JP5372338B2 - Porous desulfurization agent and hydrocarbon oil desulfurization method using the same - Google Patents
Porous desulfurization agent and hydrocarbon oil desulfurization method using the same Download PDFInfo
- Publication number
- JP5372338B2 JP5372338B2 JP2007094169A JP2007094169A JP5372338B2 JP 5372338 B2 JP5372338 B2 JP 5372338B2 JP 2007094169 A JP2007094169 A JP 2007094169A JP 2007094169 A JP2007094169 A JP 2007094169A JP 5372338 B2 JP5372338 B2 JP 5372338B2
- Authority
- JP
- Japan
- Prior art keywords
- desulfurization
- less
- mass
- nickel
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、炭化水素油中の硫黄化合物を脱硫する際に用いる多孔質脱硫剤及び該多孔質脱硫剤を用いた炭化水素油の脱硫方法に関する。 The present invention relates to a porous desulfurizing agent used when desulfurizing a sulfur compound in a hydrocarbon oil and a method for desulfurizing a hydrocarbon oil using the porous desulfurizing agent.
21世紀の自動車及びその燃料においては環境問題への対応が大きな課題であり、地球温暖化ガスであるCO2排出削減とNOx等のいわゆる自動車排出ガス削減との両方の観点から、燃料の硫黄分低減が益々求められている。具体的には、ガソリンや軽油の硫黄分は、サルファー・フリー(硫黄分10質量ppm以下)に規制され、さらに低硫黄分、すなわちゼロ・サルファー(硫黄分1質量ppm以下)の燃料油も求められている。 In the 21st century automobiles and their fuels, dealing with environmental issues is a major issue. From the viewpoint of reducing CO 2 emissions, which are global warming gases, and so-called automobile exhaust emissions such as NOx, the sulfur content of the fuel Reduction is increasingly required. Specifically, the sulfur content of gasoline and light oil is regulated to sulfur-free (sulfur content of 10 ppm by mass or less), and further low sulfur content, that is, zero sulfur (sulfur content of 1 ppm by mass or less) fuel oil is also sought. It has been.
従来、主に用いられてきた脱硫技術である水素化脱硫法(例えば、コバルト、ニッケル、モリブデンを担持したアルミナ触媒を用いて、高温高圧水素雰囲気下で脱硫する方法)を適用してガソリンや軽油などの燃料油に残存する硫黄化合物を除去し、硫黄分を10質量ppm以下、さらには1質量ppm以下にするには、高温・高圧の反応である水素化脱硫反応において従来よりもさらに高温・高圧での操作が求められるため、エネルギー消費が大きくなり、また、水素消費量なども膨大になる。また、上記水素化脱硫において、空間速度を下げてマイルドな条件で反応させようとすると、膨大な触媒量を要する。そのため、水素化脱硫反応法を適用する場合には、いずれにせよ多大なコストアップとなることは避けられない。さらに、上記水素化脱硫を適用した場合、ガソリン基材については、オレフィン分まで水素化されてしまうため、オクタン価のロスが大きい。 Conventionally, hydrodesulfurization, which is a desulfurization technique that has been mainly used (for example, desulfurization in a high-temperature, high-pressure hydrogen atmosphere using an alumina catalyst supporting cobalt, nickel, and molybdenum) is applied to gasoline and light oil. In order to remove the sulfur compounds remaining in the fuel oil and reduce the sulfur content to 10 ppm by mass or less, and further to 1 ppm by mass or less, the hydrodesulfurization reaction, which is a high temperature / high pressure reaction, has a higher Since operation at high pressure is required, energy consumption increases and hydrogen consumption also becomes enormous. Further, in the above hydrodesulfurization, if an attempt is made to react under mild conditions by reducing the space velocity, a huge amount of catalyst is required. Therefore, when the hydrodesulfurization reaction method is applied, any increase in cost is inevitable in any case. Furthermore, when the above hydrodesulfurization is applied, the gasoline base material is hydrogenated to the olefin content, resulting in a large octane loss.
この問題に対して、オクタン価のロスを抑制しながらFCCガソリンを脱硫するための脱硫剤として、酸化亜鉛、アルミナ及び真珠岩の混合物にニッケルを担持した脱硫剤が提案されている(特許文献1)。しかしながら、この脱硫剤では、比表面積が小さいため、十分な脱硫レベルが得られないと共に、300℃以上の高い反応温度が必要となる。 In response to this problem, a desulfurization agent in which nickel is supported on a mixture of zinc oxide, alumina, and nacre has been proposed as a desulfurization agent for desulfurizing FCC gasoline while suppressing loss of octane number (Patent Document 1). . However, since this desulfurizing agent has a small specific surface area, a sufficient desulfurization level cannot be obtained, and a high reaction temperature of 300 ° C. or higher is required.
一方、炭化水素油を特定の条件下で吸着剤と接触させて硫黄化合物を吸着させる工程と、吸着剤に水素を通気させることにより吸着剤から硫黄化合物を脱離させる工程とを繰り返すことにより、オレフィンの水素化反応など不要な反応を抑制しつつガソリンの基材となる炭化水素油に含まれる硫黄分を連続的に低減する方法が提案されている(特許文献2参照)。しかしながら、このような吸着剤を用いる方法も、水素非存在下であることや室温での脱硫であることによって頻繁に再生処理を行う必要があり、経済的な脱硫という観点からは必ずしも満足できる方法ではない。 On the other hand, by repeating the step of adsorbing the sulfur compound by contacting the hydrocarbon oil with the adsorbent under specific conditions and the step of desorbing the sulfur compound from the adsorbent by passing hydrogen through the adsorbent, There has been proposed a method for continuously reducing the sulfur content contained in hydrocarbon oil serving as a gasoline base material while suppressing unnecessary reactions such as olefin hydrogenation (see Patent Document 2). However, the method using such an adsorbent also needs to be frequently regenerated by being in the absence of hydrogen or by desulfurization at room temperature, and is always a satisfactory method from the viewpoint of economical desulfurization. is not.
これに対して本出願人は、ニッケルと亜鉛を含む脱硫剤を用いて特定の条件のもとで脱硫することで、FCCガソリンを高度に脱硫できることを見いだしている(特許文献3、4)。しかしながらこの方法では、300℃と比較的高い反応温度が必要であり、経済的な脱硫という観点では十分とは言えなかった。 In contrast, the present applicant has found that FCC gasoline can be highly desulfurized by desulfurization under specific conditions using a desulfurization agent containing nickel and zinc (Patent Documents 3 and 4). However, this method requires a relatively high reaction temperature of 300 ° C., which is not sufficient from the viewpoint of economical desulfurization.
上述したように、炭化水素油の硫黄分を10質量ppm、さらには1質量ppm以下まで比較的マイルドな条件において安定にかつ経済的に脱硫する方法は、未だ確立されていない。そこで、本発明は、特定の条件下で炭化水素油を長期間にわたって安定にかつ経済的に脱硫できる脱硫剤を提供することを課題とする。 As described above, a method for stably and economically desulfurizing the sulfur content of hydrocarbon oil under relatively mild conditions up to 10 ppm by mass and even 1 ppm by mass has not been established yet. Then, this invention makes it a subject to provide the desulfurization agent which can desulfurize hydrocarbon oil stably and economically over a long period of time on specific conditions.
本出願人らは、上記課題を解決するために鋭意研究した結果、炭化水素油を特定の条件のもと特定の多孔質脱硫剤によって処理することで長期間安定的に硫黄分を低減できることを見出し、この発明に至った。 As a result of diligent research to solve the above problems, the present applicants have found that the sulfur content can be stably reduced for a long period of time by treating hydrocarbon oil with a specific porous desulfurization agent under specific conditions. The headline and the present invention were reached.
すなわち、本発明は、
(1)ニッケルを33質量%以下且つ亜鉛を30質量%以上含有し、細孔径が2〜30nmである細孔の容積(V2)が0.08〜0.50mL/gであり、全細孔容積(V1)に対する細孔径が2〜30nmである細孔の容積(V2)の比(V2/V1)が0.15〜1.00であることを特徴とする多孔質脱硫剤である。
(2)ニッケル酸化物の結晶子径(X)が7nm以下、亜鉛酸化物の結晶子径(Y)が20nm以下であり、亜鉛酸化物の結晶子径(Y)とニッケル酸化物の結晶子径(X)の比(Y/X)が2.5以上である前記(1)記載の多孔質脱硫剤である。
(3)硫黄分を2質量ppm以上含有する炭化水素油を前記(1)又は(2)記載の多孔質脱硫剤と水素存在下で、温度50〜300℃、圧力0.2〜5.0MPa、液空間速度が2.0h-1を超える条件で接触させる炭化水素油の脱硫方法である。
That is, the present invention
(1) The volume (V2) of pores containing not more than 33% by mass of nickel and not less than 30% by mass of zinc and having a pore diameter of 2 to 30 nm is 0.08 to 0.50 mL / g, The porous desulfurization agent is characterized in that the ratio (V2 / V1) of the pore volume (V2) having a pore diameter of 2 to 30 nm to the volume (V1) is 0.15 to 1.00.
(2) The crystallite diameter (X) of the nickel oxide is 7 nm or less, the crystallite diameter (Y) of the zinc oxide is 20 nm or less, the crystallite diameter (Y) of the zinc oxide and the crystallite of the nickel oxide The porous desulfurization agent according to (1), wherein the ratio (Y / X) of the diameter (X) is 2.5 or more.
(3) Hydrocarbon oil containing 2 mass ppm or more of sulfur content in the presence of the porous desulfurization agent and hydrogen described in (1) or (2) above, temperature 50 to 300 ° C., pressure 0.2 to 5.0 MPa This is a hydrocarbon oil desulfurization method in which the liquid space velocity is contacted under a condition exceeding 2.0 h −1 .
本発明の多孔質脱硫剤を特定の条件下で適用する事により、炭化水素油の脱硫を長期間にわたって安定かつ経済的に実施する事ができる。 By applying the porous desulfurization agent of the present invention under specific conditions, desulfurization of hydrocarbon oil can be carried out stably and economically over a long period of time.
[多孔質脱硫剤]
本発明の多孔質脱硫剤はニッケルと亜鉛を含むものであり、例えば、共沈法によって亜鉛やニッケルなどの金属成分を沈殿させてろ過、洗浄し、成形、焼成等の工程を経ることによって得ることができる。
[Porous desulfurization agent]
The porous desulfurization agent of the present invention contains nickel and zinc. For example, the porous desulfurization agent is obtained by precipitating metal components such as zinc and nickel by a coprecipitation method, filtering, washing, molding, and firing. be able to.
脱硫剤総質量に対するニッケル含有量は33質量%以下であり、好ましくは1〜20質量%、より好ましくは1〜10質量%である。また、脱硫剤総質量に対する亜鉛含有量は30質量%以上であり、好ましくは50〜80質量%であり、特に好ましくは60〜80質量%である。ニッケル含有量が33質量%を超えたり、亜鉛含有量が30質量%未満の場合、多孔質脱硫剤の寿命が短くなるため好ましくない。一方、ニッケル含有量が20質量%以下、亜鉛含有量が50質量%以上の場合、多孔質脱硫剤の寿命が長く、また、ニッケル含有量が10質量%以下、亜鉛含有量が60質量%以上の場合、多孔質脱硫剤の寿命が特に長くなる。なお、ニッケル及び亜鉛の総含有量は、脱硫剤の総質量に対して20〜85質量%、特には50〜80質量%の範囲が好ましい。 The nickel content with respect to the total mass of the desulfurizing agent is 33% by mass or less, preferably 1 to 20% by mass, more preferably 1 to 10% by mass. Moreover, zinc content with respect to the desulfurization agent total mass is 30 mass% or more, Preferably it is 50-80 mass%, Most preferably, it is 60-80 mass%. When nickel content exceeds 33 mass% or zinc content is less than 30 mass%, since the lifetime of a porous desulfurization agent becomes short, it is unpreferable. On the other hand, when the nickel content is 20% by mass or less and the zinc content is 50% by mass or more, the lifetime of the porous desulfurization agent is long, the nickel content is 10% by mass or less, and the zinc content is 60% by mass or more. In this case, the lifetime of the porous desulfurizing agent is particularly long. In addition, the total content of nickel and zinc is preferably 20 to 85% by mass, particularly 50 to 80% by mass with respect to the total mass of the desulfurizing agent.
また、亜鉛含有量に対するニッケル含有量の質量比(Ni/Zn)は0.5以下が好ましく、0.35以下が更に好ましく、0.05〜0.35の範囲がより一層好ましく、0.05〜0.15の範囲が特に好ましい。亜鉛含有量に対するニッケル含有量の質量比が0.5を超えると、多孔質脱硫剤の寿命が著しく短くなり好ましくない。 The mass ratio of nickel content to zinc content (Ni / Zn) is preferably 0.5 or less, more preferably 0.35 or less, even more preferably in the range of 0.05 to 0.35, and 0.05. A range of ˜0.15 is particularly preferred. When the mass ratio of the nickel content to the zinc content exceeds 0.5, the life of the porous desulfurization agent is remarkably shortened, which is not preferable.
本発明の多孔質脱硫剤は、ニッケル酸化物の結晶子径(X)が7nm以下であることが好ましく、5nm以下であることが更に好ましく、また、亜鉛酸化物の結晶子径(Y)が20nm以下であることが好ましく、17nm以下であることが更に好ましい。ニッケル酸化物の結晶子径が7nmを超えると、ニッケルと炭化水素油との接触効率が低下して硫黄を取り込む能力が低下するため好ましくなく、一方、亜鉛酸化物の結晶子径が20nmを超えると、酸化亜鉛が硫黄を固定化する効率が低下するため好ましくない。また、ニッケル酸化物の結晶子径が5nm以下であれば、ニッケルと炭化水素油との接触効率が高いため硫黄を取り込む能力が高く、一方、亜鉛酸化物の結晶子径が17nm以下であれば、酸化亜鉛が硫黄を固定化する効率が高い。 In the porous desulfurization agent of the present invention, the crystallite diameter (X) of nickel oxide is preferably 7 nm or less, more preferably 5 nm or less, and the crystallite diameter (Y) of zinc oxide is It is preferably 20 nm or less, and more preferably 17 nm or less. When the crystallite diameter of the nickel oxide exceeds 7 nm, the contact efficiency between nickel and hydrocarbon oil decreases and the ability to take in sulfur decreases, which is not preferable. On the other hand, the crystallite diameter of the zinc oxide exceeds 20 nm. And, zinc oxide is not preferable because the efficiency of fixing sulfur is lowered. Moreover, if the crystallite diameter of nickel oxide is 5 nm or less, the contact efficiency between nickel and hydrocarbon oil is high, so the ability to take in sulfur is high, while the crystallite diameter of zinc oxide is 17 nm or less. Zinc oxide is highly efficient in immobilizing sulfur.
また、亜鉛酸化物の結晶子径(Y)とニッケル酸化物の結晶子径(X)の比(Y/X)は2.5以上であることが好ましく、3.0以上であることがより好ましく、3.5以上であることが特に好ましい。亜鉛酸化物の結晶子径とニッケル酸化物の結晶子径の比が2.5未満であると、ニッケルと炭化水素油との接触効率が低下して炭化水素油中の硫黄化合物を脱硫剤中に取り込む能力が低下すると同時に、亜鉛が硫黄を固定化する効率が低下するため好ましくない。また、該比(Y/X)が3.0以上であれば、ニッケルと炭化水素油との接触効率が高いため、多孔質脱硫剤の硫黄を取り込む能力が高い上、酸化亜鉛が硫黄を固定化する効率も高くなり、更に、該比が3.5以上であれば、多孔質脱硫剤の硫黄を取り込む能力及び硫黄を固定化する効率が特に高くなる。 The ratio (Y / X) of the crystallite diameter (Y) of the zinc oxide to the crystallite diameter (X) of the nickel oxide is preferably 2.5 or more, more preferably 3.0 or more. It is preferably 3.5 or more. If the ratio of the crystallite diameter of zinc oxide to the crystallite diameter of nickel oxide is less than 2.5, the contact efficiency between nickel and hydrocarbon oil decreases, and sulfur compounds in hydrocarbon oil are contained in the desulfurizing agent. At the same time, the ability of zinc to be incorporated is decreased, and at the same time, the efficiency of fixing zinc to sulfur is decreased. If the ratio (Y / X) is 3.0 or more, the contact efficiency between nickel and hydrocarbon oil is high, so the ability to take in sulfur from the porous desulfurizing agent is high, and zinc oxide fixes sulfur. In addition, when the ratio is 3.5 or more, the ability of the porous desulfurization agent to take in sulfur and the efficiency of fixing sulfur are particularly high.
本発明の多孔質脱硫剤は、細孔径が2〜30nmである細孔の容積(V2)が0.08〜0.50mL/g、好ましくは0.08〜0.20mL/gである。細孔径が2〜30nmの細孔の容積が0.08mL/g未満であると、主として脱硫反応が起こる空間が少なくなるため好ましくない。また、細孔径が2〜30nmの細孔の容積が0.50mL/gを超えると、脱硫剤の嵩密度が小さくなって一定容量の反応器に充填できる質量が少なくなり寿命が短くなるため好ましくない。一方、細孔径が2〜30nmである細孔の容積が0.20mL/g以下であれば、十分な嵩密度が得られる。 The porous desulfurization agent of the present invention has a pore volume (V2) having a pore diameter of 2 to 30 nm of 0.08 to 0.50 mL / g, preferably 0.08 to 0.20 mL / g. If the volume of the pores having a pore diameter of 2 to 30 nm is less than 0.08 mL / g, it is not preferable because the space where the desulfurization reaction occurs mainly decreases. In addition, when the volume of the pores having a pore diameter of 2 to 30 nm exceeds 0.50 mL / g, the bulk density of the desulfurizing agent is reduced, and the mass that can be charged in the reactor of a constant volume is reduced, and the life is shortened. Absent. On the other hand, if the volume of the pores having a pore diameter of 2 to 30 nm is 0.20 mL / g or less, a sufficient bulk density can be obtained.
本発明の多孔質脱硫剤において、全細孔容積(V1)に対する細孔径が2〜30nmである細孔の容積(V2)の比(V2/V1)は、0.15〜1.00、好ましくは0.15〜0.40である。該比(V2/V1)が0.15未満であると、炭化水素油と細孔中のニッケルとの接触効率が悪くなったり、脱硫剤を工業的に使用する際に十分な強度が得られなくなるため好ましくない。該比(V2/V1)が0.40以下であれば、径の大きな細孔と小さな細孔との適度な組み合わせにより、好ましい接触効率が得られる。 In the porous desulfurization agent of the present invention, the ratio (V2 / V1) of the pore volume (V2) having a pore diameter of 2 to 30 nm with respect to the total pore volume (V1) is preferably 0.15 to 1.00. Is between 0.15 and 0.40. When the ratio (V2 / V1) is less than 0.15, the contact efficiency between the hydrocarbon oil and nickel in the pores deteriorates, or sufficient strength is obtained when the desulfurizing agent is used industrially. Since it disappears, it is not preferable. When the ratio (V2 / V1) is 0.40 or less, a favorable contact efficiency can be obtained by an appropriate combination of pores having a large diameter and small pores.
本発明の多孔質脱硫剤の比表面積は、30m2/g以上が好ましく、50〜600m2/gの範囲が更に好ましい。 The specific surface area of the porous desulfurization agent of the present invention is preferably at least 30 m 2 / g, more preferably in the range of 50 to 600 m 2 / g.
本発明の多孔質脱硫剤は、水素雰囲気下200〜350℃で処理して用いられることが好ましい。水素雰囲気下での処理温度が200℃未満では、ニッケルが還元されないため好ましくない。また、該処理温度が350℃を超えると、ニッケルがシンタリングしてしまって活性が低くなるため好ましくない。 The porous desulfurization agent of the present invention is preferably used after being treated at 200 to 350 ° C. in a hydrogen atmosphere. A treatment temperature under a hydrogen atmosphere of less than 200 ° C. is not preferable because nickel is not reduced. On the other hand, when the treatment temperature exceeds 350 ° C., nickel is sintered and the activity is lowered, which is not preferable.
本発明の多孔質脱硫剤は、共沈法により調製されることが好ましい。共沈法による調製方法は、アルミナのような多孔質担体に亜鉛やニッケルなどの金属成分を含浸、担持して焼成する製造方法に比べて脱硫に有効なニッケルと亜鉛を脱硫剤中に多く含ませることができるため脱硫剤の長寿命化を達成できる。また、酸化亜鉛担体にニッケルを含浸する方法は、酸化亜鉛担体の細孔の閉塞により比表面積及び細孔容積が減少し、脱硫活性が低くなるため好ましくない。 The porous desulfurization agent of the present invention is preferably prepared by a coprecipitation method. The preparation method by coprecipitation method contains more nickel and zinc effective for desulfurization in the desulfurization agent than the production method in which a porous carrier such as alumina is impregnated with metal components such as zinc and nickel, and is fired. Therefore, the life of the desulfurizing agent can be extended. In addition, the method of impregnating the zinc oxide support with nickel is not preferable because the specific surface area and the pore volume are reduced due to the blockage of the pores of the zinc oxide support and the desulfurization activity is lowered.
本発明では、ニッケルと亜鉛を含む酸性溶液を、アルカリ溶液に混合して、ニッケルと亜鉛を含有する脱硫剤を調製することができる。ニッケルと亜鉛を含む酸性溶液は、亜鉛やニッケルの硝酸塩、酢酸塩等を水で溶解することにより得られ、そのpHは好ましくは4.5以下であり、より好ましくは4.0以下、特に好ましくは0.5〜3.0である。酸性溶液のpHが4.5を超えると、溶液中での核の生成速度が遅くなって結晶が成長し易くなり、ニッケルと亜鉛の分散度が低くなるため好ましくない。一方、酸性溶液のpHが低すぎると、特に0.5未満であると、共沈溶液の液量が少なって粘度が高く撹拌しにくくなり均一な物性のものが得られにくいため好ましくない。 In the present invention, an acid solution containing nickel and zinc can be mixed with an alkaline solution to prepare a desulfurization agent containing nickel and zinc. The acidic solution containing nickel and zinc is obtained by dissolving zinc, nickel nitrate, acetate, etc. with water, and the pH is preferably 4.5 or less, more preferably 4.0 or less, particularly preferably. Is 0.5 to 3.0. When the pH of the acidic solution exceeds 4.5, it is not preferable because the nucleation rate in the solution becomes slow and the crystal grows easily, and the degree of dispersion of nickel and zinc becomes low. On the other hand, if the pH of the acidic solution is too low, particularly less than 0.5, the amount of the coprecipitation solution is small, the viscosity is high, the stirring is difficult, and uniform physical properties are difficult to obtain.
また、上記アルカリ溶液には、炭酸ナトリウム、炭酸アンモニウム等を用いることができるが、なかでも炭酸ナトリウムを用いることが好ましい。該アルカリ溶液のpHは、11〜13が好ましい。 Moreover, although sodium carbonate, ammonium carbonate, etc. can be used for the said alkaline solution, it is preferable to use sodium carbonate especially. The pH of the alkaline solution is preferably 11-13.
共沈させる際のpHは7.0〜8.0が好ましい。共沈させる際のpHが7.0未満では、ニッケルの一部が沈殿しないため好ましくない。一方、共沈させる際のpHが8.0を超えると、沈殿中にアルカリ成分が残存しやすいため好ましくない。また、前記2つの溶液を混合した後は1時間以上継続して撹拌することが望ましい。更に、共沈させる際の液温は、アルカリ成分の溶解度の点から50〜70℃の範囲が好ましい。 The pH for coprecipitation is preferably 7.0 to 8.0. If the pH during coprecipitation is less than 7.0, a part of nickel does not precipitate, which is not preferable. On the other hand, if the pH at the time of coprecipitation exceeds 8.0, an alkali component tends to remain in the precipitation, which is not preferable. In addition, it is desirable to continuously stir for 1 hour or more after mixing the two solutions. Furthermore, the liquid temperature at the time of coprecipitation is preferably in the range of 50 to 70 ° C. from the viewpoint of the solubility of the alkali component.
上記の工程で生成した沈殿物は、ろ過後に乾燥する必要があるが、乾燥温度は100〜200℃が好ましい。また、その後の焼成における温度は300〜400℃が好ましく、300〜350℃が更に好ましい。焼成温度が300℃未満では、ニッケルおよび亜鉛成分が沈殿した際の塩が完全に分解しないため好ましくない。一方、焼成温度が400℃を超えると、塩が分解してできるニッケルと亜鉛の酸化物の結晶化が進み、ニッケルの亜鉛に対する分散度が低くなるため好ましくない。 Although the precipitate produced | generated at said process needs to be dried after filtration, 100-200 degreeC is preferable for drying temperature. Moreover, 300-400 degreeC is preferable and the temperature in subsequent baking is 300-350 degreeC more preferable. A calcination temperature of less than 300 ° C. is not preferable because the salt is not completely decomposed when the nickel and zinc components are precipitated. On the other hand, if the firing temperature exceeds 400 ° C., crystallization of nickel and zinc oxide formed by decomposition of the salt proceeds, and the degree of dispersion of nickel with respect to zinc is lowered, which is not preferable.
なお、本発明において、多孔質脱硫剤とは、硫黄収着機能を持った多孔質脱硫剤をいう。ここでいう硫黄収着機能を持った多孔質脱硫剤とは、有機硫黄化合物中の硫黄原子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残基については有機硫黄化合物中の炭素−硫黄結合が開裂することによって脱硫剤から脱離させる機能をもった多孔質脱硫剤をいう。この有機硫黄化合物中の炭化水素残基が脱離する際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したがって、有機硫黄化合物から硫黄原子が除かれた炭化水素化合物が生成物として得られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、異性化、分解等の反応を受けた生成物を与えることがあっても構わない。一方、硫黄は脱硫剤に固定化されるため、水素化精製処理とは異なり、生成物として硫化水素などの硫黄化合物を発生しない。そのため、水素をリサイクルして使用する場合、硫化水素を除去する設備が不要となり、経済的に有利である。 In the present invention, the porous desulfurization agent refers to a porous desulfurization agent having a sulfur sorption function. The porous desulfurization agent having a sulfur sorption function mentioned here is to fix sulfur atoms in the organic sulfur compound to the desulfurization agent and to remove organic sulfur from hydrocarbon residues other than the sulfur atoms in the organic sulfur compound. A porous desulfurization agent having a function of desorbing from a desulfurization agent by cleavage of a carbon-sulfur bond in a compound. When the hydrocarbon residue in the organic sulfur compound is eliminated, hydrogen present in the system is added to the carbon whose bond with sulfur is cleaved. Therefore, a hydrocarbon compound obtained by removing sulfur atoms from the organic sulfur compound is obtained as a product. However, the hydrocarbon compound from which the sulfur atom is removed may give a product that has undergone a reaction such as hydrogenation, isomerization, or decomposition. On the other hand, since sulfur is fixed to the desulfurizing agent, unlike a hydrorefining treatment, sulfur compounds such as hydrogen sulfide are not generated as a product. Therefore, when recycling and using hydrogen, the installation which removes hydrogen sulfide becomes unnecessary, and it is economically advantageous.
[炭化水素油]
本発明による脱硫方法の対象となる原料の炭化水素油は、硫黄分を含む炭化水素油であれば特に限定されないが、硫黄分を2質量ppm以上含むものが好ましく、より好ましくは2〜1,000質量ppm、より一層好ましくは2〜100質量ppm、特に好ましくは2〜40質量ppm含むものである。硫黄分が1,000質量ppmを超えると、脱硫剤の寿命が短くなり好ましくない。
[Hydrocarbon oil]
The hydrocarbon oil as a raw material to be subjected to the desulfurization method according to the present invention is not particularly limited as long as it is a hydrocarbon oil containing a sulfur content, but preferably contains 2 ppm by mass or more of sulfur content, more preferably 2 to 1, 000 mass ppm, more preferably 2 to 100 mass ppm, particularly preferably 2 to 40 mass ppm. When the sulfur content exceeds 1,000 ppm by mass, the life of the desulfurizing agent is shortened, which is not preferable.
原料の炭化水素油として、具体的には、製油所などで一般的に生産されるLPG留分、ガソリン留分、ナフサ留分、灯油留分、軽油留分などに相当する基材が挙げられる。LPG留分は、プロパン、プロピレン、ブタン、ブチレンなどを主成分とする燃料ガスおよび工業用原料ガスである。該LPG留分は、通常は、LPG(液化石油ガス)と称されるように、加圧下の球状タンクに液相の状態で貯蔵されるか、大気圧近傍の低温下にて、液相の状態で貯蔵される。上記ガソリン留分は、一般に炭素数4〜11の炭化水素を主体とし、密度(15℃)が0.783g/cm3以下、10%留出温度が24℃以上、90%留出温度が180℃以下である。上記ナフサ留分は、ガソリン留分の構成成分(ホールナフサ、軽質ナフサ、重質ナフサ、又はそれらの水素化脱硫ナフサ)あるいはガソリン基材を製造する接触改質の原料(脱硫重質ナフサ)となる成分などの総称であり、沸点範囲がガソリン留分と殆ど同じ範囲か、ガソリン留分の沸点範囲に包含されるものである。したがって、ガソリン留分と同じ意味で用いられることも多い。上記灯油留分は、一般に沸点範囲150〜280℃の炭化水素混合物である。上記軽油留分は、一般に沸点範囲190〜350℃の炭化水素混合物である。 Specific examples of the hydrocarbon oil as a raw material include base materials corresponding to LPG fraction, gasoline fraction, naphtha fraction, kerosene fraction, light oil fraction, etc. that are generally produced in refineries and the like. . The LPG fraction is a fuel gas mainly composed of propane, propylene, butane, butylene, and industrial raw material gas. The LPG fraction is usually stored in a liquid phase in a spherical tank under pressure as called LPG (liquefied petroleum gas) or at a low temperature near atmospheric pressure. Stored in state. The gasoline fraction is generally composed mainly of hydrocarbons having 4 to 11 carbon atoms, and has a density (15 ° C.) of 0.783 g / cm 3 or less, a 10% distillation temperature of 24 ° C. or more, and a 90% distillation temperature of 180%. It is below ℃. The naphtha fraction is composed of gasoline fraction components (hole naphtha, light naphtha, heavy naphtha, or hydrodesulfurized naphtha thereof) or a raw material for catalytic reforming (desulfurized heavy naphtha) for producing a gasoline base. The boiling point range is almost the same as that of the gasoline fraction or it is included in the boiling range of the gasoline fraction. Therefore, it is often used in the same meaning as the gasoline fraction. The kerosene fraction is generally a hydrocarbon mixture with a boiling range of 150-280 ° C. The gas oil fraction is generally a hydrocarbon mixture having a boiling range of 190 to 350 ° C.
また、原料の炭化水素油は、製油所などで生産されるものには限らず、硫黄分を2〜1,000質量ppm含有し、石油化学から生産される石油(炭化水素)ガスや前記と同様な沸点範囲を有する留分でも構わない。好ましく使用できる炭化水素油としては、重質油を熱分解又は接触分解して得られた炭化水素をさらに分留したものが挙げられる。 The hydrocarbon oil as a raw material is not limited to those produced at refineries and the like, but contains 2 to 1,000 ppm by mass of sulfur, petroleum (hydrocarbon) gas produced from petrochemicals, A fraction having a similar boiling range may be used. Examples of hydrocarbon oils that can be preferably used include those obtained by further fractionating hydrocarbons obtained by pyrolysis or catalytic cracking of heavy oils.
なお、本発明による脱硫方法の対象となる原料の炭化水素油として特に好ましいのは、接触分解ガソリンや軽油留分である。接触分解ガソリンはオレフィンを多く含むため、一般的に行われる水素化脱硫触媒による水素化精製ではオレフィン分が水素化されてオクタン価が大きく低下してしまうが、本発明の脱硫方法ではオレフィン分はほとんど水素化されない。また、軽油留分には芳香族分が多く含まれるため、一般的に行われる水素化脱硫触媒による水素化精製では芳香族分が水素化されるため水素の消費量が多いが、本発明の脱硫方法では芳香族分はほとんど水素化されない。ただし、軽油留分の場合、通常硫黄分が10,000質量ppm程度含まれるため、水素化脱硫触媒による水素化精製で硫黄分をある程度低減、具体的には5〜50質量ppm程度まで低減したのち、本発明の脱硫方法を適用することが好ましい。硫黄分が多いと、脱硫剤の寿命が大きく低下してしまう。 Particularly preferred as raw material hydrocarbon oils to be subjected to the desulfurization method according to the present invention are catalytic cracked gasoline and light oil fractions. Since catalytically cracked gasoline contains a large amount of olefins, the hydrorefining with a hydrodesulfurization catalyst generally performed hydrogenates the olefin content and greatly reduces the octane number. However, in the desulfurization method of the present invention, almost no olefin content is present. Not hydrogenated. In addition, since the gas oil fraction contains a large amount of aromatics, the amount of hydrogen consumed is large because the aromatics are hydrogenated in the hydrorefining using a hydrodesulfurization catalyst that is generally performed. In the desulfurization method, the aromatic content is hardly hydrogenated. However, in the case of a light oil fraction, since the sulfur content is usually about 10,000 mass ppm, the sulfur content is reduced to some extent by hydrorefining with a hydrodesulfurization catalyst, specifically about 5 to 50 mass ppm. Thereafter, it is preferable to apply the desulfurization method of the present invention. When there is much sulfur content, the lifetime of a desulfurization agent will fall large.
[脱硫反応条件]
炭化水素油を多孔質脱硫剤と接触させる条件としては、反応温度が50〜300℃であり、好ましくは100〜300℃である。反応温度が50℃未満であると、脱硫速度が低下し、効率的に脱硫ができず好ましくない。また、反応温度が300℃を超えると、脱硫剤がシンタリングし、脱硫速度、脱硫容量とも低下し好ましくない。なお、反応温度が100℃以上であれば、脱硫速度が十分に高く、効率的に脱硫を行うことができる。
[Desulfurization reaction conditions]
As conditions for bringing the hydrocarbon oil into contact with the porous desulfurizing agent, the reaction temperature is 50 to 300 ° C, preferably 100 to 300 ° C. When the reaction temperature is less than 50 ° C., the desulfurization rate decreases, and it is not preferable because desulfurization cannot be efficiently performed. On the other hand, when the reaction temperature exceeds 300 ° C., the desulfurizing agent is sintered, and both the desulfurization rate and the desulfurization capacity are lowered, which is not preferable. If the reaction temperature is 100 ° C. or higher, the desulfurization rate is sufficiently high and desulfurization can be performed efficiently.
また、反応圧力は、ゲージ圧で0.2〜5.0MPa、好ましくは0.2〜3.0MPa、特に好ましくは0.2〜2.0MPaである。反応圧力が0.2MPa未満だと、脱硫速度が低下し、効率的に脱硫ができず好ましくない。また、反応圧力が5.0MPaを超えると、炭化水素油中に含まれるオレフィン分や芳香族分の水素化等の副反応が進行し好ましくない。なお、反応圧力が3.0MPa以下であれば、オレフィン分や芳香族分の水素化等の副反応を十分に抑制でき、2.0MPa以下であれば、これら副反応を確実に防止できる。 The reaction pressure is 0.2 to 5.0 MPa, preferably 0.2 to 3.0 MPa, particularly preferably 0.2 to 2.0 MPa in terms of gauge pressure. When the reaction pressure is less than 0.2 MPa, the desulfurization rate decreases, and it is not preferable because desulfurization cannot be efficiently performed. On the other hand, when the reaction pressure exceeds 5.0 MPa, side reactions such as hydrogenation of olefins and aromatics contained in the hydrocarbon oil proceed, which is not preferable. If the reaction pressure is 3.0 MPa or less, side reactions such as hydrogenation of olefins and aromatics can be sufficiently suppressed, and if it is 2.0 MPa or less, these side reactions can be reliably prevented.
更に、液空間速度(LHSV)は、2.0h-1を超え、好ましくは2.1h-1以上である。また、LHSVは、好ましくは50.0h-1以下、より好ましくは20.0h-1以下、より一層好ましくは10.0h-1以下である。LHSVが2.0h-1以下だと、通油量が制限されたり、脱硫リアクターが大きくなり過ぎたりするため、経済的に脱硫できず好ましくない。また、LHSVが50.0h-1を超えると、脱硫するのに十分な接触時間が得られず、脱硫率が低下するため好ましくない。なお、LHSVが2.1h-1以上であれば、十分経済的に脱硫を行うことができ、LHSVが20.0h-1以下であれば、接触時間が十分に長いため、脱硫率が向上し、10.0h-1以下であれば、脱硫率が特に高くなる。 Furthermore, the liquid hourly space velocity (LHSV) exceeds 2.0 h −1 , preferably 2.1 h −1 or more. The LHSV is preferably 50.0 h −1 or less, more preferably 20.0 h −1 or less, and even more preferably 10.0 h −1 or less. If the LHSV is 2.0 h −1 or less, the amount of oil passing is limited or the desulfurization reactor becomes too large, so it is not preferable because it cannot economically desulfurize. On the other hand, if LHSV exceeds 50.0 h −1 , a contact time sufficient for desulfurization cannot be obtained, and the desulfurization rate decreases, which is not preferable. If LHSV is 2.1 h −1 or more, desulfurization can be performed sufficiently economically, and if LHSV is 20.0 h −1 or less, the contact time is sufficiently long, so that the desulfurization rate is improved. If it is 10.0 h −1 or less, the desulfurization rate is particularly high.
水素/油比は特に限定しないが、接触分解ガソリンのようにオレフィンを多く含む留分の場合0.01〜200NL/Lが好ましく、0.01〜100NL/Lが更に好ましく、0.1〜100NL/Lが特に好ましい。水素/油比が0.01NL/L未満だと、十分に脱硫が進行せず好ましくない。また、水素/油比が200NL/Lを超えると、オレフィンの水素化などの副反応が起こる割合が多くなり好ましくない。 The hydrogen / oil ratio is not particularly limited, but is preferably 0.01 to 200 NL / L, more preferably 0.01 to 100 NL / L, and more preferably 0.1 to 100 NL in the case of a fraction containing a large amount of olefin such as catalytic cracked gasoline. / L is particularly preferred. If the hydrogen / oil ratio is less than 0.01 NL / L, desulfurization does not proceed sufficiently, which is not preferable. On the other hand, when the hydrogen / oil ratio exceeds 200 NL / L, the ratio of side reactions such as hydrogenation of olefins increases, which is not preferable.
また、軽油留分のように多環芳香族を含む留分の場合、水素/油比は1〜1000NL/Lが好ましく、10〜500NL/Lが更に好ましく、50〜400NL/Lが特に好ましい。水素/油比が1NL/L未満だと、十分に脱硫が進行せず好ましくない。また、水素/油比が1000NL/Lだと、水素流量が多くなりすぎて、水素コンプレッサーが大きくなり好ましくない。 In the case of a fraction containing polycyclic aromatics such as a light oil fraction, the hydrogen / oil ratio is preferably 1 to 1000 NL / L, more preferably 10 to 500 NL / L, and particularly preferably 50 to 400 NL / L. When the hydrogen / oil ratio is less than 1 NL / L, desulfurization does not proceed sufficiently, which is not preferable. On the other hand, if the hydrogen / oil ratio is 1000 NL / L, the hydrogen flow rate becomes too high, and the hydrogen compressor becomes undesirably large.
使用する水素は、メタン等の不純物を含んでいてもよいが、水素コンプレッサーが大きくなり過ぎないよう、水素純度は50容量%以上が好ましく、さらには80容量%以上、特には95%以上が好ましい。なお、水素中に硫化水素などの硫黄化合物が含まれると脱硫剤の寿命が短くなるので、水素中の硫黄分は、1,000容量ppm以下が好ましく、さらには100容量ppm以下、特には10容量ppm以下が好ましい。 The hydrogen to be used may contain impurities such as methane, but the hydrogen purity is preferably 50% by volume or more, more preferably 80% by volume or more, and particularly preferably 95% or more so that the hydrogen compressor does not become too large. . If the sulfur compound such as hydrogen sulfide is contained in the hydrogen, the life of the desulfurizing agent is shortened. Therefore, the sulfur content in the hydrogen is preferably 1,000 ppm by volume or less, more preferably 100 ppm by volume or less, especially 10 ppm. A capacity of ppm or less is preferred.
以下に、実施例により具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
(実施例1)
硝酸亜鉛六水和物214g及び硝酸ニッケル六水和物23gを水に溶解したpH2.8の溶液300mLを調製した。また、炭酸ナトリウム106gを水に溶解したpH12.1の溶液250mLを60℃に加温し、これに前記調製したpH2.8の溶液を全量滴下し、その後1時間継続して撹拌した。全量滴下後のpHは7.5であった。得られた沈殿物をろ過した後、水で洗浄した。その後、120℃で16時間乾燥後、300℃で3時間焼成して脱硫剤Aを得た。脱硫剤Aは、ニッケル含有量が6.9質量%、亜鉛含有量が71.0質量%、ナトリウム含有量が0.01質量%であり、亜鉛含有量に対するニッケル含有量の比(質量)は0.097であった。また、亜鉛酸化物の結晶子径とニッケル酸化物の結晶子径の比は3.50であった。尚、金属分の含有量はアルカリ融解ICP法で測定し、酸化物の結晶子径はXRDで測定し、細孔容積は窒素吸脱着法によるBJH法で測定した。
Example 1
300 mL of a pH 2.8 solution in which 214 g of zinc nitrate hexahydrate and 23 g of nickel nitrate hexahydrate were dissolved in water was prepared. Further, 250 mL of a pH 12.1 solution in which 106 g of sodium carbonate was dissolved in water was heated to 60 ° C., and the whole amount of the prepared pH 2.8 solution was added dropwise thereto, followed by continuous stirring for 1 hour. The pH after dropping all was 7.5. The resulting precipitate was filtered and washed with water. Then, after drying at 120 degreeC for 16 hours, it baked at 300 degreeC for 3 hours, and obtained the desulfurization agent A. The desulfurizing agent A has a nickel content of 6.9% by mass, a zinc content of 71.0% by mass, a sodium content of 0.01% by mass, and the ratio (mass) of the nickel content to the zinc content is It was 0.097. The ratio of the crystallite diameter of zinc oxide to that of nickel oxide was 3.50. The metal content was measured by the alkali melting ICP method, the crystallite diameter of the oxide was measured by XRD, and the pore volume was measured by the BJH method by nitrogen adsorption / desorption method.
リアクターに脱硫剤Aを充填し、水素気流中350℃で16時間還元処理を行った後、炭化水素油の通油試験を実施した。炭化水素油としては、硫黄分が12.5質量ppmの分解ガソリンを用いた。反応温度120℃、反応圧力0.3MPa、水素/油比=100NL/L、LHSV=10.0h-1の条件下、リアクターの入口から炭化水素油の通油を開始した。通油開始後6時間後のリアクター出口生成油の硫黄分は0.1質量ppm以下であった。また、同24時間後のリアクター出口生成油の硫黄分は0.2質量ppmであった。尚、硫黄分は、ASTM D 5453(紫外蛍光法)に準拠して測定した。 The reactor was filled with desulfurizing agent A, subjected to reduction treatment at 350 ° C. for 16 hours in a hydrogen stream, and then an oil passage test for hydrocarbon oil was performed. As the hydrocarbon oil, cracked gasoline having a sulfur content of 12.5 mass ppm was used. Under the conditions of a reaction temperature of 120 ° C., a reaction pressure of 0.3 MPa, a hydrogen / oil ratio of 100 NL / L, and an LHSV of 10.0 h −1 , hydrocarbon oil flow was started from the reactor inlet. The sulfur content of the reactor exit product oil 6 hours after the start of oil passing was 0.1 mass ppm or less. Further, the sulfur content of the reactor outlet produced oil after 24 hours was 0.2 mass ppm. In addition, the sulfur content was measured based on ASTM D 5453 (ultraviolet fluorescence method).
(実施例2)
硝酸亜鉛六水和物214g及び硝酸ニッケル六水和物23gを水に溶解したpH0.5の溶液50mLと、炭酸ナトリウム106gを水に溶解したpH12.1の溶液250mLを用い、焼成温度を350℃とした以外実施例1と同様の方法により脱硫剤Bを得た。また、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表1に示す。
(Example 2)
Using 50 mL of a pH 0.5 solution in which 214 g of zinc nitrate hexahydrate and 23 g of nickel nitrate hexahydrate were dissolved in water, and 250 mL of a pH 12.1 solution in which 106 g of sodium carbonate was dissolved in water, the firing temperature was 350 ° C. A desulfurizing agent B was obtained in the same manner as in Example 1 except that. Further, an oil passage test of hydrocarbon oil was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
硝酸亜鉛六水和物214g及び硝酸ニッケル六水和物23gを水に溶解したpH2.1の溶液150mLと、炭酸ナトリウム106gを水に溶解したpH12.1の溶液250mLを用いた以外、実施例2と同様の方法により脱硫剤Cを得た。また、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表1に示す。
(Example 3)
Example 2 except that 150 mL of a pH 2.1 solution in which 214 g of zinc nitrate hexahydrate and 23 g of nickel nitrate hexahydrate were dissolved in water and 250 mL of a pH 12.1 solution in which 106 g of sodium carbonate were dissolved in water were used. A desulfurizing agent C was obtained in the same manner as described above. Further, an oil passage test of hydrocarbon oil was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
硝酸亜鉛六水和物214g及び硝酸ニッケル六水和物23gを水に溶解したpH4.0の溶液1,800mLと、炭酸ナトリウム106gを水に溶解したpH12.1の溶液250mLを用いた以外、実施例2と同様の方法により脱硫剤Dを得た。また、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表1に示す。
Example 4
Except for using 1,800 mL of a pH 4.0 solution in which 214 g of zinc nitrate hexahydrate and 23 g of nickel nitrate hexahydrate were dissolved in water, and 250 mL of a pH 12.1 solution in which 106 g of sodium carbonate was dissolved in water. A desulfurizing agent D was obtained in the same manner as in Example 2. Further, an oil passage test of hydrocarbon oil was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
焼成温度を500℃とした以外、実施例1と同様の方法により脱硫剤Eを得た。また、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表1に示す。
(Comparative Example 1)
A desulfurizing agent E was obtained in the same manner as in Example 1 except that the firing temperature was 500 ° C. Further, an oil passage test of hydrocarbon oil was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
硝酸亜鉛六水和物214g及び硝酸ニッケル六水和物23gを水に溶解したpH5.0の溶液3,000mLと、炭酸ナトリウム106gを水に溶解したpH12.1の溶液250mLを用いた以外、実施例2と同様の方法により脱硫剤Fを得た。また、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表1に示す。
(Comparative Example 2)
Except for using 3,000 mL of pH 5.0 solution of 214 g of zinc nitrate hexahydrate and 23 g of nickel nitrate hexahydrate in water and 250 mL of pH 12.1 solution of 106 g of sodium carbonate in water. A desulfurizing agent F was obtained in the same manner as in Example 2. Further, an oil passage test of hydrocarbon oil was performed in the same manner as in Example 1. The results are shown in Table 1.
表1に示す通り、本発明に従う実施例の脱硫剤は、反応温度120℃でも十分な脱硫効果を発揮できることがわかる。一方、比較例1の脱硫剤は、脱硫剤の調製における焼成温度が高過ぎるため、ニッケル酸化物及び亜鉛酸化物の結晶子径が大きくなり過ぎ、結果として、細孔径が2〜30nmの細孔の容積が少な過ぎるため、脱硫効果が非常に低かった。また、比較例2の脱硫剤は、脱硫剤の調製に用いた酸性溶液のpHが高過ぎ、結果として、細孔径が2〜30nmの細孔の容積が不十分であるため、実施例の脱硫剤に比べ脱硫効果が低かった。 As shown in Table 1, it can be seen that the desulfurization agents of the examples according to the present invention can exhibit a sufficient desulfurization effect even at a reaction temperature of 120 ° C. On the other hand, the desulfurization agent of Comparative Example 1 has too high a calcination temperature in the preparation of the desulfurization agent, so that the crystallite diameters of nickel oxide and zinc oxide are too large. As a result, the pore diameter is 2 to 30 nm. Since the volume of the was too small, the desulfurization effect was very low. In addition, the desulfurization agent of Comparative Example 2 is too high in the pH of the acidic solution used for the preparation of the desulfurization agent, and as a result, the volume of pores having a pore diameter of 2 to 30 nm is insufficient. Desulfurization effect was low compared to the agent.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007094169A JP5372338B2 (en) | 2007-03-30 | 2007-03-30 | Porous desulfurization agent and hydrocarbon oil desulfurization method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007094169A JP5372338B2 (en) | 2007-03-30 | 2007-03-30 | Porous desulfurization agent and hydrocarbon oil desulfurization method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008248195A JP2008248195A (en) | 2008-10-16 |
JP5372338B2 true JP5372338B2 (en) | 2013-12-18 |
Family
ID=39973521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007094169A Expired - Fee Related JP5372338B2 (en) | 2007-03-30 | 2007-03-30 | Porous desulfurization agent and hydrocarbon oil desulfurization method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5372338B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2793807A1 (en) * | 2010-03-19 | 2011-09-22 | Japan Petroleum Energy Center | Desulfurizing agent and method for manufacturing the same |
JP5411762B2 (en) * | 2010-03-19 | 2014-02-12 | 一般財団法人石油エネルギー技術センター | Hydrocarbon oil desulfurization method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02307530A (en) * | 1989-05-20 | 1990-12-20 | Osaka Gas Co Ltd | Desulfurizing agent |
JP4197073B2 (en) * | 1999-08-27 | 2008-12-17 | 株式会社コスモ総合研究所 | Deep desulfurization catalyst, method for producing the same, and desulfurization method using the same |
JP3943902B2 (en) * | 2001-11-09 | 2007-07-11 | 新日本石油株式会社 | Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system |
JP4080225B2 (en) * | 2002-03-14 | 2008-04-23 | 新日本石油株式会社 | Hydrocarbon desulfurization method and fuel cell system |
JP4486329B2 (en) * | 2003-07-14 | 2010-06-23 | 財団法人石油産業活性化センター | Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction |
JP4371937B2 (en) * | 2003-08-05 | 2009-11-25 | 株式会社ジャパンエナジー | Method for producing catalytic cracking gasoline base and unleaded gasoline composition using the same |
JP2005146054A (en) * | 2003-11-12 | 2005-06-09 | Idemitsu Kosan Co Ltd | Desulfurization agent and desulfurization method using the same |
JP2006312663A (en) * | 2005-05-06 | 2006-11-16 | Japan Energy Corp | Hydrocarbon oil desulfurization method |
WO2006120898A1 (en) * | 2005-05-06 | 2006-11-16 | Japan Energy Corporation | Process for producing low-sulfur cracked-gasoline base and lead-free gasoline composition |
WO2007015391A1 (en) * | 2005-08-01 | 2007-02-08 | Japan Energy Corporation | Method for desulfurization of hydrocarbon oil |
-
2007
- 2007-03-30 JP JP2007094169A patent/JP5372338B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008248195A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4839311B2 (en) | Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils | |
JP4530599B2 (en) | Desulfurization and new sorbents therefor | |
MXPA05009298A (en) | Catalytic hydrorefining process for crude oil. | |
EP2250129A2 (en) | Catalyst to attain low sulfur gasoline | |
JP2003528972A (en) | High temperature naphtha desulfurization using low metal content and partially deactivated catalyst | |
WO2006070660A1 (en) | Method for producing super-low sulfur gas oil base material or super-low sulfur gas oil composition, and super-low sulfur gas oil composition | |
JP2006035051A (en) | Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method | |
JP5826457B2 (en) | Improved hydrocracker aftertreatment catalyst for the production of low sulfur fuel | |
JP2004010857A (en) | Method for hydrogenating hydrocarbon heavy oil | |
JP5219247B2 (en) | Method for producing low sulfur cracking gasoline base and unleaded gasoline composition | |
JP2008291146A (en) | Porous desulfurization agent and hydrocarbon oil desulfurization method using the same | |
JP5284361B2 (en) | Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil | |
JP5372338B2 (en) | Porous desulfurization agent and hydrocarbon oil desulfurization method using the same | |
JP2001279257A (en) | Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell | |
JP4749589B2 (en) | Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method | |
JP4531939B2 (en) | Method for producing nickel-copper desulfurization agent | |
JP4996983B2 (en) | Porous desulfurizing agent and hydrocarbon desulfurization method using the same | |
JP5807005B2 (en) | Desulfurization agent and method for producing the same | |
JP4580070B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells | |
AU2021388708A1 (en) | Method for capturing organometallic impurities in the presence of a capture mass on a mesoporous-macroporous support | |
JP5467885B2 (en) | Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same | |
JP5394272B2 (en) | Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same | |
JP5411762B2 (en) | Hydrocarbon oil desulfurization method | |
JP2001262164A (en) | Fuel oil for fuel cells | |
JP2008297451A (en) | Porous desulfurization agent and desulfurization method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091116 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121126 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5372338 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |