[go: up one dir, main page]

JP2001279257A - Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell - Google Patents

Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell

Info

Publication number
JP2001279257A
JP2001279257A JP2000096352A JP2000096352A JP2001279257A JP 2001279257 A JP2001279257 A JP 2001279257A JP 2000096352 A JP2000096352 A JP 2000096352A JP 2000096352 A JP2000096352 A JP 2000096352A JP 2001279257 A JP2001279257 A JP 2001279257A
Authority
JP
Japan
Prior art keywords
desulfurizing agent
desulfurizing
petroleum
desulfurization
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000096352A
Other languages
Japanese (ja)
Inventor
Takashi Katsuno
尚 勝野
Satoshi Matsuda
聡 松田
Masahiro Yoshinaka
正浩 吉仲
Kazuhito Saito
一仁 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000096352A priority Critical patent/JP2001279257A/en
Publication of JP2001279257A publication Critical patent/JP2001279257A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【課題】 石油系炭化水素中の硫黄分を効果的に除去す
ることができ、かつ寿命の長い脱硫剤、該炭化水素中の
硫黄分を低濃度まで効率よく除去する脱硫方法及び燃料
電池用水素の製造方法を提供すること。 【解決手段】 担体に鉄を担持してなる石油系炭化水素
用脱硫剤、この脱硫剤を用いて、石油系炭化水素を脱硫
処理し、場合により、第二の脱硫剤と接触させる脱硫方
法、並びに上記第二の脱硫剤と接触させた石油系炭化水
素を、水蒸気改質触媒と接触させて燃料電池用水素を製
造する方法である。
PROBLEM TO BE SOLVED: To provide a desulfurizing agent capable of effectively removing sulfur from petroleum hydrocarbons and having a long life, and desulfurization for efficiently removing sulfur from hydrocarbons to a low concentration. A method and a method for producing hydrogen for a fuel cell. SOLUTION: A desulfurizing agent for petroleum hydrocarbons in which iron is supported on a carrier, a desulfurization method for desulfurizing petroleum hydrocarbons using the desulfurizing agent and, optionally, contacting with a second desulfurizing agent, And a method for producing hydrogen for a fuel cell by contacting a petroleum hydrocarbon contacted with the second desulfurizing agent with a steam reforming catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱硫剤、脱硫方法
及び燃料電池用水素の製造方法に関する。さらに詳しく
は、本発明は、石油系炭化水素中の硫黄分を効果的に除
去可能であり、かつ寿命の長い脱硫剤、この脱硫剤を用
いて、石油系炭化水素中の硫黄分を低濃度まで効率よく
除去し、下流設備である水蒸気改質部分での改質触媒の
性能を長時間にわたり維持させ得る脱硫方法、及びこの
脱硫方法で処理された石油系炭化水素を水蒸気改質処理
し、燃料電池用水素を製造する方法に関するものであ
る。
[0001] The present invention relates to a desulfurizing agent, a desulfurizing method, and a method for producing hydrogen for a fuel cell. More specifically, the present invention is a desulfurizing agent capable of effectively removing the sulfur content of petroleum hydrocarbons and having a long service life. Desulfurization method that efficiently removes the petroleum hydrocarbon treated by this desulfurization method, and a desulfurization method that can maintain the performance of the reforming catalyst in the steam reforming section that is a downstream facility for a long time, The present invention relates to a method for producing hydrogen for a fuel cell.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のLP
G、ナフサ、灯油などの炭化水素の使用が研究されてい
る。燃料電池を民生用や自動車用などに利用する場合、
上記石油系炭化水素は、保管及び取扱いが容易である
上、ガソリンスタンドや販売店など、供給システムが整
備されていることから、水素源として有利である。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
As a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as raw material, and petroleum LP
The use of hydrocarbons such as G, naphtha, kerosene is being studied. When using fuel cells for consumer or automotive applications,
The petroleum hydrocarbon is advantageous as a hydrogen source because it is easy to store and handle, and has a supply system such as a gas station and a store.

【0003】しかしながら、石油系炭化水素は、メタノ
ールや天然ガス系のものに比べて、硫黄分の含有量が多
いという問題がある。この石油系炭化水素を用いて水素
を製造する場合、一般に、該炭化水素を、改質触媒の存
在下に水蒸気改質又は部分酸化改質処理する方法が用い
られる。このような改質処理においては、上記改質触媒
は、炭化水素中の硫黄分により被毒するため、触媒寿命
の点から、該炭化水素に脱硫処理を施し、硫黄分含有量
を、通常0.2重量ppm以下にすることが肝要であ
る。石油系炭化水素の脱硫方法としては、これまで多く
の研究がなされており、例えばCo−Mo/アルミナや
Ni−Mo/アルミナなどの水素化脱硫触媒とZnOな
どの硫化水素吸着剤を用い、常圧〜5MPaの圧力下、
200〜400℃の温度で水素化脱硫する方法が知られ
ている。この方法は、厳しい条件下で水素化脱硫を行
い、硫黄分を硫化水素にして除去する方法であり、しか
も硫黄分を0.2重量ppm以下にすることは困難であ
るため、燃料電池用炭化水素に適用しにくい。
[0003] However, petroleum hydrocarbons have a problem that they have a higher sulfur content than methanol and natural gas fuels. When hydrogen is produced using this petroleum hydrocarbon, a method is generally used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming treatment in the presence of a reforming catalyst. In such a reforming treatment, since the reforming catalyst is poisoned by the sulfur content in the hydrocarbon, the hydrocarbon is desulfurized to reduce the sulfur content from the viewpoint of the catalyst life. It is important that the content be 0.2 ppm by weight or less. Many studies have been made on the desulfurization method of petroleum hydrocarbons. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO have been used. Under a pressure of ~ 5MPa,
A method for hydrodesulfurization at a temperature of 200 to 400 ° C is known. This method is a method of performing hydrodesulfurization under severe conditions to remove the sulfur content into hydrogen sulfide, and it is difficult to reduce the sulfur content to 0.2 ppm by weight or less. Hard to apply to hydrogen.

【0004】一方、石油留分の脱硫方法として、硫黄化
合物の一部を物理吸着により除去する方法が知られてお
り(米国特許第4188285号明細書、特開平3−1
28989号公報、特開平6−154615号公報、米
国特許第5482617号明細書、米国特許第5807
475号明細書、国際特許公開98151762号、米
国特許第5935422号明細書)、また除去に用いら
れる物質としては活性炭やゼオライトが知られている。
さらに、物理吸着により硫黄化合物の一部を除去した石
油留分をさらに脱硫剤と接触させる方法も知られている
(米国特許第5114689号明細書、特表平7−50
4214号公報)。しかしながら、活性炭やゼオライト
は、硫黄化合物に対する吸着性能が低く、また上記方法
において用いられる物理吸着剤は、燃料電池用脱硫剤と
しては、寿命の面で実用的なレベルに至っていないのが
実状である。
On the other hand, as a desulfurization method of petroleum fraction, a method of removing a part of sulfur compounds by physical adsorption is known (US Pat. No. 4,188,285;
No. 28989, JP-A-6-154615, US Pat. No. 5,482,617, US Pat. No. 5,807.
475, International Patent Publication No. 98151762, and US Pat. No. 5,935,422), and activated carbon and zeolite are known as substances used for removal.
Furthermore, a method is known in which a petroleum fraction from which a part of a sulfur compound has been removed by physical adsorption is further brought into contact with a desulfurizing agent (U.S. Pat. No. 5,114,689;
No. 4214). However, activated carbon and zeolites have low adsorption performance for sulfur compounds, and the physical adsorbent used in the above method has not reached a practical level in terms of life as a desulfurizing agent for fuel cells. .

【0005】[0005]

【発明が解決しようとする課題】このような状況下で、
本発明の第1の目的は、石油系炭化水素中の硫黄分を効
果的に除去することができ、かつ寿命の長い脱硫剤を提
供することにある。また本発明の第2の目的は、この脱
硫剤を用いて、石油系炭化水素中の硫黄分を低濃度まで
効率よく除去し、下流設備である水蒸気改質部分での改
質触媒の性能を長時間にわたり維持させ得る脱硫方法を
提供することにある。さらに、本発明の第3の目的は、
上記脱硫方法で処理された石油系炭化水素を用いて、燃
料電池用水素を効率よく製造する方法を提供することに
ある。
In such a situation,
A first object of the present invention is to provide a desulfurizing agent that can effectively remove sulfur from petroleum hydrocarbons and has a long life. Further, a second object of the present invention is to use this desulfurizing agent to efficiently remove the sulfur content of petroleum hydrocarbons to a low concentration and improve the performance of the reforming catalyst in the steam reforming section, which is downstream equipment. It is to provide a desulfurization method that can be maintained for a long time. Further, a third object of the present invention is that
An object of the present invention is to provide a method for efficiently producing hydrogen for fuel cells using petroleum hydrocarbons processed by the above desulfurization method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために、まず石油系炭化水素中の硫黄化合物
の性状について、詳細に解析した。その結果、石油系炭
化水素に含まれる硫黄化合物は、メルカプタン、スルフ
ィド、ジスルフィド、チオフェン、ベンゾチオフェン、
ジベンゾチオフェン類等であり、それらの蒸留性状及び
アルキル基などの分子サイズの分布が複雑多岐であるこ
とを解明した。また、メルカプタン、スルフィド、ジス
ルフィド、チオフェン類は、比較的脱硫されやすいが、
ベンゾチオフェン、ジベンゾチオフェン類は脱硫されに
くいことも解明した。更に、硫黄化合物に対する脱硫剤
の吸着実験などにより、沸点が比較的高い硫黄化合物
は、より低い沸点の硫黄化合物の脱硫剤への吸着を阻害
していることを解明した。そこで、石油系炭化水素中の
硫黄化合物を効果的に除去するには、沸点の比較的高い
硫黄化合物を選択的に除去すればよいことに着目した。
Means for Solving the Problems In order to achieve the above object, the present inventors first analyzed in detail the properties of sulfur compounds in petroleum hydrocarbons. As a result, sulfur compounds contained in petroleum hydrocarbons include mercaptan, sulfide, disulfide, thiophene, benzothiophene,
Dibenzothiophenes, etc., and their distillation properties and distribution of molecular sizes such as alkyl groups were found to be complex and diverse. Also, mercaptans, sulfides, disulfides, and thiophenes are relatively easily desulfurized,
We also found that benzothiophenes and dibenzothiophenes are difficult to desulfurize. Furthermore, through experiments such as adsorption of a desulfurizing agent on a sulfur compound, it was clarified that a sulfur compound having a relatively high boiling point inhibited adsorption of a sulfur compound having a lower boiling point onto the desulfurizing agent. Therefore, it has been noted that sulfur compounds in petroleum hydrocarbons can be effectively removed by selectively removing sulfur compounds having a relatively high boiling point.

【0007】本発明者らは、この着目に基づき、選択的
に除去する石油系炭化水素中の硫黄化合物として、最も
沸点の高いアルキルジベンゾチオフェン類を設定し、こ
れらの硫黄化合物を選択的に吸着除去する脱硫剤を開発
すべく、鋭意研究を重ねた結果、担体、特に多孔質担体
に鉄を担持してなるものは、アルキルジベンゾチオフェ
ン類を選択的に吸着除去することができ、石油系炭化水
素用の脱硫剤として、前記第1の目的に適合し得ること
を見出した。また、上記脱硫剤を用い、石油系炭化水素
を脱硫処理し、さらに場合により第二の脱硫剤に接触さ
せることにより、前記第2の目的を達成し得ることを見
出した。さらに、上記脱硫方法において、第二の脱硫剤
と接触させた後の石油系炭化水素を、水蒸気改質触媒と
接触させることにより、前記第3の目的を達成し得るこ
とを見出した。本発明は、かかる知見に基づいて完成し
たものである。すなわち、本発明は、(1)担体に鉄を
担持してなる石油系炭化水素用脱硫剤、(2)上記脱硫
剤を用いることを特徴とする石油系炭化水素の脱硫方
法、(3)上記(2)の方法により石油系炭化水素を脱
硫処理したのち、第二の脱硫剤と接触させることを特徴
とする石油系炭化水素の脱硫方法、及び(4)上記
(3)の方法により石油系炭化水素を脱硫処理したの
ち、水蒸気改質触媒と接触させることを特徴とする燃料
電池用水素の製造方法、を提供するものである。
Based on this attention, the present inventors set alkyldibenzothiophenes having the highest boiling point as sulfur compounds in petroleum hydrocarbons to be selectively removed, and selectively adsorb these sulfur compounds. As a result of intensive studies to develop a desulfurizing agent for removal, carriers, especially those with iron supported on porous carriers, can selectively adsorb and remove alkyldibenzothiophenes, It has been found that as a desulfurizing agent for hydrogen, it can meet the first object. In addition, it has been found that the second object can be achieved by desulfurizing petroleum hydrocarbons using the above desulfurizing agent and, if necessary, bringing the hydrocarbon into contact with a second desulfurizing agent. Furthermore, in the above desulfurization method, it has been found that the third object can be achieved by contacting the petroleum hydrocarbon after contacting with the second desulfurizing agent with the steam reforming catalyst. The present invention has been completed based on such findings. That is, the present invention provides (1) a desulfurizing agent for petroleum hydrocarbons in which iron is supported on a carrier, (2) a method for desulfurizing petroleum hydrocarbons using the desulfurizing agent, (3) A desulfurization method for petroleum hydrocarbons, which comprises desulfurizing petroleum hydrocarbons by the method (2) and then contacting the same with a second desulfurizing agent; and (4) petroleum-based hydrocarbons by the method (3). It is intended to provide a method for producing hydrogen for fuel cells, which comprises contacting a hydrocarbon with a steam reforming catalyst after desulfurization treatment.

【0008】[0008]

【発明の実施の形態】まず、本発明の脱硫剤について説
明する。本発明の脱硫剤は、担体に金属成分として鉄を
担持させたものであって、該担体としては多孔質のもの
が好ましい。このような多孔質担体としては、多孔質無
機酸化物、例えばシリカ、アルミナ、シリカ−アルミ
ナ、ゼオライト、チタニア、ジルコニア、マグネシア、
酸化亜鉛、白土、粘土、珪藻土などを好ましく挙げるこ
とができ、また活性炭も使用することができる。これら
の多孔質担体は単独で用いてもよく、二種以上を組み合
わせて用いてもよいが、これらの中では、特にゼオライ
ト又は活性炭が好適である。これらの担体に担持させる
鉄の量は、脱硫剤全量に基づき、酸化鉄として、0.5
〜30重量%の範囲が好ましい。この担持量が0.5重
量%未満では脱硫性能が充分に発揮されないおそれがあ
り、一方30重量%を超えると担持した鉄の粒子径が増
大し、充分な脱硫性能が得られにくく、好ましくない。
脱硫性能の面から、この鉄のより好ましい担持量は、酸
化鉄として1〜20重量%の範囲である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the desulfurizing agent of the present invention will be described. The desulfurizing agent of the present invention is obtained by supporting iron as a metal component on a carrier, and the carrier is preferably porous. Examples of such a porous carrier include porous inorganic oxides such as silica, alumina, silica-alumina, zeolite, titania, zirconia, magnesia,
Preferable examples include zinc oxide, clay, clay, and diatomaceous earth. Activated carbon can also be used. These porous carriers may be used alone or in combination of two or more. Among them, zeolite or activated carbon is particularly preferable. The amount of iron supported on these carriers was 0.5% as iron oxide based on the total amount of the desulfurizing agent.
The range is preferably from 30 to 30% by weight. If the amount is less than 0.5% by weight, the desulfurization performance may not be sufficiently exhibited. On the other hand, if the amount exceeds 30% by weight, the particle diameter of the supported iron increases, and it is difficult to obtain sufficient desulfurization performance, which is not preferable. .
From the viewpoint of desulfurization performance, the more preferable amount of iron is in the range of 1 to 20% by weight as iron oxide.

【0009】本発明においては、該担体に上記の鉄と共
に、所望により銅、コバルト、ニッケル、マンガン及び
クロムの中から選ばれる少なくとも一種の金属を、本発
明の効果が損なわれない範囲で、適宜担持させることが
できる。該担体に金属成分を担持させる方法については
特に制限はなく、含浸法、共沈法、担体ゲルとの混練
法、イオン交換法など、公知の任意の方法を採用するこ
とができるが、これらの方法の中でイオン交換法が好ま
しい。具体的には、例えば、鉄源である硝酸鉄、硫酸
鉄、塩化鉄の水溶液等と後述の担体を混合し、40〜9
0℃の温度で6〜36時間攪拌し、反応させた後洗浄
し、50〜150℃の温度で乾燥し、更に、300〜5
50℃の温度で焼成して調製することができる。
In the present invention, if necessary, at least one metal selected from copper, cobalt, nickel, manganese and chromium is optionally added to the carrier together with the above-mentioned iron as long as the effects of the present invention are not impaired. It can be carried. The method for supporting the metal component on the carrier is not particularly limited, and any known methods such as an impregnation method, a coprecipitation method, a kneading method with a carrier gel, and an ion exchange method can be used. Among the methods, the ion exchange method is preferred. Specifically, for example, an aqueous solution of iron nitrate, iron sulfate, iron chloride or the like, which is an iron source, and a carrier described below are mixed,
The mixture was stirred at a temperature of 0 ° C. for 6 to 36 hours, reacted, washed, dried at a temperature of 50 to 150 ° C., and further dried at a temperature of 300 to 5 hours.
It can be prepared by firing at a temperature of 50 ° C.

【0010】また、脱硫剤の形状としては特に制限はな
く、例えば粉砕状、ペレット状、錠剤状、ハニカム状、
あるいは脱硫剤粉末を他のハニカム状基材にコーティン
グした状態などを挙げることができる。本発明の脱硫剤
が適用される石油系炭化水素としては、例えば、LP
G、ガソリン、ナフサ、灯油、軽油などが挙げられる
が、これらの中で灯油以下の沸点範囲を有する石油炭化
水素が好ましい。灯油にあっては、硫黄分含有量が80
重量ppm以下のJIS1号灯油に適用するのが好まし
い。次に、本発明の脱硫方法について説明する。本発明
の脱硫方法には、(1)前述の本発明の脱硫剤を用い
て、石油系炭化水素を脱硫処理する方法(以下、本発明
の脱硫方法Iと称す。)、及び(2)上記脱硫方法Iに
より石油系炭化水素を脱硫処理したのち、第二の脱硫剤
と接触させる方法(以下、本発明の脱硫方法IIと称
す。)の2つの態様がある。
The shape of the desulfurizing agent is not particularly limited, and may be, for example, a crushed shape, a pellet shape, a tablet shape, a honeycomb shape,
Alternatively, a state in which the desulfurizing agent powder is coated on another honeycomb-shaped substrate can be exemplified. Petroleum hydrocarbons to which the desulfurizing agent of the present invention is applied include, for example, LP
G, gasoline, naphtha, kerosene, light oil, etc., among which petroleum hydrocarbons having a boiling point range equal to or lower than kerosene are preferred. Kerosene has a sulfur content of 80
It is preferably applied to JIS No. 1 kerosene having a weight ppm or less. Next, the desulfurization method of the present invention will be described. The desulfurization method of the present invention includes (1) a method of desulfurizing a petroleum hydrocarbon using the desulfurizing agent of the present invention described above (hereinafter, referred to as a desulfurizing method I of the present invention), and (2) the above. There are two modes of a method of desulfurizing a petroleum hydrocarbon by desulfurization method I and then contacting it with a second desulfurizing agent (hereinafter referred to as desulfurization method II of the present invention).

【0011】本発明の脱硫方法Iにおいては、脱硫様式
として、脱硫剤に石油系炭化水素を流通させる方法、脱
硫剤を内部に固定したタンクなどの容器に石油系炭化水
素を入れ、静置又は撹拌する方法などを好ましく挙げる
ことができる。また、この場合、該脱硫剤と石油系炭化
水素を接触させる温度は、−40〜100℃の範囲が好
ましい。この温度が−40℃以下では該炭化水素の流動
性が低下するので好ましくないし、100℃を超えると
脱硫剤の吸着性能が低下するので好ましくない。なお、
この際、圧力は通常、常圧〜1MPaである。本発明の
脱硫方法IIにおいては、前述の本発明の脱硫剤を予備脱
硫剤として用い、石油系炭化水素を前記のようにして脱
硫処理したのち、第二の脱硫剤と接触させることによ
り、該炭化水素の吸着脱硫を効率的に行うことができ
る。
In the desulfurization method I of the present invention, as a desulfurization mode, a method of flowing a petroleum hydrocarbon through a desulfurization agent, putting a petroleum hydrocarbon in a container such as a tank in which the desulfurization agent is fixed, and allowing it to stand still or Preferable examples include a stirring method. In this case, the temperature at which the desulfurizing agent is brought into contact with the petroleum hydrocarbon is preferably in the range of -40 to 100C. When the temperature is -40 ° C or lower, the fluidity of the hydrocarbon is lowered, and thus it is not preferable. In addition,
At this time, the pressure is usually from normal pressure to 1 MPa. In the desulfurization method II of the present invention, the desulfurizing agent of the present invention is used as a preliminary desulfurizing agent, and the petroleum hydrocarbon is desulfurized as described above, and then contacted with a second desulfurizing agent. Adsorption desulfurization of hydrocarbons can be performed efficiently.

【0012】上記第二の脱硫剤としては特に制限はな
く、別の吸着脱硫剤を用いてもよいし、Co−Mo/ア
ルミナやNi−Mo/アルミナなどの水素化脱硫触媒を
用いてもよい。前者の別の吸着脱硫剤としては、例えば
Cr,Mn,Fe,Co,Ni,Cu,Zn,Pd,I
r及びPtの中から選ばれる少なくとも一種を、多孔質
担体に担持したものが好ましい。特にニッケルを多孔質
担体に担持したものが好適である。これらの金属成分の
担持量は、脱硫性能などの点から、脱硫剤全量に基づき
50〜70重量%であることが好ましい。これらの吸着
脱硫剤は、予め水素還元することにより、脱硫性能を向
上させることができる。また、第二の脱硫剤として、後
者の水素化脱硫触媒を用いる場合には、石油系炭化水素
を該水素化脱硫触媒と接触させる際に、少量の水素を添
加してもよい。
The second desulfurizing agent is not particularly limited, and another adsorptive desulfurizing agent may be used, or a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina may be used. . Examples of the other adsorptive desulfurizing agents include Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and I.
It is preferable that at least one selected from r and Pt is supported on a porous carrier. In particular, those in which nickel is supported on a porous carrier are preferred. The amount of these metal components carried is preferably 50 to 70% by weight based on the total amount of the desulfurizing agent from the viewpoint of desulfurization performance and the like. These adsorptive desulfurization agents can improve desulfurization performance by hydrogen reduction in advance. When the latter hydrodesulfurization catalyst is used as the second desulfurization agent, a small amount of hydrogen may be added when the petroleum hydrocarbon is brought into contact with the hydrodesulfurization catalyst.

【0013】この第二の脱硫剤による脱硫方法として
は、本発明の脱硫剤により脱硫処理された石油系炭化水
素を、直接第二の脱硫剤と接触させるのが好ましい。ま
た、別の場所で予め、石油系炭化水素を本発明の脱硫剤
により脱硫処理しておき、反応時に第二の脱硫剤と接触
させてもよい。石油系炭化水素を第二の脱硫剤に接触さ
せる際の反応条件としては、使用する第二の脱硫剤の種
類に応じて適宜選定することができる。例えば第二の脱
硫剤として、ニッケル系吸着脱硫剤を、石油系炭化水素
として灯油を用いた場合、接触温度は、通常130〜2
30℃の範囲であり、また圧力は、通常常圧〜1MPa
・G程度である。このような本発明の脱硫方法IIにおい
ては、脱硫条件を適当に選択することにより、石油系炭
化水素中の硫黄分を、0.2重量ppm以下にすること
が可能である。
As the desulfurization method using the second desulfurizing agent, it is preferable to directly contact the petroleum hydrocarbon desulfurized by the desulfurizing agent of the present invention with the second desulfurizing agent. Alternatively, the petroleum hydrocarbon may be desulfurized in advance at another place with the desulfurizing agent of the present invention, and may be brought into contact with the second desulfurizing agent during the reaction. The reaction conditions for contacting the petroleum hydrocarbon with the second desulfurizing agent can be appropriately selected according to the type of the second desulfurizing agent used. For example, when a nickel-based adsorption desulfurizing agent is used as the second desulfurizing agent and kerosene is used as the petroleum hydrocarbon, the contact temperature is usually 130 to 2
30 ° C., and the pressure is usually from normal pressure to 1 MPa.
・ Approximately G. In such desulfurization method II of the present invention, by appropriately selecting the desulfurization conditions, the sulfur content in petroleum hydrocarbons can be reduced to 0.2 ppm by weight or less.

【0014】次に、本発明の燃料電池用水素の製造方法
について説明する。この方法においては、前記本発明の
脱硫方法IIにおいて脱硫処理された石油系炭化水素を、
水蒸気改質触媒と接触させることにより、燃料電池用の
水素を製造する。本発明の方法において用いられる水蒸
気改質触媒としては特に制限はなく、従来炭化水素の水
蒸気改質触媒として知られている公知のものの中から、
任意のものを適宜選択して用いることができる。このよ
うな水蒸気改質触媒としては、例えば適当な担体に、ニ
ッケルやジルコニウム、あるいはルテニウム、ロジウ
ム、白金などの貴金属を担持したものを挙げることがで
きる。上記担持金属は一種担持させてもよく、二種以上
を組み合わせて担持させてもよい。これらの触媒の中
で、ルテニウムを担持させたもの(以下、ルテニウム系
触媒と称す。)が好ましく、水蒸気改質反応中の炭素析
出を抑制する効果が大きい。このルテニウム系触媒の場
合、ルテニウムの担持量は、担体基準で0.05〜20
重量%の範囲が好ましく、より好ましくは0.05〜1
5重量%、特に好ましくは0.1〜2重量%の範囲であ
る。
Next, a method for producing hydrogen for a fuel cell according to the present invention will be described. In this method, the petroleum hydrocarbon desulfurized in the desulfurization method II of the present invention is
By contacting with a steam reforming catalyst, hydrogen for a fuel cell is produced. There is no particular limitation on the steam reforming catalyst used in the method of the present invention, and among known catalysts conventionally known as hydrocarbon steam reforming catalysts,
Any one can be appropriately selected and used. As such a steam reforming catalyst, for example, a catalyst in which a noble metal such as nickel, zirconium, ruthenium, rhodium, and platinum is supported on a suitable carrier can be exemplified. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable, and have a large effect of suppressing carbon deposition during the steam reforming reaction. In the case of this ruthenium-based catalyst, the supported amount of ruthenium is 0.05 to 20 on the basis of the carrier.
% By weight, more preferably from 0.05 to 1% by weight.
It is in the range of 5% by weight, particularly preferably 0.1 to 2% by weight.

【0015】このルテニウムを担持する場合、所望によ
り、他の金属と組み合わせて担持することができる。該
他の金属としては、例えばジルコニウム、コバルト、マ
グネシウムなどが挙げられる。一方、担体としては、無
機酸化物が好ましく、具体的にはアルミナ、シリカ、ジ
ルコニア、マグネシア及びこれらの混合物などが挙げら
れる。これらの中で、特にアルミナ及びジルコニアが好
適である。水蒸気改質処理における反応条件としては、
水蒸気と石油系炭化水素に由来する炭素との比S/C
(モル比)は、通常2〜5、好ましくは2〜4、より好
ましくは2〜3の範囲で選定される。S/Cモル比が2
未満では水素の生成量が低下するおそれがあり、また5
を超えると過剰の水蒸気を必要とし、熱ロスが大きく、
水素製造の効率が低下するので好ましくない。
When ruthenium is supported, it can be supported in combination with another metal, if desired. Examples of the other metal include zirconium, cobalt, and magnesium. On the other hand, as the carrier, an inorganic oxide is preferable, and specific examples include alumina, silica, zirconia, magnesia, and a mixture thereof. Of these, alumina and zirconia are particularly preferred. The reaction conditions in the steam reforming process include:
Ratio S / C of steam and carbon derived from petroleum hydrocarbon
(Molar ratio) is selected in the range of usually 2 to 5, preferably 2 to 4, more preferably 2 to 3. S / C molar ratio is 2
If it is less than 5%, the amount of hydrogen generated may decrease.
Exceeding the above requires excessive steam, large heat loss,
It is not preferable because the efficiency of hydrogen production decreases.

【0016】また、水蒸気改質触媒層の入口温度を63
0℃以下、さらには600℃以下に保って水蒸気改質を
行うのが好ましい。入口温度が630℃を超えると炭化
水素の熱分解が促進され、触媒あるいは反応管壁に炭素
が析出して、運転が困難になる場合がある。なお、触媒
層出口温度は特に制限はないが、650〜800℃の範
囲が好ましい。触媒層出口温度が650℃未満では水素
の生成量が充分ではないおそれがあり、800℃を超え
ると反応装置は耐熱材料を必要とする場合があり、経済
的に好ましくない。反応圧力は、通常常圧〜3MPa、
好ましくは常圧〜1MPaの範囲であり、また、LHS
Vは、通常0.1〜100h-1、好ましくは0.2〜5
0h-1の範囲である。このようにして、燃料電池用水素
を効率よく製造することができる。
Further, the inlet temperature of the steam reforming catalyst layer is set to 63
It is preferable to carry out steam reforming at a temperature of 0 ° C. or lower, more preferably 600 ° C. or lower. If the inlet temperature exceeds 630 ° C., thermal decomposition of hydrocarbons is promoted, and carbon is deposited on the catalyst or the reaction tube wall, which may make the operation difficult. The outlet temperature of the catalyst layer is not particularly limited, but is preferably in the range of 650 to 800 ° C. If the outlet temperature of the catalyst layer is lower than 650 ° C., the amount of generated hydrogen may not be sufficient. If the temperature exceeds 800 ° C., the reactor may require a heat-resistant material, which is not economically preferable. The reaction pressure is usually from normal pressure to 3 MPa,
It is preferably in the range of normal pressure to 1 MPa.
V is usually 0.1 to 100 h -1 , preferably 0.2 to 5 h
0h -1 . In this way, hydrogen for a fuel cell can be efficiently produced.

【0017】[0017]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。なお、脱硫試験に用いた灯油は、
硫黄分65重量ppmのJIS1号灯油である。 実施例1 (1)脱硫剤の調製 0.1モル/リットル濃度の硝酸鉄水溶液1リットルと
NaY型ゼオライト(Si/Alモル比34)100g
を混合し、75℃で12時間撹拌したのち洗浄し、12
0℃で乾燥し、さらに400℃で焼成して、Fe担持Y
型ゼオライトからなる脱硫剤を調製した。この脱硫剤に
おけるFe担持量は、酸化鉄として5.1重量%であっ
た。 (2)脱硫試験 上記(1)で得た脱硫剤50gとJIS1号灯油200
ミリリットルを、容量500ミリリットルのガラス容器
に収容し、室温で24時間撹拌したのち、灯油分を分離
回収した。回収した灯油中の硫黄分濃度は17重量pp
mであった。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The kerosene used in the desulfurization test was
It is JIS No. 1 kerosene having a sulfur content of 65 ppm by weight. Example 1 (1) Preparation of desulfurizing agent 1 liter of 0.1 mol / liter iron nitrate aqueous solution and 100 g of NaY type zeolite (Si / Al molar ratio: 34)
And stirred at 75 ° C. for 12 hours, followed by washing.
After drying at 0 ° C., and further sintering at 400 ° C.,
A desulfurizing agent composed of zeolite was prepared. The amount of Fe supported in this desulfurizing agent was 5.1% by weight as iron oxide. (2) Desulfurization test 50 g of the desulfurizing agent obtained in (1) above and JIS No. 1 kerosene 200
Milliliter was placed in a 500 ml glass container and stirred at room temperature for 24 hours, after which kerosene was separated and collected. The sulfur concentration in the recovered kerosene is 17 weight pp
m.

【0018】実施例2 (1)脱硫剤の調製 実施例1(1)において、NaY型ゼオライトの代わり
にベータ型ゼオライト(Si/Alモル比50)を用い
た以外は、実施例1(1)と同様にして、Fe担持ベー
タ型ゼオライトからなる脱硫剤を調製した。この脱硫剤
におけるFe担持量は、酸化鉄として3.0重量%であ
った。 (2)脱硫試験 上記(1)で得た脱硫剤を用い、実施例1(2)と同様
にして脱硫試験を実施したところ、回収後の灯油中の硫
黄分濃度は6重量ppmであった。 実施例3 (1)脱硫剤の調製 市販の活性炭(比表面積1000m2 /g、細孔容積
0.98ミリリットル/g)100gに、0.1モル/
リットル濃度の硝酸鉄水溶液100ミリリットルを含浸
させ、120℃で乾燥してFe担持活性炭からなる脱硫
剤を調製した。この脱硫剤におけるFe担持量は、金属
鉄として6.5重量%であった。 (2)脱硫試験 上記(1)で得た脱硫剤を用い、実施例1(2)と同様
にして脱硫試験を実施したところ、回収後の灯油中の硫
黄分濃度は10重量ppmであった。
Example 2 (1) Preparation of desulfurizing agent Example 1 (1) was the same as Example 1 (1) except that beta zeolite (Si / Al molar ratio: 50) was used instead of NaY zeolite. In the same manner as described above, a desulfurizing agent comprising a Fe-supported beta zeolite was prepared. The amount of Fe supported in this desulfurizing agent was 3.0% by weight as iron oxide. (2) Desulfurization test A desulfurization test was performed using the desulfurizing agent obtained in the above (1) in the same manner as in Example 1 (2). As a result, the sulfur content in the recovered kerosene was 6 ppm by weight. . Example 3 (1) Preparation of desulfurizing agent 0.1 mol / mol was added to 100 g of commercially available activated carbon (specific surface area: 1000 m 2 / g, pore volume: 0.98 ml / g).
100 ml of an aqueous solution of iron nitrate having a concentration of 1 liter was impregnated and dried at 120 ° C. to prepare a desulfurizing agent composed of activated carbon carrying Fe. The amount of Fe supported in this desulfurizing agent was 6.5% by weight as metallic iron. (2) Desulfurization test A desulfurization test was carried out using the desulfurizing agent obtained in the above (1) in the same manner as in Example 1 (2), and the sulfur content in the recovered kerosene was 10 ppm by weight. .

【0019】比較例1 (1)脱硫剤の調製 実施例1(1)において、硝酸鉄の代わりに硝酸ニッケ
ルを用いた以外は、実施例1(1)と同様にして、Ni
担持Y型ゼオライトからなる脱硫剤を調製した。この脱
硫剤におけるNi担持量は、酸化ニッケルとして5.4
重量%であった。 (2)脱硫試験 上記(1)で得た脱硫剤を用い、実施例1(2)と同様
にして脱硫試験を実施したところ、回収後の灯油中の硫
黄分濃度は53重量ppmであった。比較例2 (1)脱硫剤の調製 実施例1(1)において、硝酸鉄水溶液を用いなかった
こと以外は、実施例1(1)と同様にして、無担持Y型
ゼオライトからなる脱硫剤を調製した。 (2)脱硫試験 上記(1)で得た脱硫剤を用い、実施例1(2)と同様
にして脱硫試験を実施したところ、回収後の灯油中の硫
黄分濃度は53重量ppmであった。
Comparative Example 1 (1) Preparation of desulfurizing agent Ni-Ni was prepared in the same manner as in Example 1 (1) except that nickel nitrate was used in place of iron nitrate.
A desulfurizing agent comprising a supported Y-type zeolite was prepared. The amount of Ni carried in this desulfurizing agent was 5.4 as nickel oxide.
% By weight. (2) Desulfurization test Using the desulfurizing agent obtained in the above (1), a desulfurization test was carried out in the same manner as in Example 1 (2). The sulfur content in the recovered kerosene was 53 ppm by weight. . Comparative Example 2 (1) Preparation of desulfurizing agent A desulfurizing agent comprising a non-supported Y-type zeolite was prepared in the same manner as in Example 1 (1) except that an aqueous solution of iron nitrate was not used in Example 1 (1). Prepared. (2) Desulfurization test Using the desulfurizing agent obtained in the above (1), a desulfurization test was carried out in the same manner as in Example 1 (2). The sulfur content in the recovered kerosene was 53 ppm by weight. .

【0020】比較例3 (1)脱硫剤の調製 実施例2(1)において、硝酸鉄水溶液を用いなかった
こと以外は、実施例2(1)と同様にして、無担持ベー
タ型ゼオライトからなる脱硫剤を調製した。 (2)脱硫試験 上記(1)で得た脱硫剤を用い、実施例1(2)と同様
にして脱硫試験を実施したところ、回収後の灯油中の硫
黄分濃度は46重量ppmであった。 比較例4 (1)脱硫剤の調製 実施例3(1)において、硝酸鉄水溶液を用いなかった
こと以外は、実施例3(1)と同様にして、無担持活性
炭からなる脱硫剤を調製した。 (2)脱硫試験 上記(1)で得た脱硫剤を用い、実施例1(2)と同様
にして脱硫試験を実施したところ、回収後の灯油中の硫
黄分濃度は50重量ppmであった。
Comparative Example 3 (1) Preparation of Desulfurizing Agent An unsupported beta zeolite was prepared in the same manner as in Example 2 (1) except that an aqueous solution of iron nitrate was not used in Example 2 (1). A desulfurizing agent was prepared. (2) Desulfurization test A desulfurization test was carried out using the desulfurizing agent obtained in the above (1) in the same manner as in Example 1 (2). The sulfur content in the recovered kerosene was 46 ppm by weight. . Comparative Example 4 (1) Preparation of desulfurizing agent A desulfurizing agent composed of unsupported activated carbon was prepared in the same manner as in Example 3 (1) except that an aqueous solution of iron nitrate was not used in Example 3 (1). . (2) Desulfurization test A desulfurization test was carried out using the desulfurizing agent obtained in the above (1) in the same manner as in Example 1 (2). As a result, the sulfur concentration in the recovered kerosene was 50 ppm by weight. .

【0021】実施例4 (1)予備脱硫処理 実施例1で調製した脱硫剤500gとJIS1号灯油2
リットルを、容量5リットルの容器に収容し、室温で2
4時間撹拌して、予備脱硫処理したのち、灯油分を分離
回収した。予備脱硫処理灯油中の硫黄分濃度は17重量
ppmであった。 (2)ニッケル担持珪藻土脱硫剤による脱硫処理 第二の脱硫剤として、ニッケル担持珪藻土(Ni担持
量:金属ニッケルとして54.3重量%)15ミリリッ
トルを400℃で焼成したのち、内径17mmのステン
レス鋼製反応管に充填した。次いで、常圧下水素気流中
にて120℃に昇温し、1時間保持したのち、さらに昇
温して、380℃で1時間保持し、ニッケル担持珪藻土
脱硫剤を活性化した。その後、150℃に保持した。次
に、上記予備脱硫処理灯油を常圧下、液時空間速度(L
HSV)5h-1にて反応管に流通させ、5時間経過後の
処理灯油中の硫黄分濃度を分析した。その結果、硫黄分
濃度は0.2重量ppmであった。
Example 4 (1) Pre-desulfurization treatment 500 g of the desulfurizing agent prepared in Example 1 and JIS No. 1 kerosene 2
Liters in a 5 liter container
After stirring for 4 hours and performing a preliminary desulfurization treatment, a kerosene component was separated and collected. The sulfur content in the pre-desulfurized kerosene was 17 ppm by weight. (2) Desulfurization treatment with nickel-supported diatomaceous earth desulfurizing agent As a second desulfurizing agent, 15 ml of nickel-supported diatomaceous earth (amount of Ni supported: 54.3% by weight as metallic nickel) was calcined at 400 ° C., and then stainless steel having an inner diameter of 17 mm was used. Into a reaction tube. Next, the temperature was raised to 120 ° C. in a hydrogen stream at normal pressure, and the temperature was maintained for 1 hour. After that, the temperature was further raised and the temperature was maintained at 380 ° C. for 1 hour to activate the nickel-supporting diatomite desulfurizing agent. Thereafter, the temperature was kept at 150 ° C. Next, the pre-desulfurized kerosene is subjected to a liquid hourly space velocity (L
(HSV) at 5 h −1 , and the sulfur content in the treated kerosene after 5 hours was analyzed. As a result, the sulfur concentration was 0.2 ppm by weight.

【0022】実施例5 実施例4において、液時空間速度(LHSV)を2h-1
としたこと以外は同様にして、反応管を通過させ、更に
下流において、ルテニウム系改質触媒(Ru担持量:
0.5重量%)15ccを充填した改質器により水蒸気
改質処理を行った。改質条件は、圧力:常圧、水蒸気/
炭素(S/C)モル比2.5、LHSV2h-1、入り口
温度500℃、出口温度750℃であった。この結果、
600時間経過後の改質器出口での転化率は100%で
あった。また、この期間中の脱硫処理灯油の硫黄分は
0.2重量ppm以下であった。 比較例5 実施例4において(1)を行うことなく(2)におい
て、予備脱硫処理灯油の代わりに新しいJIS1号灯油
を用いた以外は、実施例4(2)と同様にして実施し
た。その結果、処理灯油中の硫黄分濃度は2.3重量p
pmであった。
Example 5 In Example 4, the liquid hourly space velocity (LHSV) was set to 2 h -1.
In the same manner except that the ruthenium-based reforming catalyst (Ru supported amount:
(0.5% by weight) steam reforming treatment was performed by a reformer filled with 15 cc. The reforming conditions are pressure: normal pressure, steam /
The carbon (S / C) molar ratio was 2.5, the LHSV was 2 h −1 , the inlet temperature was 500 ° C., and the outlet temperature was 750 ° C. As a result,
After 600 hours, the conversion at the outlet of the reformer was 100%. The sulfur content of the desulfurized kerosene during this period was 0.2 ppm by weight or less. Comparative Example 5 Example 4 was carried out in the same manner as in Example 4 (2) except that (1) was not performed and (2) was replaced with a new JIS No. 1 kerosene in place of the pre-desulfurized kerosene. As a result, the sulfur concentration in the treated kerosene was 2.3 wt p
pm.

【0023】比較例6 実施例4において(1)を行うことなく(2)におい
て、予備脱硫処理灯油の代わりに、JIS1号灯油を硫
黄を含まないデカンで希釈して、硫黄分濃度を17重量
ppmにしたものを用いた以外は、実施例4(2)と同
様にして実施した。その結果、処理液中の硫黄分濃度は
0.6重量ppmであった。以上、実施例4及び比較例
5,6から、本発明の脱硫剤により、灯油中のアルキル
ジベンゾチオフェン類の一部が吸着除去された結果、第
二の脱硫剤の吸着脱硫における吸着阻害が緩和され、同
じ硫黄濃度で比較しても、第二の脱硫剤の脱硫性能が向
上したことが分かる。 比較例7 比較例6と同様の方法により調製した硫黄分17重量p
pmの灯油を用いた以外は、実施例5と同様にして水蒸
気改質処理を行った。この結果、400時間経過後に転
化率が100%を下回った。その時の脱硫処理灯油の硫
黄分は8ppmであった。
Comparative Example 6 In Example 4, without performing (1), in (2), JIS No. 1 kerosene was diluted with sulfur-free decane in place of the pre-desulfurized kerosene to reduce the sulfur content to 17% by weight. The procedure was performed in the same manner as in Example 4 (2), except that ppm was used. As a result, the sulfur concentration in the treatment liquid was 0.6 ppm by weight. As described above, from Example 4 and Comparative Examples 5 and 6, as a result of the desulfurizing agent of the present invention adsorbing and removing some of the alkyldibenzothiophenes in kerosene, the inhibition of adsorption of the second desulfurizing agent by adsorption and desulfurization was reduced. Thus, it can be seen that the desulfurization performance of the second desulfurizing agent was improved even when compared at the same sulfur concentration. Comparative Example 7 A sulfur content of 17 wt. P prepared in the same manner as in Comparative Example 6.
A steam reforming treatment was performed in the same manner as in Example 5, except that kerosene of pm was used. As a result, the conversion was less than 100% after 400 hours. At that time, the sulfur content of the desulfurized kerosene was 8 ppm.

【0024】[0024]

【発明の効果】本発明の脱硫剤は、担体に鉄を担持して
なるものであって、石油系炭化水素、特に灯油中の硫黄
分を効果的に除去し得ると共に、寿命が長い。また、本
発明の脱硫方法によれば、石油系炭化水素中の硫黄分を
低濃度まで効率よく除去し、下流設備である水蒸気改質
部分での改質触媒の性能を長時間にわたり維持させるこ
とができる。また、この脱硫方法で処理された石油系炭
化水素を水蒸気改質処理することにより、燃料電池用水
素を効率よく製造することができる。
The desulfurizing agent of the present invention is obtained by supporting iron on a carrier, and can effectively remove petroleum hydrocarbons, particularly sulfur in kerosene, and has a long life. Further, according to the desulfurization method of the present invention, the sulfur content in petroleum hydrocarbons can be efficiently removed to a low concentration, and the performance of the reforming catalyst in the steam reforming section, which is downstream equipment, can be maintained for a long time. Can be. Further, by subjecting petroleum hydrocarbons treated by this desulfurization method to steam reforming treatment, hydrogen for fuel cells can be efficiently produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 3/40 C01B 3/40 5H027 C10G 25/05 C10G 25/05 53/08 53/08 H01M 8/06 H01M 8/06 G Fターム(参考) 4D017 AA04 BA04 CA05 CA06 CB01 DA07 EB07 4G040 EA03 EA06 EB01 EC03 4G066 AA05C AA15B AA16C AA18B AA18C AA20C AA22C AA23C AA25B AA26B AA27B AA28B AA61C AA63C AA64C AA70C CA25 DA09 FA37 4G069 AA03 BC70A BC70B CC17 DA06 EA02Y 4H029 DA06 5H027 AA02 BA01 BA16 KK01 KK42──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01B 3/40 C01B 3/40 5H027 C10G 25/05 C10G 25/05 53/08 53/08 H01M 8/06 H01M 8/06 G F term (reference) 4D017 AA04 BA04 CA05 CA06 CB01 DA07 EB07 4G040 EA03 EA06 EB01 EC03 4G066 AA05C AA15B AA16C AA18B AA18C AA20 BC AA22C AA26B AA27A AA27A 4H029 DA06 5H027 AA02 BA01 BA16 KK01 KK42

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 担体に鉄を担持してなる石油系炭化水素
用脱硫剤。
1. A desulfurizing agent for petroleum hydrocarbons comprising iron supported on a carrier.
【請求項2】 石油系炭化水素が灯油である請求項1記
載の石油系炭化水素用脱硫剤。
2. The desulfurizing agent for petroleum hydrocarbons according to claim 1, wherein the petroleum hydrocarbon is kerosene.
【請求項3】 担体が多孔質である請求項1又は2記載
の石油系炭化水素用脱硫剤。
3. The desulfurizing agent for petroleum hydrocarbons according to claim 1, wherein the carrier is porous.
【請求項4】 担体がシリカ、アルミナ、シリカ−アル
ミナ、ゼオライト、チタニア、ジルコニア、マグネシ
ア、酸化亜鉛、白土、粘土、珪藻土及び活性炭の中から
選ばれる少なくとも一種からなるものである請求項1〜
3のいずれかに記載の石油系炭化水素用脱硫剤。
4. The carrier according to claim 1, wherein the carrier is at least one selected from silica, alumina, silica-alumina, zeolite, titania, zirconia, magnesia, zinc oxide, clay, clay, diatomaceous earth and activated carbon.
3. The desulfurizing agent for petroleum hydrocarbon according to any one of 3.
【請求項5】 担体に鉄を、脱硫剤全量に基づき、酸化
鉄として0.5〜30重量%担持させたものである請求
項1〜4のいずれかに記載の石油系炭化水素用脱硫剤。
5. The desulfurizing agent for petroleum hydrocarbons according to claim 1, wherein 0.5 to 30% by weight of iron is supported on the carrier as iron oxide based on the total amount of the desulfurizing agent. .
【請求項6】 請求項1ないし5のいずれかに記載の脱
硫剤を用いることを特徴とする石油系炭化水素の脱硫方
法。
6. A method for desulfurizing petroleum hydrocarbons, comprising using the desulfurizing agent according to claim 1. Description:
【請求項7】 −40〜100℃の温度において、石油
系炭化水素を脱硫剤と接触させる請求項6記載の石油系
炭化水素の脱硫方法。
7. The method for desulfurizing petroleum hydrocarbon according to claim 6, wherein the petroleum hydrocarbon is brought into contact with a desulfurizing agent at a temperature of -40 to 100 ° C.
【請求項8】 請求項6又は7記載の方法により石油系
炭化水素を脱硫処理したのち、第二の脱硫剤と接触させ
ることを特徴とする石油系炭化水素の脱硫方法。
8. A method for desulfurizing petroleum hydrocarbons, comprising subjecting a petroleum hydrocarbon to desulfurization treatment according to the method of claim 6 and then bringing the petroleum hydrocarbon into contact with a second desulfurization agent.
【請求項9】 第二の脱硫剤がCr,Mn,Fe,C
o,Ni,Cu,Zn,Pd,Ir及びPtの中から選
ばれる少なくとも一種の金属を含むものである請求項8
記載の石油系炭化水素の脱硫方法。
9. The method according to claim 9, wherein the second desulfurizing agent is Cr, Mn, Fe, C
9. A material containing at least one metal selected from the group consisting of o, Ni, Cu, Zn, Pd, Ir and Pt.
The method for desulfurizing petroleum hydrocarbons according to the above.
【請求項10】 請求項8又は9記載の方法により石油
系炭化水素を脱硫処理したのち、水蒸気改質触媒と接触
させることを特徴とする燃料電池用水素の製造方法。
10. A method for producing hydrogen for a fuel cell, comprising subjecting a petroleum hydrocarbon to desulfurization treatment by the method according to claim 8 and then contacting the desulfurization treatment with a steam reforming catalyst.
【請求項11】 水蒸気改質触媒がルテニウム系触媒で
ある請求項10記載の燃料電池用水素の製造方法。
11. The method for producing hydrogen for a fuel cell according to claim 10, wherein the steam reforming catalyst is a ruthenium-based catalyst.
JP2000096352A 2000-03-31 2000-03-31 Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell Pending JP2001279257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096352A JP2001279257A (en) 2000-03-31 2000-03-31 Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096352A JP2001279257A (en) 2000-03-31 2000-03-31 Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2001279257A true JP2001279257A (en) 2001-10-10

Family

ID=18611130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096352A Pending JP2001279257A (en) 2000-03-31 2000-03-31 Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2001279257A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279274A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Fuel oil for fuel cell, desulfurization method and hydrogen production method
WO2003097771A1 (en) * 2002-05-22 2003-11-27 Japan Energy Corporation Adsorption desulfurization agent for desulfurizing petroleum fraction and desulfurization method using the same
WO2004058927A1 (en) * 2002-12-26 2004-07-15 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
WO2005073348A1 (en) * 2004-02-02 2005-08-11 Japan Energy Corporation Method of desulfurizing hydrocarbon oil
JP2006070103A (en) * 2004-08-31 2006-03-16 Catalysts & Chem Ind Co Ltd Method for producing fuel treatment agent
WO2007015391A1 (en) * 2005-08-01 2007-02-08 Japan Energy Corporation Method for desulfurization of hydrocarbon oil
JP2007311143A (en) * 2006-05-17 2007-11-29 Japan Energy Corp Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system
JP2008239916A (en) * 2007-03-29 2008-10-09 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009045536A (en) * 2007-08-17 2009-03-05 Cosmo Oil Co Ltd Method of preparing agent for desulfurizing hydrocarbon
CN105170081A (en) * 2014-06-06 2015-12-23 中国石油化工股份有限公司 Mercaptan adsorbent and preparation method and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279274A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Fuel oil for fuel cell, desulfurization method and hydrogen production method
JP2009221481A (en) * 2002-05-22 2009-10-01 Japan Energy Corp Light oil
WO2003097771A1 (en) * 2002-05-22 2003-11-27 Japan Energy Corporation Adsorption desulfurization agent for desulfurizing petroleum fraction and desulfurization method using the same
WO2004058927A1 (en) * 2002-12-26 2004-07-15 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
JPWO2004058927A1 (en) * 2002-12-26 2006-04-27 出光興産株式会社 Method for removing sulfur compounds from hydrocarbon-containing gas
JP5220265B2 (en) * 2002-12-26 2013-06-26 出光興産株式会社 Method for removing sulfur compounds from hydrocarbon-containing gas
US8444945B2 (en) 2002-12-26 2013-05-21 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
WO2005073348A1 (en) * 2004-02-02 2005-08-11 Japan Energy Corporation Method of desulfurizing hydrocarbon oil
US8021540B2 (en) 2004-02-02 2011-09-20 Japan Energy Corporation Method of desulfurizing hydrocarbon oil
JP2006070103A (en) * 2004-08-31 2006-03-16 Catalysts & Chem Ind Co Ltd Method for producing fuel treatment agent
WO2007015391A1 (en) * 2005-08-01 2007-02-08 Japan Energy Corporation Method for desulfurization of hydrocarbon oil
JP2007311143A (en) * 2006-05-17 2007-11-29 Japan Energy Corp Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system
JP2008239916A (en) * 2007-03-29 2008-10-09 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009045536A (en) * 2007-08-17 2009-03-05 Cosmo Oil Co Ltd Method of preparing agent for desulfurizing hydrocarbon
CN105170081A (en) * 2014-06-06 2015-12-23 中国石油化工股份有限公司 Mercaptan adsorbent and preparation method and application thereof
CN105170081B (en) * 2014-06-06 2018-07-03 中国石油化工股份有限公司 Mercaptan adsorbent and its preparation method and application

Similar Documents

Publication Publication Date Title
JP5220265B2 (en) Method for removing sulfur compounds from hydrocarbon-containing gas
KR20070115991A (en) Desulfurization agent and desulfurization method using the same
JP2001279257A (en) Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell
JP2003049172A (en) Desulfurization of liquid hydrocarbon fuel
JP2002322483A (en) Method for desulfurizing liquid oil containing organic sulfur compounds
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and hydrogen production method
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP5284361B2 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil
JP2001278602A (en) Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell
JP2008291146A (en) Porous desulfurization agent and hydrocarbon oil desulfurization method using the same
CA2493034C (en) Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2004130216A (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2004075778A (en) Method for producing desulfurizing agent for hydrocarbon and hydrogen for fuel cell
JP2002322482A (en) Method for desulfurizing liquid oil containing organic sulfur compounds
JP2001279259A (en) Desulfurizing agent for petroleum hydrocarbon and method for producing hydrogen for fuel cell
JP2001279261A (en) Desulfurizing agent, desulfurizing method, and method for producing hydrogen for fuel cell
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP5372338B2 (en) Porous desulfurization agent and hydrocarbon oil desulfurization method using the same
JPH07115842B2 (en) Hydrogen production method for distributed fuel cell
JP2003290659A (en) Desulfurizing agent and method for producing hydrogen for fuel cell using the same
JP2013199533A (en) Method for producing desulfurized gaseous fuel
JP2001262164A (en) Fuel oil for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415