JP5371865B2 - 3-terminal capacitor - Google Patents
3-terminal capacitor Download PDFInfo
- Publication number
- JP5371865B2 JP5371865B2 JP2010081546A JP2010081546A JP5371865B2 JP 5371865 B2 JP5371865 B2 JP 5371865B2 JP 2010081546 A JP2010081546 A JP 2010081546A JP 2010081546 A JP2010081546 A JP 2010081546A JP 5371865 B2 JP5371865 B2 JP 5371865B2
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- anode
- cathode
- terminals
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は、3端子型コンデンサに関し、特に2端子用のパターンが形成された被実装基板に実装するための3端子型コンデンサに関する。 The present invention relates to a three-terminal capacitor, and more particularly to a three-terminal capacitor for mounting on a substrate to be mounted on which a two-terminal pattern is formed.
従来から、固体電解コンデンサにおけるコンデンサ素子は、アルミニウム、タンタル等の弁作用金属からなる陽極素子の一方側を陽極部とし、他方側の表面に形成した酸化皮膜層を誘電体膜とし、さらに、誘電体膜の表面に固体電解質層、カーボン層、銀層を順次形成して陰極部としたものが知られている(例えば、特許文献1参照)。 Conventionally, a capacitor element in a solid electrolytic capacitor has an anode portion made of a valve metal such as aluminum or tantalum as an anode portion, an oxide film layer formed on the other surface as a dielectric film, and a dielectric film. It is known that a cathode part is formed by sequentially forming a solid electrolyte layer, a carbon layer, and a silver layer on the surface of a body membrane (see, for example, Patent Document 1).
近年、電子機器の小型・高周波化が進み、固体電解コンデンサに対しても高周波領域での低インピーダンス化が要求されるようになり、高導電率の導電性高分子を固体電解質層に用いた固体電解コンデンサが商品化されている。この固体電解コンデンサは、二酸化マンガンを用いた固体電解コンデンサに比べて低ESR化を実現する事ができることから、様々な分野で使用されている(例えば、特許文献2参照)。 In recent years, electronic devices have become smaller and higher in frequency, and solid electrolytic capacitors have been required to have low impedance in the high frequency region. Solids using high-conductivity conductive polymers as solid electrolyte layers Electrolytic capacitors have been commercialized. This solid electrolytic capacitor is used in various fields because it can achieve a lower ESR than a solid electrolytic capacitor using manganese dioxide (see, for example, Patent Document 2).
また、コンピュータ等に使用されるCPUの高速化に伴い、固体電解コンデンサからCPUに電荷を供給する際、固体電解コンデンサは高速な充放電を求められるようになり、低ESR、低ESLであることが必須条件となっている。 In addition, as the speed of CPUs used in computers and the like increases, solid electrolytic capacitors are required to be charged and discharged at high speed when supplying electric charge from the solid electrolytic capacitors to the CPUs, and must have low ESR and low ESL. Is a prerequisite.
低ESR化を実現するための固体電解コンデンサとして、平板状のコンデンサ素子を複数枚積層した積層型固体電解コンデンサが広く使われている。この積層型固体電解コンデンサの積層構造としては、陽極部と、固体電解質層、カーボン層、銀層からなる陰極部とを備えた平板状のコンデンサ素子を、陽極部は陽極部同士、陰極部は陰極部同士が互いに重なり合うように複数枚積層し、それぞれ陽極端子、陰極端子に接続した2端子の構成のものが知られている(例えば、特許文献3参照)。 As a solid electrolytic capacitor for realizing low ESR, a stacked solid electrolytic capacitor in which a plurality of flat capacitor elements are stacked is widely used. The laminated structure of this multilayer solid electrolytic capacitor includes a flat capacitor element having an anode part and a cathode part made of a solid electrolyte layer, a carbon layer, and a silver layer. The anode part is an anode part, and the cathode part is a There is known a two-terminal configuration in which a plurality of cathode portions are stacked such that the cathode portions overlap each other and are respectively connected to an anode terminal and a cathode terminal (see, for example, Patent Document 3).
しかしながら、上記特許文献3では素子構造が2端子であるため、ESLが高いという問題が残されていた。そこで、本件出願人は、積層型固体電解コンデンサの積層構造として、平板状のコンデンサ素子を陽極部が陰極部を中心に対向するように交互に積層し、陽極部および陰極部を複数に分岐して引き出し、さらに陽極部間を最短距離で電気的に接続することで磁界を打ち消し、ESLを下げる3端子構造を提案している(例えば、特許文献4参照)。
However, in
一方で、上記特許文献4に記載の積層型固体電解コンデンサは、実装面の両端に2つの陽極端子が設けられ、この2つの陽極端子間に陰極端子が設けられた3端子構造であるため、この3端子型積層固体電解コンデンサを実装する被実装基板には、3端子用のパターンを形成する必要があった。3端子用のパターンは、2端子用のパターンに比べるとパターンが複雑になり、被実装基板の設計が困難になるという問題があった。
On the other hand, the multilayer solid electrolytic capacitor described in
上記の問題に鑑みて、本発明は、3端子構造の電気的特性を損なうことなく2端子用のパターンが形成された被実装基板への実装を可能にする3端子型コンデンサを提供することを課題とする。 In view of the above problems, the present invention provides a three-terminal capacitor that enables mounting on a mounted substrate on which a pattern for two terminals is formed without impairing the electrical characteristics of the three-terminal structure. Let it be an issue.
上記の課題を解決するために、本発明に係る3端子型コンデンサは、実装面の両端に設けられた2つの陽極端子と、該2つの陽極端子の間に設けられた陰極端子とを備えた3端子型コンデンサにおいて、2つの陽極端子が配列する方向をX方向、該X方向に直交する方向をY方向としたとき、2つの陽極端子の端子面がY方向一方端側領域に配置される一方、陰極端子は、Y方向一方端側領域とY方向他方端側領域とに分離した2つのサブ端子からなり、該2つのサブ端子のうち、Y方向一方端側領域に位置するサブ端子が絶縁部材で覆われていることで、陰極端子の端子面が前記Y方向他方端側領域に配置されることを特徴とする。 In order to solve the above problems, a three-terminal capacitor according to the present invention includes two anode terminals provided at both ends of a mounting surface, and a cathode terminal provided between the two anode terminals. In the three-terminal capacitor, when the direction in which the two anode terminals are arranged is the X direction, and the direction orthogonal to the X direction is the Y direction, the terminal surfaces of the two anode terminals are arranged in one end side region in the Y direction. On the other hand, the cathode terminal is composed of two sub terminals separated into one end region in the Y direction and the other end region in the Y direction, and the sub terminal located in the one end region in the Y direction is the two sub terminals. By covering with an insulating member, the terminal surface of the cathode terminal is arranged in the other end side region in the Y direction.
この構成によれば、2つの陽極端子の端子面がY方向一方端側領域にあり、陰極端子の端子面がY方向他方端側領域にある。これにより、本発明に係る3端子型コンデンサは、3端子型コンデンサの電気特性を損なうことなく、パターン設計が容易な2端子用パターン(陽極パターンおよび陰極パターン)が形成された被実装基板への実装が可能となる。さらに、陰極端子をY方向一方端側領域とY方向他方端側領域とに分離した2つのサブ端子から構成すると、2つの陽極端子を電気的に接続する端子構造を採用することが可能になり、3端子型コンデンサの電気的特性を向上させることができる。 According to this configuration, the terminal surfaces of the two anode terminals are in the Y direction one end side region, and the terminal surfaces of the cathode terminals are in the Y direction other end side region. As a result, the three-terminal capacitor according to the present invention can be applied to a substrate to be mounted on which a two-terminal pattern (an anode pattern and a cathode pattern) that can be easily designed is formed without impairing the electrical characteristics of the three-terminal capacitor. Implementation is possible. Furthermore, when the cathode terminal is composed of two sub-terminals separated into one end side region in the Y direction and the other end side region in the Y direction, it is possible to adopt a terminal structure in which the two anode terminals are electrically connected. The electrical characteristics of the three-terminal capacitor can be improved.
また、上記3端子型コンデンサでは、2つの陽極端子のY方向他方端側領域が絶縁部材
で覆われていることを特徴とする。
Further, in the above three-terminal capacitor, Y-direction other end side region of the two anode terminals and being covered with an insulating member.
この構成によれば、2つの陽極端子の端子面のY方向他方端側領域と、陰極端子の端子面のY方向一方端側領域とが絶縁部材で覆われている。このため、2つの陽極端子および陰極端子を被実装基板上の2端子パターン(陽極パターンと陰極パターン)に跨るように実装しても、陽極端子と陰極パターンとが導通するのを防ぐとともに、陰極端子と陽極パターンとが導通するのを防ぐことができる。 According to this structure, the Y direction other end side area | region of the terminal surface of two anode terminals and the Y direction one end side area | region of the terminal surface of a cathode terminal are covered with the insulating member. Therefore, even if two anode terminals and a cathode terminal are mounted so as to straddle a two-terminal pattern (an anode pattern and a cathode pattern) on the mounting substrate, the anode terminal and the cathode pattern are prevented from conducting, and the cathode It is possible to prevent conduction between the terminal and the anode pattern.
さらに、上記構成において、絶縁部材は絶縁性のテープ部材であることが好ましい。この構成によれば、簡易に2つの陽極端子の端子面のY方向他方端側領域および陰極端子の端子面のY方向一方端側領域をそれぞれ陰極パターンおよび陽極パターンから絶縁することができる。しかも、絶縁部材の厚さを均一にすることができ、3端子型コンデンサを安定して被実装基板に実装することができる。 Furthermore, in the above configuration, the insulating member is preferably an insulating tape member. According to this configuration, it is possible to easily insulate the Y-direction other end region of the terminal surfaces of the two anode terminals and the Y-direction one end region of the terminal surfaces of the cathode terminals from the cathode pattern and the anode pattern, respectively. In addition, the thickness of the insulating member can be made uniform, and the three-terminal capacitor can be stably mounted on the substrate to be mounted.
このような3端子型コンデンサとしては、弁作用金属からなる平板状陽極素子の一方側に陽極部、他方側に陰極部が形成されたコンデンサ素子を、陰極部を中心に陽極部の突出方向が交互に反対になるように複数枚積み重ねて構成した積層体を外装樹脂で封止してなり、積層体の一方側から突出した陽極部と他方側から突出した陽極部とが、それぞれ2つの陽極端子に電気的に接続され、陰極部が陰極端子に電気的に接続されている構成を採用することができる。 As such a three-terminal capacitor, a capacitor element in which an anode part is formed on one side and a cathode part is formed on the other side of a flat anode element made of a valve metal, and the protruding direction of the anode part with the cathode part as the center is used. A laminated body formed by stacking a plurality of sheets so as to be alternately reversed is sealed with an exterior resin, and an anode part protruding from one side of the laminated body and an anode part protruding from the other side each have two anodes. A configuration in which the terminal is electrically connected and the cathode portion is electrically connected to the cathode terminal can be employed.
本発明によれば、3端子構造の良好な電気的特性を損なうことなく2端子用のパターンが形成された被実装基板への実装を可能にする3端子型コンデンサを提供することができる。 According to the present invention, it is possible to provide a three-terminal capacitor that can be mounted on a substrate to be mounted on which a pattern for two terminals is formed without impairing the good electrical characteristics of the three-terminal structure.
以下、本発明に係る3端子型コンデンサとして、3端子型積層固体電解コンデンサを例に挙げ、図面を参照して説明する。 Hereinafter, a three-terminal multilayer solid electrolytic capacitor will be described as an example of the three-terminal capacitor according to the present invention with reference to the drawings.
図1(a)は本発明に係る3端子型積層固体電解コンデンサで使用するコンデンサ素子cの平面図、(b)は断面図である。同図に示すように、コンデンサ素子cは、陽極素子1、誘電体膜2、固体電解質層3、カーボン層4、銀層5、および這い上がり防止材6から構成されている。
FIG. 1A is a plan view of a capacitor element c used in the three-terminal multilayer solid electrolytic capacitor according to the present invention, and FIG. As shown in the figure, the capacitor element c is composed of an
陽極素子1は、弁作用金属であるアルミニウムを主成分とする幅(w)10mm、長さ(l)15mmの平板状の薄板であり、その一方側は陽極部7を構成している。誘電体膜2は、陽極素子1の他方側の表面に形成された酸化皮膜層である。固体電解質層3は、誘電体膜2の表面に形成された層であり、例えば、ポリエチレンジオキシチオフェン(PEDT)等の導電性高分子を含む電解質の化学重合、電解重合、または含浸によって形成された層である。カーボン層4および銀層5は、固体電解質層3の表面に順次形成された陰極引出層であり、固体電解質層3と併せて陰極部を構成している。這い上がり防止材6は、陽極部7と固体電解質層3との間に設けられ、陽極部7と陰極部とを絶縁隔離するリング状の膜である。
The
なお、コンデンサ素子cは次のように作製される。まず、表面を電気化学的に粗面化した厚さ0.1mmのアルミニウムの薄板からなる陽極素子1を、アジピン酸アンモニウム水溶液中で10Vの電圧を印加して約60分間陽極酸化を行い、陽極素子1の表面に酸化皮膜層である誘電体膜2を形成する。次いで、誘電体膜2が形成された陽極素子1を幅(w)10mm、長さ(l)15mmの寸法に裁断した後、適切な位置に絶縁性樹脂を周方向に巻きつけるように塗布して這い上がり防止材6を形成し、陽極部7になる領域と陰極部になる領域とに区分する。次いで、当該裁断によって陽極素子1が露出した端面部を、再度アジピン酸アンモニウム水溶液中で7Vの電圧を印加して約30分間陽極酸化処理を行い、裁断面にも誘電体膜2を形成する。その後、誘電体膜2の表面に固体電解質層3、カーボン層4、銀層5を順次形成して陰極部を構成することでコンデンサ素子cは完成する。
The capacitor element c is manufactured as follows. First, an
図2(a)(b)は、上記方法で作製された4枚のコンデンサ素子c1〜c4を積層した積層体の平面図および側面図、(c)は、積層体をリードフレーム上に配置した状態の側面図である。 2A and 2B are a plan view and a side view of a laminated body in which the four capacitor elements c1 to c4 manufactured by the above method are laminated, and FIG. 2C is a laminated body arranged on a lead frame. It is a side view of a state.
積層体は、コンデンサ素子c1〜c4を陽極部7、7’の突出方向が交互に反対になるように積層したものである。コンデンサ素子c1〜c4の陰極部は、導電性接着剤8によりそれぞれ接続されている。積層体の両側の陽極部7、7’と陽極端子9、9’とは抵抗溶接等の方法でそれぞれ接続され、積層体の中央の陰極部と陰極端子10とは導電性接着剤8を介して接合されている。なお、陽極端子9、9’、陰極端子10には銅系合金が使用されている。
The laminated body is obtained by laminating capacitor elements c1 to c4 so that the protruding directions of the
図3(a)は本発明に係る3端子型積層固体電解コンデンサで使用するリードフレームの平面図、(b)はリードフレーム上に絶縁体を配置した状態の平面図である。図4(a)は積層体をリードフレーム上に配置した状態の平面図、(b)は(a)の線Aで切断した断面図、(c)は(a)の線Bで切断した断面図である。 FIG. 3A is a plan view of a lead frame used in the three-terminal multilayer solid electrolytic capacitor according to the present invention, and FIG. 3B is a plan view showing a state in which an insulator is disposed on the lead frame. 4A is a plan view showing a state in which the laminate is disposed on the lead frame, FIG. 4B is a cross-sectional view taken along line A in FIG. 4A, and FIG. 4C is a cross-section taken along line B in FIG. FIG.
図3(a)に示すように、リードフレームは陽極端子9、9’、陰極端子10、10’、連結部11から構成される。
As shown in FIG. 3A, the lead frame includes
陽極端子9、9’は、積層体の陽極部7、7’と抵抗溶接によりそれぞれ接続されている。陽極端子9、9’間は陽極端子9、9’と同じ材質(例えば銅系合金)の長さ12.6mmの連結部11で接続され、陽極端子9、9’と連結部11とが一体のH形リードフレームになっている。図4(b)、(c)に示すように、H形リードフレームの断面は両端の陽極端子9、9’が厚く、連結部11が薄くなっている。連結部11は外装樹脂(不図示)内に埋設されているため、陽極端子9、9’および連結部11は外装樹脂から抜けにくくなっている。
The
陰極端子10、10’は、連結部11を挟んで線対称に、連結部11から0.5mmの隙間をもって設けられ、コンデンサ素子c1〜c4の陰極部と例えば銀ペーストなどの導電性接着剤8により接続されている。
The
絶縁体12は、少なくとも連結部11の積層体側全面を覆うように設けられ、コンデンサ素子c1〜c4の陰極部と陰極端子10、10’とを導電性接着剤8で接続する際に、導電性接着剤8が連結部11の側面および底面に付着するのを防ぐ。具体的には、絶縁体12として、図3(b)に示すように、長さ12.6mmのポリイミドテープが、連結部11および陰極端子10、10’の積層体側の面上に跨って設けられている。なお、ポリイミドテープからなる絶縁体12の厚さは10μm以下が好ましく、10μmより厚いとコンデンサ素子c1〜c4の陰極部と陰極端子10、10’との接続が弱くなり、ESRが大きくなる等の不具合が発生するおそれがある。
The
次に本発明の実施例について説明する。なお、以下の説明では、陽極端子が配列する方向をX方向、該X方向に直交する方向をY方向とする。 Next, examples of the present invention will be described. In the following description, the direction in which the anode terminals are arranged is the X direction, and the direction orthogonal to the X direction is the Y direction.
(実施例1)
図5は本実施例に係る3端子型積層固体電解コンデンサC1におけるリードフレームとパターンの位置関係を示す平面図である。図6(a)は本実施例に係る3端子型積層固体電解コンデンサC1の底面(実装面)図、(b)は(a)の3端子型積層固体電解コンデンサC1を陰極端子10’側から見た側面図である。
Example 1
FIG. 5 is a plan view showing the positional relationship between the lead frame and the pattern in the three-terminal multilayer solid electrolytic capacitor C1 according to this embodiment. 6A is a bottom view (mounting surface) of the three-terminal multilayer solid electrolytic capacitor C1 according to the present embodiment, and FIG. 6B is a diagram illustrating the three-terminal multilayer solid electrolytic capacitor C1 of FIG. FIG.
図5に示すように、3端子型積層固体電解コンデンサC1は、被実装基板に形成された2端子用のパターン(陽極パターン16および陰極パターン17)上に跨って実装されている。3端子型積層固体電解コンデンサC1の実装面は、陽極パターン16に対応するY方向一方端側領域A1と、陰極パターン17に対応するY方向他方端側領域A2とにY方向に2分されている。
As shown in FIG. 5, the three-terminal multilayer solid electrolytic capacitor C1 is mounted over a pattern for two terminals (
図6に示すように、3端子型積層固体電解コンデンサC1では、陽極端子9、9’はY方向全体にわたって設けられ、2つのサブ端子からなる陰極端子10、10’はY方向一方端側領域A1およびY方向他方端側領域A2に設けられている。陽極端子9、9’および陰極端子10’の実装面側は外装樹脂13から露出しており、それぞれ端子面9A、9’Aおよび端子面10’Aとなっている。
As shown in FIG. 6, in the three-terminal multilayer solid electrolytic capacitor C1, the
さらに、図5に示すように、Y方向一方端側領域A1における陰極端子10の実装面側には、陰極端子10と陽極パターン16とを絶縁するためのポリイミドテープからなる絶縁部材15が設けられ、Y方向他方端側領域A2における陽極端子9、9’の実装面側には、陽極端子9、9’と陰極パターン17とを絶縁するためのポリイミドテープからなる絶縁部材14、14’が設けられている。このため、陽極端子9、9’はY方向他方端側領域A2に現れることなく、Y方向一方端側領域A1においてのみ実装面に露出している。また、陰極端子10はY方向一方端側領域A1に現れることなく、陰極端子10’がY方向他方端側領域A2においてのみ実装面に露出している。言い換えると、陽極端子9、9’の端子面9A、9’AはY方向一方端側領域A1にのみ配置され、陰極端子10’の端子面10’AはY方向他方端側領域A2にのみ配置されている。
Further, as shown in FIG. 5, an insulating
なお、3端子型積層固体電解コンデンサC1を陽極パターン16および陰極パターン17が形成された被実装基板に実装するためには、絶縁部材14、14’、15の厚さを10μm以下にすることが好ましい。陽極端子9、9’の端子面9A、9’Aと陽極パターン16および陰極端子10’の端子面10’Aと陰極パターン17とははんだを介して接続されているため、絶縁部材14、14’、15の厚さが10μmより大きいと陽極端子9、9’の端子面9A、9’Aと陽極パターン16および陰極端子10’の端子面10’Aと陰極パターン17との隙間が大きくなりはんだ付け不良が発生するおそれがある。
In order to mount the three-terminal multilayer solid electrolytic capacitor C1 on the mounting substrate on which the
(実施例2)
図7は本実施例に係る3端子型積層固体電解コンデンサC2におけるリードフレームとパターンの位置関係を示す平面図である。図8(a)は本実施例に係る3端子型積層固体電解コンデンサC2の底面(実装面)図、(b)は(a)の3端子型積層固体電解コンデンサC2を陰極端子19側から見た側面図である。
(Example 2)
FIG. 7 is a plan view showing the positional relationship between the lead frame and the pattern in the three-terminal multilayer solid electrolytic capacitor C2 according to this example. FIG. 8A is a bottom view (mounting surface) of the three-terminal multilayer solid electrolytic capacitor C2 according to this embodiment, and FIG. 8B is a view of the three-terminal multilayer solid electrolytic capacitor C2 of FIG. FIG.
図7に示すように、3端子型積層固体電解コンデンサC2は、実施例1と同様に陽極パターン16および陰極パターン17上に跨って実装され、その実装面は、Y方向一方端側領域A1と、Y方向他方端側領域A2とにY方向に2分されている。
As shown in FIG. 7, the three-terminal multilayer solid electrolytic capacitor C2 is mounted over the
さらに、3端子型積層固体電解コンデンサC2は、積層体と陽極端子18、18’および陰極端子19とを溶接する前に、Y方向他方端側領域A2の陽極端子18、18’およびY方向一方端側領域A1の陰極端子を切り取ることにより、陽極端子18、18’がY方向一方端側領域A1にのみ設けられ、かつ陰極端子19がY方向他方端側領域A2にのみ設けられた構造となる。なお図8に示すように、陽極端子18、18’および陰極端子が切り取られた部分には、外装樹脂13が回り込んで形成されている。このため、図7に示すように、陽極端子18、18’は、Y方向他方端側領域A2に現れることなく、Y方向一方端側領域A1においてのみ実装面に露出し、陰極端子19は、Y方向一方端側領域A1に現れることなく、Y方向他方端側領域A2においてのみ実装面に露出している。これにより、陽極端子18、18’の実装面側全体および陰極端子19の実装面側全体が、それぞれ端子面18A、18’Aおよび端子面19Aとなる。
Further, the three-terminal multilayer solid electrolytic capacitor C2 has the
(比較例1)
図9は比較例1の積層型固体電解コンデンサC3におけるリードフレームとパターンの位置関係を示す平面図である。同図に示すように、積層型固体電解コンデンサC3は、X方向一端に設けられた陽極端子9’がポリイミドテープからなる絶縁部材14で完全に覆われた状態で、陽極パターン20および陰極パターン21上に実装されている。
(Comparative Example 1)
9 is a plan view showing the positional relationship between the lead frame and the pattern in the multilayer solid electrolytic capacitor C3 of Comparative Example 1. FIG. As shown in the figure, the multilayer solid electrolytic capacitor C3 has an
(比較例2)
図10は比較例2の積層型固体電解コンデンサC4におけるリードフレームとパターンの位置関係を示す平面図である。同図に示すように、積層型固体電解コンデンサC4は、比較例1と同様に、陽極パターン20および陰極パターン21上に実装されている。さらに、積層型固体電解コンデンサC4では、積層体と陽極端子9および陰極端子10、10’とを溶接する前に、X方向一端に設けられた陽極端子を切り取り、この切り取った部分に外装樹脂13を回り込ませて、形成させている。
(Comparative Example 2)
10 is a plan view showing the positional relationship between the lead frame and the pattern in the multilayer solid electrolytic capacitor C4 of Comparative Example 2. FIG. As shown in the figure, the multilayer solid electrolytic capacitor C4 is mounted on the
(従来例)
図11は従来例の3端子型積層固体電解コンデンサC5におけるリードフレームとパターンの位置関係を示す平面図である。同図に示すように、3端子型積層固体電解コンデンサC5は、被実装基板に形成された3端子用のパターン(陽極パターン22、22’および陰極パターン23)上に実装されている。
(Conventional example)
FIG. 11 is a plan view showing the positional relationship between a lead frame and a pattern in a conventional three-terminal multilayer solid electrolytic capacitor C5. As shown in the figure, the three-terminal multilayer solid electrolytic capacitor C5 is mounted on a three-terminal pattern (
なお、実施例1〜2、比較例1〜2、従来例では、それぞれ定格2.5V−1200μF、長さ(L)寸法:16mm、幅(W)寸法:12mm、高さ(H)寸法:2.5mmの3端子型積層固体電解コンデンサC1〜C2、C5および積層型固体電解コンデンサC3〜C4を作製した。 In Examples 1 and 2, Comparative Examples 1 and 2, and the conventional example, the rating is 2.5 V-1200 μF, the length (L) dimension: 16 mm, the width (W) dimension: 12 mm, and the height (H) dimension: 2.5 mm three-terminal multilayer solid electrolytic capacitors C1 to C2 and C5 and multilayer solid electrolytic capacitors C3 to C4 were produced.
表1は、3端子型積層固体電解コンデンサC1〜C2、C5および積層型固体電解コンデンサC3〜C4のインピーダンスを示す表である。なお、このインピーダンスは、3端子型積層固体電解コンデンサC1〜C2、C5および積層型固体電解コンデンサC3〜C4をそれぞれ50個作製し、1MHzで測定したインピーダンスの平均をとったものである。 Table 1 is a table showing impedances of the three-terminal multilayer solid electrolytic capacitors C1 to C2 and C5 and the multilayer solid electrolytic capacitors C3 to C4. The impedance is obtained by averaging 50 impedances measured at 1 MHz by preparing three 3-terminal multilayer solid electrolytic capacitors C1 to C2, C5 and multilayer solid electrolytic capacitors C3 to C4.
表1から分かるように、2端子用のパターン(陽極パターン16および陰極パターン17)に実装した実施例1〜2の3端子型積層固体電解コンデンサC1〜C2のインピーダンスと、3端子用のパターンに実装した従来例の3端子型積層固体電解コンデンサC5のインピーダンスとはほとんど変わらなかった。これは、3端子型積層固体電解コンデンサC1〜C2では、陽極端子9、9’(18、18’)が連結部11で接続されており、2端子用のパターンへの実装であっても3端子構造の良好な電気的特性が損なわれていないためであると考えられる。また、実施例1〜2において若干インピーダンスが上昇している点については、陽極パターン16と陽極端子9、9’(18、18’)の端子面9A、9’A(18A、18’A)との接触面積、および陰極パターン17と陰極端子10’(19)の端子面10’A(19A)の面積との接触面積が小さくなった事が原因であると考えられる。
As can be seen from Table 1, the impedance of the three-terminal multilayer solid electrolytic capacitors C1 to C2 of Examples 1 and 2 mounted on the two-terminal pattern (the
また、実施例1〜2の3端子型積層固体電解コンデンサC1〜C2と比較例1〜2の積層型固体電解コンデンサC3〜C4を比較すると、3端子型積層固体電解コンデンサC1〜C2の方がインピーダンス値が低くなっている。これは、比較例1〜2の積層型固体電解コンデンサC3〜C4では、X方向一端に設けられた陽極端子9’が陽極パターン20に接続しておらず、もしくはX方向一端に設けられた陽極端子が切り取られているため、3端子構造として機能していない事が原因であると考えられる。
Further, when the three-terminal multilayer solid electrolytic capacitors C1 to C2 of Examples 1 and 2 are compared with the multilayer solid electrolytic capacitors C3 to C4 of Comparative Examples 1 and 2, the three-terminal multilayer solid electrolytic capacitors C1 to C2 are better. The impedance value is low. This is because, in the multilayer solid electrolytic capacitors C3 to C4 of Comparative Examples 1 and 2, the
以上、本発明に係る3端子型コンデンサの好ましい実施形態について説明してきたが、本発明はこれらの構成に限定されるものではない。 The preferred embodiments of the three-terminal capacitor according to the present invention have been described above, but the present invention is not limited to these configurations.
例えば、絶縁部材14、14’を設ける範囲、もしくはY方向他方端側領域A2側の陽極端子18、18’を切り取る範囲は、陽極端子9、9’(18、18’)の端子面9A、9’A(18A、18’A)が陽極パターン16にのみ接続される範囲であれば任意に変更できる。ただし、陽極端子9、9’(18、18’)の端子面9A、9’A(18A、18’A)と陽極パターン16との接触面積が小さくなるにつれインピーダンス特性は悪化するため、図5、図7に示すように、陽極端子9、9’(18、18’)はY方向一方端側領域A1におけるY方向全体にわたって実装面に露出していることが好ましい。
For example, the range in which the insulating
また、陽極端子9、9’がY方向他方端側領域A2に現れることなく、Y方向一方端側領域A1においてのみ実装面に露出し、陰極端子10、10’がY方向一方端側領域A1に現れることなく、Y方向他方端側領域A2においてのみ実装面に露出するように、Y方向他方端側領域A2側の陽極端子9、9’およびY方向一方端側領域A1側の陰極端子10の厚さを薄くして外装樹脂13内に埋設させてもよい。この場合、外装樹脂13が絶縁部材14、14’、15としての機能を果たす。
Further, the
さらに、実施例1では、絶縁部材14、14’、15として、ポリイミドテープを使用したが、ガラス繊維入りテープ、ポリプロピレンテープ、ポリエチレンテレフタレートテープ、ポリテトラフルオロエチレンテープ、ポリエステルテープ等のテープ部材、若しくは絶縁性樹脂等の絶縁性のある部材であれば同じ効果が得られる。なお、絶縁体12も上記部材から任意に選択できるため、共通の部材を用いて絶縁部材14、14’、15および絶縁体12を設けることが製造上好ましい。
Furthermore, in Example 1, although the polyimide tape was used as the insulating
実施例1〜2では、弁作用金属としてアルミニウムを用いたが、タンタルやニオブ箔またはこれら金属粉末の焼結体を用いてもよい。さらに、実施例1〜2では、固体電解質層3として導電性高分子を用いたが、二酸化マンガンを用いてもよい。
In Examples 1 and 2, aluminum was used as the valve metal, but tantalum, niobium foil, or a sintered body of these metal powders may be used. Furthermore, in Examples 1-2, although the conductive polymer was used as the
また、連結部11は、陽極端子9、9’と同じ材料を使用し、図3(a)に示すように一体に形成するのが望ましいが、連結部11の材料は銅、アルミニウム、銀、金、ニオブ、タンタル、導電性高分子等の導電性材料等であれば任意に選択できる。
Further, the connecting
さらに、実施例1〜2では、陽極端子9、9’と陰極端子10、10’の下面が同一の高さとなるため、2端子用のパターンが形成されたマザーボードやIC基板等の被実装基板に実装する場合に好都合である。なお、陽極端子および陰極端子の下面を同一の高さに揃えなくてもよい場合は、連結部を陰極端子の下面に沿って設けてもよい。
Furthermore, in Examples 1 and 2, the lower surfaces of the
また、陰極端子10、10’間にも連結部を設け、陽極端子9、9’間の連結部11と交差するようにしてもよい。さらに、連結部11は、陰極端子10、10’の中央であっても一方側に寄せてもよく、連結部11の数を2本以上とし、その間に陰極端子を設けてもよい。この場合は、全ての陰極端子と連結部との間に、絶縁体12を設ける必要がある。
Further, a connecting portion may be provided between the
さらに、陽極端子9、9’(18、18’)および陰極端子10、10’(19)として、リードフレームに代えて、被実装基板と接続される貫通孔(導通端子孔)や導電層が設けられた絶縁基板を用いてもよい。
Further, as the
実施例1〜2では、コンデンサ素子cを4枚積層しているが、コンデンサ素子cは積層枚数にかかわらず同じ効果が得られる。 In Examples 1 and 2, four capacitor elements c are stacked, but the same effect can be obtained with the capacitor elements c regardless of the number of stacked layers.
また、実施例1〜2では、リードフレームを積層体の下側に設けた例について説明したが、被実装基板に形成されたパターンの位置によっては、積層体の上側にリードフレームを設けてもよい。 In Examples 1 and 2, the example in which the lead frame is provided on the lower side of the stacked body has been described. However, depending on the position of the pattern formed on the mounted substrate, the lead frame may be provided on the upper side of the stacked body. Good.
なお、実施例1〜2では、一方端に陽極部を設けたコンデンサ素子を、陽極部の突出方向が交互に反対になるように積層したが、コンデンサ素子の両端に陽極部、該陽極部間に陰極部を設けたコンデンサ素子を1枚または複数枚積層してもよい。 In Examples 1 and 2, capacitor elements provided with an anode portion at one end were laminated so that the protruding directions of the anode portions were alternately opposite. One or a plurality of capacitor elements each provided with a cathode portion may be laminated.
c、c1〜c4 コンデンサ素子
1 陽極素子
2 誘電体膜
3 固体電解質層
4 カーボン層
5 銀層
6 這い上がり防止材
7、7’ 陽極部
8 導電性接着剤
9、9’、18、18’ 陽極端子
10、10’、19 陰極端子
11 連結部
12 絶縁体
13 外装樹脂
14、14’、15 絶縁部材
16 陽極パターン
17 陰極パターン
c, c1 to
Claims (4)
前記2つの陽極端子が配列する方向をX方向、該X方向に直交する方向をY方向としたとき、
前記2つの陽極端子の端子面が前記Y方向一方端側領域に配置される一方、
前記陰極端子は、前記Y方向一方端側領域と前記Y方向他方端側領域とに分離した2つのサブ端子からなり、該2つのサブ端子のうち、前記Y方向一方端側領域に位置するサブ端子が絶縁部材で覆われていることで、前記陰極端子の端子面が前記Y方向他方端側領域に配置されることを特徴とする3端子型コンデンサ。 In a three-terminal capacitor comprising two anode terminals provided at both ends of the mounting surface and a cathode terminal provided between the two anode terminals,
When the direction in which the two anode terminals are arranged is the X direction, and the direction perpendicular to the X direction is the Y direction,
While the terminal surfaces of the two anode terminals are arranged in the Y direction one end side region,
The cathode terminal is composed of two sub terminals separated into the Y direction one end side region and the Y direction other end side region, and the sub terminal located in the Y direction one end side region of the two sub terminals. The terminal is covered with an insulating member, so that the terminal surface of the cathode terminal is disposed in the other end side region in the Y direction.
前記積層体の一方側から突出した前記陽極部と他方側から突出した前記陽極部とは、それぞれ前記2つの陽極端子に電気的に接続され、前記陰極部は前記陰極端子に電気的に接続されていることを特徴とする請求項1ないし3のいずれかに記載の3端子型コンデンサ。The anode part protruding from one side of the laminate and the anode part protruding from the other side are electrically connected to the two anode terminals, respectively, and the cathode part is electrically connected to the cathode terminal. The three-terminal capacitor according to any one of claims 1 to 3, wherein the three-terminal capacitor is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010081546A JP5371865B2 (en) | 2010-03-31 | 2010-03-31 | 3-terminal capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010081546A JP5371865B2 (en) | 2010-03-31 | 2010-03-31 | 3-terminal capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011216570A JP2011216570A (en) | 2011-10-27 |
JP5371865B2 true JP5371865B2 (en) | 2013-12-18 |
Family
ID=44946034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010081546A Active JP5371865B2 (en) | 2010-03-31 | 2010-03-31 | 3-terminal capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5371865B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3191413B2 (en) * | 1992-06-19 | 2001-07-23 | 日本ケミコン株式会社 | Solid electrolytic capacitors |
JP2006073791A (en) * | 2004-09-02 | 2006-03-16 | Nec Tokin Corp | Surface-mounting thin capacitor |
JP4757698B2 (en) * | 2005-05-11 | 2011-08-24 | Necトーキン株式会社 | Solid electrolytic capacitor |
JP2007116064A (en) * | 2005-10-24 | 2007-05-10 | Nichicon Corp | Laminated solid electrolytic capacitor |
-
2010
- 2010-03-31 JP JP2010081546A patent/JP5371865B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011216570A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7355835B2 (en) | Stacked capacitor and method of fabricating the same | |
US6836401B2 (en) | Capacitor, laminated capacitor, and capacitor built-in-board | |
CN101894685A (en) | Chip Solid Electrolytic Capacitors | |
KR101117041B1 (en) | Stacked type solid electrolytic capacitor and method for manufacturing same | |
JP2007116064A (en) | Laminated solid electrolytic capacitor | |
JP4688675B2 (en) | Multilayer solid electrolytic capacitor | |
US8018713B2 (en) | Solid electrolytic capacitor having dual cathode plates surrounded by an anode body and a plurality of through holes | |
JP2009021355A (en) | Multilayer solid-state electrolytic capacitor | |
JP5371865B2 (en) | 3-terminal capacitor | |
WO2010137190A1 (en) | Laminated solid electrolytic capacitor and method for manufacturing same | |
JP4688676B2 (en) | Multilayer solid electrolytic capacitor and capacitor module | |
JP4936458B2 (en) | Multilayer solid electrolytic capacitor | |
JP5051851B2 (en) | Multilayer solid electrolytic capacitor | |
JP2008021774A (en) | Chip-type solid electrolytic capacitor, and manufacturing method thereof | |
JP4671347B2 (en) | Solid electrolytic capacitor | |
JP5294311B2 (en) | Solid electrolytic capacitor | |
JP2007258456A (en) | Laminated solid electrolytic capacitor | |
JP4337423B2 (en) | Circuit module | |
JP2003168627A (en) | Capacitor, laminated capacitor and capacitor- incorporated substrate | |
JP5279019B2 (en) | Solid electrolytic capacitor | |
JP2008135424A (en) | Chip-type solid electrolytic capacitor | |
JP5411047B2 (en) | Multilayer solid electrolytic capacitor and manufacturing method thereof | |
WO2019058535A1 (en) | Solid electrolytic capacitor and method for manufacturing same | |
JP2008166760A (en) | Mounting body of electrolytic capacitor | |
JP5190947B2 (en) | Solid electrolytic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120912 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130911 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5371865 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |