[go: up one dir, main page]

JP5384634B2 - シフトレジスタ、表示駆動回路、表示パネル、表示装置 - Google Patents

シフトレジスタ、表示駆動回路、表示パネル、表示装置 Download PDF

Info

Publication number
JP5384634B2
JP5384634B2 JP2011519492A JP2011519492A JP5384634B2 JP 5384634 B2 JP5384634 B2 JP 5384634B2 JP 2011519492 A JP2011519492 A JP 2011519492A JP 2011519492 A JP2011519492 A JP 2011519492A JP 5384634 B2 JP5384634 B2 JP 5384634B2
Authority
JP
Japan
Prior art keywords
signal
stage
terminal
circuit
shift register
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011519492A
Other languages
English (en)
Other versions
JPWO2010146753A1 (ja
Inventor
寛幸 大河
寧 佐々木
祐一郎 村上
成 古田
真 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011519492A priority Critical patent/JP5384634B2/ja
Publication of JPWO2010146753A1 publication Critical patent/JPWO2010146753A1/ja
Application granted granted Critical
Publication of JP5384634B2 publication Critical patent/JP5384634B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356182Bistable circuits using complementary field-effect transistors with additional means for controlling the main nodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0245Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/063Waveforms for resetting the whole screen at once
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/027Arrangements or methods related to powering off a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、シフトレジスタおよび各種表示ドライバに関する。
特許文献1(図34参照)には、ゲートドライバに含まれるシフトレジスタの各段の出力をNANDに入力するとともに該NANDにDCG信号を入力し、NANDの出力を走査信号線に供給する構成が開示されている。この構成では、液晶表示装置の電源ON・OFF時にDCG信号をアクティブにすることで、全走査信号線を同時選択し、全画素にVcom(共通電極電位)を書き込むことができる。
日本国公開特許公報「特開2000−347627号(公開日 2000年12月15日)」
上記従来の構成では、シフトレジスタの出力およびDCG信号を入力するNANDと、同時選択の後にシフトレジスタを初期化するための構成(初期化信号の生成回路や送信ライン等)とが必要となり、ゲートドライバの小型化を阻んでいた。
本発明の目的は、表示駆動回路(各種表示ドライバ)の小型化を実現するシフトレジスタを提供する点にある。
本シフトレジスタは、例えば所定のタイミングで複数の信号線の同時選択を行う表示駆動回路に用いられるシフトレジスタであって、各段に、初期化用端子を含むフリップフロップと、同時選択信号が入力され、上記フリップフロップの出力を用いて自段の出力信号を生成する信号生成回路とを備え、各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、フリップフロップの初期化用端子がアクティブである期間は、(該フリップフロップの)他の入力端子の状態にかかわらず該フリップフロップの出力が非アクティブとなり、上記初期化用端子に同時選択信号が入力されていることを特徴とする。
上記構成によれば、同時選択信号をシフトレジスタの初期化のための信号として用いることができるため、シフトレジスタを初期化するための信号を別途生成して各段に入力する必要がなくなる。これにより、シフトレジスタを用いる表示駆動回路(各種の表示ドライバ)を小型化することができる。
本発明によれば、表示駆動回路(表示ドライバ)の小型化を実現することができる。
本実施の形態1にかかる液晶表示装置の構成を示す模式図である。 図1に示す液晶表示装置のシフトレジスタの一部を示す回路図である。 図2に示すシフトレジスタのフリップフロップの回路図(a)、および真理値表(b)である。 図1の液晶表示装置の駆動方法(電源ON時)を示すタイミングチャートである。 図1の液晶表示装置の駆動方法(電源OFF時)を示すタイミングチャートである。 図1の液晶表示装置の駆動方法(強制遮断時)を示すタイミングチャートである。 本実施の形態1にかかる液晶表示装置の他の構成を示す模式図である。 図2に示すシフトレジスタの変形例を示す回路図である。 図8に示すシフトレジスタのフリップフロップの回路図(a)、および真理値表(b)である。 本実施の形態1にかかる液晶表示装置のさらに他の構成を示す模式図である。 図10に示す液晶表示装置のシフトレジスタの一部を示す回路図である。 図11に示すシフトレジスタのフリップフロップの回路図(a)、および真理値表(b)である。 図10の液晶表示装置の駆動方法(電源ON時)を示すタイミングチャートである。 本実施の形態1にかかる液晶表示装置のさらに他の構成を示す模式図である。 図14に示す液晶表示装置のシフトレジスタの一部を示す回路図である。 図15に示すシフトレジスタのフリップフロップの回路図(a)、動作タイミングチャート(b)および真理値表(c)である。 図14の液晶表示装置の駆動方法(電源ON時)を示すタイミングチャートである。 図15の変形例を示す回路図である。 本実施の形態2にかかる液晶表示装置の構成を示す模式図である。 図19に示す液晶表示装置のシフトレジスタの一部を示す回路図である。 図19の液晶表示装置の駆動方法(電源ON時)を示すタイミングチャートである。 図20のNANDの具体的構成を示す回路図である。 本実施の形態3にかかる液晶表示装置の構成を示す模式図である。 図23に示す液晶表示装置のシフトレジスタの各段を示す回路図である。 図23に示す液晶表示装置のG−CSドライバのDラッチ回路を示す回路図である。 図23の液晶表示装置の駆動方法を示すタイミングチャートである。 図23の液晶表示装置の駆動方法を示すタイミングチャートである。 本実施の形態4にかかる液晶表示装置の構成を示す模式図である。 図28の液晶表示装置の駆動方法を示すタイミングチャートである。 図28の液晶表示装置の駆動方法を示すタイミングチャートである。 シフトレジスタの各段の構成例を示す回路図である。 本実施の形態5にかかる液晶表示装置の構成を示す模式図である。 図32に示す液晶表示装置のシフトレジスタの一部を示す回路図である。 従来のシフトレジスタの構成を示す回路図である。
本発明の実施の形態を図1〜図33に基づいて説明すれば以下のとおりである。なお、以下では、セットリセット型フリップフロップ(以下、適宜FFと略記)のセット用端子(S端子またはSB端子)にはセット用信号(S信号またはSB信号)が入力され、リセット用端子(R端子またはRB端子)にはリセット用信号(R信号またはRB信号)が入力されるものとし、出力端子(Q端子)からはQ信号が出力され、反転出力端子(QB端子)からはQB信号が出力されるものとする。なお、高電位側電源(VDD)の電位をVdd(以下、適宜Highと記載)とし、低電位側電源(VSS)の電位をVss(以下、適宜Lowと記載)とする。S信号(セット信号)、R信号(リセット信号)、およびQ信号(出力信号)はアクティブ時にHighとなる信号であり、SB信号(セットバー信号)、RB信号(リセットバー信号)、およびQB信号(反転出力信号)はアクティブ時にLowとなる信号である。
〔実施の形態1〕
図1は本発明にかかる液晶表示装置3aの構成を示す回路図である。液晶表示装置3aは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、AON信号(同時選択信号)、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、およびゲートクロック信号GCK1・GCK2を供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n−1・n・n+1・・・)をi段SRiと略記する。
シフトレジスタのi段SRiからの出力信号(OUT信号)は、バッファを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUT信号は、バッファを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAON信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのPチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのNチャネル側ゲートがAON信号ラインに接続されている。
図2は、シフトレジスタSRの一部の具体的構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、R端子およびINIT端子を備えるセットリセット型フリップフロップFFと、2つのアナログスイッチASW1・ASW2と、インバータと、CK端子と、ON端子と、OUT端子と、OUTB端子とが含まれ、フリップフロップFFのINIT端子がON端子に接続され、FFのQ端子が、アナログスイッチASW1のPチャネル側ゲートとアナログスイッチASW2のNチャネル側ゲートとに接続され、FFのQB端子がアナログスイッチASW1のNチャネル側ゲートとアナログスイッチASW2のPチャネル側ゲートとに接続され、アナログスイッチASW1の一方の導通電極がON端子に接続されるとともに、アナログスイッチASW2の一方の導通電極がCK端子に接続され、アナログスイッチASW1の他方の導通電極と、アナログスイッチASW2の他方の導通電極とこの段の出力端子であるOUT端子とが接続され、OUT端子がインバータを介してOUTB端子に接続されている。
シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUT端子が自段のR端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、(n+1)段SRn+1のOUT端子がn段SRnのR端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、各段のON端子がAON信号ラインに接続され、奇数段のCK端子と偶数段のCK端子とが異なるGCKライン(GCKを供給するライン)に接続されている。例えば、n段SRnのCK端子はGCK2信号ラインに接続され、(n+1)段SRn+1のCK端子はGCK1信号ラインに接続されている。
図2のフリップフロップFFには、図3に示すFF1を用いている。同図に示すように、フリップフロップFF1は、CMOS回路を構成するPチャネルトランジスタp84およびNチャネルトランジスタn84と、CMOS回路を構成するPチャネルトランジスタp85およびNチャネルトランジスタn85と、Pチャネルトランジスタp81・p82・p83と、Nチャネルトランジスタn82・n83・n99と、SB端子と、R端子と、Q端子・QB端子とを備え、p84のゲートとn84のゲートとp85のドレインとn85のドレインとQB端子とが接続されるとともに、p84のドレインとn84のドレインとp81のドレインとn82のドレインとp85のゲートとn85のゲートとn99のドレインとQ端子とが接続され、n84のソースとn83のドレインとが接続され、p84のソースとp83のドレインとが接続され、p81のソースとp82のドレインとが接続され、INIT端子がn99のゲートに接続され、SB端子がp81のゲートとn83のゲートとに接続され、R端子がn82のゲートとp82のゲートとp83のゲートとに接続され、n85のソースがVSSに接続され、p82、p83およびp85のソースがVDDに接続され、n82、n99およびn83のソースがVSSに接続されている構成である。ここでは、p84、n84、p85およびn85がラッチ回路LCを構成し、p81がセットトランジスタST、n82がリセットトランジスタRT、p83およびn83それぞれがラッチ解除トランジスタLRT、p82が優先決定トランジスタPDTとして機能する。
図3(b)はFF1の真理値表である。図3(b)に示されるように、FF1のQ信号は、SB信号がHigh(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、SB信号がLow(アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)となる。また、フリップフロップFF1では、INIT端子がHigh(アクティブ)の期間にSB信号およびR信号がともにアクティブになった場合、n82・n99・p85がONしてQ信号はLowでQB信号はHigh(非アクティブ)となる。
図4〜図6は、液晶表示装置3aの、電源ON時、電源OFF時、および強制遮断時それぞれの駆動方法を示すタイミングチャートである。なお、各図中、AONはAON信号(同時選択信号)、GSPBはゲートスタートパルスバー信号、GCK1はGCK1信号、GCK2はGCK2信号を意味し、SBi、Ri、Qi、およびOUTi(i=n−1・n・n+1)はそれぞれ、i段SRiにおけるSB信号(SB端子の電位)、R信号(R端子の電位)、Q信号(Q端子の電位)およびOUT信号(OUT端子の電位)を意味する。
液晶表示装置3aでは、電源ON・OFF時に以下の準備動作が行われる。具体的には、AON信号が所定期間アクティブ(High)とされる。シフトレジスタSRの各段ではASW1がONしているため、これにより全段のOUT信号がアクティブ(High)となって、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップでは、AON信号が入力されるINIT端子がアクティブ(High)となるため、Q信号はLow(非アクティブ)でQB信号はHigh(非アクティブ)となる。以上の準備動作の終了後(AON信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、かつシフトレジスタSRが初期化された(各段のフリップフロップの出力が非アクティブの)状態となる。
また、液晶表示装置3aのシフトレジスタSRでは、各垂直走査期間(各フレーム表示時)に以下の動作が行われる。すなわち、自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFがセットされてQ信号がHigh(アクティブ)になり、アナログスイッチASW2を介して自段にGCK信号が取り込まれる。自段のGCK信号がアクティブ(High)になると、自段のOUT信号がアクティブ(High)になるとともに次段のSB信号がアクティブになる。これにより、次段のFFのOUT信号がアクティブになって次段にGCK信号が取り込まれる。次段のGCK信号がアクティブ(High)になると、自段のFFがリセットされてQ信号がLow(非アクティブ)となり、アナログスイッチASW1がONする。このときAON信号はLowであるため、自段のOUT信号もLow(非アクティブ)となる。
液晶表示装置3aでは、電源ON・OFF時に全走査信号線を同時選択して全画素に同電位(例えばVcom)を書き込めるため、電源ON・OFF時の画面乱れをなくすことができる。ここで、従来の構成(図34参照)と比較すると、AON信号をASW1に入力することで、図34で各段の出力信号が入力されるNANDが不要となり、さらに、FFのINIT端子にAON信号を入力することで、シフトレジスタの初期化用信号の生成・送信の構成も不要となり、ゲートドライバの小型化を実現することができる。また、全走査信号線の同時選択時にシフトレジスタの初期化(各段のフリップフロップの初期化)も実行されるため、全走査信号線を同時選択とシフトレジスタの初期化とを別々に行う従来の構成に比べて、準備動作を速やかに完了することができる。
図7は、図1のシフトレジスタSRをソースドライバ側に用いた液晶表示装置3bの構成を示す回路図である。この構成では、シフトレジスタSRの初段にソーススタートパルスSSPが入力されるとともに、各段のCK端子には、ソースクロックバー信号SCK1またはSCK2が入力される。また、i段SRiから出力されるOUT信号はサンプリング回路SACに供給され、このOUT信号によってサンプリングされたデータがDACを介して表示部DARのデータ信号線SLiに供給される。例えば、n段SRnのOUT信号はサンプリング回路SACに供給され、このOUT信号によってサンプリングされたデータがDACを介して表示部DARのデータ信号線SLnに供給される。表示部DARでは、データ信号線SLnが、PIXn内の画素電極に繋がるトランジスタのソースに接続されている。
液晶表示装置3aの各段を図8のように構成してもよい。図8のフリップフロップFFには図9に示すFF2を用いている。図9に示すように、フリップフロップFF2は、CMOS回路を構成するPチャネルトランジスタp84およびNチャネルトランジスタn84と、CMOS回路を構成するPチャネルトランジスタp85およびNチャネルトランジスタn85と、Pチャネルトランジスタp82・p83・p86・p87と、Nチャネルトランジスタn81・n82・n83・n88と、SB端子と、R端子と、Q端子・QB端子とを備え、p84のゲートとn84のゲートとp85のドレインとn85のドレインとQB端子とが接続されるとともに、p84のドレインとn84のドレインとp82のドレインとn81のドレインとp85のゲートとn85のゲートとn88のドレインとQ端子とが接続され、n84のソースとn83のドレインとが接続され、p84のソースとp83のドレインとが接続され、p83のソースとp87のドレインとが接続され、p82のソースとp86のドレインとが接続され、n81のソースとp82のドレインとが接続され、INIT端子がn88、p86およびp87それぞれのゲートに接続され、SB端子がp82のゲートとn81のゲートとn83のゲートとに接続され、R端子がn82のゲートとp83のゲートとに接続され、n85のソースがVSSに接続され、p86、p87、およびp85のソースがVDDに接続され、n82、n88およびn83のソースがVSSに接続されている構成である。
図9(b)はFF2の真理値表である。図9(b)に示されるように、FF2のQ信号は、SB信号がHigh(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、SB信号がLow(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)となる。また、フリップフロップFF2では、INIT端子がHigh(アクティブ)の期間にSB信号およびR信号がともにアクティブになった場合、p86・p87がOFF、n88・p85がONしてQ信号はLowでQB信号はHigh(非アクティブ)となる。
図8の構成では、電源ON・OFF時に以下の準備動作が行われる。具体的には、AON信号が所定期間アクティブ(High)とされる。シフトレジスタSRの各段ではASW1がONしているため、これにより全段のOUT信号がアクティブ(High)となって、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップでは、AON信号が入力されるINIT端子がアクティブ(High)となるため、Q信号はLow(非アクティブ)でQB信号はHigh(非アクティブ)となる。以上の準備動作の終了後(AONB信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、かつシフトレジスタSRが初期化された(各段のフリップフロップの出力が非アクティブの)状態となる。
図8の構成では、フリップフロップFFがリセットよりもセットが優先される構成であるため、同時選択から復帰するとき(AON信号がアクティブから非アクティブに戻るとき)にR信号よりもSB信号の方が先に非アクティブになり易い。したがって、SB信号よりもR信号の方が先に非アクティブになることで初期化後に再びセットがかかってしまう誤動作を防ぐことができる。
図10は本液晶表示装置3xの構成を示す回路図である。液晶表示装置3xは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、AONB信号(同時選択信号)、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、およびゲートクロック信号GCK1・GCK2を供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n−1・n・n+1・・・)をi段SRiと略記する。
シフトレジスタのi段SRiからの出力信号(OUT信号)は、バッファを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUT信号は、バッファを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAON信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
図11は、シフトレジスタSRの一部の具体的構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、R端子およびINITB端子を備えるセットリセット型フリップフロップFFと、2つのアナログスイッチASW13・ASW14と、インバータと、CKB端子と、ONB端子と、OUT端子と、OUTB端子とが含まれ、フリップフロップFFのINITB端子がONB端子に接続され、FFのQ端子が、アナログスイッチASW13のPチャネル側ゲートとアナログスイッチASW14のNチャネル側ゲートとに接続され、FFのQB端子がアナログスイッチASW13のNチャネル側ゲートとアナログスイッチASW14のPチャネル側ゲートとに接続され、アナログスイッチASW13の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW14の一方の導通電極がCKB端子に接続され、アナログスイッチASW13の他方の導通電極と、アナログスイッチASW14の他方の導通電極とこの段の出力端子であるOUTB端子とが接続され、OUTB端子がインバータを介してOUT端子に接続されている。
シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUT端子が自段のR端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、(n+1)段SRn+1のOUT端子がn段SRnのR端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、各段のONB端子がAONB信号ラインに接続され、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続されている。
図11のフリップフロップFFには、図12に示すFF3を用いている。同図に示すように、フリップフロップFF3は、CMOS回路を構成するPチャネルトランジスタp84およびNチャネルトランジスタn84と、CMOS回路を構成するPチャネルトランジスタp85およびNチャネルトランジスタn85と、Pチャネルトランジスタp82・p83と、Nチャネルトランジスタn81・n82・n83と、SB端子と、R端子と、Q端子・QB端子とを備え、p84のゲートとn84のゲートとp85のドレインとn85のドレインとQB端子とが接続されるとともに、p84のドレインとn84のドレインとp82のドレインとn81のドレインとp85のゲートとn85のゲートとQ端子とが接続され、n84のソースとn83のドレインとが接続され、n84のソースとn83のドレインとが接続され、n81のソースとn82のドレインとが接続され、INITB端子がp82のソースに接続され、SB端子がp82のゲートとn81のゲートとn83のゲートとに接続され、R端子がn82のゲートとp83のゲートとに接続され、n85のソースがVSSに接続され、p83およびp85のソースがVDDに接続され、n82、n83およびn85のソースがVSSに接続されている構成である。
図12(b)はFF3の真理値表である。図12(b)に示されるように、FF3のQ信号は、SB信号がHigh(非アクティブ)かつR信号がHigh(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつR信号がLow(非アクティブ)の期間に保持状態、SB信号がLow(アクティブ)かつR信号がHigh(アクティブ)の期間にHigh(アクティブ)、SB信号がLow(アクティブ)かつR信号がLow(非アクティブ)の期間にHigh(アクティブ)となる。また、フリップフロップFF3では、INITB端子がLow(アクティブ)の期間にSB信号およびR信号がともにアクティブになった場合、p85がONしてQ信号はLowでQB信号はHigh(非アクティブ)となる。また、同時選択期間(INITB信号がLowで、SB信号がLowでR信号がHighの期間)にQ信号がVss+Vth(p82の閾値電圧)でQB信号がVdd(High)となる。
図13は、液晶表示装置3xの電源ON時の駆動方法を示すタイミングチャートである。なお、各図中、AONBはAONB信号(同時選択信号)、GSPBはゲートスタートパルスバー信号、GCK1BはGCK1B信号、GCK2BはGCK2B信号を意味し、SBi、Ri、Qi、およびOUTi(i=n−1・n・n+1)はそれぞれ、i段SRiにおけるSB信号(SB端子の電位)、R信号(R端子の電位)、Q信号(Q端子の電位)およびOUT信号(OUT端子の電位)を意味する。
液晶表示装置3xでは、電源ON時に以下の準備動作が行われる。具体的には、AONB信号が所定期間アクティブ(Low)とされる。シフトレジスタSRの各段ではASW13がONしているため、これにより全段のOUT信号がアクティブ(High)となって、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップでは、AONB信号が入力されるINITB端子がアクティブ(Low)となるため、Q信号はLow(非アクティブ)でQB信号はHigh(非アクティブ)となる。以上の準備動作の終了後(AONB信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、かつシフトレジスタSRが初期化された(各段のフリップフロップの出力が非アクティブの)状態となる。
液晶表示装置3xでは、電源ON・OFF時に全走査信号線を同時選択して全画素に同電位(例えばVcom)を書き込めるため、電源ON・OFF時の画面乱れをなくすことができる。ここで、従来の構成(図34参照)と比較すると、AONB信号をASW13に入力することで、図34で各段の出力信号が入力されるNANDが不要となり、さらに、FFのINITB端子にAONB信号を入力することで、シフトレジスタの初期化用信号の生成・送信の構成も不要となり、ゲートドライバの小型化を実現することができる。また、全走査信号線の同時選択時にシフトレジスタの初期化(各段のフリップフロップの初期化)も実行されるため、全走査信号線を同時選択とシフトレジスタの初期化とを別々に行う従来の構成に比べて、準備動作を速やかに完了することができる。さらに、フリップフロップFFがリセットよりもセットが優先される構成であるため、同時選択から復帰するとき(AONB信号がアクティブから非アクティブに戻るとき)にR信号よりもSB信号の方が先に非アクティブになり易い。したがって、SB信号よりもR信号の方が先に非アクティブになることで初期化後に再びセットがかかってしまう誤動作を防ぐことができる。
図14は、液晶表示装置3xを変形した液晶表示装置3cの構成を示す回路図である。
図15は、液晶表示装置3cのシフトレジスタSRの一部を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、RB端子およびINITB端子を備えるセットリセット型フリップフロップFFと、2つのアナログスイッチASW3・ASW4と、インバータと、CKB端子と、ONB端子と、OUT端子と、OUTB端子とが含まれ、フリップフロップFFのINITB端子がONB端子に接続され、FFのQ端子が、アナログスイッチASW3のPチャネル側ゲートとアナログスイッチASW4のNチャネル側ゲートとに接続され、FFのQB端子がアナログスイッチASW3のNチャネル側ゲートとアナログスイッチASW4のPチャネル側ゲートとに接続され、アナログスイッチASW3の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW4の一方の導通電極がCKB端子に接続され、アナログスイッチASW3の他方の導通電極と、アナログスイッチASW4の他方の導通電極とこの段の出力端子であるOUTB端子とが接続され、OUTB端子がインバータを介してOUT端子に接続されている。
シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUTB端子が自段のRB端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、(n+1)段SRn+1のOUTB端子がn段SRnのRB端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、各段のONB端子がAONB信号ラインに接続され、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKBライン(GCKを供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続されている。
図15のフリップフロップFFには、図16に示すFF4を用いている。同図に示すように、CMOS回路を構成するPチャネルトランジスタp6およびNチャネルトランジスタn5と、CMOS回路を構成するPチャネルトランジスタp8およびNチャネルトランジスタn7と、Pチャネルトランジスタp5・p7と、Nチャネルトランジスタn6・n8と、INITB端子と、SB端子と、RB端子と、Q端子・QB端子とを備え、p6のゲートとn5のゲートとp7のドレインとp8のドレインとn7のドレインとQB端子とが接続されるとともに、p6のドレインとn5のドレインとp5のドレインとp8のゲートとn7のゲートとQ端子とが接続され、n5のソースとn6のドレインとが接続され、n7のソースとn8のドレインとが接続され、SB端子がp5のゲートとn6のゲートとに接続され、RB端子がp5のソースとp7のゲートとn8のゲートとに接続され、INITB端子がp6のソースに接続され、p7およびp8のソースがVDDに接続され、n6およびn8のソースがVSSに接続されている構成である。ここでは、p6、n5、p8およびn7がラッチ回路LCを構成し、p5がセットトランジスタST、p7がリセットトランジスタRT、n6およびn8それぞれがラッチ解除トランジスタ(リリーストランジスタ)LRTとして機能する。
図16(b)はFF4の動作を示すタイミングチャートであり、図16(c)はFF4の真理値表である。図16(b)(c)に示されるように、FF4のQ信号は、SB信号がLow(アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がLow(アクティブ)かつRB信号がHigh(非アクティブ)の期間にHigh(アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がLow(アクティブ)の期間にLow(非アクティブ)、SB信号がHigh(非アクティブ)かつRB信号がHigh(非アクティブ)の期間に保持状態となる。
例えば、図16(b)のt1では、Q端子にRB端子のVddが出力されてn7がONしてQB端子にはVss(Low)が出力される。t2では、SB信号がHighとなってp5がOFFしてn6がONするため、t1の状態を維持する。t3では、RB信号がLowとなるので、p7がONしてQB端子にはVdd(High)が出力され、さらに、n5がONしてQ端子にはVssが出力される。なお、INITB端子がLow(アクティブ)の期間にSB信号およびRB信号がともにLow(アクティブ)となった場合は、p7がONしてQB端子にはVdd(High)が出力され、Q端子にはp5を介してVss+Vth(p5の閾値電圧)が出力される。
液晶表示装置3cの電源ON時の駆動方法は図17に示すとおりである。なお、図15構成では、同時選択期間(INITB端子がLowで、SB信号およびRB信号もLowの期間)にQ信号がVss+VthでQB信号がVdd(High)となる。このため、フリップフロップの出力としてQB信号のみを用いる、すなわち図18のように構成することが好ましい。すなわちQB信号とQB信号をインバータによって反転させた信号とをアナログスイッチASW3・ASW4に入力する。
〔実施の形態2〕
図19は本発明にかかる液晶表示装置3dの構成を示す回路図である。液晶表示装置3dは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、AONB信号(同時選択信号)、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n−1・n・n+1・・・)をi段SRiと略記する。
シフトレジスタのi段SRiからの出力信号(OUT信号)は、バッファを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUTB信号は、バッファを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
図20は、シフトレジスタSRの一部の具体的構成を示す回路図である。同図に示すように、シフトレジスタの各段には、INITB端子、SB端子およびRB端子を備えるフリップフロップFFと、2つのアナログスイッチASW5・ASW6(ゲート回路)と、NAND(論理回路)と、インバータと、CKB端子と、ONB端子と、OUTB端子とが含まれ、フリップフロップFFのINITB端子がONB端子に接続され、FFのQB端子が、NANDの一方の入力に接続され、NANDの出力が、インバータの入力とアナログスイッチASW5のPチャネル側ゲートとアナログスイッチASW6のNチャネル側ゲートとに接続され、インバータの出力が、アナログスイッチASW5のNチャネル側ゲートとアナログスイッチASW6のPチャネル側ゲートとに接続され、アナログスイッチASW5の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW6の一方の導通電極がCKB端子に接続され、アナログスイッチASW5の他方の導通電極と、アナログスイッチASW6の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのRB端子とが接続されている。ここでは、アナログスイッチASW5・ASW6(ゲート回路)と、NAND(論理回路)とでOUTB信号を生成する信号生成回路が構成されている。
シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、(n+1)段SRn+1のOUTB端子が(n+2)段SRn+2のSB端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、各段のONB端子がAONB信号ラインに接続され、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKBライン(GCKBを供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続されている。
図21は、液晶表示装置3dの電源ON時の駆動方法を示すタイミングチャートである。液晶表示装置3dでは、表示映像の最初のフレーム(垂直走査期間)の前に、以下の準備動作が行われる。具体的には、AONB信号が所定期間アクティブ(Low)とされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定される。AONB信号がアクティブ(Low)になると、ASW5がONであるためOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。このとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。さらに、各段のフリップフロップでは、SB信号およびRB信号がアクティブになるため、QB信号がHigh(非アクティブ)となる。なお、シフトレジスタの各段のOUTB信号が一旦アクティブになると、NANDへのフィードバック信号がLowとなるため、ASW5がOFFしてASW6がONする(各段ではGCK1BまたはGCK2Bが取り込まれる)。以上の準備動作の終了後(AONB信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、かつシフトレジスタSRが初期化された(各段のフリップフロップの出力が非アクティブの)状態となる。
また、液晶表示装置3dでは、各垂直走査期間(各フレーム表示時)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてQB信号がHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
液晶表示装置3dでは、電源ON・OFF時に全走査信号線を同時選択して全画素に同電位(例えばVcom)を書き込めるため、電源ON・OFF時の画面乱れをなくすことができる。ここで、従来の構成(図34参照)と比較すると、AONB信号をASW5に入力することで、図34で各段の出力信号が入力されるNANDが不要となり、ゲートドライバの小型化を実現することができる。また、全走査信号線の同時選択時にシフトレジスタの初期化(各段のフリップフロップの初期化)も実行されるため、全走査信号線を同時選択とシフトレジスタの初期化とを別々に行う従来の構成に比べて、準備動作を速やかに完了することができる。また、各段での自己リセットが可能であるため、段間の接続関係を簡易化することができる。
なお、図20の構成(FFをリセット優先とし、シフトレジスタの各段を自己リセット型とする構成)では、OUTB信号のフリップフロップのRB端子へのフィードバックがNANDへのフィードバックよりも先立ってしまうおそれがある。そこで、図20のNANDを、図22のように構成することが好ましい。すなわち、Pチャネルトランジスタp40のソースをVDDに接続し、ゲートをNANDの入力Xとし、ドレインをNANDの出力Mとし、Pチャネルトランジスタp41のソースをVDDに接続し、ゲートをNANDの入力Yとし、ドレインをNチャネルトランジスタn40のソースに接続し、Nチャネルトランジスタn40のゲートを入力Yに接続し、ドレインをNチャネルトランジスタn41のソースに接続し、Nチャネルトランジスタn41のゲートを入力Xに接続し、ドレインをVSSに接続しておき、Pチャネルトランジスタp40・41の駆動能力を、Nチャネルトランジスタn40・41のそれよりも大きくしておく。こうすれば、QB信号が十分に非アクティブ(High)になるまで、OUTB信号がアクティブ(=Low)を保つようになり、FFのRB端子へのフィードバックがNANDへのフィードバックよりも先立ってしまうことを防止することができる。
〔実施の形態3〕
図23は本発明にかかる液晶表示装置3eの構成を示す回路図である。液晶表示装置3eはいわゆるCC(charge coupled)駆動の液晶表示装置であり、表示部DAR、ゲート・CsドライバG−CsD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、AONB信号(同全選択信号)、CS反転信号CMI1・CMI2、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲート・CsドライバG−CsDには、複数段からなるシフトレジスタSRと、複数のDラッチ回路CSLが含まれ、シフトレジスタの1段に対応して、1つのOR回路と、1つのDラッチ回路CSLとが設けられている。以下適宜、シフトレジスタのi段(i=1・・・n−1・n・n+1・・・)をi段SRiと略記する。また、シフトレジスタのi段SRiに対応して、Dラッチ回路CSLiが設けられている。
シフトレジスタのi段SRiからの出力信号(OUT信号)は、バッファを介して表示部DARの走査信号線Giに供給される。また、i段SRiに対応するDラッチ回路CSLiからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSiに供給される。例えば、n段SRnのOUT信号は、バッファを介して走査信号線Gnに供給され、n段SRnに対応するDラッチ回路CSLnからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
図24は、図23に示すシフトレジスタSRのi段SRiの構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子およびR端子を備えるフリップフロップFF(上記のフリップフロップFF1〜FF4)と、2つのアナログスイッチASW7・ASW8と、NANDと、インバータと、CKB端子と、ONB端子とが含まれ、フリップフロップFFのQB端子が、NANDの一方の入力に接続され、NANDの出力(M)が、インバータの入力とアナログスイッチASW7のPチャネル側ゲートと、アナログスイッチASW8のNチャネル側ゲートとに接続され、インバータの出力がアナログスイッチASW7のNチャネル側ゲートと、アナログスイッチASW8のPチャネル側ゲートとに接続され、アナログスイッチASW7の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW8の一方の導通電極がCKB端子に接続され、アナログスイッチASW7の他方の導通電極と、アナログスイッチASW8の他方の導通電極と、この段の出力端子であるOUTB端子と、NANDの他方の入力と、FFのR端子とが接続されている。また、OUTB端子がインバータを介してOUT端子に接続されている。
i段SRiでは、フリップフロップFFのQB信号(NANDの一方入力X)がHigh(非アクティブ)の期間は、OUTB信号(NANDの他方入力Y)がHigh(非アクティブ)であればNANDの出力(M)はLowとなり(アナログスイッチASW7がONでASW8がOFFし)、OUTB端子にはAONB信号(非アクティブでVdd)が出力される一方、OUTB信号(NANDの他方入力Y)がLow(アクティブ)であればNANDの出力(M)はHighとなり(アナログスイッチASW7がOFFでASW8がONし)、GCKB信号が取り込まれてOUTB端子から出力される。また、フリップフロップFFのQB信号がLow(アクティブ)の期間は、NANDの一方入力XがLowかつNANDの他方入力YがLowであるため、NANDの出力(M)はHighとなり(アナログスイッチASW7がOFFでASW8がONし)、GCKB信号が取り込まれてOUTB端子から出力される。すなわち、NAND、インバータおよびアナログスイッチASW1・ASW2(ゲート回路)はOUTB信号を生成する信号生成回路を構成し、特に、アナログスイッチASW7・ASW8は、NANDの出力Mに応じてAONB信号あるいはクロック信号を取り込むゲート回路を構成する。
図25は、図23に示すシフトレジスタSRのi段SRiに対応するDラッチ回路CSLiの構成を示す回路図である。同図に示すように、Dラッチ回路CSLiは、3つのCMOS回路5〜7と、アナログスイッチASW15・ASW16と、インバータと、CK端子と、D端子と、out端子とを備える。CMOS回路5・6はそれぞれ、1つのPチャネルトランジスタおよび1つのNチャネルトランジスタのゲート同士が接続されるとともにドレイン同士が接続され、かつPチャネルトランジスタのソースがVDDに接続され、NチャネルトランジスタのソースがVSSに接続された構成である。CMOS回路7は、1つのPチャネルトランジスタおよび1つのNチャネルトランジスタのゲート同士が接続されるとともにドレイン同士が接続され、かつPチャネルトランジスタのソースが電源VCSHに接続され、Nチャネルトランジスタのソースが電源VCSLに接続された構成である。そして、ck端子とインバータの入力とアナログスイッチASW16のNチャネル側ゲートとアナログスイッチASW15のPチャネル側ゲートとが接続され、インバータの出力とアナログスイッチASW16のPチャネル側ゲートとアナログスイッチASW15のNチャネル側ゲートとが接続され、CMOS回路5のドレイン側とアナログスイッチASW15の一方の導通端子とが接続され、アナログスイッチASW16の一方の導通端子とD端子とが接続され、アナログスイッチASW15の他方の導通端子とアナログスイッチASW16の他方の導通端子とCMOS回路6のゲート側とが接続され、CMOS回路5のゲート側とCMOS回路6のドレイン側とが接続され、CMOS回路6のドレイン側とCMOS回路7のゲート側とが接続され、CMOS回路7のドレイン側とout端子とが接続されている。
Dラッチ回路CSLiは、ck信号(ck端子に入力される信号)がアクティブ(High)である期間にD信号(D端子に入力される信号)を取り込み、これをラッチする。すなわち、ck信号がアクティブの期間にD信号がLowからHighになれば、out信号(out端子から出力される信号)は、電源VCSLの電位から電源VCSHの電位に突き上げて以後電源VCSHの電位を維持し、ck信号がアクティブの期間にD信号がHighからLowになれば、out信号(out端子から出力される信号)は、電源VCSHの電位から電源VCSLの電位に突き下げて以後電源VCSLの電位を維持することになる。
液晶表示装置3eのG−CsDでは、自段のOUTB端子が次段のSB端子に接続されている。また、自段のOUT端子が自段に対応するOR回路の一方の入力端子に接続されるとともに、次段のOUT端子が上記自段に対応するOR回路の他方の入力端子に接続され、該自段に対応するOR回路の出力が自段に対応するDラッチ回路のck端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、n段SRnのOUT端子がn段SRnに対応するOR回路の一方の入力端子に接続されるとともに、(n+1)段SRn+1のOUT端子がn段SRn段に対応するOR回路の他方の入力端子に接続され、n段SRnに対応するOR回路の出力がn段SRnに対応するDラッチ回路CSLnのck端子に接続されている。なお、シフトレジスタSRの初段のSB端子にはGSPB信号が入力される。
また、液晶表示装置3eのG−CsDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続され、各段のONB端子は共通のAONBライン(AON信号を供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのONB端子は共通のAONB信号ラインに接続されている。さらに、連続する2段に対応する2つのDラッチ回路ごとにD端子が異なるCMIライン(CMI信号を供給するライン)に接続されている。例えば、n段SRnに対応するDラッチ回路CSLnのD端子はCMI2信号ラインに接続され、(n+1)段SRn+1に対応するDラッチ回路CSLn+1のD端子はCMI2信号ラインに接続され、(n+2)段SRn+2に対応するDラッチ回路CSLn+2のD端子はCMI1信号ラインに接続され、(n+3)段SRn+3に対応するDラッチ回路CSLn+3のD端子はCMI1信号ラインに接続されている。
図26は、液晶表示装置3eの駆動方法を示すタイミングチャートである。なお本図では、極性信号POLの周期を一水平走査期間1Hとし(すなわち、同一データ信号線に供給されるデータ信号の極性は1Hごとに反転する)、CMI1・CMI2それぞれを同位相としている。
液晶表示装置3eでは、表示映像の最初のフレーム(垂直走査期間)の前に、以下の表示準備動作が行われる。具体的には、AONB信号が所定期間アクティブ(Low)とされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定されるとともに各CMI信号はHigh(またはLow)に固定される。これにより、シフトレジスタSRの各段では、AONB信号がASW7を介してOUTB端子から出力されるため、全段のOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。このとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップでは、AONB信号が入力されるINITB端子がアクティブ(Low)となるため、Q信号はLow(非アクティブ)でQB信号はHigh(非アクティブ)となる。なお、シフトレジスタの各段のOUTB信号が一旦アクティブになると、NANDへのフィードバック信号がLowとなるため、ASW7がOFFしてASW8がONする(GCK1BまたはGCK2Bが取り込まれる)。また、各段に対応するOR回路の出力もアクティブ(High)となるので、各Dラッチ回路は、CMI1信号(Low)またはCMI2信号(Low)をラッチし、保持容量配線に供給されるout信号(CS信号)は電源VCSLの電位となる。以上の表示準備動作の終了後は、表示部DARの全PIXにVcomが書き込まれ、シフトレジスタの各段に設けられたFFのQB出力が非アクティブ(High)とされ、各Dラッチ回路のout信号(保持容量配線の電位)が電源VCSLの電位とされた状態となる。
液晶表示装置3eでは、最初のフレーム表示時(最初の垂直走査期間)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
また、自段のOUTB信号がアクティブになると(自段に対応するOR回路の出力がアクティブになるため)、自段に対応するDラッチ回路がCMI1信号またはCMI2信号をラッチし、さらに次段のOUTB信号がアクティブになると(自段に対応するOR回路の出力がアクティブになるため)、上記自段に対応するDラッチ回路が再びCMI1信号またはCMI2信号をラッチする。これにより、自段に対応するDラッチ回路のout信号(自段に対応する保持容量配線の電位)は、自段のOUTB信号が非アクティブとなった(自段に対応する走査信号線がOFFした)後に、電源VCSLの電位から電源VCSHの電位への突き上げる(自段に対応する画素にプラス極性のデータ信号が書き込まれ場合)か、あるいは電源VCSHの電位から電源VCSLの電位への突き下げる(自段に対応する画素にマイナス極性のデータ信号が書き込まれ場合)。
例えば、n段SRnのOUTB信号がアクティブになると(n段SRnに対応するOR回路の出力がアクティブになるため)、n段SRnに対応するDラッチ回路CSLnがCMI2信号をラッチし、さらに(n+1)段SRn+1のOUTB信号がアクティブになると(n段SRnに対応するOR回路の出力がアクティブになるため)、Dラッチ回路CSLnが再びCMI2信号をラッチする。これにより、n段SRnに対応するDラッチ回路CSLnのout信号(n段SRnに対応する保持容量配線CSnの電位)は、n段SRnのOUTB信号が非アクティブとなった(n段SRnに対応する走査信号線GnがON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き下げる。ここで、n段SRnに対応する画素PIXnには、POLに示されるようにマイナス極性のデータ信号が書き込まれており、保持容量配線CSnの突き下げによって、実効電位をデータ信号の電位よりも低下させる(画素PIXnの輝度を高める)ことができる。
また、(n+1)段SRn+1のOUTB信号がアクティブになると、(n+1)段SRn+1に対応するDラッチ回路CSLn+1がCMI2信号をラッチし、さらに(n+2)段SRn+2のOUTB信号がアクティブになると、Dラッチ回路CSLn+1が再びCMI2信号をラッチする。これにより、(n+1)段SRn+1に対応するDラッチ回路CSLn+1のout信号(保持容量配線CSn+1の電位)は、(n+1)段SRn+1のOUTB信号が非アクティブとなった(走査信号線Gn+1がON・OFFした)後に、電源VCSLの電位から電源VCSHの電位に突き上げる。ここで、(n+1)段SRn+1に対応する画素PIXn+1には、POLに示されるようにプラス極性のデータ信号が書き込まれており、保持容量配線CSn+1の突き上げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn+1の輝度を高める)ことができる。
また、(n+2)段SRn+2のOUTB信号がアクティブになると、(n+2)段SRn+2に対応するDラッチ回路CSLn+2がCMI1信号をラッチし、さらに(n+3)段SRn+3のOUTB信号がアクティブになると、Dラッチ回路CSLn+2が再びCMI1信号をラッチする。これにより、(n+2)段SRn+2に対応するDラッチ回路CSLn+2のout信号(保持容量配線CSn+2の電位)は、(n+2)段SRn+2のOUTB信号が非アクティブとなった(走査信号線Gn+2がON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き下げる。ここで、(n+2)段SRn+2に対応する画素PIXn+2には、POLに示されるようにマイナス極性のデータ信号が書き込まれており、保持容量配線CSn+2の突き下げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn+2の輝度を高める)ことができる。
なお、2フレーム目以降も、最初のフレームと同様の表示が行われる。ただし、1フレームごとにPOLの位相が半周期ずれるため、同一画素に供給されるデータ信号の極性は1フレームごとに反転する。これに合わせて、Dラッチ回路CSLiのout信号(保持容量配線CSiの電位)の突き上げおよび突き下げも1フレームごとに入れ替わる。
液晶表示装置3eでは、電源ON・OFF時に全走査信号線を同時選択して全画素に同電位(例えばVcom)を書き込めるため、電源ON・OFF時の画面乱れをなくすことができる。ここで、従来の構成(図34参照)と比較すると、AON信号をASW7に入力することで、図34で各段の出力信号が入力されるNANDが不要となり、さらに、FFのINITB端子にAONB信号を入力することで、シフトレジスタの初期化用信号の生成・送信の構成も不要となり、ゲートドライバの小型化を実現することができる。また、フリップフロップFFがリセットよりもセットが優先される構成であるため、同時選択から復帰するとき(AONB信号がアクティブから非アクティブに戻るとき)にR信号よりもSB信号の方が先に非アクティブになり易い。したがって、SB信号よりもR信号の方が先に非アクティブになることで初期化後に再びセットがかかってしまう誤動作を防ぐことができる。また、全走査信号線の同時選択時にシフトレジスタの初期化(各段のフリップフロップの初期化)も実行されるため、全走査信号線を同時選択とシフトレジスタの初期化とを別々に行う従来の構成に比べて、準備動作を速やかに完了することができる。また、各段での自己リセットが可能であるため、段間の接続関係を簡易化することができる。また、最初のフレームから各画素行を適切にCC駆動できるため、従来のCC駆動で問題となっていた最初のフレームの画面乱れ(横縞状のムラ)もなくすことができる。
さらに注目すべきは、液晶表示装置3eでは、図27に示すように、CMI2信号の位相を(図26から)半周期ずらすだけで、極性信号POLの周期を2H(同一データ信号線に供給されるデータ信号の極性が2Hごとに反転)に切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる点である。すなわち、液晶表示装置3eでは、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから2Hに切り替えることができ、そのときの画面乱れも大幅に低減することができる。
〔実施の形態4〕
図28は本発明にかかる液晶表示装置3fの構成を示す回路図である。液晶表示装置3fはいわゆるCC(charge coupled)駆動の液晶表示装置であり、表示部DAR、ゲート・CsドライバG−CsD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、AONB信号(同時選択信号)、CS反転信号CMI1・CMI2、およびゲートクロック信号GCK1B・GCK2Bを供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲート・CsドライバG−CsDには、複数段からなるシフトレジスタSRと、複数のDラッチ回路CSLが含まれ、シフトレジスタの1段に対応して、1つのインバータと、1つのDラッチ回路CSLと、1つのバッファとが設けられている。以下適宜、シフトレジスタのi段(i=1・・・n−1・n・n+1・・・)をi段SRiと略記する。また、シフトレジスタのi段SRiに対応して、Dラッチ回路CSLiが設けられている。
シフトレジスタのi段SRiからの出力信号(OUT信号)は、バッファを介して表示部DARの走査信号線Giに供給される。また、i段SRiに対応するDラッチ回路CSLiからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSi−1に供給される。例えば、n段SRnのOUT信号は、バッファを介して走査信号線Gnに供給され、n段SRnに対応するDラッチ回路CSLnからの出力信号(out信号、CS信号)は、表示部DARの保持容量配線CSn−1に供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続されるとともに、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成され、また、走査信号線Gn−1が、PIXn−1内の画素電極に繋がるトランジスタのゲートに接続されるとともに、PIXn−1内の画素電極と保持容量配線CSn−1との間に保持容量(補助容量)が形成されている。
また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
なお、図28に示すシフトレジスタSRのi段SRiの構成は図24のとおりであり、Dラッチ回路CSLiの構成は図25のとおりである。
液晶表示装置3fのG−CsDのシフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続されている。また、自段のM端子が、自段に対応するDラッチ回路のck端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、n段SRnのM端子が、n段SRnに対応するDラッチ回路CSLnのck端子に接続されている。なお、シフトレジスタSRの初段のSB端子にはGSPB信号が入力される。
また、G−CsDでは、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKライン(GCKを供給するライン)に接続され、各段のONB端子は共通のAONBライン(AON信号を供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続され、n段SRnおよび(n+1)段SRn+1それぞれのONB端子は共通のAONB信号ラインに接続されている。さらに、連続する2段に対応する2つのDラッチ回路ごとにD端子が異なるCMIライン(CMI信号を供給するライン)に接続されている。例えば、(n−1)段SRn−1に対応するDラッチ回路CSLn−1のD端子はCMI1信号ラインに接続され、n段SRnに対応するDラッチ回路CSLnのD端子はCMI1信号ラインに接続され、(n+1)段SRn+1に対応するDラッチ回路CSLn+1のD端子はCMI2信号ラインに接続され、(n+2)段SRn+2に対応するDラッチ回路CSLn+2のD端子はCMI2信号ラインに接続され、(n+3)段SRn+3に対応するDラッチ回路CSLn+3のD端子はCMI1信号ラインに接続されている。
図29は、液晶表示装置3fの駆動方法を示すタイミングチャートである。なお本図では、極性信号POLの周期を一水平走査期間1Hとし(すなわち、同一データ信号線に供給されるデータ信号の極性は1Hごとに反転する)、CMI1・CMI2それぞれを同位相としている。
液晶表示装置3fでは、表示映像の最初のフレーム(垂直走査期間)の前に、以下の表示準備動作が行われる。具体的には、AONB信号が所定期間アクティブ(Low)とされ、AONB信号がアクティブの間は、各GCKB信号がアクティブ(Low)に固定されるとともに各CMI信号はHigh(またはLow)に固定される。これにより、シフトレジスタSRの各段では、AONB信号がASW7(図24参照)を介してOUTB端子から出力されるため、全段のOUTB信号がアクティブ(Low)となり、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップでは、AONB信号が入力されるINITB端子がアクティブ(Low)となるため、Q信号はLow(非アクティブ)でQB信号はHigh(非アクティブ)となる。なお、シフトレジスタの各段のOUTB信号が一旦アクティブになると、NANDへのフィードバック信号がLowとなるため、ASW7がOFFしてASW8がONする(GCK1BまたはGCK2Bが取り込まれる)。また、各段のM信号(M端子から出力される信号)もアクティブ(High)となるので、各Dラッチ回路は、CMI1信号(Low)またはCMI2信号(Low)をラッチし、保持容量配線に供給されるout信号(CS信号)は電源VCSLの電位となる。以上の表示準備動作の終了後は、表示部DARの全PIXにVcomが書き込まれ、シフトレジスタの各段に設けられたフリップフロップのQB出力が非アクティブ(High)とされ、各Dラッチ回路のout信号(保持容量配線の電位)が電源VCSLの電位とされた状態となる。
液晶表示装置3fでは、最初のフレーム表示時(最初の垂直走査期間)に以下の動作が行われる。すなわち、シフトレジスタSRの自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFの出力がセットされてアクティブになり、自段がGCKB信号を取り込む。自段のGCKB信号がアクティブ(=Low)になると、自段のOUTB信号がアクティブ(=Low)になるとともに次段のSB信号がアクティブになり、かつ自段のFFがリセットされてHigh(非アクティブ)となる。このとき自段のOUTB信号はLow(すなわち、NANDの出力はHigh)であるため、自段にはGCKB信号が取り込まれ続け、GCKB信号がHigh(非アクティブ)となったときに、自段のOUTB信号がHighになるとともにNANDの出力がLowとなり、以後OUTB端子からAONB信号が出力されてOUTB信号はHigh(非アクティブ)となる。
また、次段のM信号がアクティブになると、次段に対応するDラッチ回路がCMI1信号またはCMI2信号をラッチする。これにより、自段に対応するDラッチ回路のout信号(自段に対応する保持容量配線の電位)は、自段のOUTB信号が非アクティブとなった(自段に対応する走査信号線がOFFした)後に、電源VCSLの電位から電源VCSHの電位への突き上げる(自段に対応する画素にプラス極性のデータ信号が書き込まれ場合)か、あるいは電源VCSHの電位から電源VCSLの電位への突き下げる(自段に対応する画素にマイナス極性のデータ信号が書き込まれ場合)。
例えば、n段SRnのM信号がアクティブになると、n段SRnに対応するDラッチ回路CSLnがCMI1信号をラッチする。これにより、Dラッチ回路CSLnのout信号(保持容量配線CSn−1の電位)は、(n−1)段SRn−1のOUT信号が非アクティブとなった(走査信号線Gn−1がON・OFFした)後に、電源VCSLの電位から電源VCSHの電位に突き上げる。ここで、(n−1)段SRn−1に対応する画素PIXn−1には、POLに示されるようにプラス極性のデータ信号が書き込まれており、保持容量配線CSn−1の突き上げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn−1の輝度を高める)ことができる。
また、(n+1)段SRn+1のM信号がアクティブになると、(n+1)段SRn+1に対応するDラッチ回路CSLn+1がCMI2信号をラッチする。これにより、Dラッチ回路CSLn+1のout信号(保持容量配線CSnの電位)は、n段SRnのOUT信号が非アクティブとなった(n段SRnに対応する走査信号線GnがON・OFFした)後に、電源VCSHの電位から電源VCSLの電位に突き下げる。ここで、n段SRnに対応する画素PIXnには、POLに示されるようにマイナス極性のデータ信号が書き込まれており、保持容量配線CSnの突き下げによって、実効電位をデータ信号の電位よりも低下させる(画素PIXnの輝度を高める)ことができる。
また、(n+2)段SRn+2のM信号がアクティブになると、(n+2)段SRn+2に対応するDラッチ回路CSLn+2がCMI2信号をラッチする。これにより、Dラッチ回路CSLn+2のout信号(保持容量配線CSn+1の電位)は、(n+1)段SRn+1のOUT信号が非アクティブとなった(走査信号線Gn+1がON・OFFした)後に、電源VCSLの電位から電源VCSHの電位に突き上げる。ここで、(n+1)段SRn+1に対応する画素PIXn+1には、POLに示されるようにプラス極性のデータ信号が書き込まれており、保持容量配線CSn+1の突き上げによって、実効電位をデータ信号の電位よりも上昇させる(画素PIXn+1の輝度を高める)ことができる。
なお、2フレーム目以降も、最初のフレームと同様の表示が行われる。ただし、1フレームごとにPOLの位相が半周期ずれるため、同一画素電極PIXiに供給されるデータ信号の極性は1フレームごとに反転する。これに合わせて、Dラッチ回路CSLiのout信号(保持容量配線CSiの電位)の突き上げおよび突き下げも1フレームごとに入れ替わる。
液晶表示装置3fでは、電源ON・OFF時に全走査信号線を同時選択して全画素に同電位(例えばVcom)を書き込めるため、電源ON・OFF時の画面乱れをなくすことができる。ここで、従来の構成(図34参照)と比較すると、AONB信号をASW7に入力することで、図34で各段の出力信号が入力されるNANDが不要となり、さらに、FFのINITB端子にAONB信号を入力することで、シフトレジスタの初期化用信号の生成・送信の構成も不要となり、ゲートドライバの小型化を実現することができる。また、フリップフロップFFがリセットよりもセットが優先される構成であるため、同時選択から復帰するとき(AON信号がアクティブから非アクティブに戻るとき)にR信号よりもSB信号の方が先に非アクティブになり易い。したがって、SB信号よりもR信号の方が先に非アクティブになることで初期化後に再びセットがかかってしまう誤動作を防ぐことができる。また、各段での自己リセットが可能であるため、段間の接続関係を簡易化することができる。また、シフトレジスタの内部信号(M信号)をDラッチ回路のck端子に入力することでG−Csドライバ内にNOR回路やOR回路が不要となり、さらなる小型化が可能となる。また、最初のフレームから各画素行を適切にCC駆動できるため、従来のCC駆動で問題となっていた最初のフレームの画面乱れ(横縞状のムラ)もなくすことができる。
さらに注目すべきは、液晶表示装置3fでは、図30に示すように、CMI2信号の位相を(図29から)半周期ずらすだけで、極性信号POLの周期を2H(同一データ信号線に供給されるデータ信号の極性が2Hごとに反転)に切り替え、かつ最初のフレームから各画素行を適切にCC駆動することができる点である。すなわち、液晶表示装置3fでは、CS反転信号CMI1およびCMI2信号それぞれの位相を制御するだけで、極性信号POLの周期を1Hから2Hに切り替えることができ、そのときの画面乱れも大幅に低減することができる。
なお、液晶表示装置3e・3fにおけるシフトレジスタの各段の構成(図24参照)を、図31のように変更することもできる。すなわち、図24のASW7を単チャネル(Pチャネル)トランジスタTRとする。こうすれば、シフトレジスタのさらなる小型化が可能となる。
〔実施の形態5〕
図32は本発明にかかる液晶表示装置3gの構成を示す回路図である。液晶表示装置3gは、表示部DAR、ゲートドライバGD、ソースドライバSD、および表示制御回路DCCを備える。表示制御回路DCCは、ゲートドライバGDに、INITB信号(初期化信号)、AONB信号(同時選択信号)、ゲートスタートパルスGSP、ゲートオンイネーブル信号GOE、およびゲートクロック信号GCKB1・GCKB2を供給する。また、表示制御回路DCCは、ソースドライバSDに、ソーススタートパルスSSP、デジタルデータDAT、極性信号POL、およびソースクロック信号SCKを供給する。ゲートドライバGDには、複数段からなるシフトレジスタSRが含まれている。以下適宜、シフトレジスタのi段(i=1・・・n−1・n・n+1・・・)をi段SRiと略記する。
シフトレジスタのi段SRiからの出力信号(OUT信号)は、バッファを介して表示部DARの走査信号線Giに供給される。例えば、n段SRnのOUT信号は、バッファを介して走査信号線Gnに供給される。表示部DARでは、走査信号線Gnが、PIXn内の画素電極に繋がるトランジスタのゲートに接続され、PIXn内の画素電極と保持容量配線CSnとの間に保持容量(補助容量)が形成されている。
また、1本のデータ信号線に対応して1つのアナログスイッチaswとインバータとが設けられ、このインバータの入力がAONB信号ラインに接続され、データ信号線の端部がアナログスイッチaswの一方の導通端子に接続され、アナログスイッチaswの他方の導通端子がVcom(共通電極電位)電源に接続され、アナログスイッチaswのNチャネル側ゲートがインバータの出力に接続され、アナログスイッチaswのPチャネル側ゲートがAONB信号ラインに接続されている。
図33は、シフトレジスタSRの一部の具体的構成を示す回路図である。同図に示すように、シフトレジスタの各段には、SB端子、R端子およびINITB端子を備えるセットリセット型フリップフロップFF(図12に示すFF3)と、2つのアナログスイッチASW9・ASW10と、インバータと、CKB端子と、ONB端子と、OUTB端子と、OUT端子とが含まれ、フリップフロップFFのQ端子が、アナログスイッチASW9のPチャネル側ゲートとアナログスイッチASW10のNチャネル側ゲートとに接続され、FFのQB端子がアナログスイッチASW9のNチャネル側ゲートとアナログスイッチASW10のPチャネル側ゲートとに接続され、アナログスイッチASW9の一方の導通電極がONB端子に接続されるとともに、アナログスイッチASW10の一方の導通電極がCKB端子に接続され、アナログスイッチASW9の他方の導通電極と、アナログスイッチASW10の他方の導通電極とこの段の出力端子であるOUTB端子とが接続され、OUTB端子がインバータを介してOUT端子に接続されている。
シフトレジスタSRでは、自段のOUTB端子が次段のSB端子に接続され、次段のOUT端子が自段のR端子に接続されている。例えば、n段SRnのOUTB端子が(n+1)段SRn+1のSB端子に接続され、(n+1)段SRn+1のOUT端子がn段SRnのR端子に接続されている。なお、シフトレジスタSRの初段SR1のSB端子にはGSPB信号が入力される。また、ゲートドライバGDでは、各段のフリップフロップのINITB端子がINITB信号ラインに接続され、各段のONB端子がAONB信号ラインに接続され、奇数段のCKB端子と偶数段のCKB端子とが異なるGCKBライン(GCKBを供給するライン)に接続されている。例えば、n段SRnのCKB端子はGCK2B信号ラインに接続され、(n+1)段SRn+1のCKB端子はGCK1B信号ラインに接続されている。
液晶表示装置3gでは、電源ON・OFF時に以下の準備動作が行われる。具体的には、AONB信号およびINITB信号が同時に所定期間アクティブ(Low)とされる。シフトレジスタSRの各段ではASW9がONしているため、これにより全段のOUT信号がアクティブ(High)となって、全走査信号線が選択される。なおこのとき、各データ信号線に対応するアナログスイッチaswがONするため、全データ信号線にVcomが供給される。また、各段のフリップフロップでは、INITB信号がアクティブ(Low)となるため、Q信号はLow(非アクティブ)でQB信号はHigh(非アクティブ)となる。以上の準備動作の終了後(AONB信号が非アクティブとなった後)は、表示部DARの全PIXにVcomが書き込まれ、かつシフトレジスタSRが初期化された(各段のフリップフロップの出力が非アクティブの)状態となる。
また、液晶表示装置3gのシフトレジスタSRでは、各垂直走査期間(各フレーム表示時)に以下の動作が行われる。すなわち、自段に入力されるSB信号がアクティブ(=Low)になると、自段のFFがセットされてQ信号がHigh(アクティブ)になり、アナログスイッチASW10を介して自段にGCKB信号が取り込まれる。自段のGCKB信号がアクティブ(Low)になると、自段のOUTB信号がアクティブ(Low)になるとともに次段のSB信号がアクティブになる。これにより、次段のFFのOUTB信号がアクティブになって次段にGCKB信号が取り込まれる。次段のGCKB信号がアクティブ(Low)になると、自段のFFがリセットされてQ信号がLow(非アクティブ)となり、アナログスイッチASW9がONする。このときAONB信号はHighであるため、自段のOUTB信号もHigh(非アクティブ)となる。
液晶表示装置3gでは、電源ON・OFF時に全走査信号線を同時選択して全画素に同電位(例えばVcom)を書き込めるため、電源ON・OFF時の画面乱れをなくすことができる。ここで、従来の構成(図34参照)と比較すると、AONB信号をASW9に入力することで、図34で各段の出力信号が入力されるNANDが不要となり、ゲートドライバの小型化を実現することができる。また、フリップフロップFFがリセットよりもセットが優先される構成であるため、同時選択から復帰するとき(AONB信号がアクティブから非アクティブに戻るとき)にR信号よりもSB信号の方が先に非アクティブになり易い。したがって、SB信号よりもR信号の方が先に非アクティブになることで初期化後に再びセットがかかってしまう誤動作を防ぐことができる。また、全走査信号線の同時選択時にシフトレジスタの初期化(各段のフリップフロップの初期化)も実行されるため、全走査信号線を同時選択とシフトレジスタの初期化とを別々に行う従来の構成に比べて、準備動作を速やかに完了することができる。
なお、上記ゲートドライバ、ソースドライバあるいはゲート−CSドライバと、表示部の画素回路とがモノリシック(同一基板上)に形成されていてもよい。
また、本願では、トランジスタ(PチャンネルあるいはNチャネル)が有する2つの導通電極のうち出力側をドレイン端子と呼んでいる。
本シフトレジスタは、例えば所定のタイミングで複数の信号線の同時選択を行う表示駆動回路に用いられるシフトレジスタであって、各段に、初期化用端子を含むフリップフロップと、同時選択信号が入力され、上記フリップフロップの出力を用いて自段の出力信号を生成する信号生成回路とを備え、各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、フリップフロップの初期化用端子がアクティブである期間は、(該フリップフロップの)他の入力端子の状態にかかわらず該フリップフロップの出力が非アクティブとなり、上記初期化用端子に同時選択信号が入力されていることを特徴とする。
上記構成によれば、同時選択信号をシフトレジスタの初期化のための信号として用いることができるため、シフトレジスタを初期化するための信号を別途生成して各段に入力する必要がなくなる。これにより、シフトレジスタを用いる表示駆動回路(各種の表示ドライバ)を小型化することができる。
本シフトレジスタでは、上記フリップフロップはセットリセット型であり、初期化用端子、セット用端子およびリセット用端子がアクティブとなるときに該フリップフロップの出力は非アクティブとなる構成とすることもできる。
本シフトレジスタでは、上記信号生成回路は、入力される切り替え信号に応じた信号を選択的に取り込んで自段の出力信号とするゲート回路を備える構成とすることもできる。
本シフトレジスタは、上記フリップフロップの出力が切り替え信号としてゲート回路に入力されている構成とすることもできる。
本シフトレジスタでは、上記信号生成回路はさらに論理回路を備え、上記フリップフロップの出力が論理回路に入力され、該論理回路の出力が上記切り替え信号としてゲート回路に入力され、自段の出力信号が該論理回路と上記フリップフロップのリセット用端子とにフィードバックされている構成とすることもできる。
本シフトレジスタでは、上記ゲート回路は、上記同時選択信号またはクロック信号を選択的に取り込む構成とすることもできる。
本発明のシフトレジスタは、複数の信号線の同時選択を行う表示駆動回路に用いられるシフトレジスタであって、各段に、セットリセット型のフリップフロップと、同時選択信号が入力され、上記フリップフロップの出力を用いて自段の出力信号を生成する信号生成回路とを含み、上記信号生成回路は、入力される切り替え信号に応じて上記同時選択信号またはクロックを選択的に取り込んで自段の出力信号とするゲート回路を備えることを特徴とする。
上記構成によれば、同時選択信号をアクティブにすることで、各段のシフトレジスタの出力信号をアクティブとすることができる。したがって、従来のような各段の出力信号を入力する論理回路が不要となり、シフトレジスタを用いる表示駆動回路(各種の表示ドライバ)を小型化することができる。
本シフトレジスタでは、上記ゲート回路は、フリップフロップの出力に応じて同時選択信号またはクロックを選択的に取り込んで自段の出力信号とする構成とすることもできる。
本シフトレジスタでは、上記信号生成回路はさらに論理回路を備え、上記フリップフロップの出力が論理回路に入力され、自段の出力信号が該論理回路と上記フリップフロップとにフィードバックされ、上記ゲート回路は、該論理回路の出力に応じて上記同時選択信号またはクロックを選択的に取り込んで自段の出力とする構成とすることもできる。
本シフトレジスタでは、上記論理回路にNANDが含まれている構成とすることもできる。
本シフトレジスタでは、上記NANDは複数のPチャネルのトランジスタと複数のNチャネルのトランジスタとからなり、該NANDでは、Pチャネルの各トランジスタの駆動能力が、Nチャネルの各トランジスタの駆動能力よりも高い構成とすることもできる。
本シフトレジスタでは、上記同時選択の終了前は、各段のフリップフロップに入力されるセット用信号およびリセット用信号がともにアクティブであり、同時選択の終了時に、上記リセット用信号よりもセット用信号が先に非アクティブ化する構成とすることもできる。
本シフトレジスタでは、上記フリップフロップは、Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、入力トランジスタと、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続され、上記入力トランジスタは、ゲート端子およびソース端子それぞれが別々の入力端子に接続されるとともに、ドレイン端子が出力端子に接続されている構成とすることもできる。
本シフトレジスタでは、上記入力トランジスタはPチャネルであって、該入力トランジスタのソース端子は、非アクティブ時に第1電位でアクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されている構成とすることもできる。
本シフトレジスタでは、上記入力トランジスタはNチャネルであって、該入力トランジスタのソース端子は、アクティブ時に第1電位で非アクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されている構成とすることもできる。
本表示駆動回路は、上記シフトレジスタを備えることを特徴とする。
本表示駆動回路は、上記シフトレジスタ(自己リセット型)を備え、同時選択が行われる間は上記クロック信号をアクティブに固定することを特徴とする。
本表示パネルは、上記表示駆動回路と画素回路とがモノリシックに形成されていることを特徴とする。
本表示装置は、上記シフトレジスタを備えることを特徴とする。
本表示駆動回路は、画素に含まれる画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられ表示駆動回路であって、上記シフトレジスタを備え、シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段で生成された制御信号がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段よりも前の段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給することを特徴とする。
本表示駆動回路は、画素に含まれる画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、上記シフトレジスタを備え、シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、1つの段で生成された制御信号がアクティブになるとこの段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、1つの保持回路の出力を、上記変調信号として保持容量配線に供給し、各段で生成される制御信号が、表示映像の最初の垂直走査期間よりも前にアクティブとなることを特徴とする。
本表示駆動回路は、画素に含まれる画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、上記シフトレジスタを備え、シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段の出力信号と自段よりも後段の出力信号とが論理回路に入力されるとともに、該論理回路の出力がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給し、複数の保持回路に入力される保持対象信号の位相と、別の複数の保持回路に入力される保持対象信号の位相とを異ならせていることを特徴とする。
本表示駆動回路は、スイッチング素子を介してデータ信号線および走査信号線に接続される画素電極を備えるとともに、該画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、上記シフトレジスタを備え、データ信号線に供給される信号電位の極性をn水平走査期間(nは自然数)ごとに反転させるモードと、データ信号線に供給される信号電位の極性をm水平走査期間(mはnと異なる自然数)ごとに反転させるモードとを切り替えることを特徴とする。
本発明は上記の実施の形態に限定されるものではなく、上記実施の形態を公知技術や技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。また、各実施の形態で記載した作用効果等もほんの例示に過ぎない。
本発明のシフトレジスタは各種ドライバ、特に液晶表示装置のドライバに好適である。
3a〜3g 液晶表示装置
ASW1・ASW2 asw アナログスイッチ
SR シフトレジスタ
SRi シフトレジスタのi段
DCC 表示制御回路
GD ゲートドライバ
SD ソースドライバ
G−CsD ゲート−Csドライバ
DAR 表示部
Gn 走査信号線
CSn 保持容量配線
PIXn 画素
CSLi SRのi段に対応するDラッチ回路
FF フリップフロップ
ST セットトランジスタ(入力トランジスタ)
RT リセットトランジスタ(入力トランジスタ)
LRT ラッチ解除トランジスタ
LC ラッチ回路
POL (データ)極性信号
CMI1 CMI2 CS反転信号

Claims (22)

  1. 複数の信号線の同時選択を行う表示駆動回路に用いられるシフトレジスタであって、
    各段に、初期化用端子を含むフリップフロップと、同時選択信号が入力され、上記フリップフロップの出力を用いて自段の出力信号を生成する信号生成回路とを備え、
    各段の出力信号は、上記同時選択信号のアクティブ化によりアクティブとなって上記同時選択が行われる間アクティブとされ、
    フリップフロップの初期化用端子がアクティブである期間は、他の入力端子の状態にかかわらず該フリップフロップの出力が非アクティブとなり、
    上記初期化用端子に上記同時選択信号が入力されていることを特徴とするシフトレジスタ。
  2. 上記フリップフロップはセットリセット型であり、初期化用端子、セット用端子およびリセット用端子がアクティブとなるときに該フリップフロップの出力は非アクティブとなることを特徴とする請求項1記載のシフトレジスタ。
  3. 上記信号生成回路は、上記フリップフロップの出力に応じて第1信号または第2信号を選択的に取り込んで自段の出力信号とするゲート回路を備えることを特徴とする請求項記載のシフトレジスタ。
  4. 上記信号生成回路は、上記フリップフロップの出力が入力される論理回路と、
    該論理回路の出力に応じて第1または第2信号を選択的に取り込んで自段の出力信号とするゲート回路とを備え、自段の出力信号が該論理回路と上記フリップフロップのリセット用端子とにフィードバックされていることを特徴とする請求項記載のシフトレジスタ。
  5. 上記第1信号は上記同時選択信号であり、上記第2信号はクロック信号であることを特徴とする請求項3または4記載のシフトレジスタ。
  6. 複数の信号線の同時選択を行う表示駆動回路に用いられるシフトレジスタであって、
    各段に、セットリセット型のフリップフロップと、同時選択信号が入力され、上記フリップフロップの出力を用いて自段の出力信号の生を行う信号生成回路とを含み、
    上記信号生成回路は、上記フリップフロップの出力に応じて上記同時選択信号またはクロック信号を選択的に取り込むことで上記自段の出力信号の生成を行うゲート回路を備えることを特徴とするシフトレジスタ。
  7. 複数の信号線の同時選択を行う表示駆動回路に用いられるシフトレジスタであって、
    各段に、セットリセット型のフリップフロップと、同時選択信号が入力され、上記フリップフロップの出力を用いて自段の出力信号の生成を行う信号生成回路とを備え、
    上記信号生成回路は、上記フリップフロップの出力が入力される論理回路と、該論理回路の出力に応じて上記同時選択信号またはクロック信号を選択的に取り込むことで上記自段の出力信号の生成を行うゲート回路とを含むことを特徴とするシフトレジスタ。
  8. 上記自段の出力信号が、上記論理回路と上記フリップフロップとにフィードバックされていることを特徴とする請求項7記載のシフトレジスタ。
  9. 上記論理回路にNANDが含まれていることを特徴とする請求項または記載のシフトレジスタ。
  10. 上記NANDは複数のPチャネルのトランジスタと複数のNチャネルのトランジスタとからなり、該NANDでは、Pチャネルの各トランジスタの駆動能力が、Nチャネルの各トランジスタの駆動能力よりも高いことを特徴とする請求項記載のシフトレジスタ。
  11. 上記同時選択の終了前は、各段のフリップフロップに入力されるセット用信号およびリセット用信号がともにアクティブであり、同時選択の終了時に、上記リセット用信号よりもセット用信号が先に非アクティブ化することを特徴とする請求項2、6、のいずれか1項に記載のシフトレジスタ。
  12. 上記フリップフロップは、Pチャネルの第1トランジスタとNチャネルの第2トランジスタのゲート端子同士およびドレイン端子同士が接続された第1CMOS回路と、Pチャネルの第3トランジスタとNチャネルの第4トランジスタのゲート端子同士およびドレイン端子同士が接続された第2CMOS回路と、入力トランジスタと、複数の入力端子と、第1および第2出力端子とを備え、第1CMOS回路のゲート側と第2CMOS回路のドレイン側と第1出力端子とが接続されるとともに、第2CMOS回路のゲート側と第1CMOS回路のドレイン側と第2出力端子とが接続され、上記入力トランジスタは、ゲート端子およびソース端子それぞれが別々の入力端子に接続されるとともに、ドレイン端子が出力端子に接続されていることを特徴とする請求項1、6、のいずれか1項に記載のシフトレジスタ。
  13. 上記入力トランジスタはPチャネルであって、該入力トランジスタのソース端子は、非アクティブ時に第1電位でアクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されていることを特徴とする請求項12記載のシフトレジスタ。
  14. 上記入力トランジスタはNチャネルであって、該入力トランジスタのソース端子は、アクティブ時に第1電位で非アクティブ時に第1電位よりも低い第2電位となる信号の入力端子に接続されていることを特徴とする請求項12記載のシフトレジスタ。
  15. 請求項1〜14のいずれか1項に記載のシフトレジスタを備えることを特徴とする表示駆動回路。
  16. 請求項に記載のシフトレジスタを備え、
    同時選択が行われる間は上記クロック信号をアクティブに固定することを特徴とする表示駆動回路。
  17. 請求項15または16記載の表示駆動回路と画素回路とがモノリシックに形成されていることを特徴とする表示パネル。
  18. 請求項1〜14のいずれか1項に記載のシフトレジスタを備えることを特徴とする表示装置。
  19. 画素に含まれる画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、
    請求項1、6、のいずれか1項に記載のシフトレジスタを備え、
    該シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、自段で生成された制御信号がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
    自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段よりも前の段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給することを特徴とする表示駆動回路。
  20. 画素に含まれる画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、
    請求項1、6、のいずれか1項に記載のシフトレジスタを備え、
    該シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、
    1つの段で生成された制御信号がアクティブになるとこの段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
    1つの保持回路の出力を、上記変調信号として保持容量配線に供給し、
    各段で生成される制御信号が、表示映像の最初の垂直走査期間よりも前にアクティブとなることを特徴とする表示駆動回路。
  21. 画素に含まれる画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、
    請求項1、6、のいずれか1項に記載のシフトレジスタを備え、
    該シフトレジスタの各段に対応して保持回路が1つずつ設けられるとともに、各保持回路に保持対象信号が入力され、
    自段の出力信号と自段よりも後段の出力信号とが論理回路に入力されるとともに、該論理回路の出力がアクティブになると自段に対応する保持回路が上記保持対象信号を取り込んでこれを保持し、
    自段の出力信号を、自段に対応する画素と接続する走査信号線に供給するとともに、自段に対応する保持回路の出力を、自段に対応する画素の画素電極と容量を形成する保持容量配線に、上記変調信号として供給し、
    複数の保持回路に入力される保持対象信号の位相と、別の複数の保持回路に入力される保持対象信号の位相とを異ならせていることを特徴とする表示駆動回路。
  22. スイッチング素子を介してデータ信号線および走査信号線に接続される画素電極を備えるとともに、該画素電極と容量を形成する保持容量配線に、該画素電極に書き込まれた信号電位の極性に応じた変調信号を供給する表示装置に用いられる表示駆動回路であって、
    請求項1、6、のいずれか1項に記載のシフトレジスタを備え、
    データ信号線に供給される信号電位の極性をn水平走査期間(nは自然数)ごとに反転させるモードと、データ信号線に供給される信号電位の極性をm水平走査期間(mはnと異なる自然数)ごとに反転させるモードとを切り替えることを特徴とする表示駆動回路。
JP2011519492A 2009-06-17 2010-03-18 シフトレジスタ、表示駆動回路、表示パネル、表示装置 Expired - Fee Related JP5384634B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519492A JP5384634B2 (ja) 2009-06-17 2010-03-18 シフトレジスタ、表示駆動回路、表示パネル、表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009144749 2009-06-17
JP2009144749 2009-06-17
PCT/JP2010/001972 WO2010146753A1 (ja) 2009-06-17 2010-03-18 シフトレジスタ、表示駆動回路、表示パネル、表示装置
JP2011519492A JP5384634B2 (ja) 2009-06-17 2010-03-18 シフトレジスタ、表示駆動回路、表示パネル、表示装置

Publications (2)

Publication Number Publication Date
JPWO2010146753A1 JPWO2010146753A1 (ja) 2012-11-29
JP5384634B2 true JP5384634B2 (ja) 2014-01-08

Family

ID=43356090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519492A Expired - Fee Related JP5384634B2 (ja) 2009-06-17 2010-03-18 シフトレジスタ、表示駆動回路、表示パネル、表示装置

Country Status (7)

Country Link
US (1) US9047842B2 (ja)
EP (2) EP2448119A3 (ja)
JP (1) JP5384634B2 (ja)
CN (1) CN102460558B (ja)
BR (1) BRPI1011302A2 (ja)
RU (1) RU2488895C1 (ja)
WO (1) WO2010146753A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1012072A2 (pt) * 2009-06-17 2016-03-22 Sharp Kk registrador de deslocamento, circuito de excitação de vídeo, painel de exibição e dispositivo de exibição
TWI425471B (zh) * 2011-06-17 2014-02-01 Au Optronics Corp 顯示面板及其閘極驅動電路以及閘極驅動電路驅動方法
CN102654968B (zh) * 2011-11-25 2014-12-10 京东方科技集团股份有限公司 移位寄存器、栅极驱动器及显示装置
CN102708777B (zh) * 2011-11-25 2015-03-25 京东方科技集团股份有限公司 移位寄存器单元和栅极驱动装置
US9136013B2 (en) 2011-11-25 2015-09-15 Boe Technology Group Co., Ltd. Shift register, gate driver, and display device
CN103278951B (zh) * 2012-07-24 2016-12-21 上海天马微电子有限公司 液晶显示装置及其驱动方法
TWI480882B (zh) * 2012-09-04 2015-04-11 Au Optronics Corp 移位暫存器及其驅動方法
KR101463031B1 (ko) * 2012-09-27 2014-11-18 엘지디스플레이 주식회사 쉬프트 레지스터
CN103050106B (zh) 2012-12-26 2015-02-11 京东方科技集团股份有限公司 栅极驱动电路、显示模组和显示器
KR102072214B1 (ko) * 2013-07-09 2020-02-03 삼성디스플레이 주식회사 주사 구동 장치 및 이를 포함하는 표시 장치
JP6262524B2 (ja) * 2013-12-27 2018-01-17 エルジー ディスプレイ カンパニー リミテッド 表示装置用の駆動回路および表示装置
CN103928005B (zh) 2014-01-27 2015-12-02 深圳市华星光电技术有限公司 用于共同驱动栅极和公共电极的goa单元、驱动电路及阵列
US20150317018A1 (en) * 2014-04-30 2015-11-05 Himax Technologies Limited Shift register adaptable to a gate driver
CN105096847B (zh) * 2014-05-05 2018-08-28 奇景光电股份有限公司 适用于栅极驱动器的移位寄存器
KR102230370B1 (ko) * 2014-08-06 2021-03-23 엘지디스플레이 주식회사 표시장치
CN105575319B (zh) * 2014-10-14 2018-01-30 上海箩箕技术有限公司 Asg驱动电路、平板传感器以及电子装置
CN104505014B (zh) 2014-12-31 2017-02-22 厦门天马微电子有限公司 一种驱动电路、阵列基板和触控显示装置及其驱动方法
CN104485082B (zh) 2014-12-31 2017-02-22 厦门天马微电子有限公司 一种阵列基板和触控显示装置及其驱动方法
CN106448596B (zh) * 2016-10-31 2019-03-15 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路和显示装置
CN206370279U (zh) * 2017-01-03 2017-08-01 京东方科技集团股份有限公司 电荷释放电路、显示基板、显示面板及显示装置
CN108346405B (zh) * 2018-03-30 2020-08-11 厦门天马微电子有限公司 移位寄存器单元、栅极驱动电路、显示面板及显示装置
CN112352274B (zh) * 2019-03-29 2022-11-04 京东方科技集团股份有限公司 像素补偿电路、显示面板、驱动方法及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214062A (ja) * 1997-01-29 1998-08-11 Hoshiden Philips Display Kk 電源オフ時の液晶表示消去回路
JP2001022326A (ja) * 1999-07-08 2001-01-26 Advanced Display Inc 液晶表示装置
JP2003005722A (ja) * 2001-06-22 2003-01-08 Casio Comput Co Ltd シフトレジスタを備えた表示駆動装置及びシフトレジスタ
JP2004227751A (ja) * 2003-01-25 2004-08-12 Sharp Corp シフトレジスタ
JP2004226597A (ja) * 2003-01-22 2004-08-12 Sony Corp 液晶表示装置
JP2005244956A (ja) * 2004-01-28 2005-09-08 Sharp Corp フリップフロップ、シフトレジスタ、およびアクティブマトリクス型表示装置
WO2007010835A1 (ja) * 2005-07-15 2007-01-25 Sharp Kabushiki Kaisha 信号出力回路、シフトレジスタ、出力信号生成方法、表示装置の駆動回路および表示装置
WO2007108177A1 (ja) * 2006-03-23 2007-09-27 Sharp Kabushiki Kaisha 表示装置およびその駆動方法
JP2007286266A (ja) * 2006-04-14 2007-11-01 Toshiba Matsushita Display Technology Co Ltd 表示駆動装置、平面表示装置及び表示駆動方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9012326D0 (en) * 1990-06-01 1990-07-18 Thomson Consumer Electronics Wide screen television
KR100302132B1 (ko) * 1998-10-21 2001-12-01 구본준, 론 위라하디락사 싸이클 인버젼 방식 액정 패널 구동 방법 및 그 장치
JP2000347627A (ja) 1999-06-02 2000-12-15 Sony Corp 液晶表示装置
JP3632840B2 (ja) * 2000-02-28 2005-03-23 シャープ株式会社 プリチャージ回路およびそれを用いた画像表示装置
DE60041037D1 (de) * 2000-03-21 2009-01-22 St Microelectronics Srl Strang-programmierbarer nichtflüchtiger Speicher mit NOR-Architektur
JP3519355B2 (ja) * 2000-09-29 2004-04-12 シャープ株式会社 液晶表示装置の駆動装置および駆動方法
US6937278B2 (en) * 2001-04-02 2005-08-30 Micron Technology, Inc. Row driver circuit for a sensor including a shared row-reset bus and a charge pump boosting circuit
GB2452278A (en) * 2007-08-30 2009-03-04 Sharp Kk A scan pulse shift register for an active matrix LCD display
EP2200011A4 (en) 2007-10-16 2012-02-15 Sharp Kk DISPLAY CONTROL, DISPLAY AND DISPLAY DRIVING METHOD
KR101407307B1 (ko) * 2008-12-20 2014-06-16 엘지디스플레이 주식회사 쉬프트 레지스터

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214062A (ja) * 1997-01-29 1998-08-11 Hoshiden Philips Display Kk 電源オフ時の液晶表示消去回路
JP2001022326A (ja) * 1999-07-08 2001-01-26 Advanced Display Inc 液晶表示装置
JP2003005722A (ja) * 2001-06-22 2003-01-08 Casio Comput Co Ltd シフトレジスタを備えた表示駆動装置及びシフトレジスタ
JP2004226597A (ja) * 2003-01-22 2004-08-12 Sony Corp 液晶表示装置
JP2004227751A (ja) * 2003-01-25 2004-08-12 Sharp Corp シフトレジスタ
JP2005244956A (ja) * 2004-01-28 2005-09-08 Sharp Corp フリップフロップ、シフトレジスタ、およびアクティブマトリクス型表示装置
WO2007010835A1 (ja) * 2005-07-15 2007-01-25 Sharp Kabushiki Kaisha 信号出力回路、シフトレジスタ、出力信号生成方法、表示装置の駆動回路および表示装置
WO2007108177A1 (ja) * 2006-03-23 2007-09-27 Sharp Kabushiki Kaisha 表示装置およびその駆動方法
JP2007286266A (ja) * 2006-04-14 2007-11-01 Toshiba Matsushita Display Technology Co Ltd 表示駆動装置、平面表示装置及び表示駆動方法

Also Published As

Publication number Publication date
EP2444959A1 (en) 2012-04-25
US9047842B2 (en) 2015-06-02
BRPI1011302A2 (pt) 2016-03-22
CN102460558B (zh) 2015-01-21
JPWO2010146753A1 (ja) 2012-11-29
EP2448119A2 (en) 2012-05-02
EP2444959B1 (en) 2016-03-16
WO2010146753A1 (ja) 2010-12-23
RU2488895C1 (ru) 2013-07-27
EP2444959A4 (en) 2012-11-07
EP2448119A3 (en) 2012-08-22
CN102460558A (zh) 2012-05-16
US20120092311A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5384634B2 (ja) シフトレジスタ、表示駆動回路、表示パネル、表示装置
JP5575764B2 (ja) シフトレジスタ、表示駆動回路、表示パネル、表示装置
JP5459726B2 (ja) 表示駆動回路、表示パネル、表示装置
JP5209117B2 (ja) フリップフロップ、シフトレジスタ、表示駆動回路、表示装置、表示パネル
JP5079301B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
JPWO2010146740A1 (ja) 表示駆動回路、表示装置及び表示駆動方法
JP5442732B2 (ja) 表示駆動回路、表示装置及び表示駆動方法
TWI532033B (zh) 顯示面板與閘極驅動器
WO2013002229A1 (ja) シフトレジスタ、走査信号線駆動回路、表示パネル、及び表示装置
JP5575871B2 (ja) シフトレジスタ、信号線駆動回路、液晶表示装置
WO2013002191A1 (ja) 保持回路、表示駆動回路、表示パネル、および表示装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees