[go: up one dir, main page]

JP5401065B2 - Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus - Google Patents

Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus Download PDF

Info

Publication number
JP5401065B2
JP5401065B2 JP2008243373A JP2008243373A JP5401065B2 JP 5401065 B2 JP5401065 B2 JP 5401065B2 JP 2008243373 A JP2008243373 A JP 2008243373A JP 2008243373 A JP2008243373 A JP 2008243373A JP 5401065 B2 JP5401065 B2 JP 5401065B2
Authority
JP
Japan
Prior art keywords
sample
stage
amount
light
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008243373A
Other languages
Japanese (ja)
Other versions
JP2010074110A (en
Inventor
吉郎 山中
光太 藤原
通広 川口
和広 斯波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2008243373A priority Critical patent/JP5401065B2/en
Publication of JP2010074110A publication Critical patent/JP2010074110A/en
Application granted granted Critical
Publication of JP5401065B2 publication Critical patent/JP5401065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electron Beam Exposure (AREA)

Description

本発明は、試料を搬送ロボットによりステージ上に搬送して載置するようにした荷電粒子ビーム描画装置における試料の載置位置測定方法及びこの測定方法を利用した試料の載置位置補正方法に関する。   The present invention relates to a sample placement position measuring method in a charged particle beam drawing apparatus in which a sample is transported and placed on a stage by a transport robot, and a sample placement position correcting method using this measurement method.

荷電粒子ビーム描画装置は、互いに直交する水平なX方向及びY方向に移動自在なステージと、ステージ上に載置した試料に荷電粒子ビームを照射するビーム照射手段と、ステージのX方向及びY方向の位置を測定するステージ位置測定器とを備えており、ステージを移動させて、ステージの位置を確認しつつ試料に荷電粒子ビームを照射して、試料にパターンを描画するように構成されている。   The charged particle beam drawing apparatus includes a stage movable in horizontal X and Y directions orthogonal to each other, beam irradiation means for irradiating a sample placed on the stage with a charged particle beam, and the X and Y directions of the stage. And a stage position measuring device that measures the position of the sample, and is configured to draw a pattern on the sample by moving the stage and irradiating the sample with a charged particle beam while checking the position of the stage. .

また、試料が自重で撓む等して、試料の高さが正規高さからずれると、偏向された荷電粒子ビームの試料への照射位置が変化したり、荷電粒子ビームの焦点範囲から試料が外れて、描画精度が悪化する。そこで、描画装置に、試料の高さを測定する高さ測定器を設け、その測定結果に応じて荷電粒子ビームの偏向角度や焦点範囲の補正を行うようにしている。高さ測定器は、光を試料の表面に斜め上方から収束して照射する投光部と、試料からの反射光を受光して反射光の位置を検出する受光部とを有し、反射光の位置から試料の高さを算出するように構成されている(例えば、特許文献1参照)。   In addition, if the height of the sample deviates from the normal height because the sample is bent by its own weight, the irradiation position of the deflected charged particle beam on the sample changes, or the sample moves from the focal range of the charged particle beam. The drawing accuracy deteriorates. Therefore, the drawing apparatus is provided with a height measuring device for measuring the height of the sample, and the deflection angle and focus range of the charged particle beam are corrected according to the measurement result. The height measuring instrument has a light projecting unit that converges and irradiates light onto the surface of the sample from obliquely above, and a light receiving unit that receives reflected light from the sample and detects the position of the reflected light. The height of the sample is calculated from the position (see, for example, Patent Document 1).

また、描画装置は、搬送ロボットを備えており、試料を搬送ロボットによりステージ上に搬送して載置するようにしている。ここで、搬送ロボットが制御データ通りに動作しても、ステージ上の正規位置に試料が載置されないことがある。この場合、試料に描画されるパターンの位置がずれてしまう。そこで、一般的には、ステージに基準ブロックを設け、試料を基準ブロックに押し当てて、ステージ上の正規位置に試料を位置決めして載置できるようにしている。然し、これでは、基準ブロックに試料を押し当てる際にパーティクルが発生して、試料上にパーティクルが載ってしまい、描画パターンに欠陥を生ずることがある。   In addition, the drawing apparatus includes a transfer robot, and the sample is transferred and placed on the stage by the transfer robot. Here, even if the transfer robot operates according to the control data, the sample may not be placed at the regular position on the stage. In this case, the position of the pattern drawn on the sample is shifted. Therefore, in general, a reference block is provided on the stage, and the sample is pressed against the reference block so that the sample can be positioned and placed at a normal position on the stage. However, in this case, particles are generated when the sample is pressed against the reference block, and the particles are placed on the sample, which may cause a defect in the drawing pattern.

そのため、従来、搬送ロボットにより試料をステージ上に位置決めせずに載置した後、試料をCCDカメラで撮像して、画像処理により試料の載置位置の正規位置からのずれ量を測定し、このずれ量に応じてパターンの描画位置を補正したり、試料の載置位置を補正する方法も知られている(例えば、特許文献2参照)。然し、この方法では、試料の載置位置を測定するために、CCDカメラや試料を照明する照明手段が必要になり、描画装置が複雑高価になってしまう。
特開2008−177256号公報 特開2002−280287号公報
Therefore, conventionally, after placing the sample without positioning on the stage by the transfer robot, the sample is imaged with a CCD camera, and the amount of deviation from the normal position of the sample placement position is measured by image processing. There are also known methods for correcting the drawing position of a pattern in accordance with the amount of deviation and for correcting the placement position of a sample (see, for example, Patent Document 2). However, this method requires a CCD camera and an illuminating means for illuminating the sample in order to measure the mounting position of the sample, and the drawing apparatus becomes complicated and expensive.
JP 2008-177256 A JP 2002-280287 A

本発明は、以上の点に鑑み、ステージ上に載置された試料の位置を新たな位置計測ツールを用いることなく測定できるようにした荷電粒子ビーム描画装置における試料の載置位置測定方法及びこの測定方法を利用した試料の載置位置補正方法を提供することをその目的としている。   In view of the above points, the present invention provides a sample mounting position measuring method in a charged particle beam drawing apparatus capable of measuring the position of a sample mounted on a stage without using a new position measurement tool, and the method An object of the present invention is to provide a sample placement position correction method using a measurement method.

本発明の第1の態様は、互いに直交する水平なX方向及びY方向に移動自在なステージと、ステージ上に載置した試料に荷電粒子ビームを照射するビーム照射手段と、ステージのX方向及びY方向の位置を測定するステージ位置測定器と、光を試料の表面に斜め上方から収束して照射する投光部と、試料からの反射光を受光して反射光の位置を検出する受光部とを有し、反射光の位置から試料の高さを測定する高さ測定器と、ステージ上に試料を搬送して載置する搬送ロボットとを備える荷電粒子ビーム描画装置における試料の載置位置測定方法であって、試料として、表面に、光の反射率が他の部分とは異なる、互いに直交する方向にのびる線状の2本のマーク部を形成した専用試料を用い、搬送ロボットにより専用試料をステージ上に搬送して載置した後、ステージをX方向に移動させつつ、高さ測定器の投光部からの光を専用試料の表面に照射して、光の照射スポットを一方のマーク部に交差するように走査し、高さ測定器の受光部による反射光の受光量の変化に基づいて、照射スポットの走査軌跡に交差する一方のマーク部の個所の位置を測定することをステージのY方向位置を変えて少なくとも2回行って、一方のマーク部の少なくとも2個所の位置を測定する工程と、ステージをY方向に移動させつつ、高さ測定器の投光部からの光を専用試料の表面に照射して、光の照射スポットを他方のマーク部に交差するように走査し、高さ測定器の受光部による反射光の受光量の変化に基づいて、照射スポットの走査軌跡に交差する他方のマーク部の個所の位置を測定することをステージのX方向位置を変えて少なくとも2回行って、他方のマーク部の少なくとも2個所の位置を測定する工程と、一方のマーク部の測定した少なくとも2個所の位置から一方のマーク部に合致する第1の直線を算出すると共に、他方のマーク部の測定した少なくとも2個所の位置から他方のマーク部に合致する第2の直線を算出する工程と、第1の直線と第2の直線との交点の位置からステージに対する試料の載置位置のX方向及びY方向のずれ量を算出する工程と、第1の直線のY方向に対する傾斜角と第2の直線のX方向に対する傾斜角との少なくとも一方から試料の載置位置の回転ずれ量を算出する工程とを実行することを特徴とする。   A first aspect of the present invention includes a stage movable in horizontal X and Y directions orthogonal to each other, beam irradiation means for irradiating a sample placed on the stage with a charged particle beam, the X direction of the stage, and A stage position measuring device that measures the position in the Y direction, a light projecting unit that converges and irradiates light onto the surface of the sample obliquely from above, and a light receiving unit that receives the reflected light from the sample and detects the position of the reflected light And a sample placement position in a charged particle beam drawing apparatus comprising: a height measuring device that measures the height of the sample from the position of reflected light; and a transport robot that transports and places the sample on the stage This is a measurement method, and a special sample is used on the surface, which has two linear marks extending in directions orthogonal to each other and having different light reflectivity from other parts. Carry sample on stage Then, while moving the stage in the X direction, irradiate the surface of the dedicated sample with light from the light projecting part of the height measuring device so that the light irradiation spot intersects one mark part. The position of one stage of the mark that intersects the scanning trajectory of the irradiation spot is measured based on the change in the amount of reflected light received by the light receiving unit of the height measuring device. Change at least twice and measure the position of at least two locations on one mark, and move the stage in the Y direction while the light from the light projecting part of the height measuring instrument is applied to the surface of the dedicated sample. Irradiate and scan the light irradiation spot so that it intersects the other mark part, and based on the change in the amount of reflected light received by the light receiving part of the height measuring device, the other spot that intersects the scanning locus of the irradiation spot Measure the position of the mark part The step of changing the position of the stage in the X direction at least twice and measuring the position of at least two positions of the other mark section, and matching one mark section from the measured positions of at least two positions of one mark section A step of calculating a first straight line and calculating a second straight line that matches the other mark portion from at least two measured positions of the other mark portion; and the first straight line and the second straight line A step of calculating a deviation amount in the X direction and Y direction of the sample mounting position with respect to the stage from the position of the intersection, and at least an inclination angle of the first straight line with respect to the Y direction and an inclination angle of the second straight line with respect to the X direction. And a step of calculating a rotational deviation amount of the sample placement position from one side.

本発明の第2の態様は、上記荷電粒子ビーム描画装置における試料の載置位置補正方法であって、上記本発明の第1の態様の載置位置測定方法で算出された前記回転ずれ量を搬送ロボットの制御部にフィードバックし、搬送ロボットの制御データを回転ずれ量が除去されるように補正することを特徴とする。   According to a second aspect of the present invention, there is provided a method for correcting a mounting position of a sample in the charged particle beam lithography apparatus, wherein the rotational deviation amount calculated by the mounting position measuring method according to the first aspect of the present invention is used. Feedback is provided to the control unit of the transfer robot, and the control data of the transfer robot is corrected so that the rotational deviation amount is removed.

本発明の第3の態様は、上記荷電粒子ビーム描画装置における試料の載置位置補正方法であって、荷電粒子ビーム描画装置が、試料を定位置に位置決めした状態で搬送ロボットに受け渡すアライメント部を備えるものにおいて、アライメント部における試料の位置を、上記本発明の第1の態様の載置位置測定方法で算出された前記回転ずれ量分だけ回転補正することを特徴とする。   A third aspect of the present invention is a sample placement position correction method in the charged particle beam drawing apparatus, wherein the charged particle beam drawing apparatus delivers the sample to a transport robot while positioning the sample at a fixed position. The position of the sample in the alignment unit is rotationally corrected by the amount of the rotational deviation calculated by the mounting position measuring method according to the first aspect of the present invention.

また、本発明の第1の態様においては、前記照射スポットの走査軌跡に交差する前記各マーク部の個所の高さを前記高さ測定器で測定し、該個所の高さの基準高さに対するずれ量に応じて該個所の測定位置を補正することが望ましい。   In the first aspect of the present invention, the height of each mark portion that intersects the scanning locus of the irradiation spot is measured by the height measuring instrument, and the height of the mark relative to the reference height is measured. It is desirable to correct the measurement position in accordance with the amount of deviation.

更に、本発明の第2の態様において、前記搬送ロボットが、X方向及びY方向に直交するZ方向の軸線回りに回転自在な回転軸と、回転軸に固定された座標系の水平な1軸方向であって、試料載置時にY方向に平行になる方向に伸縮自在なロボットアームとを備える極座標型ロボットで構成される場合は、試料載置時の搬送ロボットの回転軸の回転角度を前記回転ずれ量分だけ補正すると共に、試料載置時のステージの位置をX方向に回転軸の回転角度補正による試料のX方向変位量分だけ補正し、更に、試料載置時のステージの位置をY方向に回転軸の回転角度補正による試料のY方向変位量分だけ補正するか、又は、ロボットアームの伸縮量を回転軸の回転角度補正による試料のY方向変位量分だけ補正することが望ましい。   Furthermore, in the second aspect of the present invention, the transfer robot has a rotation axis rotatable around an axis in the Z direction orthogonal to the X direction and the Y direction, and a horizontal axis of a coordinate system fixed to the rotation axis. Direction, and a robot arm that can extend and contract in a direction parallel to the Y direction when the sample is placed, the rotation angle of the rotation axis of the transfer robot when the sample is placed is While correcting for the amount of rotational deviation, the position of the stage when placing the sample is corrected in the X direction by the amount of displacement in the X direction of the sample by correcting the rotation angle of the rotation axis, and the position of the stage when placing the sample is further corrected. It is desirable to correct in the Y direction by the amount of displacement of the sample in the Y direction by correcting the rotation angle of the rotating shaft, or to correct the expansion / contraction amount of the robot arm by the amount of displacement of the sample in the Y direction by correcting the rotation angle of the rotating shaft. .

また、本発明の第2と第3の態様においては、試料載置時における前記ステージの位置を、上記本発明の第1の態様の載置位置測定方法で算出された前記X方向及びY方向のずれ量分だけX方向及びY方向に補正することが望ましい。   In the second and third aspects of the present invention, the position of the stage at the time of sample placement is calculated in the X direction and the Y direction calculated by the placement position measurement method of the first aspect of the present invention. It is desirable to correct in the X direction and Y direction by the amount of deviation.

本発明の第1の態様によれば、既設の高さ測定器を用いて試料載置位置を測定できるため、新たな位置計測ツールが不要になり、描画装置が複雑高価になることを回避できる。また、本発明の第2と第3の態様によれば、パターンの描画位置の補正やステージの位置補正では対処できない試料載置位置の回転ずれを除去することができる。   According to the first aspect of the present invention, since the sample placement position can be measured using an existing height measuring instrument, a new position measurement tool is not required, and the drawing apparatus can be prevented from becoming complicated and expensive. . In addition, according to the second and third aspects of the present invention, it is possible to remove the rotational displacement of the sample placement position that cannot be dealt with by correcting the pattern drawing position or the stage position.

図1、図2は本発明の荷電粒子ビーム描画装置の一例である電子ビーム描画装置を示している。電子ビーム描画装置は、描画室1と、描画室1の天井部に立設したビーム照射手段たる電子鏡筒2と、描画室1に隣接する搬送室3と、搬送室3の脇に隣接するアライメント室4とを備えている。描画室1には、互いに直交するX方向及びY方向に移動自在なステージ5が設けられている。そして、アライメント室4で定位置に位置決めされた試料Wを搬送室3に配置した搬送ロボット6に受け渡し、該ロボット6により試料Wをステージ5上に搬送して載置するようにしている。試料Wは、例えば、ガラス基板上にクロム膜等の遮光膜とレジスト膜とが積層されたマスクである。   1 and 2 show an electron beam lithography apparatus which is an example of a charged particle beam lithography apparatus according to the present invention. The electron beam drawing apparatus is adjacent to the drawing chamber 1, the electron column 2 as a beam irradiation means standing on the ceiling of the drawing chamber 1, the transfer chamber 3 adjacent to the drawing chamber 1, and the side of the transfer chamber 3. An alignment chamber 4 is provided. The drawing chamber 1 is provided with a stage 5 that is movable in the X and Y directions orthogonal to each other. Then, the sample W positioned at a fixed position in the alignment chamber 4 is transferred to the transfer robot 6 disposed in the transfer chamber 3, and the sample W is transferred to the stage 5 by the robot 6 and placed thereon. The sample W is, for example, a mask in which a light shielding film such as a chromium film and a resist film are stacked on a glass substrate.

搬送ロボット6は、X方向及びY方向に直交するZ方向の軸線回りに回転自在な回転軸6aと、回転軸6aに固定された座標系の水平な1軸方向に伸縮自在なロボットアーム6bと、ロボットアーム6bの先端に取り付けた、試料Wを保持するロボットハンド6cとを有する極座標型ロボットで構成されている。ロボットアーム6bの伸縮方向は、ステージ5上に試料Wを載置する際に、Y方向と平行になる。また、ロボットハンド6cは、ロボットアーム6bの伸縮方向に一致する姿勢に常時維持される。尚、本実施形態では、ロボットアーム6bを一対のアームの屈伸動作で伸縮するものに構成しているが、テレスコピック型のアームでロボットアーム6bを構成してもよい。   The transfer robot 6 includes a rotary shaft 6a that is rotatable around an axis in the Z direction orthogonal to the X direction and the Y direction, and a robot arm 6b that is extendable in one horizontal axis of a coordinate system fixed to the rotary shaft 6a. And a polar coordinate type robot having a robot hand 6c for holding the sample W attached to the tip of the robot arm 6b. The expansion / contraction direction of the robot arm 6 b is parallel to the Y direction when the sample W is placed on the stage 5. Further, the robot hand 6c is always maintained in a posture that matches the expansion / contraction direction of the robot arm 6b. In the present embodiment, the robot arm 6b is configured to expand and contract by the bending and stretching operations of the pair of arms, but the robot arm 6b may be configured by a telescopic arm.

電子鏡筒2は、内蔵する電子銃から発せられた電子ビームを所要の断面形状に成形した後偏向させて試料Wに照射する公知のものであり、その詳細な説明は省略する。電子鏡筒2は照射制御部7により制御され、ステージ5はステージ制御部8により制御され、搬送ロボット6はロボット制御部9により制御される。そして、これら照射制御部7、ステージ制御部8及びロボット制御部9は全体制御部10で統括制御される。全体制御部10には、第1メモリ11と第2メモリ11とが接続されている。第1メモリ11にはパターンデータが記憶されている。全体制御部10は、パターンデータに基づいて描画すべき図形の形状、位置を規定する描画データを作成し、これを第2メモリ11に記憶させる。 The electron column 2 is a well-known one that forms an electron beam emitted from a built-in electron gun into a required cross-sectional shape and then deflects and irradiates the sample W, and detailed description thereof is omitted. The electron column 2 is controlled by an irradiation control unit 7, the stage 5 is controlled by a stage control unit 8, and the transfer robot 6 is controlled by a robot control unit 9. The irradiation control unit 7, the stage control unit 8, and the robot control unit 9 are centrally controlled by the overall control unit 10. The overall control unit 10, first memory 11 1 and the 2 second memory 11 are connected. The first memory 11 1 pattern data is stored. The overall control unit 10, the shape of the graphic to be drawn based on the pattern data, to create the drawing data defining the position, and stores it in the second memory 11 2.

また、電子ビーム描画装置は、ステージ5のX方向及びY方向の位置を測定するステージ位置測定器12と、ステージ5に載置された試料Wの高さ(Z方向位置)を測定する高さ測定器13とを備えている。ステージ位置測定器12は、図2に示す如く、ステージ5に固定したX方向の法線を持つステージミラー5aへのレーザー光の入反射でステージ5のX方向位置を測定するレーザー測長計12aと、ステージ5に固定したY方向の法線を持つステージミラー5bへのレーザー光の入反射でステージ5のY方向位置を測定するレーザー測長計12bとで構成されている。   The electron beam drawing apparatus also includes a stage position measuring device 12 that measures the position of the stage 5 in the X direction and the Y direction, and a height that measures the height of the sample W placed on the stage 5 (Z direction position). And a measuring device 13. As shown in FIG. 2, the stage position measuring device 12 includes a laser length meter 12 a that measures the X-direction position of the stage 5 by incident / reflected laser light on a stage mirror 5 a having an X-direction normal fixed to the stage 5. The laser length meter 12b measures the Y-direction position of the stage 5 by incident / reflected laser light on a stage mirror 5b having a Y-direction normal fixed to the stage 5.

高さ測定器13は、レーザー光を試料Wの表面に斜め上方から収束して照射する投光部13aと、試料Wからの反射光を受光して反射光の位置を検出する受光部13bと、反射光の位置から試料Wの高さを算出する高さ信号処理部13cとで構成されている。高さ測定器13で測定された試料Wの高さデータは、全体制御部10から高さデータ読出指令を受信した際に、全体制御部10へ応答データとして入力される。そして、全体制御部10は、試料Wの高さの正規高さからずれ量に応じて、描画精度を維持するのに必要な電子ビームの偏向角や焦点範囲を算出し、描画データを補正する。尚、高さ信号処理部13cは、受光部13bから得られる高さ信号を演算して反射光の受光量を検出する機能を併せ持つ。   The height measuring device 13 includes a light projecting unit 13a that converges and irradiates laser light on the surface of the sample W obliquely from above, and a light receiving unit 13b that receives the reflected light from the sample W and detects the position of the reflected light. The height signal processing unit 13c calculates the height of the sample W from the position of the reflected light. The height data of the sample W measured by the height measuring device 13 is input as response data to the overall control unit 10 when a height data read command is received from the overall control unit 10. Then, the overall control unit 10 calculates the deflection angle and the focal range of the electron beam necessary to maintain the drawing accuracy according to the deviation amount from the normal height of the sample W, and corrects the drawing data. . The height signal processing unit 13c also has a function of calculating the height signal obtained from the light receiving unit 13b and detecting the amount of reflected light received.

試料Wへのパターンの描画に際しては、全体制御部10からステージ制御部8に動作指令が出され、ステージ5が移動される。また、照射制御部7では、全体制御部10から入力される描画データに基づき、ステージ位置測定器12で測定したステージ5の位置を確認しつつ、電子鏡筒2内の電子ビームの成形制御、偏向制御を行って、試料Wの所要の位置に電子ビームを照射する。   When drawing a pattern on the sample W, an operation command is issued from the overall control unit 10 to the stage control unit 8, and the stage 5 is moved. The irradiation controller 7 controls the shaping of the electron beam in the electron column 2 while confirming the position of the stage 5 measured by the stage position measuring device 12 based on the drawing data input from the overall controller 10. Deflection control is performed to irradiate a desired position of the sample W with an electron beam.

ところで、ステージ位置測定器12では試料Wの位置を測定できないため、ステージ5上の正規位置に試料Wが載置されていないと、試料Wの外形に対して描画されるパターン全体の位置がずれる。ここで、搬送ロボット6が制御データ通りに動作しても、ステージ5上の正規位置に試料Wが載置されないことがある。そこで、電子ビーム描画装置の組立時や調整時に、図3に示す専用試料100を用いて、ステージ5への試料載置位置を測定するようにした。   By the way, since the stage position measuring device 12 cannot measure the position of the sample W, if the sample W is not placed at the regular position on the stage 5, the position of the entire pattern drawn with respect to the outer shape of the sample W is shifted. . Here, even if the transfer robot 6 operates according to the control data, the sample W may not be placed at the regular position on the stage 5. Therefore, when the electron beam drawing apparatus is assembled or adjusted, the sample placement position on the stage 5 is measured using the dedicated sample 100 shown in FIG.

専用試料100は、表面に、光の反射率が他の部分とは異なる、互いに直交する方向にのびる線状の2本のマーク部101,102を形成したものである。ここで、専用試料100がステージ5上の正規位置に載置されたとき、第1のマーク部101はY方向に平行になり、第2のマーク部102はX方向に平行になる。尚、本実施形態では、専用試料100として、図3(b)に示す如く、ガラス基板103の表面にクロム膜等の遮光膜104を積層して成るものを用い、遮光膜104の除去部分でマーク部101,102を構成している。そのため、マーク部101,102での光の反射率が他の部分より低くなる。   The dedicated sample 100 is formed with two linear mark portions 101 and 102 extending in directions orthogonal to each other and having different light reflectivities from other portions. Here, when the dedicated sample 100 is placed at a regular position on the stage 5, the first mark portion 101 is parallel to the Y direction, and the second mark portion 102 is parallel to the X direction. In the present embodiment, as the dedicated sample 100, as shown in FIG. 3B, a glass substrate 103 having a light shielding film 104 such as a chromium film laminated thereon is used. The mark parts 101 and 102 are configured. Therefore, the reflectance of light at the mark portions 101 and 102 is lower than that of other portions.

測定に際しては、先ず、アライメント室4で専用試料100を位置決めし、搬送ロボット6により専用試料100をアライメント室4からステージ5上に搬送して載置する。次に、ステージ5をX方向に移動させつつ、高さ測定器13の投光部13aからの光を専用試料100の表面に照射して、光の照射スポットSPを第1マーク部101に交差するようにX方向に走査する。この際、高さ測定器13の受光部13bによる反射光の受光量は、照射スポットSPの走査軌跡が第1マーク部101に交差する箇所で図4に示す如く低下する。そのため、受光量の変化に基づいて、照射スポットSPの走査軌跡と第1マーク部101との交差個所の位置を測定することができる。即ち、該交差個所のX座標は、受光量が最低になったときのステージ5のX方向位置から求めることができ、Y座標は、照射スポットSPの走査軌跡(X方向に平行)に一致し、これはステージ5のY方向位置から求めることができる。そして、照射スポットSPをX方向に走査して、上記交差個所の位置を測定することをステージ5のY方向位置を変えて2回行い、図3(a)に示す如く、第1マーク部101の2個所x1、x2の位置を測定する。   In the measurement, first, the dedicated sample 100 is positioned in the alignment chamber 4, and the dedicated sample 100 is transported from the alignment chamber 4 onto the stage 5 by the transport robot 6. Next, while moving the stage 5 in the X direction, the surface of the dedicated sample 100 is irradiated with light from the light projecting unit 13 a of the height measuring device 13, and the light irradiation spot SP intersects the first mark unit 101. Scan in the X direction. At this time, the amount of the reflected light received by the light receiving unit 13b of the height measuring device 13 decreases as shown in FIG. 4 where the scanning locus of the irradiation spot SP intersects the first mark unit 101. Therefore, the position of the intersection between the scanning locus of the irradiation spot SP and the first mark portion 101 can be measured based on the change in the amount of received light. That is, the X coordinate of the intersection can be obtained from the X direction position of the stage 5 when the amount of received light becomes the minimum, and the Y coordinate coincides with the scanning locus of the irradiation spot SP (parallel to the X direction). This can be obtained from the position of the stage 5 in the Y direction. Then, the irradiation spot SP is scanned in the X direction, and the position of the intersection is measured twice while changing the position of the stage 5 in the Y direction. As shown in FIG. The positions of x1 and x2 are measured.

次に、ステージ5をY方向に移動させつつ、高さ測定器13の投光部13aからの光を専用試料100の表面に照射して、光の照射スポットSPを第2マーク部102に交差するようにY方向に走査し、受光部13bによる反射光の受光量の変化に基づいて、照射スポットSPの走査軌跡と第2マーク部102との交差個所の位置を測定することをステージ5のX方向位置を変えて2回行う。そして、図3(a)に示す如く、第2マーク部102の2個所y1、y2の位置を測定する。   Next, while moving the stage 5 in the Y direction, the surface of the dedicated sample 100 is irradiated with light from the light projecting unit 13 a of the height measuring device 13, and the light irradiation spot SP intersects the second mark unit 102. The stage 5 is to scan in the Y direction and measure the position of the intersection of the scanning locus of the irradiation spot SP and the second mark portion 102 based on the change in the amount of reflected light received by the light receiving portion 13b. Change the position in the X direction twice. Then, as shown in FIG. 3A, the positions of two locations y1 and y2 of the second mark portion 102 are measured.

尚、各マーク部101,102の幅は、照射スポットSPのサイズより若干小さい寸法(例えば、80μm)とすることが望ましい。これによれば、受光量の変化パターンがガウシアン形状(正規分布形状)になり、ガウス曲線を用いて近似することで、照射スポットSPの走査軌跡と各マーク部101,102の交差個所の位置を精度良く測定できるようになる。   Note that the width of each of the mark portions 101 and 102 is desirably slightly smaller than the size of the irradiation spot SP (for example, 80 μm). According to this, the change pattern of the amount of received light has a Gaussian shape (normal distribution shape) and is approximated using a Gaussian curve, so that the scanning locus of the irradiation spot SP and the position of the intersection of the mark portions 101 and 102 can be determined. It becomes possible to measure with high accuracy.

ところで、専用試料100の高さが図5(a)に一点鎖線で示す正規高さからdZずれると、専用試料100の表面の照射スポットSPの位置は、専用試料100の高さが正規高さである場合に比しXY平面上でdQだけずれる。投光部13aからの照射光の入射角度をαとして、dQ=dZtanαになる。上記したマーク部101,102の各個所の測定位置は、専用試料100が正規高さに存するものとして求めている。そのため、専用試料100の高さずれを生ずると、上記各個所の測定位置に誤差を生ずる。ここで、投光部13aからの照射光の光軸が、図5(b)に示す如く、X方向及びY方向に対し傾き、Y方向に対する傾斜角度がβである場合、高さずれによる照射スポットの位置ずれ量dQのX方向成分dQxはdQsinβ、Y方向成分dQyは−dQcosβになる。   By the way, when the height of the dedicated sample 100 is deviated by dZ from the normal height indicated by the one-dot chain line in FIG. 5A, the position of the irradiation spot SP on the surface of the dedicated sample 100 is the normal height of the dedicated sample 100. As compared with the case of the above, it is shifted by dQ on the XY plane. When the incident angle of the irradiation light from the light projecting unit 13a is α, dQ = dZtanα. The measurement positions at the respective positions of the mark portions 101 and 102 are determined on the assumption that the dedicated sample 100 exists at a normal height. For this reason, if the height difference of the dedicated sample 100 occurs, an error occurs in the measurement positions at the respective locations. Here, when the optical axis of the irradiation light from the light projecting unit 13a is inclined with respect to the X direction and the Y direction and the inclination angle with respect to the Y direction is β as shown in FIG. The X-direction component dQx of the spot displacement dQ is dQsinβ, and the Y-direction component dQy is −dQcosβ.

そこで、本実施形態では、照射スポットSPの走査軌跡に交差する各マーク部101,102の個所の高さを高さ測定器13で測定し、高さずれ量dZから上記の如く求められるdQxとdQyを該個所の測定位置のX座標とY座標に加算して測定位置を補正している。   Therefore, in the present embodiment, the height of each mark portion 101, 102 that intersects the scanning locus of the irradiation spot SP is measured by the height measuring device 13, and dQx obtained as described above from the height deviation amount dZ. The measurement position is corrected by adding dQy to the X and Y coordinates of the measurement position.

以上の処理は、高さ測定器13の高さ信号処理部13cから出力される高さ信号と、受光量信号と、ステージ位置測定器12からステージ制御部8を介して出力されるステージ位置信号とを入力する全体制御部10(図1参照)で行われる。全体制御部10では、測定からマーク位置算出および載置位置算出までを行うアプリケーションソフトウェア接続される。ここで、電子ビーム描画装置の構成が、各制御部とのデータ入出力にイーサネット(登録商標)を用いた双方向のTCP/IP接続で行われる場合、ネットワーク内に存在する端末に本アプリケーションソフトウェアを設置すれば、同様の処理を行うことは可能であり、全体制御部のみで実行することに限定されない。   The above processing includes the height signal output from the height signal processing unit 13c of the height measuring device 13, the received light amount signal, and the stage position signal output from the stage position measuring device 12 via the stage control unit 8. Is performed by the overall control unit 10 (see FIG. 1). The overall control unit 10 is connected to application software for performing from measurement to mark position calculation and placement position calculation. Here, when the configuration of the electron beam drawing apparatus is performed by bidirectional TCP / IP connection using Ethernet (registered trademark) for data input / output with each control unit, the application software is installed on a terminal existing in the network. If it is installed, it is possible to perform the same processing, and the present invention is not limited to being executed only by the overall control unit.

以下、図6を参照して、全体制御部10のアプリケーションソフトウェアで行う処理について説明する。先ず、第1マーク部101の測定された2個所x1、x2の座標(Xx1,Yx1)、(Xx2,Yx2)から第1マーク部101に合致する第1の直線L1(2個所x1、x2を結ぶ直線)の方程式を算出すると共に、第2マーク部102の測定された2個所y1、y2の座標(Xy1,Yy1)、(Xy2,Yy2)から第2マーク部102に合致する第2の直線L2(2個所y1、y2を結ぶ直線)の方程式を算出する。   Hereinafter, with reference to FIG. 6, processing performed by the application software of the overall control unit 10 will be described. First, from the measured coordinates (Xx1, Yx1) and (Xx2, Yx2) of the two locations x1 and x2 of the first mark portion 101, the first straight line L1 (two locations x1 and x2) that matches the first mark portion 101 is obtained. A second straight line that matches the second mark portion 102 from the coordinates (Xy1, Yy1), (Xy2, Yy2) of the two measured positions y1, y2 of the second mark portion 102. An equation of L2 (a straight line connecting two locations y1 and y2) is calculated.

次に、第1の直線L1と第2の直線L2との交点Oの位置を求め、この位置からステージ5に対する専用試料100の載置位置の正規位置からのX方向及びY方向のずれ量を算出する。更に、第1の直線L1のY方向に対する傾斜角θ1と、第2の直線L2のX方向に対する傾斜角θ2とを平均して、専用試料100のZ方向の軸線回りの回転ずれ量θを算出する。尚、傾斜角θ1と傾斜角θ2は基本的に等しくなるはずであり、両傾斜角θ1、θ2の一方から回転ずれ量θを求めてもよい。但し、各マーク部101,102の上記箇所の測定誤差により、第1と第2の両直線L1,L2が直交しない場合もあり、測定精度向上のためには両傾斜角θ1、θ2を平均して回転ずれ量θを求めることが望ましい。   Next, the position of the intersection point O between the first straight line L1 and the second straight line L2 is obtained, and the deviation amount in the X direction and the Y direction from the normal position of the mounting position of the dedicated sample 100 with respect to the stage 5 is obtained from this position. calculate. Further, the inclination angle θ1 of the first straight line L1 with respect to the Y direction and the inclination angle θ2 of the second straight line L2 with respect to the X direction are averaged to calculate the rotational deviation amount θ around the axis of the dedicated sample 100 in the Z direction. To do. Note that the inclination angle θ1 and the inclination angle θ2 should be basically equal, and the rotational deviation amount θ may be obtained from one of the both inclination angles θ1 and θ2. However, there are cases where the first and second straight lines L1 and L2 are not orthogonal due to the measurement error at the above-mentioned locations of the mark portions 101 and 102. In order to improve the measurement accuracy, the inclination angles θ1 and θ2 are averaged. Thus, it is desirable to obtain the rotational deviation amount θ.

上記で算出された試料載置位置のX方向及びY方向のずれ量は、ステージ制御部8にフィードバックされる。ステージ制御部8は、試料載置時におけるステージ5の位置をX方向及びY方向にこのずれ量分だけ変位させる補正を行う。これにより、試料Wをステージ5に正規位置からのX方向及びY方向のずれを生じないように載置できる。   The deviation amounts in the X direction and Y direction of the sample placement position calculated as described above are fed back to the stage control unit 8. The stage control unit 8 performs correction to shift the position of the stage 5 at the time of placing the sample in the X direction and the Y direction by this amount of deviation. Accordingly, the sample W can be placed on the stage 5 so as not to cause a deviation in the X direction and the Y direction from the normal position.

尚、ステージ5に対する試料載置位置が正規位置からX方向及びY方向にずれていても、試料Wに描画するパターンの位置をこのずれ量分だけX方向及びY方向にシフトし、或いは、描画時のステージ5の位置をこのずれ量分だけX方向及びY方向にシフトすることで対処できるから、試料載置時におけるステージ5の位置を補正することは必要不可欠ではない。   Even if the sample placement position with respect to the stage 5 is deviated from the normal position in the X direction and the Y direction, the position of the pattern drawn on the sample W is shifted in the X direction and the Y direction by this deviation amount, or the drawing is performed. Since the position of the stage 5 can be dealt with by shifting the position of the stage 5 in the X direction and the Y direction by this amount of deviation, it is not indispensable to correct the position of the stage 5 when placing the sample.

また、上記で算出された試料載置位置の回転ずれ量θは、ロボット制御部9にフィードバックされる。そして、搬送ロボット6の制御データを、試料載置時の搬送ロボット6の回転軸6aの回転角度が回転ずれ量θ分加算した角度になるように補正する。これにより、試料Wをステージ5に正規位置からの回転ずれを生じないように載置できる。   Further, the rotation deviation amount θ of the sample placement position calculated above is fed back to the robot controller 9. Then, the control data of the transfer robot 6 is corrected so that the rotation angle of the rotation shaft 6a of the transfer robot 6 when the sample is placed is an angle obtained by adding the rotation deviation amount θ. Thereby, the sample W can be placed on the stage 5 so as not to cause a rotational deviation from the normal position.

尚、回転軸6aの回転角度を回転ずれ量θ分だけ補正すると、図7に示す如く、試料WがX方向にΔXだけ変位し、Y方向にΔYだけ変位する。尚、回転軸6aの中心から試料Wの中心までの距離をRとして、ΔX=Rtanθ、ΔY=R(1−cosθ)になる。   When the rotation angle of the rotation shaft 6a is corrected by the rotation deviation amount θ, the sample W is displaced by ΔX in the X direction and by ΔY in the Y direction as shown in FIG. Note that ΔX = Rtan θ and ΔY = R (1−cos θ) where R is the distance from the center of the rotating shaft 6a to the center of the sample W.

この場合、試料載置時におけるステージ5の位置を、上述した試料載置位置のX方向ずれ量に回転軸6aの回転角度補正による試料WのX方向変位量ΔXを加算した分だけX方向に補正すれば、ステージ5に対する試料載置位置のX方向のずれを除去することができる。   In this case, the position of the stage 5 at the time of sample mounting is set in the X direction by the amount obtained by adding the X-direction displacement amount ΔX of the sample W by the rotation angle correction of the rotation shaft 6a to the X-direction deviation amount of the sample mounting position described above. If corrected, it is possible to remove the deviation of the sample placement position with respect to the stage 5 in the X direction.

同様に、試料載置時におけるステージ5の位置を上述した試料載置位置のY方向のずれ量に回転軸6aの回転角度補正によるY方向変位量ΔYを加算した分だけY方向に補正すれば、ステージ5に対する試料載置位置のY方向のずれを除去することができる。   Similarly, if the position of the stage 5 at the time of sample placement is corrected in the Y direction by an amount obtained by adding the Y-direction displacement amount ΔY by the rotation angle correction of the rotary shaft 6a to the above-described amount of deviation in the Y direction of the sample placement position. The deviation of the sample placement position with respect to the stage 5 in the Y direction can be removed.

尚、試料載置時には、搬送ロボット6のロボットアーム6bの伸縮方向がY方向と平行になる。従って、試料載置時のロボットアーム6bの伸縮量を回転軸6aの回転角度補正によるY方向変位量ΔY分だけ補正して、回転軸6aの中心から試料Wの中心までの距離RをΔY分短縮することにより、ステージ5に対する試料載置位置のY方向のずれを除去することも可能である。   When the sample is placed, the expansion / contraction direction of the robot arm 6b of the transfer robot 6 is parallel to the Y direction. Therefore, the amount of expansion / contraction of the robot arm 6b when the sample is placed is corrected by the Y-direction displacement amount ΔY by the rotation angle correction of the rotation shaft 6a, and the distance R from the center of the rotation shaft 6a to the center of the sample W is ΔY. By shortening, it is also possible to remove the deviation in the Y direction of the sample placement position with respect to the stage 5.

その後は、試料Wを搬送ロボット6によりにステージ5上に搬送して載置し、試料Wにパターンを描画して、その描画結果から搬送精度を評価し、最終的な調整を行う。ここで、上記の如く試料載置位置を測定して、測定結果に基づき試料載置位置の補正を行っているため、容易に最終調整を行うことができる。また、定期的に、専用試料100をステージ5上に搬送して載置することにより、描画することなく搬送精度確認を行うことができる。   Thereafter, the sample W is transported and placed on the stage 5 by the transport robot 6, a pattern is drawn on the sample W, transport accuracy is evaluated from the drawing result, and final adjustment is performed. Here, since the sample placement position is measured as described above and the sample placement position is corrected based on the measurement result, the final adjustment can be easily performed. Further, by regularly transporting and placing the dedicated sample 100 on the stage 5, it is possible to check the transport accuracy without drawing.

また、本実施形態では、試料載置位置をステージ位置測定器12と高さ測定器13とを用いて測定できる。そして、試料載置位置を測定するための新たな計測ツールを描画装置に設ける必要がないため、描画装置が複雑化して高価になることを回避できる。   In the present embodiment, the sample placement position can be measured using the stage position measuring device 12 and the height measuring device 13. And since it is not necessary to provide a new measuring tool for measuring the sample placement position in the drawing apparatus, it is possible to avoid the drawing apparatus from becoming complicated and expensive.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、回転ずれ量θを搬送ロボット6の回転軸6aの回転角度補正で除去するようにしたが、試料Wを定位置に位置決めした状態で搬送ロボット6に受け渡すアライメント部たるアライメント室4での試料Wの位置を、回転ずれ量θ分だけ回転補正して、回転ずれ量θを除去することも可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above-described embodiment, the rotational deviation amount θ is removed by correcting the rotation angle of the rotation shaft 6a of the transport robot 6, but it is an alignment unit that delivers the sample W to the transport robot 6 with the sample W positioned at a fixed position. It is also possible to remove the rotational deviation amount θ by correcting the rotation of the position of the sample W in the alignment chamber 4 by the rotational deviation amount θ.

また、上記実施形態では、各マーク部101,102の2個所の位置を測定するようにしたが、各マーク部101,102の3つ以上の個所の位置を測定し、これら3つ以上の個所から回帰法によって各マーク部101,102に合致する直線を求めるようにしてもよい。更に、上記実施形態は、電子ビームを照射する電子ビーム描画装置における試料載置位置の測定に本発明を適用したものであるが、イオンビーム等の他の荷電粒子ビームを照射する描画装置にも同様に本発明を適用できる。   Further, in the above-described embodiment, the positions of the two mark portions 101 and 102 are measured. However, the positions of three or more mark portions 101 and 102 are measured, and these three or more points are measured. From these, a straight line that matches each of the mark portions 101 and 102 may be obtained by a regression method. Further, in the above-described embodiment, the present invention is applied to the measurement of the sample placement position in the electron beam lithography apparatus that irradiates the electron beam, but also in the lithography apparatus that irradiates other charged particle beams such as an ion beam. Similarly, the present invention can be applied.

本発明の実施に用いる荷電粒子ビーム描画装置の一例である電子ビーム描画装置の構成を示す概念図。The conceptual diagram which shows the structure of the electron beam drawing apparatus which is an example of the charged particle beam drawing apparatus used for implementation of this invention. 図1の描画装置の描画室及び搬送室の部分の概略平面図。FIG. 2 is a schematic plan view of a drawing chamber and a transfer chamber portion of the drawing apparatus of FIG. 1. (a)専用試料及び照射スポットの走査軌跡を示す説明図、(b)専用試料の断面図。(a) Explanatory drawing which shows the scanning locus | trajectory of an exclusive sample and an irradiation spot, (b) Sectional drawing of an exclusive sample. 照射スポットの位置と受光量との関係を示す説明図。Explanatory drawing which shows the relationship between the position of an irradiation spot, and the amount of received light. 専用試料の高さずれによる誤差の発生原因を示す説明図。Explanatory drawing which shows the cause of the generation | occurrence | production of the error by the height shift of an exclusive sample. 専用試料の載置位置の算出方法を示す説明図。Explanatory drawing which shows the calculation method of the mounting position of an exclusive sample. 搬送ロボットの回転軸の回転角度補正に伴うステージの位置補正を示す説明図。Explanatory drawing which shows position correction of the stage accompanying rotation angle correction | amendment of the rotating shaft of a conveyance robot.

符号の説明Explanation of symbols

W…試料、1…描画室、2…電子鏡筒(ビーム照射手段)、3…搬送室、4…アライメント室(アライメント部)、5…ステージ、5a、5b…ステージミラー、6…搬送ロボット、6a…回転軸、6b…ロボットアーム、6c…ロボットハンド、7…照射制御部、8…ステージ制御部、9…ロボット制御部、10…全体制御部、11…第1メモリ、11…第2メモリ、12…ステージ位置測定器、12a、12b…レーザー測長計、13…高さ測定器、13a…投光部、13b…受光部、13c…高さ信号処理部、100…専用試料、101…第1マーク部(一方のマーク部)、102…第2マーク部(他方のマーク部)、103…ガラス基板、104…遮光膜、X1、X2、Y1、Y2…測定位置、L1、L2…マーク部に合致する直線、θ…回転ずれ量、ΔX…回転角度補正による試料のX方向変位量、ΔY…回転角度補正による試料のY方向変位量、R…ロボット回転軸から試料中心までの距離、dz…正規高さと測定箇所の高さずれ量、dQ…dzによるスポット位置ずれ量、α…高さ測定器のXY平面に対する光の入射角、β…Y方向に対する高さ測定器の光軸設置角。 W ... Sample, 1 ... Drawing chamber, 2 ... Electronic column (beam irradiation means), 3 ... Transport chamber, 4 ... Alignment chamber (alignment unit), 5 ... Stage, 5a, 5b ... Stage mirror, 6 ... Transport robot, 6a ... Rotating shaft, 6b ... Robot arm, 6c ... Robot hand, 7 ... Illumination control unit, 8 ... Stage control unit, 9 ... Robot control unit, 10 ... Overall control unit, 11 1 ... First memory, 11 2 ... First 2 memory, 12 ... stage position measuring device, 12a, 12b ... laser length meter, 13 ... height measuring device, 13a ... light projecting unit, 13b ... light receiving unit, 13c ... height signal processing unit, 100 ... dedicated sample, 101 ... 1st mark part (one mark part), 102 ... 2nd mark part (the other mark part), 103 ... Glass substrate, 104 ... Light shielding film, X1, X2, Y1, Y2 ... Measurement position, L1, L2 ... Straight line that matches the mark, θ Amount of rotation deviation, ΔX: Amount of displacement in the X direction of the sample by correcting the rotation angle, ΔY: Amount of displacement of the sample in the Y direction by correcting the rotation angle, R: A distance from the rotation axis of the robot to the center of the sample, dz: A normal height and Height deviation amount, spot position deviation amount due to dQ ... dz, α ... incident angle of light with respect to XY plane of height measuring device, β ... optical axis installation angle of height measuring device with respect to Y direction.

Claims (5)

互いに直交する水平なX方向及びY方向に移動自在なステージと、ステージ上に載置した試料に荷電粒子ビームを照射するビーム照射手段と、ステージのX方向及びY方向の位置を測定するステージ位置測定器と、光を試料の表面に斜め上方から収束して照射する投光部と、試料からの反射光を受光して反射光の位置を検出する受光部とを有し、反射光の位置から試料の高さを測定する高さ測定器と、ステージ上に試料を搬送して載置する搬送ロボットとを備える荷電粒子ビーム描画装置における試料の載置位置測定方法であって、
試料として、表面に、光の反射率が他の部分とは異なる、互いに直交する方向にのびる線状の2本のマーク部を形成した専用試料を用い、
搬送ロボットにより専用試料をステージ上に搬送して載置した後、ステージをX方向に移動させつつ、高さ測定器の投光部からの光を専用試料の表面に照射して、光の照射スポットを一方のマーク部に交差するように走査し、高さ測定器の受光部による反射光の受光量の変化に基づいて、照射スポットの走査軌跡に交差する一方のマーク部の個所の位置を測定することをステージのY方向位置を変えて少なくとも2回行って、一方のマーク部の少なくとも2個所の位置を測定する工程と、
ステージをY方向に移動させつつ、高さ測定器の投光部からの光を専用試料の表面に照射して、光の照射スポットを他方のマーク部に交差するように走査し、高さ測定器の受光部による反射光の受光量の変化に基づいて、照射スポットの走査軌跡に交差する他方のマーク部の個所の位置を測定することをステージのX方向位置を変えて少なくとも2回行って、他方のマーク部の少なくとも2個所の位置を測定する工程と、
一方のマーク部の測定した少なくとも2個所の位置から一方のマーク部に合致する第1の直線を算出すると共に、他方のマーク部の測定した少なくとも2個所の位置から他方のマーク部に合致する第2の直線を算出する工程と、
第1の直線と第2の直線との交点の位置からステージに対する試料の載置位置のX方向及びY方向のずれ量を算出する工程と、
第1の直線のY方向に対する傾斜角と第2の直線のX方向に対する傾斜角との少なくとも一方から試料の載置位置の回転ずれ量を算出する工程とを実行することを特徴とする荷電粒子ビーム描画装置における試料の載置位置測定方法。
A stage movable in the horizontal X and Y directions perpendicular to each other, a beam irradiation means for irradiating a charged particle beam to a sample placed on the stage, and a stage position for measuring the position of the stage in the X and Y directions A measuring device; a light projecting unit that irradiates and irradiates light onto the surface of the sample obliquely from above; and a light receiving unit that receives reflected light from the sample and detects the position of the reflected light. A sample placement position measurement method in a charged particle beam drawing apparatus comprising a height measuring device for measuring the height of a sample from a transport robot for transporting and placing a sample on a stage,
As a sample, a dedicated sample in which two linear mark portions extending in directions orthogonal to each other and having a light reflectance different from that of other portions is formed on the surface,
After the dedicated sample is transported and placed on the stage by the transport robot, the surface is moved in the X direction, and the light from the light projecting part of the height measuring device is irradiated onto the surface of the dedicated sample to irradiate the light. Scan the spot so that it crosses one mark, and based on the change in the amount of reflected light received by the light receiving part of the height measuring device, locate the position of one mark that crosses the scanning locus of the irradiation spot. Measuring at least two times by changing the position of the stage in the Y direction and measuring at least two positions of one mark part; and
While moving the stage in the Y direction, irradiate the surface of the dedicated sample with light from the light projecting part of the height measuring device, scan the light irradiation spot so that it intersects the other mark part, and measure the height Based on the change in the amount of reflected light received by the light receiving portion of the detector, the position of the other mark portion that intersects the scanning locus of the irradiation spot is measured at least twice by changing the position in the X direction of the stage. Measuring at least two positions of the other mark portion;
A first straight line that matches one mark portion is calculated from at least two measured positions of one mark portion, and a first straight line that matches the other mark portion from at least two measured positions of the other mark portion is calculated. Calculating a straight line of 2;
Calculating a deviation amount in the X direction and Y direction of the mounting position of the sample with respect to the stage from the position of the intersection of the first straight line and the second straight line;
A step of calculating a rotational displacement amount of the sample mounting position from at least one of an inclination angle of the first straight line with respect to the Y direction and an inclination angle of the second straight line with respect to the X direction. A sample mounting position measuring method in a beam drawing apparatus.
前記照射スポットの走査軌跡に交差する前記各マーク部の個所の高さを前記高さ測定器で測定し、該個所の高さの基準高さに対するずれ量に応じて該個所の測定位置を補正することを特徴とする請求項1記載の荷電粒子ビーム描画装置における試料の載置位置測定方法。 The height of each mark portion that intersects the scanning locus of the irradiation spot is measured by the height measuring device, and the measurement position of the location is corrected according to the amount of deviation of the height of the location from the reference height. 2. A method for measuring a mounting position of a sample in a charged particle beam writing apparatus according to claim 1, wherein 求項1又は2記載の載置位置測定方法で算出された前記回転ずれ量を搬送ロボットの制御部にフィードバックし、搬送ロボットの制御データを回転ずれ量が除去されるように補正することを特徴とする荷電粒子ビーム描画装置における試料の載置位置補正方法。 Motomeko 1 or 2 wherein the rotational displacement amount calculated by the placement position measuring method according to feedback to the control unit of the transfer robot, so as to correct the control data of the transfer robot as rotational deviation amount is removed A method for correcting a placement position of a sample in a charged particle beam drawing apparatus. 請求項3記載の荷電粒子ビーム描画装置における試料の載置位置補正方法であって、前記搬送ロボットは、X方向及びY方向に直交するZ方向の軸線回りに回転自在な回転軸と、回転軸に固定された座標系の水平な1軸方向であって、試料載置時にY方向に平行になる方向に伸縮自在なロボットアームとを備える極座標型ロボットで構成され、
試料載置時の搬送ロボットの回転軸の回転角度を前記回転ずれ量分だけ補正すると共に、試料載置時のステージの位置をX方向に回転軸の回転角度補正による試料のX方向変位量分だけ補正し、更に、試料載置時のステージの位置をY方向に回転軸の回転角度補正による試料のY方向変位量分だけ補正するか、又は、ロボットアームの伸縮量を回転軸の回転角度補正による試料のY方向変位量分だけ補正することを特徴とする荷電粒子ビーム描画装置における試料の載置位置補正方法。
4. The method of correcting a sample placement position in a charged particle beam drawing apparatus according to claim 3, wherein the transfer robot is configured to rotate around a Z-direction axis orthogonal to the X and Y directions, and a rotation axis. A polar coordinate type robot having a horizontal one-axis direction of a coordinate system fixed to the robot, and a robot arm that can expand and contract in a direction parallel to the Y direction when a sample is placed,
The rotation angle of the rotation axis of the transfer robot when the sample is placed is corrected by the amount of the rotational deviation, and the position of the stage when the sample is placed is set in the X direction by the amount of displacement of the sample in the X direction by correcting the rotation angle of the rotation axis In addition, the position of the stage when the sample is placed is corrected in the Y direction by the amount of displacement of the sample in the Y direction by correcting the rotation angle of the rotation axis, or the expansion / contraction amount of the robot arm is adjusted to the rotation angle of the rotation axis. A method for correcting a placement position of a sample in a charged particle beam drawing apparatus, wherein the amount is corrected by the amount of displacement of the sample in the Y direction.
試料載置時における前記ステージの位置を、請求項1又は2記載の載置位置測定方法で算出された前記X方向及びY方向のずれ量分だけX方向及びY方向に補正することを特徴とする請求項3または4記載の荷電粒子ビーム描画装置における試料の載置位置補正方法。   The position of the stage at the time of sample mounting is corrected in the X direction and the Y direction by the amount of deviation in the X direction and Y direction calculated by the mounting position measuring method according to claim 1 or 2. A method for correcting a placement position of a sample in the charged particle beam drawing apparatus according to claim 3.
JP2008243373A 2008-09-22 2008-09-22 Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus Active JP5401065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243373A JP5401065B2 (en) 2008-09-22 2008-09-22 Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243373A JP5401065B2 (en) 2008-09-22 2008-09-22 Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus

Publications (2)

Publication Number Publication Date
JP2010074110A JP2010074110A (en) 2010-04-02
JP5401065B2 true JP5401065B2 (en) 2014-01-29

Family

ID=42205588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243373A Active JP5401065B2 (en) 2008-09-22 2008-09-22 Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus

Country Status (1)

Country Link
JP (1) JP5401065B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020209638B3 (en) 2020-07-30 2021-11-11 Carl Zeiss Smt Gmbh METHOD AND DEVICE FOR DETERMINING AN ORIENTATION OF A PHOTO MASK ON A SAMPLE TABLE WHICH IS SLIDED ALONG AT LEAST ONE AXIS AND ROTATABLE ABOUT AT LEAST ONE AXIS
JP2022110461A (en) * 2021-01-18 2022-07-29 株式会社ニューフレアテクノロジー Charged particle beam drawing device and its adjustment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255020A (en) * 1985-05-07 1986-11-12 Toshiba Corp Method for detection of mark in charged beam exposing device
JP2936885B2 (en) * 1992-03-31 1999-08-23 キヤノン株式会社 Alignment method and projection exposure apparatus using the same
JPH1197512A (en) * 1997-07-25 1999-04-09 Nikon Corp Positioning apparatus and method and storage medium capable of computer-reading of positioning programs
JP2002280287A (en) * 2001-03-19 2002-09-27 Nikon Corp Method and device for detecting position, method and device for exposure, and method of manufacturing device

Also Published As

Publication number Publication date
JP2010074110A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5744601B2 (en) Electron beam drawing apparatus and device manufacturing method
US20030090675A1 (en) Interferometric methods and apparatus for determining object position while taking into account rotational displacements and warping of interferometer mirrors on the object
CN113015595A (en) Method and computer program product for OCT measurement beam adjustment
KR20110072440A (en) Maskless exposure apparatus and its multihead calibration method
JP2009069151A (en) Means and method for determining space position of transfer element in coordinate measuring device
JP5401065B2 (en) Method for measuring sample mounting position and method for correcting mounting position in charged particle beam drawing apparatus
US20110089346A1 (en) Method and system for pattern writing with charged-particle beam
CN103293865A (en) Workpiece platform position error measurement and pre-compensation method
US6813022B2 (en) Interferometer system
JP2009025304A (en) Method for determining correction value for measured value of structural position on substrate
KR102072472B1 (en) Stage mechanism position correcting method and charged particle beam writing apparatus
JP5552263B2 (en) Substrate position measuring method for charged particle beam drawing apparatus and charged particle beam drawing apparatus
JP2950283B2 (en) Electron beam alignment method and apparatus
US20150155137A1 (en) Method for measuring inclination of beam, drawing method, drawing apparatus, and method of manufacturing object
US20220308468A1 (en) Method for determining a center of a radiation spot, sensor and stage apparatus
KR20230043922A (en) Method and apparatus for determining alignment of a photomask on a sample stage displaceable along at least one axis and rotatable about at least one axis
JP2001326170A (en) Adjusting method for beam processing apparatus
JP2001077005A (en) Charged particle beam aligner and manufacture of semiconductor device utilizing the same
US6490026B1 (en) Method and system for aligning object to be processed with predetermined target article
JP2022176736A (en) Component mounting device and component mounting method
JP3744107B2 (en) Stage moving device
JP2003227713A (en) Three-dimensional shape measuring apparatus and its error calibration method
JPH04317317A (en) Apparatus and method for pattern transfer
JPH01286420A (en) Stage position controlling equipment
JPH01144626A (en) Alignment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5401065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250