[go: up one dir, main page]

JP5358780B2 - 光学導波管のモード特性をモデリングするための方法および装置 - Google Patents

光学導波管のモード特性をモデリングするための方法および装置 Download PDF

Info

Publication number
JP5358780B2
JP5358780B2 JP2007531385A JP2007531385A JP5358780B2 JP 5358780 B2 JP5358780 B2 JP 5358780B2 JP 2007531385 A JP2007531385 A JP 2007531385A JP 2007531385 A JP2007531385 A JP 2007531385A JP 5358780 B2 JP5358780 B2 JP 5358780B2
Authority
JP
Japan
Prior art keywords
matrix
waveguide
modes
mode
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007531385A
Other languages
English (en)
Other versions
JP2008512728A5 (ja
JP2008512728A (ja
Inventor
ダンウィ,ビナヤック
ディゴネ,ミシェル・ジェイ
キノ,ゴードン・エス
Original Assignee
ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー filed Critical ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー
Publication of JP2008512728A publication Critical patent/JP2008512728A/ja
Publication of JP2008512728A5 publication Critical patent/JP2008512728A5/ja
Application granted granted Critical
Publication of JP5358780B2 publication Critical patent/JP5358780B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

関連出願
この出願は、ここに全体として引用により援用される、2004年9月11日に出願された米国仮出願第60/608,765号から優先権を主張する。
発明の背景
発明の分野
この発明は一般に導波管の特性をモデリングするための方法に関し、特に、光ファイバを含むがこれらに限らない、光学導波管の光学特性をモデリングするための方法に関する。
関連技術の説明
フォトニックバンドギャップファイバ(PBF)では、クラッドは、バンドギャップ、すなわち、伝搬が禁止される光周波数または波長ドメインの領域を作る2次元の周期的屈折率構造で作られるフォトニック結晶である。この構造は、いわゆるブラッグファイバ(Bragg fibers)のように、高屈折率および低屈折率が交互になっている一連の同心のリングであるか(たとえば、Y.Xu, R.K. Lee, and A. Yariv, Asymptotic analysis of Bragg
fibers, Optics Letters, Vol.25, No.24, December 15, 2000, pages 1756-1758を参照)、または空気コアPBFのように、幾何学的パターン(たとえば、三角形)に配置された2次元の空孔の周期的な格子であり得る。空気コアPBFの例は、P. Kaiser and H.W.
Astle, Low-loss single material fibers made from pure fused silica, The Bell System Technical Journal, Vol.53, No.6, July-August 1974, pages 1021-1039; and J.
Broeng, D.Mogilevstev, S.E. Barkou, and A. Bjarklev, Photonic crystal fibers: A
new class of optical waveguides, Optical Fiber Technology, Vol.5, 1999, pages 305-330を含むがこれらに限らない、さまざまな参考文献によって説明される。
空気コアPBFのコアを形成する空孔は、典型的にはPBFの他の孔より大きく、以前に禁止されたバンドギャップ内で導波モードをもたらすPBFの周期構造での欠陥である。PBFは、従来のファイバより2桁低い非線形性、モード特性に対するより大きな制御、空気中での光のスピードより大きいモード位相速度などの興味深い分散特徴を含む、いくつかの特有の光学特性を提供する。これらの理由から、光通信においておよびセンサの用途でも同様に、PBFは、従来の(固体コア)ファイバからこれまでは利用可能でなかった刺激的な可能性を提供する。
空気コアファイバでの光の伝搬は従来のファイバとは非常に異なる原理に基づくため、空気コアファイバの依然としてよく理解されていない特性についての健全な理解を促し、これらの特性を改善し、かつそれらを特定の用途に適合させることが重要である。空気コアファイバの比較的最近の発明以来(たとえば、J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.P. Sandro,“Photonic crystals as optical fibers-physics
and applications,”Optical Materials, 1999, Vol.11, pages 143-151を参照)、モデリングは、空気コアPBFのモード特性を分析するため、特にそれらの位相および群速度分散(たとえば、B.Kuhlmey, G.Renversez, and D. Maystre, Chromatic dispersion and
losses of microstructured optical fibers, Applied Optics, Vol.42, No.4, 1 February 2003, pages 634-639; K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Optics Express, Vol.11, No.8, 21 April 2003, pages 834-852; and
G. Renversez, B. Kuhlmey and R. McPhedran, Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses, Optics Letters, Vol.28, No. 12, June 15, 2003, pages 989-991を参照)、透過スペクトル(たとえば、J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, All-silica
single mode optical fiber with photonic crystal cladding, Optics Letters, Vol.21, No.19, October 1, 1996, pages 1547-1549; and R.S. Winderler, J.L. Wagener, and D.J. Giovanni, Silica-air microstructured fibers: Properties and applications,
Optical Fiber Communications Conference, San Diego, 1999, Pages FG1-1 and FG1-2を参照)、特有の表面モード(たとえば、D.C. Allan, N.F. Borrelli, M.T. Gallagher,
D. Muller, C.M. Smith, N. Venkataraman, J.A. West, P. Zhang, and K.W. Koch, Surface modes and loss in air-core photonic band-gap fibers, Proceedings of SPIE Vol. 5000, 2003, pages 161-174; K. Saitoh, N.A. Mortensen, and M. Koshiba, Air-core photonic band-gap fibers: the impact of surface modes, Optics Express, Vol.12,
No.3, 9 February 2004, pages 394-400; J.A. West, C.M. Smith, N.F. Borelli, D.C.
Allan, and K.W. Koch, Surface modes in air-core photonic band-gap fibers, Optics Express, Vol.12, No.8, 19 April 2004, pages 1485-1496; M.J.F. Digonnet, H.K. Kim, J. Shin, S.H. Fan, and G.S. Kino, Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers, Optics Express, Vol. 12, No. 9, 3 May 2004, pages 1864-1872; and H.K. Kim, J. Shin, S.H. Fan, M.J.F. Digonnet, and G.S. Kino, Designing air-core photonic-bandgap fibers free of
surface modes, IEEE Journal of Quantum Electronics, Vo. 40, No. 5, May 2004, pages 551-556を参照)、および伝搬損失(たとえば、T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botton, and M.J. Steel, Confinement losses in microstructured optical fibers, Optics Letters, Vol. 26, No. 21, November 1, 2001, pages 1660-1662; D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, Leakage properties of photonic crystal fibers, Optics Express, Vol. 10, No. 23, 18 November 2002, pages 1314-1319; and K. Saitoh and M. Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers, Optics Express, Vol. 11, No. 23, 17 November 2003, pages 3100-3109を参照)を分析するための重要なツールになっている。しかしながら、これらファイバの広範かつ体系化されたパラメータ研究は欠如しているが、なぜなら、これら複雑な構造のシミュレーションは、時間がかかるかまたはすべてのPBFジオメトリに適用可能でない分析方法で行なわれているからである。たとえば、周期的な誘電構造のモードの分散関係および電磁プロファイルを算出するために、現在使用されているコード、たとえば、MITフォトニックバンド(MPB)コードを使用して、典型的には単一モードまたはいくつかのモードの空気コアPBFのすべてのモードをシミュレーションすると、10Λ×10ΛのセルサイズおよびΛ/16の空間分解能を用いて、16のパラレル2−GHzプロセッサを使用するスーパーコンピュータで約10時間かかり、ここでΛはフォトニック結晶クラッドの周期である。(MPBコードに関するさらに別の情報は、S.G. Johnson, and J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in planewave basis, Optics Express, Vol.8, No.3, 29 January 2001, pages 173-190を参照)。基本モード(有効なインデックスおよびフィールド)を6分でモデリングするために極座標分解法を使用する、より高速な算出が報告されている(たとえば、L. Poladian, N.A. Issa, and T.M. Monro,“Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry,”Optics Express, 2002, Vol.10, pages 449-454を参照)。しかしながら、この高スピードは空孔層の数を1つに制限することによって実現され、それは依然としてスーパーコンピュータを必要としていた。
さらに、多重極分解法(たとえば、T.P. White, R.C. McPhedran, L.C. Botten, G.H. Smith and C. Martijn de Sterke,“Calculations of air-guided modes in photonic cr
ystal fibers using the multipole method,”Optics Express, 2001, Vol.8, pages 721-732を参照)は、1つの波長に孔の4つのリングを備えた六角形のPBFのすべてのモードを733−MHzパーソナルコンピュータで約1時間でモデリングすることができた。この数字は、より高速なパーソナルコンピュータでは数分に低減される(たとえば、3.2−GHzプロセッサでは約15分)。この多重極法は、円形または楕円の孔の形状を備えたPBFのモードの正確かつ高速な計算をもたらすが、それはこれらの形状に限られ、他の孔の形状を備えたPBF、たとえば、扇形のコアを備えたPBF(望ましくない表面モードを有利に避けることができる)、またはほぼ六角形のクラッドの孔(実際の空気コアファイバでしばしば生じる形状)を備えたPBFには役に立たない。さらに、空気コアファイバの極めて小さい物理的な特徴、特にそれらの非常に薄い膜(たとえば、しばしばΛ/100より薄い)を正確にモデリングするには、ずっと細かい分解能が必要である。
PBFは、典型的には、もともとはフォトニック結晶の研究のために開発された数値方法を使用してモデリングされる。大半の方法は次のフォトニック結晶マスタ方程式を解くことに基づく。
ここで、rはファイバ軸に垂直な平面の特定の点の座標を表わすベクトル(x,y)であり、ε(r)=n2(r)はこの点でのファイバの断面の誘電率であり、n(r)はファイバの2次元の屈折率プロファイルであり、H(r)はモードの磁界ベクトルであり、ωは光周波数であり、cは真空での光のスピードである。この公式は3次元の(3D)フォトニックバンドギャップ構造に最も有用であり、それは伝搬定数kzに対して一定の値を仮定し、かつこの値に対して固有の周波数ωを算出することによって解かれる。
空気コアPBFの状況でモードについて解くためにさまざまな方法がこれまで使用されてきた。1つのこれまで使用されてきた方法は、上述のMITフォトニックバンドギャップ(MPB)コードまたはソフトウェアを利用する。MPBコードを使用すると、式1の解が空間フーリエドメインで得られるため、第1のステップはモードフィールドおよび1/ε(r)を空間高調波に分解することである。式1は、マトリックスの形で書かれ、このマトリックスの固有値を見つけることによって解かれる。この計算は、波数kzをある値(たとえば、k0)に設定し、かつこの波数を備えたモードが生じる周波数について解くことによって行なわれる。
別のこれまで使用されてきた方法はビーム伝搬法(BPM)である(たとえば、M. Qiu,“Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,”Microwave Optics Technology Letters, 2001, Vol.30, pages
327-330を参照)。BPMでは、擬似ランダムフィールドがファイバに入射され、これは異なる有効インデックスで異なるモードを励起する。伝搬軸は想像上の軸に変形されるため、有効インデックスは純粋に想像的なものになり、ファイバのモードは純粋に損失の大きいものになる。異なるレートでの蓄積段階の代わりに、モードは異なるレートで減衰し、これはBPM法がある長さのファイバを通じてそれらを伝播することによって、それらを繰返し分離かつ抽出するのを可能にする。最小のレートで減衰する、最低のインデックスを備えたモードが最初に抽出され、他のモードは有効インデックスが増加する順に算出される。
別のこれまで使用されてきた方法は、時間領域差分法(finite domain time difference method;FDTD)であり、これは以下の時間依存のマックスウェル方程式を解く。
これらの式を解くことは時間変数も考慮することを必要とする(たとえば、J.M. Pottage, D.M. Bird, T.D. Hedley, T.A. Birks, J.C. Knight, P.J. Roberts, and P.St.J. Russell, Robust photonic band gaps for hollow core guidance in PBF made from high
index glass, Optics Express, Vol.11, No.22, 3 November 2003, pages 2854-2861を参照)。
別のこれまで使用されてきた方法は2次元のモード固有値方程式を使用することを伴い、固有値はモード有効インデックスである。モードは次に平面波で展開されるか(たとえば、K. Saitoh and M. Koshiba,“Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,”IEEE Journal of Quantum Electronics, 2002, Vol.38, pages 927-933を参照)、またはウェーブレット関数で展開される(たとえば、W. Zhi, R. Guobin, L. Shuqin, and J.
Shuisheng, Supercell lattice method for photonic crystal fibers, Optics Express, Vol.11, No.9, 5 May 2003, pages 980-991を参照)。屈折率プロファイルはフーリエ成分に分解され、結果的なマトリックス式は固有値および固有ベクトルについて解かれる。
PBFのモードの計算に適用されるとき、上述のこれまで使用されてきた方法にはいくつかの短所がある。1つの短所は、算出時間が非常に長くなり得る点である。別の短所は、モード展開に依存する技術がファイバの屈折率プロファイルのフーリエ変換を計算することを必要とする点である。PBFおよび他のタイプの導波管では、屈折率プロファイルは非常に細かい特徴(たとえば、薄い膜)および急激な屈折率の不連続性(たとえば、空気とガラスの界面における)を含み、これらはともにモードの挙動に対して重要であるため、これら特徴を忠実に説明するために多数の高調波が理想的には保持されるべきである。しかしながら、これら多数の高調波を保持することは、スーパーコンピュータで利用可能なものよりはるかに大きなメモリおよびコンピュータの処理能力を必要とするため、屈折率プロファイルの不連続性は平滑にされ、これは細かい特徴(たとえば、膜)を人工的に広くする。この標準的な慣習は、モデリングされている屈折率プロファイルと実際の屈折率プロファイルとの大きな差に繋がり、これは計算に系統誤差をもたらす。
別の短所は、一部の既存のモードソルバ(mode solvers)が最高次のバンドのモードを最初に計算し、低次のモードへと作業しなければならない点であり、このプロセスは算出誤差を伝搬する。この要件は算出時間も増加させるが、それがコンピュータに対象のものより多いモードを計算させるためである。さらに、上述のように、多重極分解法はいくつかの特定の孔の形状(たとえば、円形および楕円形)についてのみ役立つため、この技術の汎用性を低くする。
発明の概要
ある実施例では、ある方法が導波管の1つまたは複数の電磁界モードをモデリングする。この方法は導波管の2次元の断面をサンプリングするステップを含む。この方法はさらに、導波管のサンプリングされた2次元の断面を使用して、複数の要素を含みかつ第1の帯域幅を有する第1のマトリックスを計算するステップを含む。第1のマトリックスの複数の要素は導波管内での横方向の磁界に対するマックスウェル方程式の作用を表わす。この方法はさらに、第1の帯域幅より小さい第2の帯域幅を有する第2のマトリックスを形成するために第1のマトリックスの複数の要素を再配列するステップを含む。この方法はさらに、第3のマトリックスを形成するために、第2のマトリックスを移動し、かつ移動された第2のマトリックスを反転させるステップを含む。この方法はさらに、導波管の1つまたは複数のモードに対応する第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するステップを含む。
ある実施例では、コンピュータシステムは導波管の1つまたは複数の電磁界モードをモデリングする。コンピュータシステムは導波管の2次元の断面をサンプリングするための手段を含む。コンピュータシステムはさらに、導波管のサンプリングされた2次元の断面を使用して第1のマトリックスを計算するための手段を含む。第1のマトリックスは複数の要素を含み、かつ第1の帯域幅を有する。第1のマトリックスの複数の要素は導波管内での横方向の磁界に対するマックスウェル方程式の作用を表わす。コンピュータシステムはさらに、第1の帯域幅より小さい第2の帯域幅を有する第2のマトリックスを形成するために第1のマトリックスの複数の要素を再配列するための手段を含む。コンピュータシステムはさらに、第3のマトリックスを形成するために、第2のマトリックスを移動させ、かつ移動された第2のマトリックスを反転させるための手段を含む。コンピュータシステムはさらに、導波管の1つまたは複数のモードに対応する第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するための手段を含む。
詳細な説明
ここに説明されるある実施例は、あらゆるジオメトリのPBF、ならびに複雑な構造および細かい特徴を備えた他の導波管を素早くかつ正確にモデリングするための能力を提供し、有利である。たとえば、ここに説明されるある実施例は、単一のコアまたは複数のコアを有し、かつ空孔、シリカ材料または他の材料を含むPBFをモデリングするのに適合する。ある実施例では、まばらなマトリックスの形で磁界の固有値式を解いて任意のインデックスプロファイルを有するPBFのモード(たとえば、コア、表面、リングおよびバルクモード)を見つけるために、有限差分または有限要素計算が有利には移動反転技術とともに使用される。ある実施例では、まばらなマトリックスの帯域幅を有利に低減するための技術が適用され、これは有利には算出時間をさらに低減する(たとえば、10分の1)。平面波展開と比較すると、ここに説明されるある実施例は、有利には算出時間をほぼ3桁低減し、必要なデータ記憶の量を約2桁減らす。あるそのような実施例は、有利には、所与のファイバのすべてのモード特性の完全なシミュレーションをパーソナルコンピュータで素早く計算することを可能にする。さらに、ここに説明されるある実施例は、(たとえば、マサチューセッツ州、ナティックのThe MathWorks社から入手可能なMATLAB(登録商標)のコードの約200ラインのみを使用して)実現が容易である。
有限差分または有限要素計算では、導波管のインデックスプロファイルがサンプリングされ(またはデジタル化され)、モード式に関与する勾配が有限差分式によって近似される。そのような有限差分または有限要素計算は、これまでに孔のあるファイバおよび他の導波管に適用されて成功しているが(たとえば、Z. Zhu and T.G. Brown,“Full-vectorial finite-difference analysis of microstructured optical fibers,”Optics Express, 2002, Vol.10, pages 853-864; and C. Yu and H. Chang,“Applications of the fini
te difference mode solution method to photonic crystal structures,”Optics And Quantum Electronics, 2004, Vol.36, pages 145-163を参照)、それらはまだPBFをモデリングするようには適合されていない。
ここに説明されるある実施例は、有利には、導波管の縦方向の軸(z)に沿って移動不変である任意のインデックスプロファイルn(x,y)を備えた導波管のモード(たとえば、コア、クラッド、表面モード等)のフィールドおよび伝搬定数をモデリングする。たとえば、以下にさらに詳しく説明されるように、ある実施例では、導波管は光ファイバを含む。当該技術分野でよく知られるように、導波管のモードの横方向の磁界hT(r)は以下の固有値の式を満たす。
ここで、
であり(λ0は波長)、hT=hx(x,y)ux+hy(x,y)uyは横方向の磁界であり、hxおよびhyは単位ベクトルuxおよびuyへと投影された横方向の磁界の成分であり、
であり、neffはモード有効インデックスである。この表記を用いると、合計の磁界ベクトルHは単純にhT+hzzであり、uzはファイバのz軸に沿った単位ベクトルであり、hzは縦方向の磁界である。式3はすべてのモード(TE、TMおよびハイブリッドモード)によって満たされる。磁界の縦方向の成分および電界の成分はすべて次の式を使用して横方向の磁界から計算され得る。
式3はベクトルであり、かつ横方向の磁界の2つの成分hx(x,y)およびhy(x,y)を結合する2つの式を有するため、それらは同時に解かれる。式3の形は、それが、波長を固定しかつこの波長ですべてのファイバのモードを計算することによって解かれ得るようなものであることに注目されたい。
図1は、ここに説明されるある実施例による、導波管の1つまたは複数の電磁界モードをモデリングするための例示的な方法100のフロー図である。動作ブロック110では、導波管の2次元の断面がサンプリングされる。動作ブロック120では、複数の要素を含みかつ第1の帯域幅を有する第1のマトリックスが、導波管のサンプリングされた2次元の断面を使用して計算される。第1のマトリックスの複数の要素は、導波管内での横方向の磁界に対するマックスウェル方程式の作用を表わす。動作ブロック130では、第1の帯域幅より小さい第2の帯域幅を有する第2のマトリックスを形成するために、第1のマトリックスの複数の要素は再配列される。動作ブロック140では、第2のマトリックスは第3のマトリックスを形成するために移動および反転される。動作ブロック150では、第3のマトリックスの1つまたは複数の固有値または固有ベクトルが計算される。1つまたは複数の固有値または固有ベクトルは導波管の1つまたは複数のモードに対応する。
ある実施例では、動作ブロック110で導波管の2次元の断面をサンプリングすることは、導波管の屈折率プロファイルをデジタル化することを含む。たとえば、空気コアPBFでは、ファイバの2次元の断面をサンプリングすることは、ファイバの縦方向の軸に垂直な平面の断面でファイバの特徴(たとえば、コア、空孔および介在膜を含むクラッド構造)をデジタル化することを含む。ある実施例では、サンプリングは結晶の周期性を反映する区域にわたって行なわれる(たとえば、クラッドのフォトニック結晶構造の基本構成要素である最小のセルに対応する区域にわたって)。ある実施例では、サンプリングは境界条件(たとえば、周期的境界条件、固定された境界条件)を規定することを含む。(i)ファイバのプロファイルの複雑性のレベル、(ii)所望のモデリング精度、および(iii)スキャンニング精度に応じて、このサンプリングは、ある実施例では、スキャナを使用し、かつスキャニングされた画像をコンピュータを使用してデジタル化することによって、またはある他の実施例では、ファイバのプロファイルを一連の数学的対象物(たとえば、特定の空気コアファイバの場合、周期的なグリッド上に集まる所与の半径の円のパターン)として入力し、かつ、この数学的な構造物をコンピュータでデジタル化することによって、実行され得る。
ある実施例では、動作ブロック120で第1のマトリックスMを計算することは、固有値の式(たとえば式3)を離散化することを含む。この離散化は、ある実施例ではマックスウェル方程式の以下の式を使用して実行される。
マックスウェル方程式のこれらの式は、離散化されたマックスウェル式のマトリックスに対するより単純な式、および高速な算出をもたらす。マックスウェル方程式の他の式が他の実施例では使用され得る。
あるそのような実施例では、固有値の式(たとえば、式3)の離散化は、フィールドおよび屈折率の不連続性を考慮するためにYeeのセル(Yee's cell)に基づいて有限差分技術を使用して行われる(たとえば、Z. Zhu and T.G. Brown,“Full-vectorial finite-difference analysis of microstructured optical fibers,”Optics Express, 2002, Vol.10, pages 853-864を参照)。ある実施例では、離散化はさらに、空気コア境界にまたがる各離散ピクセルにわたるインデックス平均化を含む。ある実施例では、インデックス平均化は、媒体の相対的な表面に比例して、ピクセルによってまたがれる媒体の屈折率の加重平均に等しい屈折率をピクセルに割当てることを含む。たとえば、モデリングされる導波管がシリカに空孔(2つの媒体のみ)を含むフォトニックバンドギャップファイバである場合、空気の20%およびシリカの80%にまたがるピクセルにインデックス平均化によって割当てられるインデックスは、naver=0.2nair+0.8nsilicaであり、ここでnaveはインデックス平均化された屈折率であり、nairは空気の屈折率であり、nsilicaはシリカの屈折率である。ある他の実施例では、インデックス平均化は、インデックスの逆数の平均の逆数を計算することによって高調波の平均を使用することを含む。他のインデックス平均化技術も、ここに説明される実施例に適合する。あるそのような実施例では、インデックス平均化は、有利にはピクセルの合計数の小さな割合にわたって屈折率構造を平滑化することを犠牲にして計算の精度を改善する。
ある実施例では、離散化の後、固有値の式は次のように書かれ得る。
式6では、Πはベクトルフィールドに作用する線形演算子である。ある実施例では、この式を解くために、固有値問題は、x方向にmx個の点、およびy方向にmy個の点のグリッド上でファイバの縦方向の軸に対して垂直な平面断面で2つのフィールドhx(x,y)およびhy(x,y)をサンプリングすることによって離散化される。この動作によって、寸法1×2mxyの新しい磁界ベクトルh(x,y)が得られ、これは(任意のナンバリングシステムを使用して配列された)S=hx(x,y)のmxy個のサンプル、およびhy(x,y)のS個のサンプルを含む。ある実施例では、このサンプリングは、結晶の周期性を反映する区域にわたって(たとえば、ファイバの断面のフォトニック結晶構
造の基本構成要素である最小のセルに対応する区域にわたって)行なわれる。ある実施例では、このサンプリングはファイバの断面全体にわたって行なわれる。
ある実施例では、第1のマトリックスは、有限差分式を使用して線形演算子Πを離散化することによって動作ブロック120で計算される。ある実施例では、線形演算子Πを離散化することは、ファイバの屈折率プロファイルn(x,y)をサンプリングすることを伴うため、それは寸法2S×2Sの第1のマトリックスMによって表わされる。ある実施例では、このサンプリングは、磁界をサンプリングするために使用されるグリッドと同じS×Sのグリッドで実行される。
ある実施例では、式6によって表現されるような固有値の式は、標準的な境界条件のもとで解かれる。ブロッホの定理(Bloch theorem)に依存しかつ周期的な境界条件を使用しなければならない、k−ドメイン法とは違い、あるそのような実施例は、以下のタイプの境界条件のうちの1つを使用することができる:(1)シミュレーション区域外で消滅するフィールド、(2)周期的な境界条件、すなわち、シミュレーションドメインを単位スーパーセルとして、空間全体にわたって周期的に繰返されるファイバの断面およびフィールド、(3)吸収材料によってシミュレーションドメインを囲む(たとえば、伝搬損失計算のため)、または(4)完全に適合する境界条件。他の実施例は、モデリングされている導波管に応じて他の境界条件を利用することができる。ある実施例では、演算子Πをサンプリングするときに、境界条件およびシミュレーションドメイン境界の両方が考慮されるため、この情報は第1のマトリックスM自身にも含まれる。
ある実施例では、固有値の式は単一のマトリックス式として表現することができる。
上述のように、第1のマトリックスMは、固有値の式を離散化することによって線形演算子Πから計算される。式7の累乗根(たとえば、ファイバのモードの固有値neffおよび固有モードまたはフィールド分布)を見つけることは、典型的なマトリックス固有値問題である。しかしながら、演算子マトリックスMは典型的には非常に大きい。たとえば、半径ρ=0.47Λの円形の空孔の三角形のパターン、および半径R=0.8Λの円形のコアを備え、クラッドに8列の空孔を備え、かつ正方形のクラッド境界を備えたフォトニックバンドギャップファイバの場合を考える。セルは各辺で16周期であり、したがって、それは16Λ×16Λの寸法を有する。ファイバの薄い膜を分解しかつ十分な精度を達成するため、Λ/30のグリッドステップサイズ(または分解能)が有利に使用され得る。サンプリング点の数は、xでmx=16×30であり、yでmy=16×30である。したがってS=mxy=230,400であり、第1のマトリックスMは
の要素を含む。ここに説明される実施例と適合する方法を使用せずにこのように大きなマトリックスの固有値を見つけることは、大半のコンピュータの範囲外である。
しかしながら、微分演算子をそれらの有限差分の同等物によって置換することは、第1
のマトリックスMをまばらなマトリックスにする。図2は、上述の例に対するモード式を表わす第1のマトリックスMの一般的な形を示す。図2の水平および垂直の軸は、第1のマトリックスMの要素の座標を表わし、これは各々2S=460,800の最大値までである。図2で、密度が高すぎて個々に分解できないところで一体化して実線の曲線になっている黒い点は非ゼロの要素を示す。これらの要素間の空白はすべてゼロの要素である。この特定の例では、非ゼロの要素の合計数nzは2,370,736である。このタイプのマトリックスのマトリックス密度Dは、要素の合計数に対する非ゼロの要素の比率として規定され、
であり、インデックスプロファイルに応じた正確な値である。上述の例では、マトリックス密度は、
のオーダに過ぎず、または言換えると、マトリックスの要素の約0.0011%のみが非ゼロである。この意味することは、第1のマトリックスMの大きなサイズに関わらず、算出中に記憶しなければならない要素の数は比較的少なく、この典型的な例では約2120億から約240万になり、これは標準的なパーソナルコンピュータで扱われ得る範囲内に十分ある。
第1のマトリックスMの別のパラメータはその帯域幅Bであり、これは非ゼロの係数と第1の対角線との間の最大の距離として規定される。
小さな帯域幅は、まばらなマトリックスでの固有値の高速な算出に有利である。第1のマトリックスMの帯域幅はSに比例し、図1に示されるように、非常に大きくなり得る。ある実施例では、帯域幅は有利には、第1のマトリックスMのものより小さい帯域幅を有する第2のマトリックスNを形成するために第1のマトリックスMの(2S)2の要素を再配列することによって、動作ブロック130で下げることができる。そのようなある実施例では、第1のマトリックスMを再配列することは、hおよびMの両方の要素に置換を適用することを含む(たとえば、A. George and J. Liu,“Computer Solution of Large Sparse Positive Definite Systems,”Prentice-Hall, 1981を参照)。あるそのような実施例では、この動作は、すべての非ゼロの要素が第1の対角線の近くに集まり、かつ従って帯域幅が非常に低減された第2のマトリックスNに繋がる。この動作によって作られた第2のまばらなマトリックスNおよび新たな置換された磁界ベクトルgも式7
を満たす。ある実施例では、第2のマトリックスNは第1のマトリックスMと同じ寸法を有する。第2のマトリックスNの帯域幅は
に比例するため、第1のマトリックスMの帯域幅と比較して、それは大きく低減される。図2は、図1の第1のマトリックスMにこのプロセスを適用することによって得られた第2のマトリックスNを示す。非ゼロの要素の大半は、対角線の近くにある。帯域幅は460,320(図1の第1のマトリックスMに対して)からわずか1,922(図2の第2のマトリックスNに対して)へと低減され、これは約240分の1の低減である。ある実施例では、この帯域幅の低減は有利にはマトリックスの固有値の計算を高速化する。
原則として、ある実施例では、ファイバのモードは第2のマトリックスNを対角化してその固有値のすべてを見つけることによって見つけられ得る。しかしながら、そのようなアプローチは、非常に多数の固有値および固有ベクトルを計算しかつ記憶することを必要とし、多くの時間およびメモリを必要とする。さらに、そのようなアプローチは、対象でないものでも、固有値のすべてを計算するために、非常に無駄が多い。より具体的には、それはファイバの非常に多数のバルク(クラッド)モードのすべて、およびそのいくつかのコアモードを計算するが、一般に、クラッドモードについての知識は対象ではない。ある他の実施例では、式7は、対象のいくつかの固有値のみを計算することによって解かれる。この制限は不合理ではない。というのは、一般に、第1の関心事は空気コアファイバに対してバンドギャップのエッジの近くにいくつかのコアモードおよびいくつかのバルクモードのみを見つけることである。あるそのような実施例では、問題は、所与の有効インデックス値n0に最も近い第2のマトリックスNのm個の固有値を計算することとして表現し直すことができ、ここでmは小さな数である。たとえば、ある特定の波長で特定の空気コアファイバのバンドギャップ内でモードのバンドギャップエッジおよび有効インデックスをモデリングするために、n0=1に最も近いm0=10のモードを計算することができるが、これは空気コアファイバのコアモードが1に近い有効インデックスを有するためである。
所与の値に最も近い大きなまばらなマトリックスの固有値を計算することは依然として困難な作業である。この作業の困難を低減するため、ある実施例は、ある値n0に最も近いマトリックスNのm0個の固有値は、第3のマトリックスAの最も大きい(振幅において)固有値と同じであるという特性を使用し、第3のマトリックスAは以下の式を使用して第2のマトリックスNから計算することができる。
ここでIは単位マトリックスである(たとえば、W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng,“Supercell lattice method for photonic crystal fibers,”Optics Express, 2003, Vol.11, pages 980-991を参照)。この特性はある実施例で有用であるが、なぜなら、所与のマトリックスAの最大の振幅の固有値は、クーラント−フィッシャーの定理を使用することによって非常に速く計算することができるからである(たとえば、R.A. Horn and C.R. Johonson, Matrix Analysis, Chapter 4, Cambridge University Press, London, 1983を参照)。ある実施例では、クーラント−フィッシャーの定理が使用されるが、なぜなら、それはその固有値の検索をマトリックス内の寸法m0の小さなブロックに制限するからであり、これはすべての固有値を識別するよりもはるかに高速である。
ある実施例では、方法100はさらに、動作ブロック140で、第3のマトリックスAを形成するために第2のマトリックスNを移動させ、かつ移動された第2のマトリックスを反転させるステップを含む。同様の「移動−反転」技術は、平面波展開でこれまで使用されてきたが(たとえば、W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng,“Supercell lattice method for photonic crystal fibers,”Optics Express, 2003, Vol.11, pages 980-991を参照)、ここに説明されるようには使用されていない。そのようなある実施例では、第2のマトリックスは、第3のマトリックスAを計算するために、移動され(たとえば、新しいマトリックス
を計算することによって)、次に反転される(たとえば、マトリックス
の逆マトリックスを計算することによって)。ある実施例では、逆マトリックスは、第3のマトリックスAを得るために、(マトリックスがより下方およびより上方の三角形のマトリックスの積として表現される)標準的なLU分解を使用して計算される(たとえば、R.A. Horn and C.R. Johnson,“Matrix Analysis,”Chapter 3, Section 5, Cambridge University Press, 1990を参照)。この計算はある実施例では高速であるが、なぜなら、
も小さな帯域幅を備えたまばらなマトリックスであるからである。
ある実施例では、方法100はさらに、動作ブロック150で、第3のマトリックスAの1つまたは複数の固有値または固有ベクトルを計算するステップを含む。1つまたは複数の固有値または固有ベクトルは、導波管の1つまたは複数のモードに対応する。導波管がバンドギャップを有するPBFを含むある実施例では、この計算はPBFの1つまたは複数のモードを見つけることを含む。PBFの1つまたは複数のモードは、バンドギャップの近くに少なくとも1つのコアモード、表面モード、リングモード、またはバルクモードを含む。ある実施例では、上述のように、対象の有効インデックスであるAのm0個の
最大の固有値のみを計算するためにクーラント−フィッシャーの定理が使用される。ここに説明されるある実施例では、方法100は、問題を、困難な問題である所与の値の周りで固有値の特定のセットを探すことから、はるかに高速である、変形されたマトリックスの最大の固有値を探すことに変形することがわかる。
特定のモードの電磁界分布でより詳細な特徴が望まれるある実施例では(たとえば、コアを囲む空孔の1つの末尾)、ある実施例は、他の有限差分または有限要素法で可能なように、計算をより細かいグリッドに展開するためにより粗いグリッドで得られた結果を新しい境界条件として利用する。したがって、このプロセスは、導波管の特定の部分において電磁界を計算するために、有効に拡大する。ある実施例では、このプロセスはPBFモードの非常に細かい特徴へのアクセスを与える。
図4は、ここに説明されるある実施例によるPBFをモデリングするための例示的な方法200を示す別のフロー図である。構造、ドメイン形状、および境界条件を含む、ファイバの屈折率プロファイル分布が、ブロック210によって図4に示されるように、入力として提供される。対象の波長も、ブロック220によって図4に示されるように、入力として提供される。ファイバの屈折率プロファイル分布が矢印230によって図4に示されるようにサンプリングされる。横方向の磁界に対するマックスウェル方程式の作用を表わす、まばらな第1のマトリックスMが、ブロック240によって図4に示されるように、サンプリングされた屈折率プロファイル分布および波長ならびに境界条件を使用して計算される。
矢印250によって図4に示されるように、第1のマトリックスMは、ブロック260によって示されるまばらな第2のマトリックスNを得るために再配列され、帯域幅は固有値の抽出を高速化するために低減されている。その周りでPBFモードが計算されるべき有効インデックスn0は、ブロック270によって図4に示されるように、入力として提供される。ブロック280に図4によって示されるように、第2のマトリックスNは、移動され、移動されたマトリックスは反転され(たとえば、矢印290によって図4に示されるLU分解を使用して)、ブロック300によって図4に示される第3のマトリックスAを与える。第3のマトリックスAの最高の固有値は有効インデックスn0に最も近い固有値である。計算されるべきモードの数m0は、ブロック310によって図4に示されるように入力として与えられ、第3のマトリックスAの最大の固有値および固有ベクトルはブロック320によって図4に示されるように計算される(たとえば、クーラント−フィッシャーの定理を使用して)。この計算は、ブロック330によって図4に示されるように、その有効インデックスが有効インデックスn0に最も近いm0個の固有値(モード)を与える。ある実施例では、この計算は、これらモードの各々に対応するm0個の固有ベクトル(各モードの電界および磁界のすべての3つの成分)も与える。
ここに説明されるある実施例は、導波管(たとえば、フォトニックバンドギャップファイバ)のモード特性のコンピュータで実現されるモデリングで有用である。そのようなモデリングに使用される汎用コンピュータは、ネットワークサーバ、ワークステーション、パーソナルコンピュータ、メインフレームコンピュータ等のさまざまな形を取り得る。そのような分析を行なうためにコンピュータを構成するコードは、典型的には、CD−ROMなどのコンピュータ読取可能な媒体上でユーザに提供される。コードは、ローカルエリアネットワーク(LAN)またはインターネットなどのワイドエリアネットワーク(WAN)の一部であるネットワークサーバからユーザによってダウンロードされてもよい。
ソフトウェアを作動する汎用コンピュータは、典型的には、マウス、トラックボール、タッチパッド、および/またはキーボードなどの1つまたは複数の入力装置、ディスプレイ、ならびにランダムアクセスメモリ(RAM)集積回路およびハードディスクドライブ
などのコンピュータ読取り可能な記憶媒体を含む。コードの1つまたは複数の部分、もしくはすべては、ユーザから遠隔にあってもよく、たとえば、LANサーバ、インターネットサーバ、ネットワーク記憶装置等のネットワークリソース上にあってもよい。典型的な実施例では、ソフトウェアは導波管に関するさまざまな情報(たとえば、構造情報、寸法、屈折率プロファイル、波長、モードの数、目標のインデックス)を入力として受取る。
ある実施例では、このモード解決法200は、商業的な数学的ソフトウェアプログラムのいずれか1つを使用して容易に実現可能である。たとえば、以下にさらに詳しく説明するように、モードソルバ法200は、所望の数学的な動作の大半が容易に利用可能である、マサチューセッツ州ナティックのThe MathWorksから入手可能な、MATLAB(登録商標)を使用して実現可能である。たとえば、MATLAB(登録商標)は、上述のクーラント−フィッシャーの定理を使用してマトリックスの最大の固有値を算出するさまざまなコードのライブラリ(たとえば、ARPACKおよびUMFPACK)を提供する。商業的に入手可能な数学的ソフトウェアプログラムのそのような組込みの特徴を使用し、かつここに説明されるモード解決法のある実施例の比較的簡潔なことの結果として、ここに説明されるある実施例は、最小限のプログラミングのみを利用し、モード解決に対応するコードのセクションはコードのうちの約200ライン未満を含む。
ここに説明されるある実施例は、他の導波管シミュレータよりはるかに高速かつ容易なPBFのシミュレーションを提供し、有利である。さらに、ここに説明されるある実施例はスーパーコンピュータを必要とせず、有利である。たとえば、ある実施例では、モード解決法は、3.2−GHzのPentium(登録商標)IVプロセッサおよび4ギガバイトのRAMを備えたパーソナルコンピュータで実行される。あるそのような実施例では、モードソルバは、各辺に500点を備えた、長方形のグリッドに対して、波長につき約4分で、所与のファイバで20のモードの伝搬定数およびフィールドを見つける。これに対して、平面波展開技術に基づくMPBコード(上述)を同じ問題に適用すると、16の2−GHzパラレルプロセッサを使用して約1時間かかり、そのような計算はパーソナルコンピュータでは妥当な時間で行なうことはできない。
ある実施例では、モード解決法を実現するシミュレータコードは非常に短い(たとえば、200ライン未満)。ある実施例では、この方法は、正確な屈折率分布をサンプリングし、有利である。ある実施例では、この方法は、波長を変数パラメータとして使用し、これは従来のファイバおよび光学導波管をモデリングするためにこれまで使用されてきたより直観的なアプローチである。ある実施例では、この方法はすべてのモードを計算するのではなく、所望のモードのみを計算し、さまざまな境界条件で使用可能である。ある実施例では、この方法は、負の値または複雑な値で屈折率分布をモデリングし、これは完璧に適合する境界条件を使用してモード伝搬損失を推定することを可能にする。
以下の説明では、例示的な実施例の性能を、それをシリカの三角形の格子に円形の空孔を備えた空気コアPBFの選択されたモードの伝搬定数(または同等に、有効モードインデックス)および強度プロファイル(または同等に、電界および磁界空間分布)をモデリングするために適用することによって示す。シミュレーションで使用されるファイバの断面は図5に示され、これはρ=0.47Λの半径の円形の空孔、およびR=0.8Λの円形の空気コアの半径を有する。図5の黒い区域は、間に空気の領域を備えたシリカを表わす。図5のPBF構造はρ>0.43Λに対するバンドギャップを表わす。以下の説明では、モデリングは周期的な境界条件を使用して行なわれた。特に、図5に示されるシミュレーションドメイン(スーパーセル)は、空間全体をタイリングするように周期的に繰返され、この周期的な導波管のモードが計算された。この周期的なタイリングにおける2つのファイバのコア間の分離距離は、隣接するファイバのコア間の相互作用を無視できる程度にし、かつ正確な予測を確実にするのに十分大きくなるように選択された(たとえば、
9Λ)。したがって、シミュレーションドメインは、シミュレーションで一般的に使用されるサイズである、9Λ幅の長方形(わずかに5つのリング未満)であるが、なぜなら、それが一方の算出時間と他方のメモリの要件との間で良好な妥協点を提供するからである。ファイバの屈折率分布のサンプリング、およびファイバの特徴(たとえば、円形の空気コアおよびクラッドの空孔)のデジタル化は、Λ/50の空間分解能で行なわれた。この有限分解は、図5の孔のエッジに見られる小さな不規則性を考慮する。
図6は、ここに説明されるある実施例と適合する例示的な方法を使用して計算されたコア半径R=1.0Λの第1のPBFの分散曲線を示す。バンドギャップは、ほぼλ=0.56Λからλ=0.64Λへと延在している。このバンドギャップは2つの基本コアモード(ファイバの軸に沿って分極されるガウス状HE11モード)をサポートし、コアプロファイルおよび半径の特定の選択から予想されるように表面モードをサポートしない(たとえば、M.J.F. Digonnet, H.K. Kim, J. Shin, S.H. Fan, and G.S. Kino,“Simple geometric criterion to predict the existence of surface modes in air-core Photonic-bandgap fibers,”Optics Express, Vol.12, No.9, 3 May 2004, pages 1864-1872; and H.K. Kim, J. Shin, S.H. Fan, M.J.F. Digonnet, and G.S. Kino,“Designing air-core photonic-bandgap fibers free of surface modes,”IEEE Journal of Quantum Electronics, Vol.40, No.5, May 2004, pages 551-556を参照)。よく知られるように、基本コアモードは主に空気に集中する。図7は0.8Λのコア半径に対する基本コアモードのうちの1つの強度プロファイル
の外形マップを示す。図7の2つの図の最も右のものは、2つの図のうちの最も左のものの拡大版である。図8は図7の基本コアモードの強度プロファイル(x=0に沿って切られた)を示す。基本コアモードは、直交して分極されるモードでのその縮退のためにフォトニック結晶の対称性から予想されるように完璧な6回対称ではない。しかしながら、基本コアモードは垂直軸(x=0)および水平軸(y=0)の両方について対称的である。このプロファイルはコア境界で空気とシリカとの界面においてピークを示すことに注目されたい(図8に示されるようにy=±1.5Λ)。そのような特徴は、正確な屈折率分布をサンプリングするここに説明されるある実施例によって分解することのできる細かいモード特徴の例である。
この例示的な方法の収束が図9によって示され、これは基本コアモードの有効インデックスの収束を図5のPBF構造に対するグリッド点の数の関数として表わす(ダイヤモンド型のデータ点によって図9に示され、最も左の垂直軸を参照する)。小数点以下第5位への収束が、図5のPBF構造に対するΛ/50のステップサイズ(1辺あたり約450点)に対して図9に示される。
その精度を支援するため、例示的な方法は、Z. Zhu and T.G. Brown, in“Full-vectorial finite-difference analysis of microstructured optical fibers,”Optics Express, 2002, Vol.10, pages 853-864(“Zhuら”)によって説明され、かつZhuらの図3によって示されるように、多重極法を用いて以前計算されていた空気支援ファイバの基本モードの有効インデックスを計算するために使用された。例示的な方法を使用した計算の結果(正方形のデータ点によって図9に示され、かつ最も右の垂直軸を参照する)は、Zhuらによって報告されたような多重極法を使用して計算された有効インデックスの値(破線によって図9に示され、最も右の垂直軸を参照する)と比較された。表1は、2つの異なる
グリッドサイズで例示的な方法を使用して得られた値、およびZhuらによる多重極法に対して以前に報告された値を示す。
表1に示されるように、小数点以下第5位への精度は、例示的な方法によって1辺あたり160点のグリッドに対して達成される。256グリッド点を使用して例示的な方法で計算されたモード有効インデックス(1.43535983)は、多重極法で計算された値(1.4353607)と約9x10-7だけ異なる。図9は、Zhuらの図3によって示されるファイバに対するグリッドサイズを増加させるための例示的な方法に対する収束も示す(正方形のデータ点によって図9に示される)。達成された収束は小数点以下第7位より良好であり(1辺あたり550グリッド点に対して)、精度は匹敵するオーダである。これら結果は例示的な方法の精度および収束の両方を確認する。
図10はR=1.15Λのコア半径を有する第2のPBFの計算された分散図を示す。このファイバは表面モードを示し、これは以前に公開された結果と矛盾しない(たとえば、M.J.F. Digonnet, H.K. Kim, J. Shin, S.H. Fan, and G.S. Kino,“Simple geometric
criterion to predict the existence of surface modes in air-core photonic-bandgap fibers,”Optics Express, Vol.12, No.9, 3 May 2004, pages 1864-1872; and H.K. Kim, J. Shin, S.H. Fan, M.J.F. Digonnet, and G.S. Kino,“Designing air-core photonic-bandgap fibers free of surface modes,”IEEE Journal of Quantum Electronics, Vol.40, No.5, May 2004, pages 551-556を参照)。図11の例示的な表面モードの強度外形マップに示されるように、これら表面モードは空気コアとクラッドの空孔の第1の層との界面で局所化される。これら表面モードのフィールドはシリカで最大量を有し、空気に消えていく。図11に示される表面モードはファイバの対称性から予想される6回対称を示す。これら結果は以前に報告されたPBFモードの挙動と矛盾しない。
PBFのシミュレーションでは、ある実施例は、コアモードが見つかるまで目標の有効インデックス(たとえば、n0=1または0.99)の周りで構造の多数のモード(たとえば、約40)について解くことによって、合計の算出時間を有利に最小化する。シミュレーションの前はコアモードの有効インデックスはわからないため、ある実施例では、多数のモードのこの計算は、ある特定の波長でコアモードを見つけるために行なわれる。一旦所与の波長でコアモード有効インデックスが決定されると、これら有効インデックスの各々は次の(または近くの)波長での対応するモードの目標有効インデックスとして使用されるか、または目標の有効インデックスを推定するために外挿(たとえば、線形)が使用され得る。所与のモードの有効インデックスが2つの(またはそれ以上の)波長で計算されると、目標の有効インデックスを推定するために線形またはスプライン内挿技術(または同等の技術)が使用され得る。ある実施例では、この波長で解かれるモードの数は少なくすることができる(たとえば、一般にコアモード、表面モード、およびバンドギャップのエッジのいくつかのバルクモードのみが対象であるため、20未満にすることができる)。あるそのような実施例は、対象の特定のモードを追跡することによって算出時間を有利に低減し、計算されたモードを有利にコアモードの周りに集中させる。
ここに説明されるある実施例は、パーソナルコンピュータを使用して任意のインデックスプロファイルの空気コアフォトニックバンドギャップファイバのモードを素早くシミュレーションし、同時に使用されるデータ記憶の量を2桁低減する新しいフォトニックバンドギャップファイバモードソルバを提供する。ある実施例では、特定の波長での典型的なPBFのモードの有効インデックスおよびフィールドプロファイルは、3.2ギガバイトのRAMを備えたパーソナルコンピュータでモードにつき約10秒で計算することができる。ある実施例では、これら実質的な改善は、(1)まばらなマトリックスを使用して素早く行なうことができる、マトリックスの形でベクトルの横方向の磁界式を解くことによって、(2)少なくとも1桁計算をさらに高速化する、マトリックスの帯域幅を低減するためのマトリックスの要素の再配列によって、および(3)対象のモードについてのみ解くことによって、実現される。ここに説明されるある実施例は、有利にはプログラムするのが容易であり(たとえば、MATLAB(登録商標)コードの約200ライン)、有利にはいくつかのタイプの境界条件のうちの1つとともに使用することができ、かつそのインデックスプロファイルの複雑性に関わらず、導波管のあらゆる光ファイバのモードを計算するために有利に適用可能である。
さまざまな実施例をここまで説明してきた。この発明はこれら特定の実施例に関して説明されているが、説明はこの発明を例示するように意図されるものであり、制限することを意図されない。特許請求の範囲に規定されるようなこの発明の精神および範囲を離れることなく、さまざまな修正および適用が当業者に思い浮かぶであろう。
導波管のモード特性を計算するためにここに説明されるある実施例と適合する方法を実現するために使用可能な例示的なMATLAB(登録商標)コードの部分を以下に示す。具体的には、例示的なコード部分「mode_hex」は周期的な境界条件と適合し、例示的なコード部分「mode_rec」は長方形の境界条件と適合する。
ここに示される例示的なコード部分は著作権保護の対象になる材料を含む。著作権の所有者は、特許文献または特許の開示は特許庁のファイルまたは記録に見られるため、何人かによってそれが複写再生されることに反対しないが、他の場合はすべての著作権を保有する。
例示的なコード部分「mode_hex」
例示的なコード部分「mode_hex」は六角形の境界に対して固有値および固有ベクトルについて解くために使用することができる。
例示的なコード部分:「mode_rec」
例示的なコード部分「mode_rec」は長方形の境界に対して固有値および固有ベクトルについて解くために使用することができる。
ここに説明されるある実施例と適合する例示的な方法のフロー図である。 長方形の境界を備えたPBFに対してモード式を表わす第1のマトリックスMの図である。 マトリックスの帯域幅を低減するために第1のマトリックスMの再配列によって得られた第2のマトリックスNの図である。 ここに説明されるある実施例によるPBFをモデリングするための例示的な方法を示すフロー図である。 周期的な境界条件のもとでクラッド空孔半径ρ=0.47Λおよびコア半径R=0.8Λを有する空気コアPBFをモデリングするために使用される屈折率構造のサンプリングの図である。 ρ=0.47ΛおよびR=1.0Λを有する図5によって示されるPBFに対する2つの基本モードの計算されたバンドプロファイルおよび分散の図である。 ρ=0.47Λ、R=0.8Λ、およびλ=0.60Λで図5によって示されるPBFに対するコアモードの計算されたモード強度プロファイルの図である。 x=0に沿った線における図7のコアモードの断面図である。 ρ=0.47ΛおよびR=0.8Λを有するPBFに対するグリッドサイズを増加させるための例示的な方法に対する収束(ダイヤモンド型のデータ点、最も左の垂直軸を参照する)、およびZhuらによって説明されるファイバに対するグリッドサイズを増加させるための例示的な方法に対する収束(正方形のデータ点、最も右の垂直軸を参照する)の図である。 ρ=0.47ΛおよびR=1.15Λを有するPBFに対する計算されたバンドプロファイルおよび分散の図である。 ρ=0.47Λ、R=1.15Λおよびλ=0.60Λで図10のPBFに対する表面モードの計算されたモードプロファイルの図である。

Claims (20)

  1. 導波管の1つまたは複数の電磁界モードをモデリングするための方法であって、
    前記導波管の2次元の断面をサンプリングするステップと、
    前記導波管のサンプリングされた2次元の断面を使用して第1のマトリックスを計算するステップとを含み、前記第1のマトリックスは複数の要素を含みかつ第1の帯域幅および各々が、自身の2つのインデックスが互いに等しい複数の要素の第1の対角線を有し、前記第1のマトリックスの複数の要素は前記導波管内での横方向の磁界に対するマックスウェル方程式の作用を表わし、前記複数の要素は非ゼロの値を有する非ゼロ要素を備え、前記第1の帯域幅は前記第1のマトリクスの前記非ゼロ要素と前記第1の対角線との間の最大距離であり、前記方法はさらに、
    前記第1のマトリックスの複数の要素を再配列して前記第1の帯域幅より小さい第2の帯域幅を有する第2のマトリックスを形成するステップと、
    前記第2のマトリックスを移動しかつ該移動された第2のマトリックスを反転させて第3のマトリックスを形成するステップと、
    前記導波管の前記1つまたは複数のモードに対応する前記第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するステップと
    吸収材料によって前記方法のシミュレーションドメイン囲む境界条件を用いて、前記導波管の前記1つまたは複数のモードに対応する1つまたは複数の伝搬損失を計算するステップとを含む、方法。
  2. 前記導波管はフォトニックバンドギャップファイバを含む、請求項1に記載の方法。
  3. 前記導波管は空気コアフォトニックバンドギャップファイバを含む、請求項1に記載の方法。
  4. 前記導波管は前記導波管の縦方向の軸に沿って移動不変である屈折率プロファイルを有する、請求項1に記載の方法。
  5. 前記導波管の2次元の断面をサンプリングするステップは、前記導波管の屈折率プロファイルをデジタル化するステップを含む、請求項1に記載の方法。
  6. 前記導波管は、縦方向の軸、空気コア、ならびに空孔および介在膜を含むクラッド構造を有する空気コアフォトニックバンドギャップファイバを含み、前記導波管の2次元の断面をサンプリングするステップは、前記縦方向の軸に垂直な平面の断面で前記空孔およびクラッド構造をデジタル化するステップを含む、請求項1に記載の方法。
  7. 前記導波管の2次元の断面をサンプリングするステップは、前記クラッド構造の基本構成要素である最小のセルに対応する区域にわたって行なわれる、請求項6に記載の方法。
  8. 前記第1のマトリックスを計算するステップは境界条件を規定するステップを含む、請求項1に記載の方法。
  9. 前記第1のマトリックスを計算するステップは、前記横方向の磁界によって満たされる固有値の式を離散化するステップを含み、前記離散化するステップは
    によって表わされるマックスウェル方程式を使用して行なわれる、請求項1に記載の方法。
  10. 前記固有値の式を離散化するステップは空気コア境界にまたがる各離散ピクセルにわたるインデックス平均化を含む、請求項9に記載の方法。
  11. 前記導波管は、縦方向の軸、空孔、ならびに空孔および介在膜を含むクラッド構造を有する空気コアフォトニックバンドギャップファイバを含み、前記固有値の式を離散化するステップは前記導波管の平面の断面で前記横方向の磁界の2つの成分をサンプリングするステップを含む、請求項9に記載の方法。
  12. 前記横方向の磁界の2つの成分をサンプリングするステップは前記クラッド構造の基本構成要素である最小のセルに対応する区域にわたって行なわれる、請求項11に記載の方法。
  13. 前記第1のマトリックスを計算するステップは前記導波管内での横方向の磁界に対するマックスウェル方程式の作用に対応する線形演算子をサンプリングするステップを含む、請求項1に記載の方法。
  14. 前記第1のマトリックスはまばらなマトリックスであり、前記第2のマトリックスは前記第1のマトリックスと同じ寸法を有する、請求項1に記載の方法。
  15. 前記移動された第2のマトリックスを反転させるステップは、LU分解を使用するステップを含む、請求項1に記載の方法。
  16. 前記第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するステップは、前記第3のマトリックスの選択された数の最大の固有値のみを計算するステップを含む、請求項1に記載の方法。
  17. 前記第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するステップは、有限差分または有限要素計算を使用するステップを含む、請求項1に記載の方法。
  18. 前記導波管はバンドギャップを有するフォトニックバンドギャップファイバを含み、前記第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するステップは、前記フォトニックバンドギャップファイバの1つまたは複数のモードを見つけるステップを含み、前記1つまたは複数のモードはバンドギャップの近くに少なくとも1つのコアモード、表面モード、リングモード、またはバルクモードを含む、請求項1に記載の方法。
  19. コンピュータ読取可能な媒体であって、汎用コンピュータに請求項1に記載の方法を行なわせる命令がそこに記憶されているコンピュータ読取可能な媒体。
  20. 導波管の1つまたは複数の電磁界モードをモデリングするためのコンピュータシステムであって、
    前記導波管の2次元の断面をサンプリングするための手段と、
    前記導波管のサンプリングされた2次元の断面を使用して第1の帯域幅および各々が、自身の2つのインデックスが互いに等しい複数の要素の第1の対角線を有する第1のマトリックスを計算するための手段とを含み、前記第1のマトリックスは前記導波管内での横方向の磁界に対するマックスウェル方程式の作用を表わす複数の要素を含み、前記複数の要素は、非ゼロ値を有する非ゼロ要素を備え、前記第1の帯域幅は前記第1のマトリックスの前記非ゼロ要素と前記第1の対角線との間の最大距離であり、前記コンピュータシステムはさらに、
    前記第1のマトリックスの複数の要素を再配列して前記第1の帯域幅より小さい第2の帯域幅を有する第2のマトリックスを形成するための手段と、
    前記第2のマトリックスを移動させ、かつ移動された第2のマトリックスを反転させて第3のマトリックスを形成するための手段と、
    前記導波管の前記1つまたは複数のモードに対応する前記第3のマトリックスの1つまたは複数の固有値または固有ベクトルを計算するための手段と
    吸収材料によって前記モデリングのシミュレーションドメインを囲む境界条件を用いて、前記導波管の前記1つまたは複数のモードに対応する1つまたは複数の伝搬損失を計算するための手段とを含む、コンピュータシステム。
JP2007531385A 2004-09-11 2005-09-09 光学導波管のモード特性をモデリングするための方法および装置 Expired - Fee Related JP5358780B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60876504P 2004-09-11 2004-09-11
US60/608,765 2004-09-11
PCT/US2005/032229 WO2006044059A2 (en) 2004-09-11 2005-09-09 Method and apparatus for modeling the modal properties of optical waveguides

Publications (3)

Publication Number Publication Date
JP2008512728A JP2008512728A (ja) 2008-04-24
JP2008512728A5 JP2008512728A5 (ja) 2011-10-06
JP5358780B2 true JP5358780B2 (ja) 2013-12-04

Family

ID=35695573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007531385A Expired - Fee Related JP5358780B2 (ja) 2004-09-11 2005-09-09 光学導波管のモード特性をモデリングするための方法および装置

Country Status (4)

Country Link
US (2) US7505881B2 (ja)
EP (1) EP1792213A2 (ja)
JP (1) JP5358780B2 (ja)
WO (1) WO2006044059A2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025738B2 (ja) * 2004-03-05 2007-12-26 国立大学法人京都大学 2次元フォトニック結晶
JP2007264331A (ja) * 2006-03-29 2007-10-11 Fujikura Ltd 拡張三角格子型フォトニックバンドギャップファイバ
US20080046077A1 (en) * 2006-08-15 2008-02-21 C&C Vision International Limited Multiocular Intraocular Lens Systems
US20080170830A1 (en) * 2007-01-16 2008-07-17 Fujikura Ltd Photonic band gap fiber and method of producing the same
US8619566B2 (en) * 2008-10-14 2013-12-31 Tadeusz H. Szymanski Delay and jitter limited wireless mesh network scheduling
US9007961B2 (en) 2010-11-22 2015-04-14 May Patents Ltd. Apparatus and method for using and solving linear programming problem and applications thereof
KR101233860B1 (ko) * 2012-02-08 2013-02-15 고려대학교 산학협력단 양자 부호 설계 장치 및 방법
US10637583B2 (en) 2015-07-10 2020-04-28 Omnisent, LLC Systems and methods for modeling quantum entanglement and performing quantum communication
US10204181B1 (en) * 2015-07-10 2019-02-12 Omnisent LLC Systems and methods for modeling quantum structure and behavior
US10809629B2 (en) * 2018-08-31 2020-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for computing feature kernels for optical model simulation
US11074319B2 (en) * 2019-03-07 2021-07-27 International Business Machines Corporation Augmenting model-to-model coupling with high-frequency observations
CN113987880B (zh) * 2021-10-28 2024-10-11 中国石油大学(华东) 一种基于波有限元法的预应力波导结构分析方法及系统

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2441166A (en) * 1942-03-27 1948-05-11 Raspet August Helical spring
US4003369A (en) * 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
US4020829A (en) * 1975-10-23 1977-05-03 Willson James K V Spring guide wire with torque control for catheterization of blood vessels and method of using same
US4425919A (en) * 1981-07-27 1984-01-17 Raychem Corporation Torque transmitting catheter apparatus
US4563181A (en) * 1983-02-18 1986-01-07 Mallinckrodt, Inc. Fused flexible tip catheter
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4580551A (en) * 1984-11-02 1986-04-08 Warner-Lambert Technologies, Inc. Flexible plastic tube for endoscopes and the like
DE3447642C1 (de) * 1984-12-28 1986-09-18 Bernhard M. Dr. 5600 Wuppertal Cramer Lenkbarer Fuehrungsdraht fuer Katheter
JPH025799Y2 (ja) * 1986-02-07 1990-02-13
US4794931A (en) * 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
US5000185A (en) * 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4721117A (en) * 1986-04-25 1988-01-26 Advanced Cardiovascular Systems, Inc. Torsionally stabilized guide wire with outer jacket
US4811743A (en) * 1987-04-21 1989-03-14 Cordis Corporation Catheter guidewire
US5211183A (en) * 1987-05-13 1993-05-18 Wilson Bruce C Steerable memory alloy guide wires
US4989608A (en) * 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US5181668A (en) * 1987-09-07 1993-01-26 Osaka Gas Co., Ltd. Apparatus for running a wire through a pipe
US4832047A (en) * 1987-12-15 1989-05-23 Target Therapeutics Guide wire device
US4827941A (en) * 1987-12-23 1989-05-09 Advanced Cardiovascular Systems, Inc. Extendable guidewire for cardiovascular procedures
US5372138A (en) * 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US4998923A (en) * 1988-08-11 1991-03-12 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US4917102A (en) * 1988-09-14 1990-04-17 Advanced Cardiovascular Systems, Inc. Guidewire assembly with steerable adjustable tip
US4950257A (en) * 1988-09-15 1990-08-21 Mallinckrodt, Inc. Catheter introducer with flexible tip
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5507751A (en) * 1988-11-09 1996-04-16 Cook Pacemaker Corporation Locally flexible dilator sheath
US4985022A (en) * 1988-11-23 1991-01-15 Med Institute, Inc. Catheter having durable and flexible segments
US5007434A (en) * 1989-02-07 1991-04-16 Advanced Cardiovascular Systems, Inc. Catheter tip attitude controlling guide wire
US4911148A (en) * 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US4994018A (en) * 1989-05-31 1991-02-19 Datascope Corporation Intra-aortic balloon assembly
US5095915A (en) * 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US4990143A (en) * 1990-04-09 1991-02-05 Sheridan Catheter Corporation Reinforced medico-surgical tubes
US6165292A (en) * 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
CA2057799C (en) * 1990-12-18 1999-02-02 Robert M. Abrams Superelastic guiding member
US5106455A (en) * 1991-01-28 1992-04-21 Sarcos Group Method and apparatus for fabrication of micro-structures using non-planar, exposure beam lithography
US5315996A (en) * 1991-02-15 1994-05-31 Lundquist Ingemar H Torquable catheter and method
US5304131A (en) * 1991-07-15 1994-04-19 Paskar Larry D Catheter
US5306252A (en) * 1991-07-18 1994-04-26 Kabushiki Kaisha Kobe Seiko Sho Catheter guide wire and catheter
WO1993001856A1 (en) * 1991-07-24 1993-02-04 Advanced Cardiovascular Systems, Inc. Low profile perfusion-type dilatation catheter
US5630806A (en) * 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
US5741429A (en) * 1991-09-05 1998-04-21 Cardia Catheter Company Flexible tubular device for use in medical applications
US5209235A (en) * 1991-09-13 1993-05-11 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter assembly and method for identification of the same
US5605162A (en) * 1991-10-15 1997-02-25 Advanced Cardiovascular Systems, Inc. Method for using a variable stiffness guidewire
US5205830A (en) * 1991-11-12 1993-04-27 Arrow International Investment Corporation Catheter assembly
US5304134A (en) * 1992-01-17 1994-04-19 Danforth Biomedical, Inc. Lubricious yet bondable catheter channel sleeve for over-the-wire catheters
US5399164A (en) * 1992-11-02 1995-03-21 Catheter Imaging Systems Catheter having a multiple durometer
EP0597195B1 (en) * 1992-08-18 1999-07-21 The Spectranetics Corporation Fiber optic guide wire
US5314408A (en) * 1992-11-13 1994-05-24 Cardiovascular Imaging Systems, Inc. Expandable member for a catheter system
JP3345147B2 (ja) * 1993-01-26 2002-11-18 テルモ株式会社 血管拡張器具およびカテーテル
ATE199834T1 (de) * 1993-01-28 2001-04-15 Angiomed Ag Einstückiges führungsteil und verfahren zum herstellen desselben
US5601539A (en) * 1993-11-03 1997-02-11 Cordis Corporation Microbore catheter having kink-resistant metallic tubing
US5720300A (en) * 1993-11-10 1998-02-24 C. R. Bard, Inc. High performance wires for use in medical devices and alloys therefor
US5507301A (en) * 1993-11-19 1996-04-16 Advanced Cardiovascular Systems, Inc. Catheter and guidewire system with flexible distal portions
US5520194A (en) * 1993-12-07 1996-05-28 Asahi Intecc Co., Ltd. Guide wire for medical purpose and manufacturing process of coil thereof
US5569218A (en) * 1994-02-14 1996-10-29 Scimed Life Systems, Inc. Elastic guide catheter transition element
US5406960A (en) * 1994-04-13 1995-04-18 Cordis Corporation Guidewire with integral core and marker bands
US5497785A (en) * 1994-07-27 1996-03-12 Cordis Corporation Catheter advancing guidewire and method for making same
US5599305A (en) * 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5520645A (en) * 1994-10-28 1996-05-28 Intelliwire, Inc. Low profile angioplasty catheter and/or guide wire and method
EP0794811B1 (en) * 1994-11-23 2002-07-31 Micro Interventional Systems, Inc. High torque balloon catheter
US5622184A (en) * 1994-11-29 1997-04-22 Applied Medical Resources Corporation Guidewire and method of manufacture
US5599326A (en) * 1994-12-20 1997-02-04 Target Therapeutics, Inc. Catheter with multi-layer section
US6027461A (en) * 1995-10-11 2000-02-22 Micro Therapeutics, Inc. Infusion guidewire having fixed core wire and flexible radiopaque marker
US20030069522A1 (en) * 1995-12-07 2003-04-10 Jacobsen Stephen J. Slotted medical device
JP3255271B2 (ja) * 1996-03-12 2002-02-12 ダイワ精工株式会社 魚釣用スピニングリール
US6440088B1 (en) * 1996-05-24 2002-08-27 Precision Vascular Systems, Inc. Hybrid catheter guide wire apparatus and method
US6017319A (en) * 1996-05-24 2000-01-25 Precision Vascular Systems, Inc. Hybrid tubular guide wire for catheters
US6014919A (en) * 1996-09-16 2000-01-18 Precision Vascular Systems, Inc. Method and apparatus for forming cuts in catheters, guidewires, and the like
US6553880B2 (en) * 1996-09-16 2003-04-29 Sarcos, Lc Micromachining system
GB9623402D0 (en) * 1996-11-08 1997-01-08 Smiths Industries Plc Catheter assemblies and inner cannulae
US6048338A (en) * 1997-10-15 2000-04-11 Scimed Life Systems, Inc. Catheter with spiral cut transition member
US6010521A (en) * 1997-11-25 2000-01-04 Advanced Cardiovasular Systems, Inc. Catheter member with bondable layer
US6036670A (en) * 1997-12-23 2000-03-14 Cordis Corporation Coiled transition balloon catheter, assembly and procedure
US6022369A (en) * 1998-02-13 2000-02-08 Precision Vascular Systems, Inc. Wire device with detachable end
US6346091B1 (en) * 1998-02-13 2002-02-12 Stephen C. Jacobsen Detachable coil for aneurysm therapy
US6171296B1 (en) * 1998-04-28 2001-01-09 Microtherapeutics, Inc. Flow directed catheter
US6306105B1 (en) * 1998-05-14 2001-10-23 Scimed Life Systems, Inc. High performance coil wire
US6368316B1 (en) * 1998-06-11 2002-04-09 Target Therapeutics, Inc. Catheter with composite stiffener
US6045547A (en) * 1998-06-15 2000-04-04 Scimed Life Systems, Inc. Semi-continuous co-extruded catheter shaft
US6048339A (en) * 1998-06-29 2000-04-11 Endius Incorporated Flexible surgical instruments with suction
US6547779B2 (en) * 1998-07-22 2003-04-15 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
WO2000027462A1 (fr) * 1998-11-06 2000-05-18 The Furukawa Electric Co., Ltd. FIL-GUIDE MEDICAL DU TYPE NiTi ET PROCEDE DE PRODUCTION
US6214042B1 (en) * 1998-11-10 2001-04-10 Precision Vascular Systems, Inc. Micro-machined stent for vessels, body ducts and the like
US6183410B1 (en) * 1999-05-06 2001-02-06 Precision Vascular Systems, Inc. Radiation exposure device for blood vessels, body cavities and the like
US6355027B1 (en) * 1999-06-09 2002-03-12 Possis Medical, Inc. Flexible microcatheter
US6368315B1 (en) * 1999-06-23 2002-04-09 Durect Corporation Composite drug delivery catheter
US6193686B1 (en) * 1999-06-30 2001-02-27 Advanced Cardiovascular Systems, Inc. Catheter with enhanced flexibility
US6352515B1 (en) * 1999-12-13 2002-03-05 Advanced Cardiovascular Systems, Inc. NiTi alloyed guidewires
US6368301B1 (en) * 1999-12-21 2002-04-09 Advanced Cardiovascular Systems, Inc. Catheter having a soft distal tip
US6687548B2 (en) * 2000-05-17 2004-02-03 Cook Vascular Incorporated Apparatus for removing an elongated structure implanted in biological tissue
US6530934B1 (en) * 2000-06-06 2003-03-11 Sarcos Lc Embolic device composed of a linear sequence of miniature beads
US6524301B1 (en) * 2000-12-21 2003-02-25 Advanced Cardiovascular Systems, Inc. Guidewire with an intermediate variable stiffness section
US7117133B2 (en) * 2001-06-15 2006-10-03 Massachusetts Institute Of Technology Photonic band gap structure simulator
CA2450251C (en) * 2001-07-05 2008-10-21 Precision Vascular Systems, Inc. Torqueable soft tip medical device and method of usage
US6918882B2 (en) * 2001-10-05 2005-07-19 Scimed Life Systems, Inc. Guidewire with stiffness blending connection
US7023533B2 (en) * 2003-08-01 2006-04-04 Lucent Technologies Inc. System and method for determining propagation characteristics of photonic structures
GB0403901D0 (en) * 2004-02-20 2004-03-24 Blazephotonics Ltd A hollow-core optical fibre
US7617081B2 (en) * 2004-06-21 2009-11-10 Stc.Unm Spectral element eigensolver for inhomogeneous media

Also Published As

Publication number Publication date
US8407036B2 (en) 2013-03-26
US20090192769A1 (en) 2009-07-30
WO2006044059A2 (en) 2006-04-27
US7505881B2 (en) 2009-03-17
EP1792213A2 (en) 2007-06-06
JP2008512728A (ja) 2008-04-24
US20060133763A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US8407036B2 (en) Method and apparatus for modeling the modal properties of optical waveguides
Lu et al. Waveguide mode solver based on Neumann-to-Dirichlet operators and boundary integral equations
Jung et al. Time‐domain electric‐field integral equation with central finite difference
CN101288009B (zh) 具有纤芯环的光子带隙光纤
Yuan et al. Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps
Dangui et al. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers
Kuang et al. Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals
JP2014191781A (ja) メタ物質の設計方法、メタ物質の構造物、メタ物質の設計システム及びプログラム
Maksymov et al. Photonic stop bands in quasi-random nanoporous anodic alumina structures
Edee et al. Modal method based on subsectional Gegenbauer polynomial expansion for nonperiodic structures: complex coordinates implementation
Lu et al. Efficient boundary integral equation method for photonic crystal fibers
US7023533B2 (en) System and method for determining propagation characteristics of photonic structures
Kuang et al. Propagation loss of line-defect photonic crystal slab waveguides
Grabka et al. Experimental and theoretical study of light propagation in suspended-core optical fiber
Smajic et al. Automatic calculation of band diagrams of photonic crystals using the multiple multipole method
Yuan et al. Mode reduction for efficient modeling of photonic crystal slab structures
Deng et al. The nonunitarity of finite-element beam propagation algorithms
Poletti et al. Advances and limitations in the modeling of fabricated photonic bandgap fibers
Ghatak et al. Propagation characteristics of planar waveguides
Doerr Sparse finite difference time domain method
Aram et al. Novel variational approach for analysis of photonic crystal slabs
Rubio-Merccdes et al. Finite-element frequency-domain analysis of 2D photonic crystal resonant cavities
Nikkhah et al. Subwavelength grating waveguide design rules for integrated photonics
Hansen Adjoint sensitivity analysis for nanophotonic structures
Yuan et al. Dirichlet-to-Neumann map method with boundary cells for photonic crystals devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5358780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees