形状を維持する機能を発揮する。前記有機バインダー(R)は、セルロース樹脂系バインダー、アセテート樹脂系バインダー、アクリル樹脂系バインダー、ウレタン樹脂系バインダー、ポリビニルピロリドン樹脂系バインダー、ポリアミド樹脂系バインダー、ブチラール樹脂系バインダー、及びテルペン系バインダーの中から選択される1種又は2種以上が好ましい。
有機バインダー(R)の具体例として、前記セルロース樹脂系バインダーがアセチルセルロース、メチルセルロース、エチルセルロース、ブチルセルロース、及びニトロセルロース;アセテート樹脂系バインダーがメチルグリコールアセテート、エチルグリコールアセテート、ブチルグリコールアセテート、エチルジグリコールアセテート、及びブチルジグリコールアセテート;アクリル樹脂系バインダーがメチルメタクリレート、エチルメタクリレート、及びブチルメタクリレート;ウレタン樹脂系バインダーが2,4−トリレンジイソシアネート、及びp−フェニレンジイソシアネート;ポリビニルピロリドン樹脂系バインダーがポリビニルピロリドン、及びN−ビニルピロリドン;ポリアミド樹脂系バインダーがポリアミド6、ポリアミド66、及びポリアミド11;ブチラール樹脂系バインダーがポリビニルブチラール;テルペン系バインダーがピネン、シネオール、リモネン、及びテルピネオール、の中から選択される1種又は2種以上であることが好ましい。
(2-2) Organic binder (R)
The organic binder (R) suppresses the aggregation of solid particles (P) in the conductive paste, adjusts the viscosity of the conductive paste, and forms the conductive connecting member precursors such as the bump precursor and the conductive die bond precursor. Demonstrate the function to maintain. The organic binder (R) is a cellulose resin binder, acetate resin binder, acrylic resin binder, urethane resin binder, polyvinylpyrrolidone resin binder, polyamide resin binder, butyral resin binder, and terpene binder. 1 type or 2 types or more selected from are preferable.
As specific examples of the organic binder (R), the cellulose resin binder is acetyl cellulose, methyl cellulose, ethyl cellulose, butyl cellulose, and nitrocellulose; the acetate resin binder is methyl glycol acetate, ethyl glycol acetate, butyl glycol acetate, ethyl diglycol. Acetate and butyl diglycol acetate; acrylic resin binder is methyl methacrylate, ethyl methacrylate, and butyl methacrylate; urethane resin binder is 2,4-tolylene diisocyanate and p-phenylene diisocyanate; polyvinyl pyrrolidone resin binder is polyvinyl pyrrolidone N-vinylpyrrolidone; polyamide resin binder is polyamide 6, poly De 66, and polyamide 11; butyral resin binder is polyvinyl butyral; terpene-based binder pinene, cineol, limonene, and terpineol, is preferably one or more members selected from among.
(3)導電性ペースト
導電性ペーストは、導電性金属微粒子(P1)と有機粒子(P2)からなる固体粒子(P)と、有機溶媒(S)単独、又は有機溶媒(S)と有機バインダー(R)からなる有機分散媒(D)とを含み、固体粒子(P)が有機分散媒(D)中に分散されたペースト状のものである。これを加熱処理すると、ある温度に達すると有機溶媒(S)の蒸発、又は有機溶媒(S)の蒸発と有機バインダー(R)の熱分解が進行して、導電性金属微粒子(P1)の表面が現れ、互いに結合(焼結)する原理を利用して接合材として機能するものである。該導電性ペースト中には固体粒子(P)と有機分散媒(D)とが50〜85質量%/50〜15質量%(質量%の合計は100質量%)の割合(P/D)となるように配合されている。
(3) Conductive paste The conductive paste comprises solid particles (P) composed of conductive metal fine particles (P1) and organic particles (P2), an organic solvent (S) alone, or an organic solvent (S) and an organic binder ( R) and an organic dispersion medium (D), and the solid particles (P) are in a paste form dispersed in the organic dispersion medium (D). When this is heated, when the temperature reaches a certain temperature, the evaporation of the organic solvent (S), or the evaporation of the organic solvent (S) and the thermal decomposition of the organic binder (R) proceed, and the surface of the conductive metal fine particles (P1). Appears and functions as a bonding material by utilizing the principle of bonding (sintering) to each other. In the conductive paste, the solid particles (P) and the organic dispersion medium (D) have a ratio (P / D) of 50 to 85% by mass / 50 to 15% by mass (the total of mass% is 100% by mass). It is blended to become.
固体粒子(P)が前記85質量%を超えるとペーストが高粘度となり、加熱処理(焼結)において導電性金属微粒子(P1)表面間の結合不足が生じて導電性が低下するおそれがある。一方、固体粒子(P)が前記50質量%未満では、ペーストの粘度が低下して半導体素子の電極端子又は回路基板の電極端子の接合面に塗布された導電性ペーストの形状維持が困難となるおそれがあると共に、加熱処理の際に多孔質体が収縮するという不具合が生ずるおそれがある。かかる観点から、前記固体粒子(P)と有機分散媒(D)との割合(P/D)は55〜80質量%/45〜20質量%が好ましい。尚、本発明の効果を損なわない範囲において、本発明の導電性ペーストに他の固体粒子、有機分散剤等を配合することができる。 If the solid particles (P) exceed 85% by mass, the paste has a high viscosity, and the heat treatment (sintering) may cause insufficient bonding between the surfaces of the conductive metal fine particles (P1), resulting in a decrease in conductivity. On the other hand, if the solid particles (P) are less than 50% by mass, the viscosity of the paste is lowered and it becomes difficult to maintain the shape of the conductive paste applied to the bonding surface of the electrode terminal of the semiconductor element or the electrode terminal of the circuit board. In addition to the fear, there is a risk that the porous body contracts during the heat treatment. From this viewpoint, the ratio (P / D) of the solid particles (P) to the organic dispersion medium (D) is preferably 55 to 80% by mass / 45 to 20% by mass. In addition, in the range which does not impair the effect of this invention, another solid particle, an organic dispersing agent, etc. can be mix | blended with the electrically conductive paste of this invention.
又、該有機分散媒(D)は有機溶媒(S)単独、又は有機溶媒(S)80〜100質量%と有機バインダー(R)20〜0質量%(質量%の合計は100質量%)とからなることが好ましい。前記有機分散媒(D)中の有機バインダー(R)の配合割合が20質量%を超えると、導電接続部材前躯体を加熱処理する際に有機バインダー(R)が熱分解して飛散する速度が遅くなり、また導電接続部材中に残留カーボン量が増えると焼結が阻害されて、クラック、剥離等の問題が生ずる可能性があり好ましくない。
有機溶媒(S)の選択により、該溶剤のみで固体粒子(P)を均一に分散させ、導電性ペーストの粘度の調節、及び導電性バンプ前駆体、導電性ダイボンド部前駆体等の導電接続部材前躯体の形状を維持できる機能を発揮できる場合には、有機分散媒(D)として有機溶媒(S)のみからなる成分を使用できる。導電性ペーストには、前記した成分に必要に応じて消泡剤、分散剤、可塑剤、界面活性剤、増粘剤など公知の添加物を加えることができる。
The organic dispersion medium (D) is an organic solvent (S) alone, or an organic solvent (S) 80 to 100% by mass and an organic binder (R) 20 to 0% by mass (the total of mass% is 100% by mass). Preferably it consists of. If the blending ratio of the organic binder (R) in the organic dispersion medium (D) exceeds 20% by mass, the rate at which the organic binder (R) is thermally decomposed and scattered when the conductive connecting member precursor is heat-treated. If the amount of residual carbon in the conductive connecting member is increased, sintering is hindered, which may cause problems such as cracking and peeling, which is not preferable.
By selecting the organic solvent (S), the solid particles (P) are uniformly dispersed only with the solvent, the viscosity of the conductive paste is adjusted, and the conductive connecting members such as the conductive bump precursor and the conductive die bond portion precursor When the function of maintaining the shape of the precursor can be exhibited, a component consisting only of the organic solvent (S) can be used as the organic dispersion medium (D). In the conductive paste, known additives such as an antifoaming agent, a dispersing agent, a plasticizer, a surfactant, and a thickener can be added to the above-described components as necessary.
〔2〕第2の態様の「導電性ペーストの製造方法」
第2の態様の「導電性ペーストの製造方法」は、第1の態様で記載した導電性金属微粒子(P1)と有機粒子(P2)とを混合後、有機分散媒(D)を添加して練り込むことを特徴とする。
導電性ペーストの製造方法に使用する固体粒子(P)と有機分散媒(D)の成分と、その配合割合は第1の態様に記載した通りであり、導電性ペーストには、前記の通り必要に応じて消泡剤、分散剤、可塑剤、界面活性剤、増粘剤など公知の添加物を加えることができる。有機粒子(P2)を平均粒子径0.5〜10μmの粒子に調製するには、遊星ボールミル装置を用いて粉砕し、粒子化することが好ましい。
又、平均一次粒子径1〜150nmの導電性金属微粒子(P1)は第1の態様に記載した通りであるが、前述の通り、湿式化学還元法として、金属イオンが存在する電解水溶液から、電解還元、無電解還元等の還元反応による製造方法を採用することができる。
導電性ペーストを製造するに際し、前記導電性金属微粒子(P1)と有機粒子(P2)とを混合後、有機分散媒(D)を添加してせん断応力を付加することにより、混練し、導電性ペーストを調製することができる。該せん断応力を付加する方法としては、例えば、ニーダー、三本ロール等の混練装置、密閉系で混練可能なライカイ器等を用いることができる。混練の際、銅粉の酸化が過度に進行しないようにすることが好ましい。
第2の態様の「導電性ペーストの製造方法」で得られた導電性ペーストを加熱処理(焼結)すると、導電性金属微粒子(P1)の表面が還元され始め、更に有機溶媒(S)の蒸発、又は有機溶媒(S)の蒸発と有機バインダー(R)の熱分解が進行して、導電性金属微粒子(P1)の表面同士が接触し、導電性金属微粒子(P1)の表面が互いに結合(焼結)した、焼結体が得られる。
[2] “Method for producing conductive paste” of the second aspect
The “conductive paste production method” of the second aspect is the method of adding the organic dispersion medium (D) after mixing the conductive metal fine particles (P1) and the organic particles (P2) described in the first aspect. It is characterized by kneading.
The components of the solid particles (P) and the organic dispersion medium (D) used in the method for producing the conductive paste and the blending ratio thereof are as described in the first embodiment, and the conductive paste is necessary as described above. Depending on the case, known additives such as antifoaming agents, dispersants, plasticizers, surfactants, thickeners and the like can be added. In order to prepare the organic particles (P2) into particles having an average particle diameter of 0.5 to 10 μm, it is preferable to pulverize them into particles by using a planetary ball mill apparatus.
The conductive metal fine particles (P1) having an average primary particle diameter of 1 to 150 nm are as described in the first embodiment. As described above, as a wet chemical reduction method, electrolysis is performed from an electrolytic aqueous solution in which metal ions are present. A production method by a reduction reaction such as reduction or electroless reduction can be employed.
When producing the conductive paste, the conductive metal fine particles (P1) and the organic particles (P2) are mixed, and then the organic dispersion medium (D) is added and shear stress is added to knead the conductive paste. A paste can be prepared. As a method for applying the shear stress, for example, a kneader such as a kneader or a three-roller, a reiki apparatus that can be kneaded in a closed system, or the like can be used. It is preferable that the oxidation of the copper powder does not proceed excessively during the kneading.
When the conductive paste obtained by the “method for producing conductive paste” of the second aspect is subjected to heat treatment (sintering), the surface of the conductive metal fine particles (P1) starts to be reduced, and further the organic solvent (S) Evaporation or evaporation of the organic solvent (S) and thermal decomposition of the organic binder (R) proceed to bring the surfaces of the conductive metal fine particles (P1) into contact with each other and the surfaces of the conductive metal fine particles (P1) are bonded to each other. A (sintered) sintered body is obtained.
〔3〕第3の態様の「導電接続部材」
(1)導電接続部材の作製
第3の態様の導電接続部材は、前記第1の態様で記載した導電性ペーストを、電子部品における半導体素子もしくは回路基板の電極端子又は導電性基板の接合面に載せた後、該導電性ペースト上に更に接続する他方の電極端子又は導電性基板の接合面を配置して加熱処理により焼結して形成された金属多孔質体からなることを特徴とする。
導電接続部材としては、半導体素子間を接合するための導電性バンプ、半導体素子と導電性基板間を接合するための導電性ダイボンド部等が挙げられるがこれらに限定されない。
導電性バンプは、導電性ペーストを電子部品における半導体素子もしくは回路基板の電極端子の接合面に載せ(塗布、印刷等も含まれる)、該導電性ペースト上に更に接続する他方の電極端子の接合面を配置した後、加熱処理、又は加圧下に加熱処理により焼結して形成される。前記接続する他方の電極端子にはワイヤボンディングを行う場合の金ワイヤ等のワイヤも含まれる。尚、前記導電性ペースト上に更に接続する他方の電極端子の接合面を配置する際に位置合わせを行うことが望ましい。
導電性ダイボンド部は、通常、導電性ペーストを電子部品における回路基板の接合面に載せ(塗布、印刷等も含まれる)、該導電性ペースト上に更に接続する他方の電極端子の接合面を配置した後、加熱処理、又は加圧下に加熱処理により焼結して形成される。
[3] "Conductive connection member" of the third aspect
(1) Production of Conductive Connection Member The conductive connection member according to the third aspect is obtained by applying the conductive paste described in the first aspect to a semiconductor element in an electronic component or an electrode terminal of a circuit board or a bonding surface of the conductive board. It is characterized by comprising a porous metal body formed by placing the other electrode terminal or the bonding surface of the conductive substrate, which is further connected, on the conductive paste and then sintering it by heat treatment.
Examples of the conductive connection member include, but are not limited to, a conductive bump for bonding between semiconductor elements and a conductive die bond part for bonding between a semiconductor element and a conductive substrate.
The conductive bump is formed by placing a conductive paste on a bonding surface of an electrode terminal of a semiconductor element or circuit board in an electronic component (including coating and printing), and bonding the other electrode terminal further connected on the conductive paste. After the surface is arranged, it is formed by heat treatment or sintering by heat treatment under pressure. The other electrode terminal to be connected includes a wire such as a gold wire when wire bonding is performed. In addition, it is desirable to perform alignment when the bonding surface of the other electrode terminal to be further connected is disposed on the conductive paste.
The conductive die bond part usually places the conductive paste on the bonding surface of the circuit board in the electronic component (including coating and printing) and arranges the bonding surface of the other electrode terminal to be further connected on the conductive paste. Then, it is formed by sintering by heat treatment or heat treatment under pressure.
前記加圧下の加熱処理は、両電極端子間、又は電極端子と導電性基板間の加圧により導電接続部材と、電極端子接合面又は導電性基板との接合を確実にするか、または導電接続部材と電極端子との接合面、又は導電接続部材と導電性基板との接合面との接合面積が大きくなり、接合信頼性を一層向上することができる。
また、導電接続部材前躯体と半導体素子間、又は導電接続部材前躯体と基板間を加圧型ヒートツ−ル等を用いて加圧下で焼成すると、接合部での焼結性が向上してより良好な接合部が得られる。
前記両電極端子間、又は電極端子と基板間の加圧は、0.5〜15MPaが好ましい。該加圧が0.5MPa未満の加圧では、接合面の大きなボイド形成の抑制効果が十分に発揮されないおそれがあり、一方、15MPaを超えると導電性金属微粒子(P1)間の空隙部が圧縮されて空隙率が減少するおそれがある。また、前記電極端子の接合面の面積は.25〜400cm2であることが好ましい。
The heat treatment under pressure is to ensure that the conductive connection member is bonded to the electrode terminal bonding surface or the conductive substrate by applying pressure between the electrode terminals or between the electrode terminal and the conductive substrate, or conductive connection. The bonding area between the bonding surface between the member and the electrode terminal or the bonding surface between the conductive connecting member and the conductive substrate is increased, and the bonding reliability can be further improved.
Also, firing between the conductive connection member precursor and the semiconductor element or between the conductive connection member precursor and the substrate under pressure using a pressure type heat tool or the like improves the sinterability at the joint and is more favorable. Can be obtained.
The pressure between the electrode terminals or between the electrode terminal and the substrate is preferably 0.5 to 15 MPa. If the pressure is less than 0.5 MPa, the effect of suppressing the formation of large voids on the joint surface may not be sufficiently exhibited. On the other hand, if the pressure exceeds 15 MPa, the voids between the conductive metal fine particles (P1) are compressed. This may reduce the porosity. The area of the joint surface of the electrode terminal is. It is preferable that it is 25-400 cm < 2 >.
該導電性ペーストは、固体粒子(P)と有機分散媒(D)を含み、該導電性ペースト中には固体粒子(P)と有機分散媒(D)との割合(P/D)が50〜85質量%/50〜15質量%(質量%の合計は100質量%)となるように配合されており、固体粒子(P)中には、平均一次粒子径1〜150nmの導電性金属微粒子(P1)80〜95体積%、及び平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒(D)に不溶である有機粒子(P2)20〜15体積%(体積%の合計は100体積%)がそれぞれ含有されている。尚、前記有機分散媒(D)として、有機溶媒(・BR>R)単独、又は有機溶媒(S)80〜100質量%と有機バインダー(R)20〜0質量%(質量%の合計は100質量%)とからなる有機分散媒を使用することができる。 The conductive paste includes solid particles (P) and an organic dispersion medium (D), and the ratio (P / D) of the solid particles (P) to the organic dispersion medium (D) is 50 in the conductive paste. -85 mass% / 50-15 mass% (the total of mass% is 100 mass%) It mix | blends, and in a solid particle (P), the electroconductive metal fine particle with an average primary particle diameter of 1-150 nm (P1) 80 to 95% by volume and 20 to 15% by volume of organic particles (P2) having an average particle size of 0.5 to 10 μm having sublimation property or thermal decomposability and insoluble in the organic dispersion medium (D) (Total volume% is 100 volume%). As the organic dispersion medium (D), an organic solvent (.BR> R) alone or an organic solvent (S) 80 to 100% by mass and an organic binder (R) 20 to 0% by mass (the total of the mass% is 100). An organic dispersion medium consisting of (mass%) can be used.
導電性ペーストを半導体素子の電極端子の接合面上に載せて導電性バンプ前駆体、導電性ダイボンド部前駆体等の導電接続部材前躯体を形成する手段としては、例えば公知のスクリーン印刷、後述するレジスト等により開口部を形成して該開口部に導電性ペーストを塗布する方法等が挙げられる。スクリーン印刷を使用する場合には、半導体素子の電極端子の接合面上に版膜(レジスト)が設けられたスクリーン版を配置して、その上に導電性ペーストを載せてスキージで該ペーストを摺動すると、導電性ペーストはレジストのない部分のスクリーンを通過して、電極端子の接合面上に転移して、導電性バンプ前駆体、導電性ダイボンド部前駆体等の導電接続部材前躯体が形成される。導電性ペーストを充填するための開口部形成方法としては、露光・現像工程を経て感光性樹脂層にパターンを形成するフォトリソグラフィー方法、レーザー光、電子線、イオンビーム等の高エネルギー線を素子上に設けた絶縁樹脂層に照射して、加熱による溶融もしくは樹脂の分子結合を切断するアブレーションにより該樹脂層に開口部を形成する方法がある。これらの中で、実用性の点からフォトリソグラフィー法、又はレーザー光を用いたアブレーションによる開口部形成方法が好ましい。加熱処理後に、半導体素子上の電極端子と、回路基板の電極端子とが電気的接続を確保できるように接触させるための位置合わせは、例えば、半導体素子上の電極端子と、テープリール等で搬送されてきた基板の接続電極端子部とを光学装置等を用いて行うことができる。 As a means for forming a conductive connection member precursor such as a conductive bump precursor or a conductive die bond portion precursor by placing a conductive paste on the bonding surface of the electrode terminal of the semiconductor element, for example, known screen printing, which will be described later Examples thereof include a method of forming an opening with a resist or the like and applying a conductive paste to the opening. When screen printing is used, a screen plate provided with a plate film (resist) is disposed on the bonding surface of the electrode terminals of the semiconductor element, a conductive paste is placed on the screen plate, and the paste is slid with a squeegee. When moved, the conductive paste passes through the screen where there is no resist and is transferred onto the bonding surface of the electrode terminal, thereby forming a conductive connection member precursor such as a conductive bump precursor or conductive die bond portion precursor. Is done. As an opening forming method for filling the conductive paste, a photolithographic method for forming a pattern on the photosensitive resin layer through an exposure / development process, a high energy beam such as a laser beam, an electron beam, or an ion beam is applied on the element. There is a method of forming an opening in the resin layer by irradiating the insulating resin layer provided on the resin layer and ablation that melts by heating or breaks the molecular bond of the resin. Among these, from the viewpoint of practicality, a photolithography method or an opening formation method by ablation using laser light is preferable. After the heat treatment, alignment for bringing the electrode terminals on the semiconductor element and the electrode terminals on the circuit board into contact with each other so as to ensure electrical connection is carried by, for example, the electrode terminals on the semiconductor element and a tape reel. The connection electrode terminal portion of the substrate that has been used can be performed using an optical device or the like.
半導体素子の電極端子面等の上に形成され、対となる端子電極と接している状態の導電性バンプ前駆体、導電性ダイボンド部前駆体等の導電接続部材前躯体は、150〜400℃程度の温度で加熱処理(焼結)して導電性バンプ、導電性ダイボンド部等の導電接続部材を形成し、半導体素子の電極端子等と相対する端子電極等を該導電性バンプ、導電性ダイボンド部等の導電接続部材を介して電気的、機械的に接合する。前記導電性ペーストを焼成する際の昇温速度が10℃/分以下であることが好ましい。該昇温速度が10℃/分を超えると粗大ボイドやクラックが発生するおそれがある。導電性金属微粒子(P1)として平均一次粒子径が1〜150nmの粒子を使用するので、加熱により有機分散媒(D)が除去されれば、その表面のエネルギーによってバルク状態の金属の融点より低温で凝集して、金属微粒子表面間での結合(焼結)が進み、金属多孔質体からなる導電性バンプ、導電性ダイボンド部等の導電接続部材が形成される。 Conductive connection member precursors such as conductive bump precursors and conductive die bond portion precursors formed on electrode terminal surfaces of semiconductor elements and in contact with the paired terminal electrodes are about 150 to 400 ° C. A conductive connection member such as a conductive bump and a conductive die bond part is formed by heat treatment (sintering) at a temperature of, and a terminal electrode and the like opposed to the electrode terminal of the semiconductor element are connected to the conductive bump and the conductive die bond part. It joins electrically and mechanically through conductive connection members such as. It is preferable that the heating rate when firing the conductive paste is 10 ° C./min or less. If the heating rate exceeds 10 ° C./min, coarse voids and cracks may occur. Since particles having an average primary particle diameter of 1 to 150 nm are used as the conductive metal fine particles (P1), if the organic dispersion medium (D) is removed by heating, the surface energy is lower than the melting point of the metal in the bulk state. As a result, the bonding (sintering) between the surfaces of the metal fine particles proceeds, and conductive connection members such as conductive bumps and conductive die bond portions made of a metal porous body are formed.
(2)導電接続部材
上記加熱処理により、導電性金属微粒子(P1)同士が面接触して、結合(焼結)して形成された金属多孔質体からなる導電性バンプ、導電性ダイボンド部等の導電接続部材が形成されることで、適度な弾力性と柔らかさを有し、かつ、良好な導電性が得られる。このようにして得られる金属多孔質体からなる導電接続部材は、空隙率が5〜35%であり、かつ粗大ボイドやクラックが形成されない均質な金属多孔質体である。
(2) Conductive connection member Conductive bumps, conductive die bond portions, etc. made of a metal porous body formed by bringing the conductive metal fine particles (P1) into surface contact and bonding (sintering) by the above heat treatment By forming the conductive connection member, it has appropriate elasticity and softness, and good conductivity can be obtained. The conductive connecting member made of the metal porous body thus obtained is a homogeneous metal porous body having a porosity of 5 to 35% and having no coarse voids or cracks formed therein.
本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
本実施例、比較例における評価方法を以下の(i)〜(iv)に記載する。
(i)導電接続部材の体積空隙率
導電接続部材の空隙率は、走査型電子顕微鏡(SEM)を用いて、観察倍率1000〜10000倍の電子顕微鏡写真を撮り、その断面像を解析することにより求めた。
体積空隙率が5〜35%は○、35%超は××、5%未満は×とした。
(ii)粗大ボイドの有無
導電接続部材に10μm以上の粗大ボイドが観察されない場合は○、観察された場合は×とした。
(iii)クラックの有無
導電接続部材にクラックが観察されない場合は○、観察された場合は×とした。
(iv)接合強度
ダイシェア試験機で、Siチップ同士を剥離、又は基板からSiチップを剥離させる際にかかった力を導電性バンプの接合面積で除して、単位面積当りの接合強度[N/mm2]を求めた。
35N/mm2以上は◎、35N/mm2未満25N/mm2以上は○、25N/mm2未満は×とした。
EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
The evaluation methods in the examples and comparative examples are described in the following (i) to (iv).
(I) Volume porosity of the conductive connecting member The porosity of the conductive connecting member is obtained by taking an electron micrograph at an observation magnification of 1000 to 10,000 using a scanning electron microscope (SEM) and analyzing the cross-sectional image. Asked.
When the volume porosity is 5 to 35%, the mark is ◯.
(Ii) Presence / absence of coarse voids When the coarse voids of 10 μm or more were not observed on the conductive connecting member, the mark was “◯”.
(Iii) Presence / absence of cracks When the crack was not observed in the conductive connecting member, it was evaluated as ◯, and when it was observed as x.
(Iv) Bond strength Bond strength per unit area by dividing the force applied when peeling Si chips from each other or peeling the Si chip from the substrate by the bond area of the conductive bump in a die shear tester [N / mm 2 ] was determined.
35N / mm 2 or more ◎, 35N / mm 2 less than 25N / mm 2 or more ○, less than 25N / mm 2 was ×.
[実施例1]
遊星ボールミル装置で平均粒子径3μmに粉砕、調製したフタル酸(関東化学(株)製、オルソフタル酸、C6H4(COOH)2、分解温度:210℃、以下、フタル酸と記載する)粉末と、還元法により調製した平均一次粒子径50nmの球状銀(バルクの融点:2162℃)微粒子とを体積割合10:90となるように計15g混合後、ペンタンジオール4.5gとエチルセルロース0.5gを添加して、全固体の割合が75質量%の導電性ペーストを調製した。該ペーストをスクリーン印刷で導電性基板上に60μmφ×高さ100μmのバンプ前躯体を4個(1辺が4mmの正方形の頂点に対応する位置)形成した。次に、金スパッタされた4.5mm角のSiチップ金スパッタ面側の角がバンプ前駆体と接するように載せた。そして、導電性ペーストが塗布された導電性基板を大気中で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度3℃/分で240℃まで加熱し、240℃で5分間加熱後、室温まで冷却してバンプ接合体を作製した。該バンプの空隙率を測定した。また該バンプ中の粗大ボイドの有無、クラック発生の有無を観察し、バンプの接合強度測定を測定した。結果をまとめて表1に示す。
[Example 1]
Phthalic acid powder (manufactured by Kanto Chemical Co., Inc., orthophthalic acid, C 6 H 4 (COOH) 2 , decomposition temperature: 210 ° C., hereinafter referred to as phthalic acid) powder prepared by pulverization to an average particle size of 3 μm with a planetary ball mill device 15 g of spherical silver (bulk melting point: 2162 ° C.) fine particles having an average primary particle diameter of 50 nm prepared by the reduction method are mixed in a total volume of 15 g, and then 4.5 g of pentanediol and 0.5 g of ethyl cellulose are mixed. Was added to prepare a conductive paste having a total solid ratio of 75 mass%. Four paste precursors (60 μmφ × 100 μm high) were formed on the conductive substrate by screen printing (positions corresponding to the vertices of a square having a side of 4 mm). Next, the 4.5 mm square Si chip gold sputtered surface of the gold sputtered surface was placed so that the corner on the gold sputtering surface was in contact with the bump precursor. Then, the conductive substrate coated with the conductive paste is heated from room temperature to 210 ° C. at a temperature rising rate of 3 ° C./min in the air, heated at 210 ° C. for 20 minutes, and then heated at a rate of 3 ° C./min. Heated to 240 ° C., heated at 240 ° C. for 5 minutes, and then cooled to room temperature to prepare a bump bonded body. The porosity of the bump was measured. In addition, the presence or absence of coarse voids in the bumps and the presence or absence of cracks were observed, and the bonding strength measurement of the bumps was measured. The results are summarized in Table 1.
[実施例2]
遊星ボールミル装置で平均粒子径5μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径140nmの球状銅(バルクの融点:1084℃)微粒子とを体積割合15:85となるように計18g混合後、グリセリン12gを添加して、全固体の割合が60質量%の導電性ペーストを調製した。
該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。
次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。
該バンプ断面の走査型電子顕微鏡(SEM)を図1に示す。図1において、バンプ中に粗大ボイドやクラックは観察されず、均質なバンプであることが確認される。
該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Example 2]
Phthalic acid powder pulverized and prepared to an average particle size of 5 μm with a planetary ball mill device, and spherical copper (bulk melting point: 1084 ° C.) fine particles with an average primary particle size of 140 nm prepared by electroless reduction from copper ions in an aqueous solution After mixing 18 g in total so that the volume ratio was 15:85, 12 g of glycerin was added to prepare a conductive paste having a total solid ratio of 60 mass%.
The paste was screen printed to form a bump precursor as described in Example 1.
Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a heating rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then at a heating rate of 5 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body.
A scanning electron microscope (SEM) of the bump cross section is shown in FIG. In FIG. 1, no coarse voids or cracks are observed in the bumps, and it is confirmed that the bumps are homogeneous.
The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[実施例3]
遊星ボールミル装置で平均粒子径7μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合10:90となるように計21g混合後、グリセリンを7.5gとN−ビニルピロリドンを1.5g添加し全固体の割合が70質量%の導電性ペーストを調製した。該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度3℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Example 3]
A phthalic acid powder pulverized and prepared to an average particle size of 7 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle size of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 10:90. After mixing 21 g in total, 7.5 g of glycerin and 1.5 g of N-vinylpyrrolidone were added to prepare a conductive paste having a total solid ratio of 70% by mass. The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a temperature increase rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then at a temperature increase rate of 3 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body. The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[実施例4]
遊星ボールミル装置で平均粒子径7μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合10:90となるように計21g混合後、グリセリンを6gとN−メチルアセトアミド1.5g、N−ビニルピロリドンを1.5g添加し全固体の割合が70質量%の導電性ペーストを調製した。該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度3℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Example 4]
A phthalic acid powder pulverized and prepared to an average particle size of 7 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle size of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 10:90. After mixing 21 g in total, 6 g of glycerin, 1.5 g of N-methylacetamide and 1.5 g of N-vinylpyrrolidone were added to prepare a conductive paste having a total solid content of 70% by mass. The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a temperature increase rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then at a temperature increase rate of 3 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body. The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[比較例1]
遊星ボールミル装置で平均粒子径15μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合25:75となるように計18g混合後、グリセリン12gを添加して、全固体の割合が60質量%の導電性ペーストを調製した。
該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。
該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 1]
A phthalic acid powder pulverized and prepared to an average particle size of 15 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle size of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 25:75. After mixing 18 g in total, 12 g of glycerin was added to prepare a conductive paste having a total solid ratio of 60 mass%.
The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a heating rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then at a heating rate of 5 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body.
The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[比較例2]
遊星ボールミル装置で平均粒子径15μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合20:80となるように計18g混合後、グリセリンを12g添加し全固体の割合が60質量%のペーストを調製した。該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 2]
A phthalic acid powder pulverized to an average particle diameter of 15 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle diameter of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 20:80. After mixing 18 g in total, 12 g of glycerin was added to prepare a paste having a total solid ratio of 60% by mass. The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a heating rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then at a heating rate of 5 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body. The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[比較例3]
遊星ボールミル装置で平均粒子径0.5μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合20:80となるように計18g混合後、グリセリンを12g添加し全固体の割合が40質量%のペーストを調製した。該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気中で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。該バンプ断面の走査型電子顕微鏡(SEM)を図2に示す。図2において、バンプ断面に粗大ボイドの形成が観察され、十分な接合強度が得られないことが確認される。該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 3]
A phthalic acid powder pulverized and prepared to have an average particle size of 0.5 μm with a planetary ball mill device and spherical copper fine particles with an average primary particle size of 120 nm prepared by electroless reduction from copper ions in an aqueous solution are in a volume ratio of 20:80. After mixing 18 g in total, 12 g of glycerin was added to prepare a paste having a total solid content of 40% by mass. The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a temperature increase rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then heated at a rate of 5 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body. A scanning electron microscope (SEM) of the bump cross section is shown in FIG. In FIG. 2, formation of coarse voids is observed in the bump cross section, and it is confirmed that sufficient bonding strength cannot be obtained. The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[比較例4]
遊星ボールミル装置で平均粒子径7μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合30:70となるように計18g混合後、グリセリンを12g添加し全固体の割合が60質量%のペーストを調製した。該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス雰囲気中で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 4]
A phthalic acid powder pulverized and prepared to an average particle size of 7 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle size of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 30:70. After mixing 18 g in total, 12 g of glycerin was added to prepare a paste having a total solid ratio of 60% by mass. The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a temperature increase rate of 3 ° C./min in a nitrogen gas atmosphere, heated at 210 ° C. for 20 minutes, and then heated at a rate of 5 ° C./min. Heated to 300 ° C., heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a bump bonded body. The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[比較例5]
遊星ボールミル装置で0.3μmに調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合15:85となるように計18g混合後、グリセリンを12g添加し全固体重量60質量%のペーストを調製した。該ペーストをスクリーン印刷で実施例1に記載したと同様にバンプ前躯体を形成した。次に実施例1に記載したと同様にして、バンプ前駆体上にSiチップを載せた。
バンプ前躯体が形成された導電性基板を窒素ガス中で昇温速度10℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度15℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却してバンプ接合体を作製した。該バンプを実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 5]
A phthalic acid powder prepared to 0.3 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle diameter of 120 nm prepared by electroless reduction from copper ions in an aqueous solution were measured so as to have a volume ratio of 15:85. After mixing 18 g, 12 g of glycerin was added to prepare a paste having a total solid weight of 60% by mass. The paste was screen printed to form a bump precursor as described in Example 1. Next, a Si chip was placed on the bump precursor in the same manner as described in Example 1.
The conductive substrate on which the bump precursor was formed was heated from room temperature to 210 ° C. at a temperature rising rate of 10 ° C./min in nitrogen gas, heated at 210 ° C. for 20 minutes, and then heated at 300 ° C. at a temperature rising rate of 15 ° C./min. And heated to 300 ° C. for 10 minutes and then cooled to room temperature to produce a bump bonded body. The bumps were evaluated in the same manner as described in Example 1. The results are summarized in Table 1.
[実施例5]
遊星ボールミル装置で平均粒子径3μmに粉砕、調製したフタル酸微粉末と、還元法により調製した平均一次粒子径50nmの球状銀微粒子とを体積割合10:90となるように計15g混合後、ペンタンジオール4gとエチルセルロース0.5gとN−メチルアセトアミド0.5gを添加して、全固体の割合が75質量%の導電性ペーストを調製した。該ペーストをスクリーン印刷で導電性基板上に25mm×25mm×高さ150μmのダイボンド部前躯体を形成し、その上に対になるように金スパッタされたSiチップ(形状:1辺が20mmの立方体)の金スパッタ面側がダイボンド前駆体と接するように載せた。
次に、導電性ペーストが塗布された導電性基板に載せたSiチップを10MPaの圧力で加圧しながら大気中で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度3℃/分で240℃まで加熱し、240℃で5分間加熱後、室温まで冷却して該導電性基板とSiチップが導電性ダイボンド部により電気的、機械的に接合された導電性ダイボンド部(Siチップ接続サンプル)を作製した。得られた導電性ダイボンド部及び接合部を実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Example 5]
A total of 15 g of phthalic acid fine powder pulverized and prepared to an average particle size of 3 μm with a planetary ball mill device and spherical silver fine particles with an average primary particle size of 50 nm prepared by a reduction method were mixed in a volume ratio of 10:90, and then pentane. 4 g of diol, 0.5 g of ethyl cellulose and 0.5 g of N-methylacetamide were added to prepare a conductive paste having a total solid ratio of 75% by mass. A die-bonded precursor of 25 mm × 25 mm × 150 μm in height is formed on a conductive substrate by screen printing, and a Si chip (shape: cube having a side of 20 mm on one side) is formed on the die bond. ) Was placed so that the gold sputter surface side was in contact with the die bond precursor.
Next, while pressurizing the Si chip placed on the conductive substrate coated with the conductive paste at a pressure of 10 MPa, the temperature was raised from room temperature to 210 ° C. at a temperature rising rate of 3 ° C./min. After heating for 20 minutes, heated to 240 ° C. at a rate of temperature increase of 3 ° C./minute, heated to 240 ° C. for 5 minutes, cooled to room temperature, and the conductive substrate and the Si chip are electrically and mechanically connected by the conductive die bond part. A conductive die bond part (Si chip connection sample) bonded to was fabricated. The same evaluation as that described in Example 1 was performed on the obtained conductive die bond part and joint part. The results are summarized in Table 1.
[実施例6]
遊星ボールミル装置で平均粒子径5μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径140nmの球状銅微粒子とを体積割合15:85となるように計18g混合後、グリセリン11gと水1gを添加して、全固体の割合が60質量%の導電性ペーストを調製した。
該ペーストをスクリーン印刷で実施例5に記載したと同様にダイボンド部前躯体を形成し、その上に対になるように金スパッタされたSiチップ(形状:1辺が20mmの立方体)を載せた。
次に、導電性ペーストが塗布された導電性基板に載せたSiチップを4MPaの圧力で加圧しながら窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却して導電性ダイボンド部(Siチップ接続サンプル)を作製した。得られた導電性ダイボンド部及び接合部を実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Example 6]
A phthalic acid powder pulverized and prepared to an average particle diameter of 5 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle diameter of 140 nm prepared by electroless reduction from an aqueous solution in an aqueous solution with a volume ratio of 15:85 After mixing 18 g in total, 11 g of glycerin and 1 g of water were added to prepare a conductive paste having a total solid ratio of 60% by mass.
A die-bonding precursor was formed by screen printing in the same manner as described in Example 5, and a gold-sputtered Si chip (shape: cube having a side of 20 mm) was placed thereon. .
Next, the Si chip mounted on the conductive substrate coated with the conductive paste was heated from room temperature to 210 ° C. at a temperature rising rate of 3 ° C./min in a nitrogen gas atmosphere while being pressurized at a pressure of 4 MPa. After heating at 0 ° C. for 20 minutes, it was heated to 300 ° C. at a heating rate of 5 ° C./minute, heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a conductive die bond part (Si chip connection sample). The same evaluation as that described in Example 1 was performed on the obtained conductive die bond part and joint part. The results are summarized in Table 1.
[比較例6]
遊星ボールミル装置で平均粒子径15μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合25:75となるように計18g混合後、グリセリン12gを添加して、全固体の割合が60質量%の導電性ペーストを調製した。
該ペーストをスクリーン印刷で実施例5に記載したと同様にダイボンド部前躯体を形成し、その上に対になるように金スパッタされたSiチップ(形状:1辺が20mmの立方体)を載せた。
次に、導電性ペーストが塗布された導電性基板に載せたSiチップを4MPaの圧力で加圧しながら窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度5℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却して導電性ダイボンド部(Siチップ接続サンプル)を作製した。得られた導電性ダイボンド部及び接合部を実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 6]
A phthalic acid powder pulverized and prepared to an average particle size of 15 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle size of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 25:75. After mixing 18 g in total, 12 g of glycerin was added to prepare a conductive paste having a total solid ratio of 60 mass%.
A die-bonding precursor was formed by screen printing in the same manner as described in Example 5, and a gold-sputtered Si chip (shape: cube having a side of 20 mm) was placed thereon. .
Next, the Si chip mounted on the conductive substrate coated with the conductive paste was heated from room temperature to 210 ° C. at a temperature rising rate of 3 ° C./min in a nitrogen gas atmosphere while being pressurized at a pressure of 4 MPa. After heating at 0 ° C. for 20 minutes, it was heated to 300 ° C. at a heating rate of 5 ° C./minute, heated at 300 ° C. for 10 minutes, and then cooled to room temperature to produce a conductive die bond part (Si chip connection sample). The same evaluation as that described in Example 1 was performed on the obtained conductive die bond part and joint part. The results are summarized in Table 1.
[比較例7]
遊星ボールミル装置で平均粒子径15μmに粉砕、調製したフタル酸粉末と、水溶液中で銅イオンからの無電解還元により調製された、平均一次粒子径120nmの球状銅微粒子を体積割合20:80となるように計18g混合後、グリセリンを12g添加し全固体の割合が60質量%のペーストを調製した。該ペーストをスクリーン印刷で実施例5に記載したと同様にダイボンド部前躯体を形成し、その上に対になるように金スパッタされたSiチップ(形状:1辺が20mmの立方体)を載せた。
次に、導電性ペーストが塗布された導電性基板に載せたSiチップを0.5MPaの圧力で加圧しながら窒素ガス雰囲気下で、昇温速度3℃/分で室温から210℃まで昇温し、210℃で20分間加熱後、昇温速度15℃/分で300℃まで加熱し、300℃で10分間加熱後室温まで冷却して導電性ダイボンド部(Siチップ接続サンプル)を作製した。得られた導電性ダイボンド部及び接合部を実施例1に記載したと同様の評価を行った。結果をまとめて表1に示す。
[Comparative Example 7]
A phthalic acid powder pulverized to an average particle diameter of 15 μm with a planetary ball mill device and spherical copper fine particles having an average primary particle diameter of 120 nm prepared by electroless reduction from copper ions in an aqueous solution have a volume ratio of 20:80. After mixing 18 g in total, 12 g of glycerin was added to prepare a paste having a total solid ratio of 60% by mass. A die-bonding precursor was formed by screen printing in the same manner as described in Example 5, and a gold-sputtered Si chip (shape: cube having a side of 20 mm) was placed thereon. .
Next, the temperature is increased from room temperature to 210 ° C. at a temperature increase rate of 3 ° C./min in a nitrogen gas atmosphere while pressurizing the Si chip placed on the conductive substrate coated with the conductive paste at a pressure of 0.5 MPa. After heating at 210 ° C. for 20 minutes, the sample was heated to 300 ° C. at a rate of temperature increase of 15 ° C./minute, heated at 300 ° C. for 10 minutes and then cooled to room temperature to produce a conductive die bond part (Si chip connection sample). The same evaluation as that described in Example 1 was performed on the obtained conductive die bond part and joint part. The results are summarized in Table 1.
Claims (24)
該導電性ペースト中には固体粒子(P)と有機分散媒(D)との割合(P/D)が50〜85質量%/50〜15質量%(質量%の合計は100質量%)となるように配合されており、該固体粒子(P)が平均一次粒子径1〜150nmの導電性金属微粒子(P1)80〜95体積%と、平均粒子径0.5〜10μmの昇華性又は熱分解性を有し、かつ有機分散媒(D)に不溶である有機粒子(P2)20〜5体積%(体積%の合計は100体積%)とからなる、ことを特徴とする導電性ペースト。 A conductive paste containing solid particles (P) and an organic dispersion medium (D),
In the conductive paste, the ratio (P / D) of the solid particles (P) to the organic dispersion medium (D) is 50 to 85% by mass / 50 to 15% by mass (the total of mass% is 100% by mass). The solid particles (P) are 80 to 95% by volume of conductive metal fine particles (P1) having an average primary particle size of 1 to 150 nm and sublimation or heat having an average particle size of 0.5 to 10 μm. A conductive paste comprising 20 to 5% by volume of organic particles (P2) having decomposability and insoluble in the organic dispersion medium (D) (total volume% is 100% by volume).
であることを特徴とする請求項6又は7に記載の導電性ペースト。 The organic solvent (S) is (i) an organic solvent (S1) consisting of an alcohol and / or a polyhydric alcohol having a boiling point of 100 ° C. or higher at normal pressure and having 1 or 2 or more hydroxyl groups in the molecule, or (Ii) At least 5 to 95% by volume of an organic solvent (S1) having an boiling point at normal pressure of 100 ° C. or higher and an alcohol and / or a polyhydric alcohol having one or more hydroxyl groups in the molecule, and an amide An organic solvent (S2) comprising 95 to 5% by volume of an organic solvent having a group (SA),
The conductive paste according to claim 6 or 7, wherein the conductive paste is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011055700A JP5416153B2 (en) | 2010-03-18 | 2011-03-14 | Conductive paste, manufacturing method thereof, and conductive connecting member |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010061837 | 2010-03-18 | ||
JP2010061837 | 2010-03-18 | ||
JP2011055700A JP5416153B2 (en) | 2010-03-18 | 2011-03-14 | Conductive paste, manufacturing method thereof, and conductive connecting member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011216475A JP2011216475A (en) | 2011-10-27 |
JP5416153B2 true JP5416153B2 (en) | 2014-02-12 |
Family
ID=44945973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011055700A Expired - Fee Related JP5416153B2 (en) | 2010-03-18 | 2011-03-14 | Conductive paste, manufacturing method thereof, and conductive connecting member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5416153B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109233684A (en) * | 2017-05-09 | 2019-01-18 | 3M创新有限公司 | Electroconductive binder |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6054384B2 (en) * | 2012-05-23 | 2016-12-27 | パナソニックIpマネジメント株式会社 | Joining aid and method for producing the same |
JP5856038B2 (en) * | 2012-10-31 | 2016-02-09 | 三ツ星ベルト株式会社 | Conductive adhesive for screen printing, joined body of inorganic material, and manufacturing method thereof |
JP5718536B2 (en) * | 2013-02-22 | 2015-05-13 | 古河電気工業株式会社 | Connection structure and semiconductor device |
JP6210562B2 (en) * | 2014-09-30 | 2017-10-11 | ニホンハンダ株式会社 | Method for manufacturing light emitting diode device |
JP2016146285A (en) * | 2015-02-09 | 2016-08-12 | 東洋インキScホールディングス株式会社 | Conducive paste for laser processing and use thereof |
CN106328243B (en) * | 2015-06-30 | 2018-05-08 | 比亚迪股份有限公司 | Antioxidant and its application and electric slurry and its preparation method and application |
JP6948111B2 (en) * | 2016-02-09 | 2021-10-13 | ナミックス株式会社 | Resin compositions, conductive copper pastes, and semiconductor devices |
JP6973589B2 (en) * | 2016-12-08 | 2021-12-01 | 住友ベークライト株式会社 | Paste-like adhesive composition and electronics |
JP6772801B2 (en) * | 2016-12-08 | 2020-10-21 | 住友ベークライト株式会社 | Paste-like adhesive composition and electronic device |
TWI736695B (en) * | 2017-10-24 | 2021-08-21 | 啟耀光電股份有限公司 | Electronic device and manufacturing method thereof |
WO2019093119A1 (en) * | 2017-11-13 | 2019-05-16 | 京セラ株式会社 | Paste composition, semiconductor device, and electrical/electronic component |
KR101906767B1 (en) * | 2018-04-12 | 2018-10-10 | 서울대학교산학협력단 | Copper based conductive paste and its preparation method |
JPWO2022176563A1 (en) * | 2021-02-19 | 2022-08-25 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2611347B2 (en) * | 1987-07-24 | 1997-05-21 | 三菱化学株式会社 | Copper-based conductive coating composition |
JP3819806B2 (en) * | 2002-05-17 | 2006-09-13 | 富士通株式会社 | Electronic component with bump electrode and manufacturing method thereof |
JP4981319B2 (en) * | 2005-12-27 | 2012-07-18 | パナソニック株式会社 | Conductive paste and electronic component mounting method using the same |
-
2011
- 2011-03-14 JP JP2011055700A patent/JP5416153B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109233684A (en) * | 2017-05-09 | 2019-01-18 | 3M创新有限公司 | Electroconductive binder |
CN109233684B (en) * | 2017-05-09 | 2021-06-18 | 3M创新有限公司 | Conductive adhesive |
Also Published As
Publication number | Publication date |
---|---|
JP2011216475A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5416153B2 (en) | Conductive paste, manufacturing method thereof, and conductive connecting member | |
JP5041454B2 (en) | Conductive connection member | |
JP5158904B2 (en) | Conductive connection member and method for producing conductive connection member | |
JP6372978B2 (en) | Conductive paste | |
WO2014129626A1 (en) | Connecting structure, and semiconductor device | |
EP2990142B1 (en) | Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method | |
JP6423416B2 (en) | Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter | |
KR20130129392A (en) | Binding material, binding body, and binding method | |
JP2013041884A (en) | Semiconductor device | |
JP2022046765A (en) | Copper paste, bonding method, and method for producing bonded body | |
JP6032110B2 (en) | Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same | |
JP6133149B2 (en) | Conductive paste and manufacturing method thereof | |
CN109642123B (en) | Bonding films and tapes for wafer processing | |
JP5733638B2 (en) | Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same | |
CN114829042B (en) | Silver paste, method for producing same, and method for producing joined body | |
TWI808208B (en) | Nano copper paste and film for sintered die attach and similar applications and method of manufacturing sintering powders | |
CN114051522A (en) | Bonding film, tape for processing wafer, method for producing bonded body, and bonded body | |
KR102359193B1 (en) | Bonding material and bonding method using same | |
JP2007080635A (en) | Particle for production of conductive component | |
CN116435007B (en) | Low-temperature pressureless sintering silver paste, preparation method, application method and packaging structure | |
JP2022049054A (en) | Method of making electric conductor, metal paste and electric conductor | |
CN114845827A (en) | Silver paste, method for producing the same, and method for producing a bonded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130821 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131008 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20131011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131114 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5416153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |