JP5368142B2 - Overflow water treatment system in combined sewers. - Google Patents
Overflow water treatment system in combined sewers. Download PDFInfo
- Publication number
- JP5368142B2 JP5368142B2 JP2009074690A JP2009074690A JP5368142B2 JP 5368142 B2 JP5368142 B2 JP 5368142B2 JP 2009074690 A JP2009074690 A JP 2009074690A JP 2009074690 A JP2009074690 A JP 2009074690A JP 5368142 B2 JP5368142 B2 JP 5368142B2
- Authority
- JP
- Japan
- Prior art keywords
- filter medium
- overflow water
- vertical hole
- medium layer
- treatment system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 209
- 239000010865 sewage Substances 0.000 claims description 36
- 238000011001 backwashing Methods 0.000 claims description 24
- 238000007667 floating Methods 0.000 claims description 15
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 239000000706 filtrate Substances 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 description 24
- 239000007787 solid Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 9
- 238000007790 scraping Methods 0.000 description 9
- 239000000356 contaminant Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- -1 BOD Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 239000000645 desinfectant Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000008235 industrial water Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Landscapes
- Sewage (AREA)
- Filtration Of Liquid (AREA)
Description
本発明は、合流式下水道の越流水を処理するためのシステムに関し、特には、高速ろ過により合流式下水越流水(CSO)の水質改善を可能とする越流水処理システムに関するものである。 The present invention relates to a system for treating overflow water of a combined sewer, and more particularly, to an overflow water treatment system that can improve the water quality of combined sewage overflow (CSO) by high-speed filtration.
従来、下水道の方式としては、雨水と汚水とを別々の管路で流す分流式下水道と、雨水と汚水とを同一の管路で流す合流式下水道とが知られており、特に都市部においては合流式下水道が多く採用されている。 Conventionally, as sewer systems, there are known a segregated sewer that flows rainwater and sewage through separate pipes and a combined sewer that flows rainwater and sewage through the same pipe, especially in urban areas. Many combined sewers are used.
そして、合流式下水道では、通常、下水処理場の処理能力に応じて遮集管の計画遮集量nQ(ここで、「n」は都市により異なる数値であり、例えば東京都はn=3、大阪市はn=2.2である。また、「Q」は晴天時時間最大汚水量である。)を設計しており、計画遮集量を超えた、下水処理場にて処理しきれない越流水分は、何ら処理をされることなく河川等の公共用水域へと放流されている。具体的には、図5に示すように、合流下水管51に流入する雨水および汚水の量が計画遮集量nQ(「雨天時時間最大汚水量」と呼ぶこともある)を超えた場合、越流水分(nQ超過分)が、合流下水管51と遮集管53との間に設置された雨水吐き52の越流堰(図示せず)を超えて河川54等へと流れるようにされている。
And in the combined sewerage, the planned interception amount nQ of the interceptor pipe is usually different according to the capacity of the sewage treatment plant (where “n” is a numerical value that varies depending on the city, for example, n = 3 in Tokyo, Osaka City has n = 2.2, and "Q" is the maximum amount of sewage time in fine weather.) And cannot be treated at the sewage treatment plant exceeding the planned interception amount. Overflow water is discharged into public water areas such as rivers without any treatment. Specifically, as shown in FIG. 5, when the amount of rainwater and sewage flowing into the combined
ここで、上述したように、合流式下水道では下水処理場にて処理しきれない越流水分が未処理のまま河川等へ放流されているところ、越流水中には汚水が含まれているため、河川等が越流水の放流により汚染される恐れがあった。そのため、河川等へと放流する越流水の水質(BOD、SS等)を改善する技術が求められていた。 Here, as described above, overflow water that cannot be treated at the sewage treatment plant in the combined sewer is discharged into a river or the like as it is untreated, but the overflow water contains sewage. There was a risk of rivers being contaminated by the discharge of overflow water. Therefore, a technique for improving the quality of overflow water (BOD, SS, etc.) discharged into rivers and the like has been demanded.
これに対し、回転自在に設けられたフィルタと、高温流体を該フィルタに噴射する洗浄装置とを備える濾過機を用いて合流式下水道の越流水を濾過する技術が知られている(例えば、特許文献1参照)。しかし、このような濾過機では、繰り返し使用した場合に高温流体で洗浄しても最終的にはフィルタが目詰まりしてしまう恐れがあると共に、フィルタ洗浄用の高温流体を常に準備しておく必要があるという問題があった。 On the other hand, a technique for filtering overflow water of a combined sewer using a filter provided with a filter provided rotatably and a cleaning device that injects a high-temperature fluid onto the filter is known (for example, patents). Reference 1). However, in such a filter, there is a risk that the filter will eventually become clogged even if it is washed repeatedly with a hot fluid, and it is necessary to always prepare a hot fluid for washing the filter. There was a problem that there was.
また、下水処理場において用いられているような、浮上ろ材を用いた高速ろ過技術では、ろ材充填層の上部に貯留したろ過水を自然流下させることでろ材の洗浄を行っていたため、設計上、水槽の高さが所望の逆洗線速度(逆洗時に流すろ過水の線速度)を得られる高さに制限されてしまい、ろ材の洗浄に必要なろ過水の量を十分に確保するためには、複数のろ過槽を並設して共通の処理水(ろ過水)槽を設ける必要があり、広大な設置面積が必要であった(例えば、特許文献2および特許文献3参照)。そのため、上記高速ろ過技術を適用したろ過装置は雨水吐きと河川等との間に設置することが困難であり、合流式下水越流水(CSO)の水質改善手段としては適していなかった。 In addition, in high-speed filtration technology using floating filter media such as those used in sewage treatment plants, the filtered media stored in the upper part of the filter media packed bed was washed down naturally, so in the design, The height of the water tank is limited to a height at which a desired backwash line speed (line speed of filtered water flowing during backwashing) can be obtained, and in order to ensure sufficient amount of filtered water necessary for washing the filter medium Needed to install a plurality of filtration tanks in parallel and provide a common treated water (filtrated water) tank, and required a large installation area (see, for example, Patent Document 2 and Patent Document 3). Therefore, it is difficult to install a filtration device to which the high-speed filtration technology is applied between a rainwater discharge and a river or the like, and it is not suitable as a means for improving the quality of combined sewage overflow (CSO).
そのため、省スペースでオンサイトに設置可能であり、且つ、メンテナンスが容易で目詰まりによりろ過不能になることがない、合流式下水越流水の処理システムが求められていた。 Therefore, there is a need for a combined sewage overflow treatment system that can be installed on-site in a space-saving manner and that is easy to maintain and does not become unfilterable due to clogging.
この発明は上記課題を有利に解決することを目的とするものであり、本発明の越流水処理システムは、合流式下水道の越流水を処理するためのシステムであって、第1の縦穴と、合流下水管と前記第1の縦穴とを接続して当該合流下水管からの越流水を当該第1の縦穴へと流すための越流水流路と、ろ材からなるろ材層と、当該ろ材を支持するスクリーンと、当該ろ材層より下部に設置された集水装置と、当該ろ材層より上部に設けられたろ過水放流管とを備える第2の縦穴と、前記第1の縦穴と、前記第2の縦穴とを接続する連結流路と、前記集水装置に接続した逆洗用ポンプと、前記連結流路に設けられ、前記ろ材層の逆洗時に前記第2の縦穴への前記越流水の流入を止める連結流路弁とを具え、前記合流下水管と前記越流水流路との接続部および前記第1の縦穴と前記越流水流路との接続部の少なくとも一方が前記ろ過水放流管より上方に位置しており、且つ、前記第2の縦穴と前記連結流路との接続部が前記ろ材層より下方に位置していることを特徴とする。
このような越流水処理システムによれば、合流下水管と越流水流路との接続部および第1の縦穴と越流水流路との接続部の少なくとも一方がろ過水放流管より上方に位置しており、且つ、第2の縦穴と連結流路との接続部がろ材層より下方に位置しているので、第1の縦穴内の越流水の水頭圧を推進力として利用してろ材層で越流水のろ過(夾雑物、BOD、SS等の除去)を行うことができる。また、本発明の越流水処理システムは、越流水のろ過にフィルタではなくろ材層を使用しているので、逆洗用ポンプを用いて下向流でろ材を容易に洗浄(逆洗)することができ、目詰まりの心配がない。更に、縦穴は水槽と比較して深度方向への設計自由度が高いため、本発明の越流水処理システムでは、縦穴の深さを調整することでろ材の洗浄に必要なろ過水の量を容易に確保することができ、設置に必要な面積を低減することができる。即ち、本発明の越流水処理システムは、オンサイトに設置することができる。なお、本発明の越流水処理システムは、逆洗用ポンプを用いてろ材の洗浄を行うので、ろ過水の自然流下によりろ材を洗浄する上述した従来のろ過装置と異なり、縦穴の深さに制限を受けることなく逆洗線速度を一定に保つことができると共に、洗浄に使用した水(逆洗水)を自然流下させるための逆洗水槽を越流水処理システムの下部に設ける必要がない。また、本発明の越流水処理システムは、連結流路弁を閉じた状態で逆洗を行うことができ、逆洗時に逆洗用ポンプが第1の縦穴中の越流水を吸い込むことがないので、逆洗用ポンプとして大吐出量のポンプを用いることなく所望の逆洗線速度を得ることができる。
This invention aims to solve the above-mentioned problem advantageously, and the overflow water treatment system of the present invention is a system for treating overflow water of a combined sewer, comprising a first vertical hole, An overflow water channel for connecting the combined sewage pipe and the first vertical hole to flow the overflow water from the combined sewage pipe to the first vertical hole, a filter medium layer made of a filter medium, and supporting the filter medium Screen, a water collecting device installed below the filter medium layer, a second vertical hole provided with a filtered water discharge pipe provided above the filter medium layer, the first vertical hole, and the second A connecting flow path that connects to the vertical hole, a backwash pump connected to the water collecting device, and the overflow water provided in the connection flow path to the second vertical hole when the filter medium layer is backwashed. comprising a connection channel valve to stop the flow, contact between the overflow water passage and the confluent sewage pipe And at least one of the connection part between the first vertical hole and the overflow water flow path is located above the filtrate discharge pipe, and the connection part between the second vertical hole and the connection flow path Is located below the filter medium layer.
According to such an overflow water treatment system, at least one of the connection portion between the combined sewer pipe and the overflow water passage and the connection portion between the first vertical hole and the overflow water passage is located above the filtrate discharge pipe. And the connecting portion between the second vertical hole and the connecting flow path is located below the filter medium layer, so that the head pressure of the overflow water in the first vertical hole is used as a propulsive force in the filter medium layer. Overflow water can be filtered (removal of contaminants, BOD, SS, etc.). In addition, since the overflow water treatment system of the present invention uses a filter medium layer instead of a filter for the filtration of overflow water, the filter medium can be easily washed (backwashed) by downflow using a backwash pump. There is no worry about clogging. Furthermore, since the vertical hole has a higher degree of freedom in designing in the depth direction than the aquarium, the overflow water treatment system of the present invention makes it easy to adjust the depth of the vertical hole to reduce the amount of filtered water required for cleaning the filter media. And the area necessary for installation can be reduced. That is, the overflow water treatment system of the present invention can be installed on-site. In addition, since the overflow water treatment system of the present invention uses a backwash pump to clean the filter medium, unlike the above-described conventional filtration apparatus that cleans the filter medium by the natural flow of filtered water, it is limited to the depth of the vertical hole. The backwash line speed can be kept constant without receiving water, and it is not necessary to provide a backwash water tank for allowing the water used for washing (backwash water) to flow down naturally at the bottom of the overflow water treatment system. Further, the overflow water treatment system of the present invention can perform backwashing with the connection flow path valve closed, and the backwash pump does not suck in overflow water in the first vertical hole during backwashing. The desired backwash line speed can be obtained without using a large discharge pump as the backwash pump.
ここで、本発明の越流水処理システムは、前記ろ過水放流管下部から前記ろ材層上部までの距離aと、前記ろ材層の厚みbと、前記ろ材層下部から前記第2の縦穴の底部までの距離cとが、a≧b+cの関係を満たすことが好ましい。距離aが厚みbと距離cの和以上の場合、ろ材の洗浄に必要なろ過水量を十分に確保することができるからである。なお、本発明において、a,b,cは、越流水処理システムにおいて越流水のろ過を行っている状態での距離および厚みを指す。 Here, in the overflow water treatment system of the present invention, the distance a from the lower part of the filtered water discharge pipe to the upper part of the filter medium layer, the thickness b of the filter medium layer, and the lower part of the filter medium layer to the bottom of the second vertical hole. It is preferable that the distance c satisfies the relationship of a ≧ b + c. This is because when the distance a is equal to or greater than the sum of the thickness b and the distance c, the amount of filtered water necessary for washing the filter medium can be sufficiently secured. In addition, in this invention, a, b, and c point out the distance and thickness in the state which is filtering the overflow water in an overflow water treatment system.
また、本発明の越流水処理システムは、前記ろ過水放流管下部から前記ろ材層上部までの距離aと、前記ろ材層の厚みbと、当該ろ材層のみかけの空隙率αと、前記ろ材層下部から前記第2の縦穴の底部までの距離cとが、a≧α×b+cの関係を満たすことが好ましい。aと、bに空隙率αを乗じたb’と、cとがa≧b’+cの関係を満たす場合、ろ材の洗浄をより確実に行うことができるからである。ここで、ろ材層のみかけの空隙率α(0<α<1)とは、越流水のろ過を開始した状態においてろ材層中の空隙部が占める割合(体積比)を指す。即ち、ろ材層中でろ材が占める割合(体積比)βを用いて表現すると、α=1−βとなる。なお、ろ材が多孔体の場合など、ろ材自体が空隙を有している場合には、空隙率αの算出においては当該空隙の存在は考慮しない(即ち、ろ材中に存在する空隙はろ材層の空隙部とはみなさない)。 The overflow water treatment system of the present invention includes a distance a from the lower portion of the filtrate discharge pipe to the upper portion of the filter medium layer, a thickness b of the filter medium layer, an apparent porosity α of the filter medium layer, and the filter medium layer. It is preferable that the distance c from the lower part to the bottom of the second vertical hole satisfies a relationship of a ≧ α × b + c. This is because the filter medium can be more reliably washed when a, b ′, which is obtained by multiplying the porosity α by b, and c satisfy the relationship of a ≧ b ′ + c. Here, the apparent porosity α (0 <α <1) of the filter medium layer refers to the ratio (volume ratio) occupied by the voids in the filter medium layer in the state where filtration of the overflow water is started. That is, α = 1−β when expressed using the ratio (volume ratio) β occupied by the filter medium in the filter medium layer. In the case where the filter medium itself has voids, such as when the filter medium is a porous material, the presence of the voids is not considered in the calculation of the porosity α (that is, the voids present in the filter medium are not included in the filter medium layer). Not considered a void).
また、本発明の越流水処理システムは、前記第1の縦穴への前記越流水の流入量を調整することが可能な流量調整弁を前記越流水流路に設けることが好ましい。このようにすれば、合流下水管の水位の高低(雨量の大小)にかかわらず、ろ材層のろ過能力に応じた越流水の流入量に調整することができると共に、逆洗時に第1の縦穴への越流水の不要な流入を止めることができるからである。 In the overflow water treatment system of the present invention, it is preferable that a flow rate adjusting valve capable of adjusting an inflow amount of the overflow water into the first vertical hole is provided in the overflow water flow path. In this way, it is possible to adjust the inflow of the overflow water according to the filtration capacity of the filter medium layer regardless of the level of the combined sewage pipe (rainfall), and the first vertical hole during backwashing This is because unnecessary inflow of overflow water into the water can be stopped.
ここで、本発明の越流水処理システムは、前記ろ材が浮上ろ材であり、前記スクリーンが前記ろ材層の上部に設けられていることが好ましい。ろ材として浮上ろ材を使用すれば、ろ材層の下部にスクリーンを設置する必要がないので、洗浄およびメンテナンスが困難な下部スクリーンの目詰まりが生じる恐れがなくなるからである。 Here, in the overflow water treatment system of the present invention, it is preferable that the filter medium is a floating filter medium, and the screen is provided above the filter medium layer. This is because if a floating filter medium is used as the filter medium, there is no need to install a screen below the filter medium layer, and therefore there is no possibility of clogging the lower screen, which is difficult to clean and maintain.
また、本発明の越流水処理システムは、前記浮上ろ材が、みかけ密度が0.1〜0.4g/cm3、且つ、50%圧縮硬さが0.1MPa以上の発泡高分子からなり、前記ろ材層の逆洗を、前記逆洗用ポンプを用いて下向流により1.2〜4.0m/分の逆洗線速度で行うことが好ましい。浮上ろ材のみかけ密度が0.1g/cm3未満であると所望の圧縮硬さを得ることができないと共に、1.2〜4.0m/分の逆洗線速度での逆洗時にろ材層を展開させることが不可能だからである。一方、みかけ密度が0.4g/cm3を超えると逆洗の際にろ材が流出するおそれがあるからである。また、50%圧縮かたさを0.1MPa以上としたのは、これよりも軟らかいと高速ろ過の際にろ材が圧密されてしまい、多量のSSを捕捉できなくなり、ひいてはろ過継続時間が短くなるためである。更に、逆洗線速度を1.2〜4.0m/分としたのは、浮上ろ材の流出を防止しつつ下向流により下方へろ材を展開してスムーズに捕捉物を排出させることができ、短時間で逆洗を行うことができるからである。ここで、50%圧縮かたさとは、ろ材粒子を形成するための高分子シートを、その高さが半分になるまで押し潰すために必要な圧力を意味するものである。なお、本発明において、みかけ密度および50%圧縮かたさは、JIS K6767に規定されている方法で測定することができる。 Moreover, in the overflow water treatment system of the present invention, the floating filter medium is made of a foamed polymer having an apparent density of 0.1 to 0.4 g / cm 3 and a 50% compression hardness of 0.1 MPa or more, It is preferable to perform backwashing of the filter medium layer at a backwash line speed of 1.2 to 4.0 m / min by downward flow using the backwash pump. When the apparent density of the floating filter medium is less than 0.1 g / cm 3 , the desired compression hardness cannot be obtained, and the filter medium layer is used during backwashing at a backwash line speed of 1.2 to 4.0 m / min. Because it is impossible to deploy. On the other hand, if the apparent density exceeds 0.4 g / cm 3 , the filter medium may flow out during backwashing. Moreover, the reason why the 50% compression hardness is set to 0.1 MPa or more is that if it is softer than this, the filter medium will be compacted during high-speed filtration, so that a large amount of SS cannot be captured, and the filtration duration time will be shortened. is there. Furthermore, the backwash line speed is set to 1.2 to 4.0 m / min. The trapping material can be smoothly discharged by developing the filter medium downward by the downward flow while preventing the floating filter medium from flowing out. This is because backwashing can be performed in a short time. Here, 50% compression means the pressure required to crush a polymer sheet for forming filter media particles until its height is halved. In the present invention, the apparent density and 50% compression hardness can be measured by the methods defined in JIS K6767.
更に、本発明の越流水処理システムは、前記合流下水管と前記越流水流路との接続部に前処理スクリーンが設けられており、前記前処理スクリーンを逆流洗浄するための前処理スクリーン洗浄ラインを更に備えることが好ましい。このようにすれば、大きな夾雑物、例えばサイズが25mm以上の夾雑物の流入による越流水処理システムの閉塞トラブルや、ろ材層の早期の目詰まりを防止することができると共に、前処理スクリーンの目詰まりによる越流水の越流水処理システムへの流入停止を防止することができるからである。なお、本発明において、夾雑物とはサイズが2mm以上の固形物を指し、懸濁物質とはサイズが2mm未満の固形物を指す。 Furthermore, in the overflow water treatment system of the present invention, a pretreatment screen is provided at a connection portion between the combined sewage pipe and the overflow water flow path, and the pretreatment screen washing line for backwashing the pretreatment screen. Is preferably further provided. In this way, it is possible to prevent clogging troubles in the overflow water treatment system due to inflow of large contaminants, for example, contaminants having a size of 25 mm or more, and early clogging of the filter medium layer, and the pretreatment screen eyes. This is because it is possible to prevent the stoppage of the overflow water into the overflow water treatment system due to clogging. In the present invention, a contaminant refers to a solid having a size of 2 mm or more, and a suspended substance refers to a solid having a size of less than 2 mm.
そして、本発明の越流水処理システムは、前記第2の縦穴が円柱形であり、前記集水装置が放射線状に張り巡らされていることが好ましい。このようにすれば、逆洗時に懸濁物質を含む逆洗水の集水を均等に行うことができるからである。 And the overflow water treatment system of this invention WHEREIN: It is preferable that the said 2nd vertical hole is a column shape, and the said water collection apparatus is stretched around radially. This is because the backwash water containing suspended solids can be collected evenly during backwashing.
本発明によれば、省スペースでオンサイトに設置可能であり、且つ、メンテナンスが容易で目詰まりにより清掃等が必要になることがない、合流式下水越流水の処理システムを提供することができる。 According to the present invention, it is possible to provide a combined sewage overflow treatment system that can be installed on-site in a space-saving manner and that is easy to maintain and does not require cleaning due to clogging. .
以下、本発明の実施の形態を、図面に基づき詳細に説明する。ここに図1は、本発明の越流水処理システムを適用した合流式下水道の一例を示す説明図であり、図2は、本発明の第1実施形態の越流水処理システムを示す説明図である。また、図3は、本発明の越流水処理システムに使用し得る集水装置の形状を示す上面図であり、図4は、本発明の第2実施形態の越流水処理システムを示す説明図である。なお、各図において同一の符号を付したものは、同一の構成要素を示すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing an example of a combined sewer system to which the overflow water treatment system of the present invention is applied, and FIG. 2 is an explanatory view showing the overflow water treatment system of the first embodiment of the present invention. . Moreover, FIG. 3 is a top view which shows the shape of the water collecting apparatus which can be used for the overflow water treatment system of this invention, FIG. 4 is explanatory drawing which shows the overflow water treatment system of 2nd Embodiment of this invention. is there. In addition, what attached | subjected the same code | symbol in each figure shall show the same component.
図1に示すように、本発明の越流水処理システムは、計画遮集量nQを超えた、下水処理場にて処理しきれない越流水分(nQ超過分)を処理するものである。即ち、本発明の越流水処理システムを適用した合流式下水道では、合流下水管11に流入する雨水および汚水の量が計画遮集量を超えた場合に、越流水分が合流下水管11に設けられた越流部15を超えて越流水処理システム100へと流入して処理される。ここで、越流部15は、望ましくは既設の雨水吐き12の上流側に設けられる。但し、雨水吐き12の上流側への設置が困難な場合には、雨水吐き12に設けても良い。そして、越流水処理システム100でろ過されて水質が改善した越流水(ろ過水)は、河川14等に放流されることとなる。なお、ろ過水は、任意に次亜塩素酸などの消毒剤を添加した上で放流しても良く、この場合、消毒剤を添加するろ過水は本発明の越流水処理システムによりSS等が大幅に除去されているので、越流水に直接消毒剤を添加する場合と比較して消毒剤の添加量を低減することができる。
As shown in FIG. 1, the overflow water treatment system of the present invention treats overflow water (nQ excess) that exceeds the planned interception amount nQ and cannot be treated at the sewage treatment plant. That is, in the combined sewer system to which the overflow water treatment system of the present invention is applied, overflow water is provided in the combined
そして、図2に示すように、本発明の第1実施形態の越流水処理システム100は、第1の縦穴110と、合流下水管11と第1の縦穴110とを接続する越流水流路120と、第2の縦穴130と、第1の縦穴110と第2の縦穴130とを接続する連結流路140および越流バイパス路150と、逆洗用ポンプ160とを具える。
And as shown in FIG. 2, the overflow
ここで、合流下水管11と越流水流路120との接続部には、例えば4mmメッシュの自動掻き取り式スクリーン121が設置されており、越流水中に存在するゴミ等の夾雑物を除去できるようにされている。なお、自動掻き取り式スクリーン121には、スクリーンの閉塞を防止するスクリーン掻き取り装置が付いた既知の自動掻き取り式スクリーンを使用することができる。また、越流水流路120には、合流下水管11からの越流水の流入量を調整するための流量調整弁122が設けられている。
Here, an
第1の縦穴110には、新設のマンホール等の構造物を利用することができ、本実施形態では、マンホール170に隔壁111を設けて第1の縦穴110を形成している。また、第1の縦穴110には図示しないレベルスイッチが設けられており、第1の縦穴110内の越流水の水位上昇を検知することができるようにされている。
For the first
第2の縦穴130は、既存のマンホールを利用したものであり、この第2の縦穴130は、スクリーン131と、スクリーン131で支持された分散型ろ材からなるろ材層132と、ろ材層132より下部に設置された集水装置133と、ろ材層132より上部に設けられたろ過水放流管134とを備える。そして、この第2の縦穴130では、例えば、ろ過水放流管134の下部からろ材層132の上部までの距離aが2mであり、ろ材層132の厚みbが0.8mであり、ろ材層132の下部から第2の縦穴の底部までの距離cが1.2mである。また、ろ材層132の空隙率αは0.5である。なお、第2の縦穴130は、任意に、ろ材層132の逆洗時にろ材の流動性を向上させるためのブロア(図示せず)を備えていても良い。
The second
ここで、分散型ろ材とは、逆洗時に展開して流動する粒子状のろ材を意味する。そして、分散型ろ材としては既知のろ材を使用することができ、例えば、みかけ密度が0.1〜0.4g/cm3で0.1MPa以上の50%圧縮かたさを持つ発泡高分子からなる浮上ろ材を使用することができる。ここで、このような物性を持つ発泡高分子としては、ポリプロピレン、ポリスチレン、ポリエチレン等を挙げることができ、特に、発泡度を制御された独立気泡型の発泡ポリエチレンを発泡高分子として用いることが好ましい。独立気泡型の発泡ポリエチレンは耐熱性、耐薬品性、耐候性が優れているからである。なお、みかけ密度および50%圧縮かたさは、JIS K6767に規定されている方法で測定することができる。そして、上述の浮上ろ材は、サイズが4〜10mmであることが好ましく、また、形状が凹凸状(外表面に何らかの凹凸を備えた異形状)または筒状であることが好ましい。 Here, the dispersion type filter medium means a particulate filter medium that develops and flows during backwashing. A known filter medium can be used as the dispersion type filter medium. For example, the floating filter is made of a foamed polymer having an apparent density of 0.1 to 0.4 g / cm 3 and a 50% compression hardness of 0.1 MPa or more. Filter media can be used. Here, examples of the foamed polymer having such physical properties include polypropylene, polystyrene, polyethylene, and the like. In particular, it is preferable to use closed-cell foamed polyethylene with a controlled degree of foaming as the foamed polymer. . This is because closed-cell foamed polyethylene has excellent heat resistance, chemical resistance, and weather resistance. The apparent density and 50% compression hardness can be measured by the methods defined in JIS K6767. And it is preferable that the above-mentioned floating filter medium is 4-10 mm in size, and it is preferable that a shape is uneven | corrugated shape (different shape provided with some unevenness | corrugation in the outer surface) or a cylinder shape.
なお、スクリーン131には、ろ材の流出を防止し得るスクリーンを用いることができ、ろ材層132は、第2の縦穴130に所定の高さまで水を入れた後に上述した浮上ろ材を投入し、投入した浮上ろ材の上側にスクリーン131を設置することにより第2の縦穴130内に設けることができる。
Note that a screen that can prevent the outflow of the filter medium can be used as the
また、集水装置133としては、ろ材層132の逆洗時に懸濁物質を含む逆洗水を集水できるもの、具体的には逆洗時における集水部の線速度が0.5m/s以上、好ましくは1.0m/s以上となるように設計したものであれば既知のものを使用することができるが、図3に示すような放射線状に延びる配管を有する集水装置を用いることが好ましい。そして、この集水装置133と、マンホール170内の第1の縦穴110とは反対側の空間(ポンプ室171)に設置された逆洗用ポンプ160とは、集水装置ライン136を介して接続されており、この逆洗用ポンプ160を用いて、図1に示すように、ろ材層132の逆洗時に生じる逆洗水を遮水管13または合流下水管11に送る。逆洗水は懸濁物質を含むため、そのまま河川14に放流すると水質汚染の原因となるからである。なお、逆洗水の送り先としては遮水管13が好ましい。
The
ここで、逆洗用ポンプ160としては既知のマンホールポンプを用いることができる。なお、ポンプの設置位置は、別途掘削した第3の縦穴内や、地上としても良いが、省スペース化および配管設置の容易性の観点からマンホール170内が好ましい。
Here, as the
そして、この第1実施形態の越流水処理システム100では、第1の縦穴110と第2の縦穴130とは、その下部同士が連結流路140により接続しており、その上部同士が越流バイパス路150により接続している。また、合流下水管11と越流水流路120との接続部は、ろ過水放流管134より上方に位置しており、第1の縦穴110と越流水流路120との接続部は、ろ過水放流管134と略水平な位置にあり、第2の縦穴130と連結流路140との接続部はろ材層132より下方に位置している。更に、越流バイパス路150は、越流水処理システム100の設計最大ろ過損失水頭時の水位よりも上方にある。なお、本実施形態以外にも、第1の縦穴110と越流水流路120との接続部は、ろ過水放流管134と略水平な位置よりも上方に位置していても良い。
In the overflow
この第1実施形態の越流水処理システム100によれば、第1の縦穴110内の越流水の水頭圧を推進力として利用して、第2の縦穴130のろ材層132で越流水をろ過することができる。従って、越流水分を、夾雑物、生物化学的酸素要求量(BOD)および懸濁物質量(SS)を低減して水質を改善したろ過水として河川14へ放流することができる。なお、ろ材層132への通水量は、流量調整弁122の開度を図示しない制御装置で制御することにより調整することができ、例えば1500m/日以下とすることができる。また、この第1実施形態の越流水処理システム100では、一定量以上の越流水が入ってきた場合には、流量調整弁122を閉じて越流水の処理を一時的に停止することもできる。
According to the overflow
そして、この越流水処理システム100では、入口部に自動掻き取り式スクリーン121を設置し、大きな夾雑物の流入による越流水処理システム100の故障を防止する。また、継続的なろ過によりろ材層132の閉塞が生じた場合には、ろ材層132を逆洗して越流水処理システム100のろ過性能を回復させることができる。具体的には、越流水処理システム100は、第1の縦穴110に設置したレベルスイッチ(図示せず)を用いて、第1の縦穴110内の越流水の水位が第1の縦穴110と越流水流路120との接続部より、例えば60cm〜1m高くなった時、即ちろ過差圧が上昇して第1の縦穴110の水位と第2の縦穴130の水位との差が一定以上になった時に、後に詳述するろ材層132の逆洗を行うように制御することができる。なお、越流水処理システム100におけるろ材層132の逆洗は、合流下水管11に流れる雨水および汚水の量がnQ以下となった場合や、降雨が終了した場合に、自動的に行われるように制御しても良いし、手動で逆洗を開始するようにしても良い。
And in this overflow
ここで、越流水処理システム100におけるろ材層132の逆洗手順の一例を以下に説明する。まず、第1の縦穴110のレベルスイッチが第1の縦穴110内の越流水の水位上昇を検出すると、図示しない制御装置が流量調整弁122を閉じて越流水の流入を止める。そして、必要に応じて図示しないブロアで空気をパルス的に曝気しながら逆洗用ポンプ160でろ材層132の下部の水を引き抜き、第1の縦穴110および第2の縦穴130の越流水およびろ過水を遮集管13へと送出し、例えば線速度(逆洗線速度)1.2〜4.0m/分の下向流でろ過水を浮上ろ材に接触させて逆洗を開始する。これにより、浮上ろ材に捕捉されていたSS等が浮上ろ材から分離し、集水装置133、逆洗用ポンプ160を介して遮集管13へと送られるので、ろ材層132が清浄化され、ろ過損失水頭が回復する。なお、逆洗時間は任意の時間としてタイマーで設定することができるが、例えば第2の縦穴130の水位がスクリーン131の位置となるまでの時間とすることもできる。具体的には、逆洗作業の終了は、第2の縦穴130にレベルスイッチ(図示せず)を設置して、第2の縦穴130の水位がスクリーン131の位置となったことを該レベルスイッチが検知した場合に図示しない制御装置が逆洗用ポンプ160を停止し、流量調整弁122を開くようにすることでも制御できる。
Here, an example of the backwashing procedure of the
なお、本実施形態の越流水処理システム100には、越流バイパス路150が設けられているので、制御装置の故障などにより第1の縦穴110の水位が急上昇したとしても、流入した越流水を越流バイパス路150およびろ過水放流管134を介して河川14へと放流することができる。
In the overflow
なお、上述した実施形態以外にも、本発明の越流水処理システムは、複数の越流水流路を備えていても良い。越流水流路が複数ある場合、一つの流路において自動掻き取り式スクリーンが閉塞しても、他の流路を用いてろ過を継続することができるからである。また、水道水や、中水や、工水を第2の縦穴の上部に供給する手段を設けて、水道水や、中水や、工水を用いてろ材層の逆洗を行うようにしても良い。このようにすれば、雨天時にはろ過水を用いて逆洗すると共に、降雨後には水道水や、中水や、工水を用いてろ材層を逆洗して越流処理システムを次の降雨時まで待機させておくことが可能となる。更に、合流下水管の位置が第1の縦穴より下にある場合には、越流水流路にポンプを設置し、越流水をポンプで揚水して第1の縦穴へと流入させるようにしても良い。 In addition to the embodiment described above, the overflow water treatment system of the present invention may include a plurality of overflow water flow paths. This is because when there are a plurality of overflow water flow paths, filtration can be continued using other flow paths even if the automatic scraping screen is closed in one flow path. In addition, a means for supplying tap water, medium water, and industrial water to the upper part of the second vertical hole is provided, and the filter medium layer is back-washed using tap water, intermediate water, and industrial water. Also good. In this way, when it rains, it is backwashed with filtered water, and after raining, the filter media layer is backwashed with tap water, medium water, or industrial water, and the overflow treatment system is It is possible to keep waiting. Further, when the position of the combined sewage pipe is below the first vertical hole, a pump is installed in the overflow water flow path, and the overflow water is pumped up by the pump and flows into the first vertical hole. good.
次に、本発明の第2実施形態の越流水処理システムを説明する。図4に示すように、この越流水処理システム100は、合流下水管11と越流水流路120との接続部に、例えば25〜50mmメッシュの前処理スクリーン123を設置している点、連結流路140が、ポンプ室171内を通り且つ連結流路弁141を備えている点、および逆洗用ポンプ160を用いて前処理スクリーン123を洗浄するための前処理スクリーン洗浄ライン180が設けられている点などで先の第1実施形態と異なり、他の点では先の第1実施形態と同様に構成されている。
Next, the overflow water treatment system of 2nd Embodiment of this invention is demonstrated. As shown in FIG. 4, this overflow
そして、この第2実施形態の越流水処理システム100では、逆洗時に流量調整弁122だけでなく望ましくは連結流路弁141も閉じることにより、ろ材層132の逆洗には直接関係のない第1の縦穴110内の越流水を逆洗用ポンプ160で送出する必要がなくなる。従って、吐出量の小さい逆洗用ポンプ160でも所望の逆洗線速度を得ることができる。なお、メンテナンスの容易性の観点から、連結流路弁141はポンプ室171内に位置していることが好ましい。
In the overflow
また、この越流水処理システム100では、前処理スクリーン洗浄ライン180が設けられているので、越流水中に含まれている夾雑物により前処理スクリーン123が閉塞した場合であっても、前処理スクリーン123を洗浄してろ過を継続することができる。なお、前処理スクリーン123の洗浄は、図示しない流量センサーを越流水流路120に設置して、越流水の流量が所定値以下となった場合に自動的に行われるようにしても良い。また、合流下水管11に流れる雨水および汚水の量がnQ以下となった場合や、降雨が終了した場合に自動的に行われるように制御しても良い。ここで、前処理スクリーンの洗浄は、弁182を閉じ、弁181を開いて行う。
Moreover, in this overflow
そして、上述したような第1および第2実施形態の越流水処理システムは、省スペースでオンサイトに設置可能であり、且つ、メンテナンスが容易で目詰まりによりろ過不能になることがない。 The overflow water treatment system according to the first and second embodiments as described above can be installed on-site in a small space, is easy to maintain, and does not become unfilterable due to clogging.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
前述した第1実施形態の越流水処理システムと同様の構成を有する越流水処理システムのパイロット試験機を作製した。ここで、パイロット試験機のサイズは、第1の縦穴が底面積4m2、高さ5mであり、第2の縦穴が底面積7m2、高さ5m(a=2m、b=0.8m、c=1.2m)である。また、第2の縦穴には、メッシュサイズ3mmのスクリーンが設置されており、その下側に、サイズが7.5×7.5×4mm、50%圧縮硬さが0.5MPaである、風車形の浮上ろ材が充填(α=0.5)されている。なお、みかけ密度および50%圧縮かたさは、JIS K6767に規定されている方法に従い測定した。
Example 1
A pilot test machine for an overflow water treatment system having the same configuration as the overflow water treatment system of the first embodiment described above was produced. Here, as for the size of the pilot testing machine, the first vertical hole has a bottom area of 4 m 2 and a height of 5 m, the second vertical hole has a bottom area of 7 m 2 and a height of 5 m (a = 2 m, b = 0.8 m, c = 1.2 m). In addition, a screen having a mesh size of 3 mm is installed in the second vertical hole, and a windmill having a size of 7.5 × 7.5 × 4 mm and a 50% compression hardness of 0.5 MPa is provided below the screen. The shape of the floating filter medium is filled (α = 0.5). The apparent density and 50% compression hardness were measured according to the methods defined in JIS K6767.
そして、3Q超過の合流下水をパイロット試験機に7000m3/日で1年間通水し、年間のBODおよびSSの処理量、並びに、夾雑物除去率を下記の方法で測定して算出した。結果を表1に示す。 Then, the combined sewage exceeding 3Q was passed through the pilot test machine at 7000 m 3 / day for one year, and the annual BOD and SS throughput and the contaminant removal rate were measured and calculated by the following methods. The results are shown in Table 1.
(比較例1)
面積105m2、高さ5m、有効容積525m3の滞水池を作製し、3Q超過の合流下水を1年間通水し、年間のBODおよびSSの処理量、並びに、夾雑物除去率を下記の方法で測定して算出した。結果を表1に示す。
(Comparative Example 1)
The following method is used to create a reservoir with an area of 105 m 2 , a height of 5 m, and an effective volume of 525 m 3. It was calculated by measuring with. The results are shown in Table 1.
(比較例2)
3Q超過の合流下水を自動掻き取り式スクリーン(4mmバースクリーン、ろ過面積3m2)に7000m3/日で1年間通水し、年間のBODおよびSSの処理量、並びに、夾雑物除去率を下記の方法で測定して算出した。結果を表1に示す。
(Comparative Example 2)
Combined sewage exceeding 3Q is passed through an automatic scraping screen (4 mm bar screen, filtration area 3 m 2 ) at 7000 m 3 / day for 1 year, and the annual BOD and SS throughput and contaminant removal rate are as follows: It was calculated by measuring by the method. The results are shown in Table 1.
[BOD処理量]
処理水のBOD濃度をJIS K0102に従い測定し、年間の処理量を算出した。
[SS処理量]
処理水のSS濃度を環告59号(昭和46年12月28日)−付表8に従い測定し、年間の処理量を算出した。
[夾雑物除去率]
3Q超過の合流下水と、処理水との双方について、2mmメッシュの網を通過させた際に網上に残った残留物の乾燥重量を測定した。そして、乾燥重量を流通させた水量で除して夾雑物濃度を算出し、その除去割合を算出した。
[BOD processing amount]
The BOD concentration of treated water was measured according to JIS K0102, and the annual treated amount was calculated.
[SS throughput]
The SS concentration of treated water was measured according to Circular No. 59 (December 28, 1971) -Appendix Table 8, and the annual treated amount was calculated.
[Contaminant removal rate]
For both the combined sewage exceeding 3Q and the treated water, the dry weight of the residue remaining on the net when passing through a 2 mm mesh net was measured. Then, the concentration of impurities was calculated by dividing the dry weight by the amount of water circulated, and the removal ratio was calculated.
実施例1および比較例1〜2から、実施例1の越流水処理システムは、比較例1の滞水池と比較して省スペース(同程度のBOD処理性能で所要面積は12%)で設置可能であり、処理に要する電力も1/10以下で済むことが分かる。これは、滞水池は一度貯めた水を再度生物反応により処理(高級処理)する必要があるのに対し、越流水処理システムは単にろ過処理を行うのみで済むからである。また、実施例1の越流水処理システムによれば、BOD、SS、夾雑物の全てを比較例1と同等に低減することができることが分かる。更に、実施例1の越流水処理システムによれば、比較例2の自動掻き取り式スクリーンと比較して夾雑物を確実に除去することができることが分かる。 From Example 1 and Comparative Examples 1-2, the overflow water treatment system of Example 1 can be installed in a space-saving manner (same BOD treatment performance and required area of 12%) compared to the reservoir in Comparative Example 1. Thus, it can be seen that the power required for the processing can be reduced to 1/10 or less. This is because, in the reservoir, it is necessary to treat the water once stored by biological reaction (high-grade treatment), whereas the overflow water treatment system only needs to perform the filtration treatment. Moreover, according to the overflow water treatment system of Example 1, it turns out that all of BOD, SS, and a contaminant can be reduced equivalent to the comparative example 1. FIG. Furthermore, it can be seen that according to the overflow water treatment system of Example 1, impurities can be reliably removed as compared with the automatic scraping screen of Comparative Example 2.
11 合流下水管
12 雨水吐き
13 遮集管
14 河川
15 越流部
51 合流下水管
52 雨水吐き
53 遮集管
54 河川
100 越流水処理システム
110 第1の縦穴
111 隔壁
120 越流水流路
121 自動掻き取り式スクリーン
122 流量調整弁
123 前処理スクリーン
130 第2の縦穴
131 スクリーン
132 ろ材層
133 集水装置
134 ろ過水放流管
136 集水装置ライン
140 連結流路
141 連結流路弁
150 越流バイパス路
160 逆洗用ポンプ
170 マンホール
171 ポンプ室
180 前処理スクリーン洗浄ライン
181 弁
182 弁
DESCRIPTION OF
Claims (8)
第1の縦穴と、
合流下水管と前記第1の縦穴とを接続して当該合流下水管からの越流水を当該第1の縦穴へと流すための越流水流路と、
ろ材からなるろ材層と、当該ろ材を支持するスクリーンと、当該ろ材層より下部に設置された集水装置と、当該ろ材層より上部に設けられたろ過水放流管とを備える第2の縦穴と、
前記第1の縦穴と前記第2の縦穴とを接続する連結流路と、
前記集水装置に接続した逆洗用ポンプと、
前記連結流路に設けられ、前記ろ材層の逆洗時に前記第2の縦穴への前記越流水の流入を止める連結流路弁と、
を具え、
前記合流下水管と前記越流水流路との接続部および前記第1の縦穴と前記越流水流路との接続部の少なくとも一方が前記ろ過水放流管より上方に位置しており、且つ、前記第2の縦穴と前記連結流路との接続部が前記ろ材層より下方に位置している、越流水処理システム。 A system for treating overflow water from a combined sewer,
A first vertical hole;
An overflow water flow path for connecting a merged sewer pipe and the first vertical hole to flow overflow water from the merged sewer pipe to the first vertical hole;
A second vertical hole including a filter medium layer made of a filter medium, a screen that supports the filter medium, a water collecting device installed below the filter medium layer, and a filtrate discharge pipe provided above the filter medium layer. ,
A connecting flow path connecting the first vertical hole and the second vertical hole;
A backwash pump connected to the water collector;
A connection flow path valve provided in the connection flow path to stop the overflow of the overflow water into the second vertical hole when the filter medium layer is backwashed;
With
At least one of the connecting portion between the combined sewage pipe and the overflow water flow channel and the connecting portion between the first vertical hole and the overflow water flow channel is located above the filtered water discharge pipe, and An overflow water treatment system in which a connection portion between the second vertical hole and the connection channel is located below the filter medium layer.
前記スクリーンが前記ろ材層の上部に設けられている、請求項1〜4の何れかに記載の越流水処理システム。 The filter medium is a floating filter medium;
The overflow water treatment system according to any one of claims 1 to 4 , wherein the screen is provided on an upper portion of the filter medium layer.
前記ろ材層の逆洗を、前記逆洗用ポンプを用いて下向流により1.2〜4.0m/分の逆洗線速度で行う、請求項5に記載の越流水処理システム。 The floating filter medium is made of a foamed polymer having an apparent density of 0.1 to 0.4 g / cm 3 and a 50% compression hardness of 0.1 MPa or more,
The overflow water treatment system according to claim 5 , wherein the backwashing of the filter medium layer is performed at a backwash line speed of 1.2 to 4.0 m / min by downward flow using the backwash pump.
前記前処理スクリーンを逆流洗浄するための前処理スクリーン洗浄ラインを更に備える、請求項1〜6の何れかに記載の越流水処理システム。 A pretreatment screen is provided at a connection portion between the combined sewage pipe and the overflow water flow path,
Further comprising overflow running water processing system according to any one of claims 1 to 6 pretreatment screen cleaning line for backwashing the pretreatment screen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009074690A JP5368142B2 (en) | 2009-03-25 | 2009-03-25 | Overflow water treatment system in combined sewers. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009074690A JP5368142B2 (en) | 2009-03-25 | 2009-03-25 | Overflow water treatment system in combined sewers. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010221197A JP2010221197A (en) | 2010-10-07 |
JP5368142B2 true JP5368142B2 (en) | 2013-12-18 |
Family
ID=43038955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009074690A Active JP5368142B2 (en) | 2009-03-25 | 2009-03-25 | Overflow water treatment system in combined sewers. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5368142B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6005426B2 (en) * | 2012-07-17 | 2016-10-12 | メタウォーター株式会社 | Filtration system and method for cleaning filtration system |
JP5956269B2 (en) * | 2012-07-17 | 2016-07-27 | メタウォーター株式会社 | Filtration system and method for cleaning filtration system |
JP5956268B2 (en) * | 2012-07-17 | 2016-07-27 | メタウォーター株式会社 | Operation method of filtration system |
JP5956267B2 (en) * | 2012-07-17 | 2016-07-27 | メタウォーター株式会社 | Filtration system |
JP5973272B2 (en) * | 2012-07-18 | 2016-08-23 | メタウォーター株式会社 | Filtration system operation method and filtration system |
JP5960529B2 (en) * | 2012-07-23 | 2016-08-02 | メタウォーター株式会社 | Concrete filtration tank |
CN112381312B (en) * | 2020-11-24 | 2024-07-16 | 常州市君杰水务科技有限公司 | Method for predicting combined overflow based on drainage pipe network characteristics and application thereof |
CN113723854B (en) * | 2021-09-08 | 2023-10-31 | 北京市水科学技术研究院 | Method and device for regulating and controlling confluence overflow and electronic equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3865304B2 (en) * | 2002-03-26 | 2007-01-10 | 日本碍子株式会社 | Rainwater treatment equipment |
JP2007229658A (en) * | 2006-03-02 | 2007-09-13 | Ishigaki Co Ltd | Filtration treatment method using fiber filter medium, and filtration apparatus therefor |
-
2009
- 2009-03-25 JP JP2009074690A patent/JP5368142B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010221197A (en) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5368142B2 (en) | Overflow water treatment system in combined sewers. | |
KR100777516B1 (en) | Filter cartridge with regulated surface cleaning mechanism | |
JP3824583B2 (en) | Rainwater treatment device in combined sewer and its backwash method | |
US8658044B2 (en) | Stormwater filtration apparatus, system and method | |
KR101741449B1 (en) | Apparatus for treating rainwater and overflow water of confluent water drainage | |
KR101653780B1 (en) | Non-Point Source Contaminant Treatment System Having Reverse-washing auto system | |
KR200431389Y1 (en) | Rainwater purify device | |
KR101872911B1 (en) | Apparatus for reducing non-point source pollutants | |
KR101562757B1 (en) | Non-point sources pollutants removal facility | |
KR101731949B1 (en) | Water purifier and backwash method having natural flowing type backwash | |
KR101334884B1 (en) | An apparatus for decreasing non-point source pollutant | |
KR101738952B1 (en) | Polymer poly ethylene filter treatment apparatus of rainwater | |
KR20160010952A (en) | Non-point sources pollutants removal facility | |
KR101479462B1 (en) | Apparatus of reducing non-point source contaminants | |
KR102414675B1 (en) | Sewage disposal systems | |
KR101262194B1 (en) | Device for treating combined sewer overflows | |
JP6544525B2 (en) | Backwashing device moving type filtration device, backwashing device, backwashing method | |
KR101764398B1 (en) | Nonpoint pollution control facilities using the backwash facilities and stagnant water may exclude | |
KR100704901B1 (en) | Rainwater treatment system and its treatment method considering rainfall characteristics | |
JP4230427B2 (en) | Treatment method in combined sewer | |
KR100975144B1 (en) | Filtration apparatus for river water using porous media | |
KR101159474B1 (en) | purifying device for non-point material | |
KR101451348B1 (en) | Filtration system | |
JP5956267B2 (en) | Filtration system | |
JP2017113661A (en) | Solid matter recovery system and method of operating solid matter recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5368142 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |