JP5330529B2 - 液晶表示装置 - Google Patents
液晶表示装置 Download PDFInfo
- Publication number
- JP5330529B2 JP5330529B2 JP2011535299A JP2011535299A JP5330529B2 JP 5330529 B2 JP5330529 B2 JP 5330529B2 JP 2011535299 A JP2011535299 A JP 2011535299A JP 2011535299 A JP2011535299 A JP 2011535299A JP 5330529 B2 JP5330529 B2 JP 5330529B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- birefringent layer
- display device
- crystal display
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133371—Cells with varying thickness of the liquid crystal layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1393—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/118—Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133541—Circular polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133634—Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133637—Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133638—Waveplates, i.e. plates with a retardation value of lambda/n
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133742—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/40—Materials having a particular birefringence, retardation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/04—Function characteristic wavelength independent
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/64—Normally black display, i.e. the off state being black
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/03—Number of plates being 3
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/04—Number of plates greater than or equal to 4
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/06—Two plates on one side of the LC cell
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/12—Biaxial compensators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/13—Positive birefingence
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2413/00—Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
- G02F2413/14—Negative birefingence
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Description
本発明は、液晶表示装置に関する。より詳しくは、円偏光板を用いたVA(垂直配向)モードの液晶表示装置に関するものである。
液晶表示装置は、コンピュータやテレビジョンをはじめとする様々な情報処理装置の表示装置として、広く用いられている。特にTFT方式の液晶表示装置(以下「TFT−LCD」ともいう)が広く普及し、市場の一層の拡大が期待されており、これに伴って、画質のより一層の向上が要望されている。以下、TFT−LCDを例として説明するが、本発明は、TFT−LCDに限定されるものではなく、液晶表示装置全般に適用可能であり、例えば単純マトリクス方式、プラズマアドレス方式等の液晶表示装置にも適用可能である。
現在まで、TFT−LCDで最も広く使用されてきた方式は、正の誘電率異方性を有する液晶を、相互に対向する基板間に水平配向させた、いわゆるTN(ツイステッド・ネマチック)モードであった。TNモードの液晶表示装置は、一方の基板に隣接する液晶分子の配向方向が、他方の基板に隣接する液晶分子の配向方向に対して90°ツイストしていることを特徴とする。このようなTNモードの液晶表示装置では、安価な製造技術が確立され、産業的に成熟しているが、高いコントラスト比を実現することが難しかった。
これに対し、負の誘電率異方性を有する液晶を、相互に対向する基板間に垂直配向させた、いわゆるVAモードの液晶表示装置が知られている。VAモードの液晶表示装置においては、電圧無印加時において、液晶分子が基板面に対し略垂直な方向に配向しているため、液晶セルはほとんど複屈折性及び旋光性を示さず、光はその偏光状態をほとんど変化させることなく液晶セルを通過する。したがって、液晶セルの上下に一対の偏光子(直線偏光子)をその吸収軸が互いに直交するように配する(以下「クロスニコル偏光子」ともいう)ことにより、電圧無印加時において、略完全な黒表示を実現できる。閾値電圧以上の電圧印加時(以下では、単に電圧印加時と略記する)には、液晶分子が傾斜して基板に略平行となり、大きな複屈折性を示して白表示を実現できる。したがって、このようなVAモードの液晶表示装置は、非常に高いコントラスト比を容易に実現することができる。
このようなVAモードの液晶表示装置においては、電圧印加時の液晶分子の傾斜方向が一方向であると液晶表示装置の視野角特性に非対称性が発生してしまうため、例えば画素電極の構造上の工夫や、画素内に突起物等の配向制御手段を設ける方法により、液晶分子の傾斜方向を画素内で複数に分割した配向分割型のVAモードが広く用いられている。なお、液晶分子の傾斜方位が異なる各領域はドメインとも呼ばれ、配向分割型のVAモードは、MVAモード(マルチドメイン型VAモード)とも呼ばれる。
MVAモードでは、白表示状態の透過率を最大化する観点から、通常は偏光子の軸方位と電圧印加時の液晶分子の傾斜方位とが45°の角度をなすように設定される。クロスニコル偏光子間に複屈折媒体を挟んだときの透過率は、偏光子の軸と複屈折媒体の遅相軸とのなす角をα(単位:rad)とするとき、sin2(2α)に比例するためである。典型的なMVAモードでは、液晶分子の傾斜方位が45°、135°、225°、315°の4つのドメインに分割され得る。このような4つのドメインに分割されたMVAモードにおいても、ドメイン同士の境界や配向制御手段の近傍で、シュリーレン(Schliere)配向や意図しない方向への配向が観察されることが多く、透過率ロスの原因となっている。
こうした問題を解決するために、円偏光板を用いたVAモードの液晶表示装置が検討されている(例えば、特許文献1参照。)。そのような液晶表示装置によれば、互いに直交する左右円偏光板間に複屈折媒体を挟んだときの透過率は、偏光子の軸と複屈折媒体の遅相軸とのなす角に依存しないため、液晶分子の傾斜方位が45°、135°、225°、315°以外であっても、液晶分子の傾きさえ制御できれば所望の透過率が確保できる。したがって、例えば、画素中央に円形の突起物を配置し、液晶分子を全方位に傾斜させるものであってもよいし、又は、傾斜方位を全く制御せずにランダムな方位に傾斜させるものであってもよい。なお、本明細書中、円偏光板を用いたVAモードを、円偏光VAモード又は円偏光モードともいう。これに対して、直線偏光板を用いたVAモードを、直線偏光VAモード又は直線偏光モードともいう。また、円偏光板は、よく知られているように、典型的には直線偏光板とλ/4板との組み合わせによって構成される。
さらに、円偏光はミラー等で反射したときに左右の掌性が入れ替わる性質をもつため、例えばミラー上に左円偏光板を配置して光を入射させると、円偏光板を透過して左円偏光に変換された光はミラーで反射されることで右円偏光に変換され、その右円偏光は前記左円偏光板を透過できないので、結局、円偏光板には反射防止の光学的機能があることが知られている。このような円偏光板の反射防止の光学的機能は、表示装置を屋外等の明室環境で観察する場合の不要な反射を防止することができるため、VAモード液晶表示装置を初めとした表示装置の明室コントラスト比改善効果があることが知られている。ここで、前記不要な反射とは、表示装置の内部に存在する透明電極やTFT素子の金属配線等によるものが主であると考えられている。この不要な反射が防止されないと、暗室環境では略完全な黒表示を実現している表示装置であっても、明室環境で観察したときに、表示装置の黒表示時の光量が大きくなり、結果としてコントラスト比を低下させてしまう。
上記のように、円偏光板を用いた円偏光VAモードでは透過率改善効果と不要反射防止効果を得ることができるが、従来の円偏光VAモードの液晶表示装置では斜め視角でのコントラスト比が低く、充分な視野角特性が得られないという点で改善の余地があった。これに対しては、複屈折層(位相差フィルム)を用いた視野角特性の改良技術が種々提案されている。例えば、特許文献1には下記(A)の方法が、特許文献2には下記(B)の方法が、特許文献3には下記(C)の方法が、特許文献4には下記(D)の方法が、非特許文献1には下記(E)の方法が開示されている。
(A)nx>ny>nzの関係を満たすλ/4板を2枚用いる方法。
(B)nx>ny>nzの関係を満たすλ/4板を2枚と、nx<ny≦nzの関係を満たす第二種の複屈折層を1枚又は2枚組み合わせて用いる方法。
(C)nx>nz>nyの関係を満たすλ/4板を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層を組み合わせて用いる方法。
(D)(C)の方法において、さらにnx>nz>nyの関係を満たすλ/2板を1枚又は2枚組み合わせて用いる方法。
(E)一軸性のλ/4板(nx>ny=nzの関係を満たす所謂Aプレート)を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層と、nx>nz>nyの関係を満たす複屈折層を組み合わせて用いる方法。
(B)nx>ny>nzの関係を満たすλ/4板を2枚と、nx<ny≦nzの関係を満たす第二種の複屈折層を1枚又は2枚組み合わせて用いる方法。
(C)nx>nz>nyの関係を満たすλ/4板を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層を組み合わせて用いる方法。
(D)(C)の方法において、さらにnx>nz>nyの関係を満たすλ/2板を1枚又は2枚組み合わせて用いる方法。
(E)一軸性のλ/4板(nx>ny=nzの関係を満たす所謂Aプレート)を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層と、nx>nz>nyの関係を満たす複屈折層を組み合わせて用いる方法。
Zhibing Ge、外6名、「Wide−View Circular Polarizers for Mobile Liquid Crystal Displays」、IDRC08、2008年、p.266−268
しかしながら、本発明者が検討した結果、上記(A)、(B)及び(C)の方法でもまだ視野角特性に改善の余地があることがわかっている。また、上記(C)、(D)及び(E)の方法では、製造が難しく高コストなnx>nz>nyの関係を満たす(0<Nz<1の関係を満たす)二軸性位相差フィルムが必要であるという点で改善の余地があった。
本発明者は、上記の問題点を解決するために種々検討したところ、クロスニコル配置された一対の偏光子(第一及び第二の偏光子)の間に配置される複屈折層の位相差条件に着目し、第一の偏光子と第二の偏光子との間に、nx>ny≧nzの関係を満たす(Nz≧1.0を満たす)第一種の複屈折層(本明細書では、「nx>ny≧nzの関係を満たす複屈折層」を第一種の複屈折層と定義する)と、nx<ny≦nzの関係を満たす(Nz≦0.0を満たす)第二種の複屈折層(本明細書では、「nx<ny≦nzの関係を満たす複屈折層」を第二種の複屈折層と定義する)とを適切に配置することにより、正面方向における第一及び第二の偏光子の直交性を保持しつつ、斜め方向においても第一及び第二の偏光子の直交性を保持することができることを見いだし、下記(F)の方法を提案した。さらに、上記第一種及び第二種の複屈折層は、nx>nz>ny(0<Nz<1)に制御された二軸性位相差フィルムとは異なり、適当な固有複屈折を持つ材料を用いることにより、簡便な方法で製造できることを見いだし、先に特許出願している(特願2008−099526)。
(F)λ/4板を2枚と、nx=ny>nzの関係を満たす第三種の複屈折層と、nx>ny≧nzの関係を満たす第一種の複屈折層と、nx<ny≦nzの関係を満たす第二種の複屈折層を組み合わせて用いる方法。
しかしながら、上記(F)の方法では、5つ以上の複屈折層(位相差フィルム)を用いる形態が好適であり、製造コストに改善の余地がある。また、上記(F)の方法では、2枚のλ/4板のNz係数(二軸性を表すパラメーター)を最適設計することで視野角特性の向上が図られるが、nx>ny≧nz(Nz≧1.0)の関係を満たす汎用の二軸性λ/4板を2枚使った設計条件下では、視野角特性に改善の余地がある。
そこで、本発明者らは、低コストかつ簡便に製造することができるとともに、広い視角範囲において高いコントラスト比を実現することができる円偏光VAモードの液晶表示装置について更に検討を重ね、円偏光VAモードで必要な2枚のλ/4板(第一及び第二のλ/4板)をnx>ny≧nzの関係を満たす汎用の二軸性λ/4板とした上で、そのNz係数を略同じに調整し、第二のλ/4板と第二の偏光子との間に、nx<ny≦nzの関係を満たす複屈折層を配置することにより、広い視角範囲において黒表示状態の光漏れを低減し、高いコントラスト比を実現することができることを見いだした。更に、上記第一種及び第二種の複屈折層は、nx>nz>ny(0<Nz<1)に制御された二軸性位相差フィルムとは異なり、適当な固有複屈折を持つ材料を用いることにより、簡便な方法で製造できることを見いだし、先に特許出願している(特願2009−015927)。
このように、本発明者らは、円偏光VAモードにおける視野角特性の向上について種々検討してきたが、いずれの技術においても、単波長(通常550nm付近)でのみ複屈折層の位相差条件が最適設計されているため、設計波長以外では黒表示時に光漏れが起こり、したがって、斜め視角において着色現象が発生するという点で改善の余地があった。また、上記特許出願(特願2009−015927)に記載の液晶表示装置のように、高いコントラスト比を実現した場合に特に、黒表示時に斜め視角において、設計波長以外の光漏れが発生する、すなわち着色現象が発生してしまう。なお、コントラスト比が低い場合、すなわち黒表示時で光漏れが多い場合は、通常、特別な工夫をしなくてもほとんど着色は発生しない。
本発明は、上記現状に鑑みてなされたものであり、広い視角範囲においてコントラスト比が高く、かつ広い視角範囲及び波長範囲において黒表示時の光漏れを抑制することができる液晶表示装置を提供することを目的とするものである。
本発明者らは、広い視角範囲においてコントラスト比が高く、かつ広い視角範囲及び波長範囲において黒表示時の光漏れを抑制することができる液晶表示装置について種々検討したところ、2枚のλ/4板(第一及び第二のλ/4板)の間にある部材の厚み方向位相差に着目し、2枚のλ/4板の間にある部材の厚み方向位相差の波長分散特性が黒表示時の斜め視角における着色に影響していることを見いだした。そして、上述のように、2枚のλ/4板をnx>ny≧nzの関係を満たす汎用の二軸性λ/4板とし、そのNz係数を略同じに調整し、第二のλ/4板と第二の偏光子との間にnx<ny≦nzの関係を満たす複屈折層を配置することにより、広い視角範囲において黒表示状態の光漏れを低減し、高いコントスラト比を実現した上で、更に、液晶材料の固有の波長分散特性(Δn)に対して、液晶セル(及び第三種の複屈折層)の波長分散特性を大きくすることにより、黒表示時の斜め視角における設計波長以外の光漏れを抑制できることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、nx>ny≧nzの関係を満たす複屈折層を第一種の複屈折層、nx<ny≦nzの関係を満たす複屈折層を第二種の複屈折層、nx≒ny≧nzの関係を満たす複屈折層を第三種の複屈折層、と定義するとき、第一の偏光子、面内位相差がλ/4に調整された第一の第一種の複屈折層(以下、「第一のλ/4板」とも言う。)、対向する一対の基板を備える液晶セル、該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層(以下、「第二のλ/4板」とも言う。)、第二種の複屈折層、及び、第二の偏光子をこの順に有する液晶表示装置であって、該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、該液晶セルは、該一対の基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有し、かつ、下記式(1)及び(2)の少なくとも一方を満たす垂直配向型の液晶セルである液晶表示装置である。
Rth_all(B)/Rth_all(G)>Δn_LC(B)/Δn_LC(G) (1)
Rth_all(R)/Rth_all(G)<Δn_LC(R)/Δn_LC(G) (2)
式中、Rth_all(B)、Rth_all(G)及びRth_all(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差に、該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間の少なくとも一方に第三種の複屈折層が少なくとも一層存在する場合には波長450nm、波長550nm及び波長650nmにおける該第三種の複屈折層の厚み方向位相差を加えた値を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
Rth_all(B)/Rth_all(G)>Δn_LC(B)/Δn_LC(G) (1)
Rth_all(R)/Rth_all(G)<Δn_LC(R)/Δn_LC(G) (2)
式中、Rth_all(B)、Rth_all(G)及びRth_all(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差に、該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間の少なくとも一方に第三種の複屈折層が少なくとも一層存在する場合には波長450nm、波長550nm及び波長650nmにおける該第三種の複屈折層の厚み方向位相差を加えた値を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
本明細書で「偏光子」とは、自然光を直線偏光に変える機能を有する素子のことであり、偏光板、偏光フィルムと同義である。「複屈折層」とは、光学的異方性を有する層のことであり、位相差フィルム、位相差板、光学異方性層、複屈折媒体等と同義である。本明細書における「複屈折層」は、本発明の作用効果を充分に奏する観点から、後述する面内位相差Rの絶対値及び厚み方向位相差Rthの絶対値のいずれか一方が10nm以上の値を有するものを意味し、好ましくは、20nm以上の値を有するものを意味する。また、上述のように、本明細書において、「第一種の複屈折層」とは、nx>ny≧nzの関係を満たす複屈折層を意味し、「第二種の複屈折層」とは、nx<ny≦nzの関係を満たす複屈折層を意味し、「第三種の複屈折層」とは、nx≒ny>nzの関係を満たす複屈折層を意味する。nx及びnyは、波長550nmの光に対する面内方向の主屈折率を表し、nzは、波長550nmの光に対する面外方向(厚み方向)の主屈折率を表す。
本明細書で「面内位相差R」は、複屈折層(液晶セルやλ/4板を含む)の面内方向の主屈折率をnxとnyと定義し、面外方向(厚み方向)の主屈折率をnz、複屈折層の厚みをdと定義したとき、R=|nx−ny|×dで定義される面内位相差(単位:nm)である。これに対して、「厚み方向位相差Rth」は、Rth=(nz−(nx+ny)/2)×dで定義される面外(厚み方向)位相差(単位:nm)である。「λ/4板」とは、少なくとも波長550nmの光に対して略1/4波長(正確には137.5nmであるが、115nmよりも大きく、160nmよりも小さければよい。)の光学的異方性を有する層のことであり、λ/4位相差フィルム、λ/4位相差板と同義である。
「面内遅相軸(進相軸)」は、上記面内主屈折率nx、nyのうち、大きい方をns、小さい方をnfと再定義するとき、主屈折率ns(nf)に対応する誘電主軸の方向(x軸、又はy軸方向)のことである。さらに、「Nz係数」は、Nz=(ns−nz)/(ns−nf)で定義される複屈折層の二軸性の程度を表わすパラメータである。なお、本明細書中で主屈折率や位相差の測定波長は、特に断りのない限り550nmとする。また、同じNz係数をもつ複屈折層でも、複屈折層の平均屈折率=(nx+ny+nz)/3が異なれば、屈折角の影響で斜め方向からの入射に対して複屈折層の実効的な位相差が異なり、設計指針が複雑になってしまう。この問題を避けるため、本明細書では特に断りのない限り、各複屈折層の平均屈折率を1.5に統一してNz係数を算出している。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算してある。また、厚み方向位相差Rthについても同様の扱いをしている。
本明細書において、「第一の第一種の複屈折層のNz係数と第二の第一種の複屈折層のNz係数とが略同じである」とは、Nz係数の差が0.1未満の場合を表し、0.05未満であることが好ましい。「第一の第一種の複屈折層の面内遅相軸と第一の偏光子の吸収軸とが略45°の角度をなす」とは、第一の第一種の複屈折層の面内遅相軸と第一の偏光子の吸収軸とのなす角が40〜50°であればよく、特に好ましくは45°である。第一の第一種の複屈折層の面内遅相軸と第一の偏光子の吸収軸との相対角度が完全に45°ではない場合であっても、第一の第一種の複屈折層の面内遅相軸と第二の第一種の複屈折層の面内遅相軸とが直交することにより、基板面に対して法線方向での光漏れについては、充分な防止効果が得られる。一方、反射防止機能や透過率向上の点では、上記相対角度が45°であることにより、顕著な効果が得られる。「第二の第一種の複屈折層の面内遅相軸が、第一の第一種の複屈折層の面内遅相軸に対して略直交する」とは、第二の第一種の複屈折層の面内遅相軸と第一の第一種の複屈折層の面内遅相軸とのなす角度が88〜92°であればよく、特に好ましくは90°である。「第二の偏光子の吸収軸は、第一の偏光子の吸収軸に対して略直交する」とは、第二の偏光子の吸収軸と第一の偏光子の吸収軸とのなす角度が88〜92°であればよく、特に好ましくは90°である。「第二種の複屈折層の面内進相軸は、第二の偏光子の吸収軸に対して略直交する」とは、第二種の複屈折層の面内進相軸と第二の偏光子の吸収軸とのなす角度が88〜92°であればよく、特に好ましくは90°である。
本発明の液晶表示装置は、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子を構成要素として備えるものである限り、その他の部材により特に限定されるものではない。後述する本発明における表示光の偏光状態の変化を確実に実現する観点からは、本発明の液晶表示装置の好ましい形態として、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子のほかに、第一の偏光子と第二の偏光子との間に複屈折媒体を含まない形態が挙げられる。また、液晶表示装置に使用する複屈折層の数を減らしてコストを低減する観点からは、本発明の液晶表示装置のより好ましい形態として、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子のほかに、液晶表示装置中に複屈折媒体を含まない形態が挙げられる。一方、上述した第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子のほかに、液晶表示装置中に複屈折媒体を付加してもよく、例えば、複屈折層等の波長分散性を調整するために、面内位相差がλ/2に調整されたλ/2板を液晶表示装置中に付加してもよい。
また、本発明者らは、方位によって完全な黒表示を妨げる要因が異なっていることを見いだし、第一及び第二のλ/4板の間に第三種の複屈折層を配置することにより、複数の方位に対する位相差補償を行うことができることを見いだした。第三種の複屈折層を設ける形態においては、最初に、第三種の複屈折層の位相差値を調整することによって、方位0°における位相差補償の条件を最適化することができ、次に、第二種の複屈折層の位相差値を適切に配置することによって、方位0°における位相差補償の最適化条件を変化させることなく、方位45°における位相差補償の条件を最適化することにより、より広い方位において斜め方向における黒表示状態の光漏れを低減できる。その結果、方位及び極角の両面において広い視角範囲での高いコントスラト比を実現できる。さらに、第三種の複屈折層は、nx>nz>ny(0<Nz<1)に制御された二軸性位相差フィルムとは異なり、適当な固有複屈折を持つ材料を用いることにより、簡便な方法で製造可能である。なお、本明細書では、「方位」とは、液晶セルの基板面と平行な方向における向きを表すものであり、0〜360°をとり、「極角」とは、液晶セルの基板面法線方向からの傾斜角を表すものであり、0〜90°をとる。
すなわち、本発明の液晶表示装置は、該第一のλ/4板と該液晶セルとの間、及び、該液晶セルと該第二のλ/4板との間の少なくとも一方に、第三種の複屈折層を少なくとも一層有するものであってもよい。上記第三種の複屈折層は、第一の第一種の複屈折層、及び、第二の第一種の複屈折層のNzが2.00未満である場合に、特に好適に用いられる。上記第三種の複屈折層は、液晶セルに隣接配置されることが好ましい。ここで、「隣接配置」とは、第三種の複屈折層と液晶セルとの間に複屈折媒体が設けられないことを意味し、例えば、第三種の複屈折層と液晶セルとの間に等方性フィルムが配置された形態も含まれる。また、複数の第三種の複屈折層が設けられる場合には、複数の第三種の複屈折層のうちの少なくとも一層が液晶セルと隣接配置され、各第三種の複屈折層同士が互いに隣接配置される形態が好適である。第一の第一種の複屈折層、及び、第二の第一種の複屈折層のNzが2.00以上である場合は、本発明の液晶表示装置は、該第一のλ/4板と該液晶セルとの間、及び、該液晶セルと該第二のλ/4板との間に、第三種の複屈折層を有さなくてもよい。
なお、第三種の複屈折層におけるnx≒nyとは、|nx−ny|≒0とも換言でき、具体的には面内位相差R=|nx−ny|×dが20nm未満の場合を表し、10nm未満であることが好ましい。上記第三種の複屈折層は、多層からなるものであっても、一層のみからなるものであっても、上記第一のλ/4板及び上記第二のλ/4板よりも内側(液晶セル側)に配置され、かつ、その厚み方向位相差の総和が同じである限り、液晶表示装置の透過光強度の特性は原理的に全く同一となる。また、液晶表示装置が第三種の複屈折層を実際には有さない場合も、仮想的に厚み方向位相差がゼロの第三種の複屈折層を有するとして考えることに、原理上は何ら問題ない。従って、以降、特に断りのない限り、本明細書中では、本発明の液晶表示装置として、上記第二のλ/4板と上記液晶セルの間に、第三種の複屈折層が一層配置された液晶表示装置だけに言及して説明を簡略化する。
上記偏光子としては、典型的にはポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたものが挙げられる。通常は、機械強度や耐湿熱性を確保するために、PVAフィルムの両側にトリアセチルセルロース(TAC)フィルム等の保護フィルムをラミネートして実用に供されるが、特に断りのない限り、本明細書中で「偏光子」というときは保護フィルムを含まず、偏光機能を有する素子だけを指す。なお、第一及び第二の偏光子は、いずれがポーラライザ(背面側の偏光子)又はアナライザ(観察面側の偏光子)であっても液晶表示装置の透過光強度の特性は原理的に全く同一となる。以降、特に断りのない限り、本明細書中では第一の偏光子がポーラライザである液晶表示装置だけに言及し、説明を簡略化する。
上記液晶セルは、一対の透明基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有する垂直配向型(Vertical Alignment(VA)モード)の液晶セルである。上記液晶セルは、液晶層中の液晶分子を基板面に略垂直に配向させることで黒表示を行う。VAモードには、Multi−domain VA(MVA)モード、Continuous Pinwheel Alignment(CPA)モード、Patterned VA(PVA)モード、Biased VA(BVA)モード、Reverse TN(RTN)モード、In Plane Switching−VA(IPS−VA)モード等が含まれる。なお、本明細書で「液晶分子を基板面に略垂直に配向させる」とは、液晶分子の平均プレチルト角が80°以上であればよい。また、赤色とは、主波長が620nm以上、680nm以下の色であることが好ましく、主波長が630nm以上、670nm以下の色であることがより好ましい。緑色とは、主波長が520nm以上、580nm未満の色であることが好ましく、主波長が530nm以上、570nm以下の色のことがより好ましい。青色とは、主波長が420nm以上、480nm未満の色であることが好ましく、主波長が430nm以上、470nm以下の色のことがより好ましい。このように、上記液晶セルは、青色を透過(分離)する青色のカラーフィルタ層と、緑色を透過(分離)する緑色のカラーフィルタ層と、赤色を透過(分離)する赤色のカラーフィルタ層とを有してもよい。
上記液晶セルは、上記式(1)及び(2)の少なくとも一方を満たす。これにより、波長550nm付近の光(緑色の光)のみならず、波長450nm付近の短波長の光(青色の光)、及び/又は、波長650nm付近の長波長の光(赤色の光)についても、位相差条件が最適に設計されることとなる。その結果、広い視角範囲及び波長範囲において黒表示時の光漏れの発生を抑制することができる。より詳細には、上記式(1)のみを満たす場合は、青色の光漏れを抑制することができ、上記式(2)のみを満たす場合は、赤色の光漏れを抑制することができる。また、上記式(1)及び(2)を満たす場合は、ほぼ全ての可視光範囲において光漏れを抑制することができ、その結果、黒表示時に斜め視角において着色現象が発生するのを効果的に抑制することができる。なお、青及び赤色の両方の光が漏れた状態、すなわちマゼンタ色に着色した状態と、青又は赤色だけが漏れた状態、すなわち青又は赤色に着色した状態とを比べると、後者の方が「着色が少ない」と言うことが一般的である。したがって、上記式(1)及び(2)の一方のみを満たす場合でも着色は少なくなると言うことができる。ただし、本明細書中、液晶セルの厚み方向位相差とは、一対の透明基板(上記基板)を含む一対の透明基板(上記基板)の内側にある全ての媒体の厚み方向位相差の合計値であり、すなわち、液晶セル全体を試料として測定した厚み方向位相差である。したがって、液晶セルにおいて、液晶層の他に、透明基板、カラーフィルタ層等の液晶セル構成部材が位相差を有する場合、液晶セルの厚み方向位相差は、それらを含む合計値である。
Rth_all(B)、Rth_all(G)及びRth_all(R)をより詳細に説明すると、Rth_all(B)、Rth_all(G)及びRth_all(R)はそれぞれ、上記第一の第一種の複屈折層と上記液晶セルとの間、及び、上記液晶セルと上記第二の第一種の複屈折層との間に第三種の複屈折層が存在しない場合には波長450nm、波長550nm及び波長650nmにおける上記液晶セルの厚み方向位相差を表し、上記第一の第一種の複屈折層と上記液晶セルとの間、及び、上記液晶セルと上記第二の第一種の複屈折層との間の少なくとも一方に第三種の複屈折層が少なくとも一層存在する場合には波長450nm、波長550nm及び波長650nmにおける上記液晶セルの厚み方向位相差に波長450nm、波長550nm及び波長650nmにおける上記第三種の複屈折層の厚み方向位相差を加えた値を表す。
上記液晶表示装置は、青色、緑色及び赤色のカラーフィルタ層が設けられた領域に対応する前記液晶層の厚みをそれぞれd(R)、d(G)及びd(B)とするとき、d(R)、d(G)及びd(B)のうちの少なくとも一つが他と異なることが好ましく、d(R)、d(G)及びd(B)が互いに異なることがより好ましい。これにより、上記式(1)及び(2)の少なくとも一方を満たす液晶セルを容易に実現することができる。
同様の観点からは、上記液晶表示装置は、波長650nmにおける赤色のカラーフィルタ層の厚み方向位相差をRth_cf(R)、波長550nmにおける緑色のカラーフィルタ層の厚み方向位相差をRth_cf(G)、波長450nmにおける青色のカラーフィルタ層の厚み方向位相差をRth_cf(B)とするとき、Rtf_cf(R)、Rth_cf(G)及びRth_cf(B)のうちの少なくとも一つが他と異なっていてもよい。この場合、Rtf_cf(R)、Rth_cf(G)及びRth_cf(B)が互いに異なることがより好ましい。
本発明の液晶表示装置は、第一の偏光子と第二の偏光子との間に、面内位相差がλ/4に調整された第一の第一種の複屈折層(第一のλ/4板)、及び、面内位相差がλ/4に調整された第二の第一種の複屈折層(第二のλ/4板)と、第二種の複屈折層とを有する。本発明においては、上述したように、第一の偏光子と第二の偏光子との間に、さらに、第三種の複屈折層を有していてもよい。例えば、第二のλ/4板と第二種の複屈折層の組み合わせ、第二のλ/4板と第三種の複屈折層の組み合わせ、第一のλ/4板と第三種の複屈折層の組み合わせは、粘着剤を介さずに積層された積層体であることが好ましい。このような積層体は、例えば、共押出し法等の押出し製膜と同時に接着剤で積層する方法や、積層体中の一方の複屈折層をポリマーフィルムから形成し、このポリマーフィルム上に液晶性材料や非液晶性材料から形成される他方の複屈折層を塗布により形成又は転写により積層する方法等で作製可能である。後者の塗布又は転写を用いる方法は、特に第三種の複屈折層が、ポリイミド等の非液晶性材料やコレステリック液晶等の液晶性材料を塗布する方法で作製されることが多いため、第二のλ/4板と第三種の複屈折層の積層体や第一のλ/4板と第三種の複屈折層の積層体を作製する際に好適に用いることができる。
本発明の液晶表示装置においては、第一の偏光子に対して正面方向から入射した光は、第一の偏光子により直線偏光に変換され、第一のλ/4板により直線偏光から円偏光に変換され、液晶セル及び第三種の複屈折層を偏光状態を維持したまま透過し、上記第一のλ/4板と直交関係にある第二のλ/4板により、円偏光から、上記第一の偏光子を透過した直後と同じ直線偏光に再変換され、第二種の複屈折層を偏光状態を維持したまま透過し、上記第一の偏光子と直交する第二の偏光子により直線偏光が遮断されることにより良好な黒表示が得られる。すなわち、第二種及び第三種の複屈折層は、正面方向から入射した光に対して偏光状態を変換することを目的としたものではない。
なお、上記説明は各層を透過する毎に変化する偏光状態を追跡することで黒表示が得られることを説明したものであるが、より直感的には次のような説明でも理解される。すなわち、本発明の液晶表示装置は、正面方向において、(1)第一及び第二の偏光子間に含まれる第一及び第二のλ/4板が互いに直交し、かつ、互いの位相差が同一(λ/4)のため、相互に位相差をキャンセルしあうことで無効化されており、(2)第一及び第二の偏光子間に含まれる第二種の複屈折層は、その進相軸が第二の偏光子の吸収軸と直交しているため実質的に無効化されており、さらに、(3)前記第一及び第二の偏光子間に含まれる第三種の複屈折層及び液晶セルは、正面方向において位相差がゼロのため実質的に無効化されており、さらに、(4)前記第一及び第二の偏光子が互いに直交しているため所謂クロスニコル偏光子が構成されているため、クロスニコル偏光子の完全な黒表示が得られる。
一方、本発明の液晶表示装置は、斜め方向においては、仮に第二種及び第三種の複屈折層による偏光状態の変換がないと想定すると、後述する三つの理由により、第一の偏光子に対して斜め方向から入射した光は、第二の偏光子により遮断されないため完全な黒表示が得られない。すなわち、第二種及び第三種の複屈折層は、斜め方向から入射した光に対してのみ偏光状態を変換し、視野角補償を行うことを目的としている。
以上のように、本発明における第二種及び第三種の複屈折層は、正面方向における良好な黒表示を維持したままで、斜め方向においても良好な黒表示を得ることを可能とするものであり、これにより斜め方向におけるコントラスト比を向上させ、視野角特性に優れた液晶表示装置を実現することができる。
次に、斜め方向から入射した光に対して、第二種及び第三種の複屈折層により偏光状態を変換し、視野角補償を行う三つの理由を詳述する。ここで、図1のように、第一の偏光子(吸収軸方位90°)110、第一のλ/4板(遅相軸方位135°)120、VAモード液晶セル130、第二のλ/4板(遅相軸方位45°)140、第二の偏光子(吸収軸方位0°)150がこの順に積層され、第二種及び第三種の複屈折層を含まない、最も簡単な構成の円偏光VAモード液晶表示装置100を考える。なお、図1中、第一及び第二の偏光子110、150に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板120、140に描かれた矢印は、その遅相軸の方位を表し、VAモード液晶セル130に描かれた楕円体は、その屈折率楕円体の形状を表している。
まず正面方向の黒表示について考えると、第一の偏光子110に対して正面方向から入射した光は第一の偏光子110により直線偏光に変換され、第一のλ/4板120により直線偏光から円偏光に変換され、液晶セル130を偏光状態を維持したまま透過し、上記第一のλ/4板120と直交関係にある第二のλ/4板140により円偏光から、第一の偏光子110を透過した直後と同じ直線偏光に再変換され、第一の偏光子110と直交する第二の偏光子150により直線偏光が遮断されることにより良好な黒表示が得られる。別の言い方をすれば、液晶表示装置100は、正面方向において、(1)上記第一及び第二の偏光子110,150間に含まれる第一及び第二のλ/4板120,140が互いに直交し、かつ、互いの位相差が同一(λ/4)のため、相互に位相差をキャンセルしあうことで無効化されており、(2)上記第一及び第二の偏光子110,150間に含まれる液晶セル130は、正面方向において位相差がゼロのため実質的に無効化されており、さらに、(3)上記第一及び第二の偏光子110,150が互いに直交しているため所謂クロスニコル偏光子が構成されているため、完全な黒表示が得られる。
次に斜め方向の黒表示について考えると、下記視野角阻害要因(1)〜(3)の理由により完全な黒表示は得られない。(1)上記第一及び第二のλ/4板120,140が互いに直交しない、または互いの位相差が同一ではなくなるため無効化されない、(2)上記液晶セル130の位相差がゼロではなくなるため無効化されない、(3)上記第一及び第二の偏光子110,150が互いに直交しないためクロスニコル偏光子が構成されない。
図2を参照しながら、視野角阻害要因(1)〜(3)をさらに詳細に説明する。図2(a)に模式的に示すように、正面方向(基板面に対して法線方向)では、第一のλ/4板120の遅相軸121と第二のλ/4板140の遅相軸141とが互いに直交するのに対し、方位0°における斜め方向においては、第一のλ/4板120の遅相軸121と第二のλ/4板140の遅相軸141とが互いに直交しなくなるため、相互に位相差をキャンセルせず無効化もされない。また、図2(b)に模式的に示すように、正面方向では、第一のλ/4板120の遅相軸121と第二のλ/4板140の遅相軸141とが互いに直交するのに対し、方位45°における斜め方向においては、第一及び第二のλ/4板120,140は遅相軸121と遅相軸141とが互いに直交するものの、互いの位相差が同一ではなくなるため相互に位相差をキャンセルしなくなる。位相差は複屈折(屈折率差)×厚みで決定されるが、実効的な複屈折が正面方向と斜め方向で異なり、しかも、方位にも依存することがその原因である。同じ理由で、正面方向ではゼロであったVAモード液晶セル130の位相差は、任意の斜め方向でゼロではなくなる。正面方向においてのみ実効的な複屈折がゼロとなり、位相差もゼロとなるのである。さらに、図2(c)に模式的に示すように、正面方向では、第一の偏光子110の吸収軸111と第二の偏光子150の吸収軸151とが互いに直交するのに対し、方位45°における斜め方向においては、第一の偏光子110の吸収軸111と第二の偏光子150の吸収軸151とが互いに直交しなくなる。
上に説明したように、最小構成の円偏光VAモード液晶表示装置100は、上記三つの視野角阻害要因(1)〜(3)により、斜め方向で完全な黒表示を得ることができない。逆に言うと、これらの阻害要因の手当て、すなわち光学補償を行うことができれば、斜め方向でもより良い黒表示を得ることができる。先に説明した視野角改良技術(A)〜(E)では実際にそれを行っている。なお、多くの場合、上記の視野角阻害要因(1)と(2)は複合化されて観測される。従って、それらを光学補償する場合も、個別最適化ではなく、視野角阻害要因(1)と(2)を全体最適化するような手法を用いてもよい。
そして、本発明の円偏光VAモード液晶表示装置では、下に詳述するような設計指針に基づき、上記視野角阻害要因(1)〜(3)を同時に光学補償するように設計されている。具体的には、第一及び第二のλ/4板をnx>ny≧nzの関係を満たす汎用の二軸性λ/4板(第一種の複屈折層)とした上で、そのNz係数を略同じに調整し、第二のλ/4板と第二の偏光子の間にnx<ny≦nzの関係を満たす複屈折層(第二種の複屈折層)を配置し、さらに、必要に応じて、第一及び第二のλ/4板の間にnx=ny>nzの関係を満たす複屈折層(第三種の複屈折層)を配置することによりそれを実現している。
ここで、本発明における複屈折層の設計指針について説明する。本発明者は、上記の視野角阻害要因の光学補償を簡便かつ効果的に行うために種々検討したところ、方位によって光学補償の必要性が異なることに着目した。そして、下記表1に示すように、方位0°では視野角阻害要因(3)に対する偏光子の光学補償が不要であることを見出し、この方位では視野角阻害要因(1)に対するλ/4板の光学補償と視野角阻害要因(2)に対する液晶セルの光学補償だけを行えばよいことを見出した。
さらに、本発明者は、ポアンカレ球を用いた偏光状態図解とコンピューターシミュレーションにより、第一及び第二のλ/4板のNz係数Nzqと、液晶セルの厚み方向位相差Rlcとを最適調整することにより、さらに、必要に応じて、第一及び第二のλ/4板の間にnx=ny>nzの関係を満たす第三種の複屈折層を配置し、その厚み方向位相差R3をも最適調整することにより、方位0°において、上記視野角阻害要因(1)及び(2)を同時に、かつ効果的に光学補償できることに想到した。本明細書中、上記のように方位0°における光学補償を目的として、第一及び第二のλ/4板のNz係数Nzq、液晶セルの厚み方向位相差Rlc、及び、第三種の複屈折層の厚み方向位相差R3の最適値を選択するプロセスを1stステップと呼ぶ。
そして、本発明者は、この1stステップの後、第二のλ/4板と第二の偏光子の間にnx<ny≦nzの関係を満たす第二種の複屈折層を、その面内進相軸が該第二の偏光子の吸収軸に対して略直交するように配置し、そのNz係数Nz2と、面内位相差R2とを最適調整することにより、方位45°において、上記視野角阻害要因(1)、(2)及び(3)を同時かつ効果的に光学補償できることに想到した。本明細書中、上記のように1stステップの後に、方位45°における光学補償を目的として、第二種の複屈折層のNz係数Nz2及び面内位相差R2の最適値を選択するプロセスを2ndステップと呼ぶ。
2ndステップで追加される第二種の複屈折層の面内進相軸は、隣接する第二の偏光子の吸収軸に対して略直交するように配置するので、該第二の偏光子の吸収軸方位、すなわち、方位0°方向での光学特性を全く変化させることがない。すなわち、2ndステップの後も、1stステップで得られた最適化状態が相変わらず保存されるのが本発明の光学補償プロセスの特徴である。このように、1stステップと2ndステップとが完全に独立して検討可能であることが、複屈折層の設計を容易にしている。
上記の1stステップ、2ndステップによる光学補償原理の詳細は、ポアンカレ球を用いた図解で次のように説明される。ポアンカレ球による考え方は、複屈折層を通して変化する偏光状態の追跡に有用な手法として結晶光学等の分野で広く知られている(例えば、高崎宏著、「結晶光学」、森北出版、1975年、p.146−163参照)。
ポアンカレ球では、上半球には右周り偏光、下半球には左周り偏光が表され、赤道には直線偏光、上下両極には右円偏光及び左円偏光がそれぞれ表される。球の中心に対して対称な関係にある二つの偏光状態は、楕円率角の絶対値が等しくかつ極性が逆であることから、直交偏光の対を成している。
また、ポアンカレ球上における複屈折層の効果は、複屈折層通過直前の偏光状態を表す点を、ポアンカレ球上での遅相軸(より正確に言い換えると、二つある複屈折層の固有振動モードのうち、遅い方の偏光状態を表わすポアンカレ球上での点の位置。)を中心に(2π)×(位相差)/(波長)(単位:rad)で決定される角度だけ反時計回りに回転移動させた点に変換することである(進相軸を中心に時計回りに回転移動させても同じことである。)。
斜め方向から観察した場合の回転中心と回転角度は、その観察角度での遅相軸(または進相軸)と位相差により決定される。詳しい説明は省略するが、これらは、例えばフレネルの波面法線方程式を解き、複屈折層中の固有振動モードの振動方向と波数ベクトルを知ることで計算できる。斜め方向から観察した場合の遅相軸は、観察角度及びNz係数に依存し、斜め方向から観察した場合の位相差は、観察角度、Nz係数及び面内位相差R(または厚み方向位相差Rth)に依存する。
(1stステップの補償原理)
はじめに、図1の円偏光VAモード液晶表示装置100を、正面方向から観察した場合の偏光状態について考える。この条件において、バックライト(図1では、図示されていないが、第一の偏光子の下方にある。)から出射した光が各偏光子110,150、各複屈折層120,140、液晶セル130を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図3のようになる。なお、各偏光状態を表す点は実際にはポアンカレ球面上にあるが、それらをS1−S2平面に投影して図示している。また、偏光状態を表わす点は○で、複屈折層の遅(進)相軸を表わす点は×で図示している。
はじめに、図1の円偏光VAモード液晶表示装置100を、正面方向から観察した場合の偏光状態について考える。この条件において、バックライト(図1では、図示されていないが、第一の偏光子の下方にある。)から出射した光が各偏光子110,150、各複屈折層120,140、液晶セル130を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図3のようになる。なお、各偏光状態を表す点は実際にはポアンカレ球面上にあるが、それらをS1−S2平面に投影して図示している。また、偏光状態を表わす点は○で、複屈折層の遅(進)相軸を表わす点は×で図示している。
まず、第一の偏光子110を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子150が吸収できる偏光状態、すなわち、第二の偏光子150の消光位(吸収軸方位)と一致している。そして、第一のλ/4板120を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板120の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル130を透過するが、VAモード液晶セル130は正面方向で位相差がゼロなので、偏光状態は変化しない。最後に、第二のλ/4板140を透過することにより、点Q2で表わされる第二のλ/4板140の遅相軸を中心に特定角度の回転変換を受け、点P2に到達し、この点P2は、第二の偏光子150の消光位Eと一致する。このようにして、図1の液晶表示装置100は、正面方向から観察すると、バックライトからの光を遮断することができ、良好な黒表示が得られる。
さらに、図1の円偏光VAモード液晶表示装置100を、第二の偏光子150の吸収軸方位0°において、法線方向から60°傾斜した方向(以下、極60°と呼ぶこともある)から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子110,150、各複屈折層120,140、液晶セル130を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図4のようになる。
まず、第一の偏光子110を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子150が吸収できる偏光状態、すなわち、第二の偏光子150の消光位(吸収軸方位)と一致している。そして、第一のλ/4板120を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板120の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル130を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル130の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。最後に、第二のλ/4板140を透過することにより、点Q2で表わされる第二のλ/4板140の遅相軸を中心に特定角度の回転変換を受け、点P3に到達し、この点P3は、第二の偏光子150の消光位Eと一致しない。このようにして、図1の液晶表示装置100は、方位0°極60°から観察すると、バックライトからの光を遮断することができない。
なお、図3及び図4において点P1〜P3の位置は第一及び第二のλ/4板120,140のNz係数Nzq、及び、液晶セル130の厚み方向位相差Rlcに依存するが、図3及び図4では一例としてNzq=1.6、Rlc=320nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P3の変換については軌跡を表す矢印を図示していない。なお、VAモード液晶セル130のRlcは、典型的には320nm程度であるが、一般的には、270〜400nmの範囲内で調整される。例えば、透過率を大きくする目的でRlcを320nmよりも大きくする場合がある。第一及び第二のλ/4板120,140のNzqは、一般的には、1.0〜2.9の範囲内で調整される。例えば、Rlcが400nm付近に設定されたVAモード液晶セルを用いる場合であって、第三種の複屈折層が設けられない形態においては、Nzq=2.9のλ/4板が好適に用いられる。
次に、図5に示すように、第一の偏光子(吸収軸方位90°)210、第一のλ/4板(遅相軸方位135°)220、VAモード液晶セル230、第三種の複屈折層235、第二のλ/4板(遅相軸方位45°)240及び第二の偏光子(吸収軸方位0°)250がこの順に積層された、第三種の複屈折層を含む円偏光VAモード液晶表示装置200を考える。なお、図5中、第一及び第二の偏光子210、250に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板220、240に描かれた矢印は、その遅相軸の方位を表し、VAモード液晶セル230及び第三種の複屈折層235に描かれた楕円体は、その屈折率楕円体の形状を表している。
はじめに、図5の円偏光VAモード液晶表示装置200を、正面方向から観察した場合の偏光状態について考える。この条件において、バックライト(図5では、図示されていないが、第一の偏光子210の下方にある。)から出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図6のようになる。
まず、第一の偏光子210を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子250が吸収できる偏光状態、すなわち、第二の偏光子250の消光位(吸収軸方位)と一致している。そして、第一のλ/4板220を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板220の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル230及び第三種の複屈折層235を透過するが、VAモード液晶セル230及び第三種の複屈折層235は正面方向で位相差がゼロなので、偏光状態は変化しない。最後に、第二のλ/4板240を透過することにより、点Q2で表わされる第二のλ/4板240の遅相軸を中心に特定角度の回転変換を受け、点P2に到達し、この点P2は、第二の偏光子250の消光位Eと一致する。このようにして、図5の液晶表示装置200は、正面方向から観察すると、図1の液晶表示装置100と同様に、バックライトからの光を遮断することができ、良好な黒表示が得られる。
さらに、図5の円偏光VAモード液晶表示装置200を、第二の偏光子210の吸収軸方位0°において、60°傾斜した方向から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図7のようになる。
まず、第一の偏光子210を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子250が吸収できる偏光状態、すなわち、第二の偏光子250の消光位(吸収軸方位)と一致している。そして、第一のλ/4板220を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板220の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル230を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル230の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層235を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層235の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。最後に、第二のλ/4板240を透過することにより、点Q2で表わされる第二のλ/4板240の遅相軸を中心に特定角度の回転変換を受け、点P4に到達し、この点P4は、第二の偏光子250の消光位Eと一致する。このようにして、図5の液晶表示装置200は、方位0°,極60°の斜め方向から観察した場合も、正面方向から観察した場合と同様に、バックライトからの光を遮断することができる。
なお、図6及び図7において点P1〜P4の位置は第一及び第二のλ/4板220,240のNz係数Nzq、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3に依存するが、図6及び図7では一例としてNzq=1.6、Rlc=320nm、R3=−129nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P4の変換については軌跡を表す矢印を図示していない。
そして、本発明者が検討した結果、第一及び第二のλ/4板220,240のNz係数Nzqに応じて、第三種の複屈折層235の最適な位相差値R3があることが判明した。図8及び図9は、いずれも図5の円偏光VAモード液晶表示装置200を、第二の偏光子250の吸収軸方位0°において、60°傾斜した方向から観察した場合の偏光状態についてポアンカレ球のS1−S2平面で図示したもので、図8はNzq=2.0、Rlc=320nm、R3=−61nmの形態を、図9はNzq=2.35、Rlc=320nm、R3=0nmの形態を示している。
図7、図8及び図9からわかるように、第一及び第二のλ/4板220,240のNz係数Nzqが大きくなるにつれて、第一のλ/4板220を透過直後の偏光状態を表す点P1と、さらにVAモード液晶セル230を透過した後の偏光状態を表す点P2とが、S1軸に対して対称な点に近づくため、点P4と点Eを重ねるために必要なP2→P3変換の量、すなわち、第三種の複屈折層235の必要位相差R3の絶対値が小さくなる。上述したように、VAモード液晶セル230のRlcは、一般的に270〜400nmの範囲内で調整されることから、第一及び第二のλ/4板220,240のNzqが2.00を超えると、第三種の複屈折層235の必要位相差R3が略ゼロとなる。すなわち、第三種の複屈折層235が不要となる。典型的なVAモード液晶セルの位相差値、Rlc=320nmに対しては、Nzq=2.35のとき、第三種の複屈折層の必要位相差R3が略ゼロとなる。
ここで、コンピューターシミュレーションにより、第一及び第二のλ/4板220,240のNz係数Nzqと、第三種の複屈折層235の厚み方向位相差R3の最適値との関係を調べた結果を表2及び図10に示した。図7、図8及び図9のポアンカレ球を用いた図解では、点P1→P3の偏光状態変換を、VAモード液晶セル230の厚み方向位相差RlcによるP1→P2変換と、第三種の複屈折層235の厚み方向位相差R3によるP2→P3変換とに分けて図示した。しかしながら、これらの二つの変換は回転中心が同一で、回転方向が互いに逆なだけであり、回転方向は厚み方向位相差の符号により、回転角度は厚み方向位相差の絶対値により決まる。したがって、上記二つの変換は、「VAモード液晶セル230+第三種の複屈折層235」の、「トータル厚み方向位相差Rlc+R3」によるダイレクトなP1→P3変換として考えても同じことである。換言すると、Rlc+R3が同じでさえあれば、VAモード液晶セル230の厚み方向位相差Rlcに依らず、液晶表示装置の光学特性は同一となる。したがって、表2では、Rlc+R3の最適値をコンピューターシミュレーションにより算出した結果を示した。表2及び図10よりわかるように、Nzqと最適なRlc+R3との関係は1.0≦Nzq≦2.9の範囲では、下記式(A)が充分によい近似を与える。図10中に示した実線が下記式(A)を表わしている。
Rlc+R3=169nm×Nzq−81nm (A)
Rlc+R3=169nm×Nzq−81nm (A)
広い視角範囲においてコントラスト比が高い液晶表示を実現する観点から、上記VAモード液晶セル230の黒表示時(液晶層への電圧無印加時)の厚み方向位相差Rlcと、第三種の複屈折層235の厚み方向位相差R3との和であるRlc+R3は、表2及び図10に示した最適値であることが最も好ましいが、斜め視角でのコントラスト比を大きく低下させない範囲であれば、最適値から多少ずれていてもよい。本発明の作用効果を充分に奏する観点からは、最適値±30nmの範囲が好ましい。
(2ndステップの補償原理)
はじめに、1stステップを終えた図5の液晶表示装置200を、第一の偏光子210の吸収軸方位90°と、第二の偏光子250の吸収軸方位0°を二等分する方位(以下、方位45°と呼ぶこともある)において、60°傾斜した方向から観察した場合を考える。上述したように、1stステップにおいて、液晶表示装置200は、第一及び第二のλ/4板220,240のNz係数Nzqに応じて、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3の最適値が選択され、方位0°における光学補償がなされている。この条件において、バックライトから出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図11のようになる。
はじめに、1stステップを終えた図5の液晶表示装置200を、第一の偏光子210の吸収軸方位90°と、第二の偏光子250の吸収軸方位0°を二等分する方位(以下、方位45°と呼ぶこともある)において、60°傾斜した方向から観察した場合を考える。上述したように、1stステップにおいて、液晶表示装置200は、第一及び第二のλ/4板220,240のNz係数Nzqに応じて、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3の最適値が選択され、方位0°における光学補償がなされている。この条件において、バックライトから出射した光が各偏光子210,250、各複屈折層220,240、液晶セル230を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図11のようになる。
まず、第一の偏光子210を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子250が吸収できる偏光状態、すなわち、第二の偏光子250の消光位(吸収軸方位)と一致していない。方位45°の斜め方向においては、第一及び第二の偏光子210,250が互いに直交しなくなるため、光学補償が必要なことを示唆している。そして、第一のλ/4板220を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板220の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル230を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル230の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層235を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層235の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。最後に、第二のλ/4板240を透過することにより、点Q2で表わされる第二のλ/4板240の遅相軸を中心に特定角度の回転変換を受け、点P4に到達し、この点P4は、第二の偏光子250の消光位Eと一致しない。このようにして、図5の液晶表示装置200は、方位45°,極60°の斜め方向から観察すると、バックライトからの光を遮断することができない。つまり、1stステップを終えただけの液晶表示装置200は、方位45°において光学補償がなされていない。
なお、図11において点P1〜P4の位置は第一及び第二のλ/4板220,240のNz係数Nzq、液晶セル230の厚み方向位相差Rlc、及び、第三種の複屈折層235の厚み方向位相差R3に依存するが、図11では一例としてNzq=1.6、Rlc=320nm、R3=−129nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P4の変換については軌跡を表す矢印を図示していない。
次に、図12に示すように、第一の偏光子(吸収軸方位90°)310、第一のλ/4板(遅相軸方位135°)320、VAモード液晶セル330、第三種の複屈折層335、第二のλ/4板(遅相軸方位45°)340、第二種の複屈折層(進相軸方位90°)345及び第二の偏光子(吸収軸方位0°)350がこの順に積層された、第二種の複屈折層を含む円偏光VAモード液晶表示装置300を考える。第二種の複屈折層は、方位45°での光学補償を行うために図5の構成に追加されたものである。なお、図12中、第一及び第二の偏光子310,350に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板320,340に描かれた矢印は、その遅相軸の方位を表し、第二種の複屈折層345に描かれた矢印は、その進相軸の方位を表し、VAモード液晶セル330及び第三種の複屈折層335に描かれた楕円体は、その屈折率楕円体の形状を表している。
はじめに、図12の円偏光VAモード液晶表示装置300を、正面方向から観察した場合の偏光状態について考える。バックライト(図12では、図示されていないが、第一の偏光子310の下方にある。)から出射した光が各偏光子310,350、各複屈折層320,340、液晶セル330を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図13のようになる。
まず、第一の偏光子310を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子350が吸収できる偏光状態、すなわち、第二の偏光子350の消光位(吸収軸方位)と一致している。そして、第一のλ/4板320を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板320の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル330及び第三種の複屈折層335を透過するが、VAモード液晶セル330及び第三種の複屈折層335は正面方向で位相差がゼロなので、偏光状態は変化しない。次に、第二のλ/4板340を透過することにより、点Q2で表わされる第二のλ/4板340の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。最後に、第二種の複屈折層345を透過するが、点P2にあった偏光状態は、ポアンカレ球上の点R2で表わされる第二種の複屈折層345の進相軸を中心に特定角度の回転変換を受けても偏光状態は点P2から変化せず、この点P2は、第二の偏光子350の消光位Eと一致する。このようにして、図12の液晶表示装置300は、正面方向から観察すると、図1の液晶表示装置100と同様に、バックライトからの光を遮断することができ、良好な黒表示が得られる。
今度は、図12の円偏光VAモード液晶表示装置300を、方位45°において、60°傾斜した方向から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子310,350、各複屈折層320,340、液晶セル330を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図14のようになる。
まず、第一の偏光子310を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子350が吸収できる偏光状態、すなわち、第二の偏光子350の消光位(吸収軸方位)と一致していない。そして、第一のλ/4板320を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板320の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル330を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル330の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層335を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層335の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。次に、第二のλ/4板340を透過することにより、点Q2で表わされる第二のλ/4板340の遅相軸を中心に特定角度の回転変換を受け、点P4に到達する。最後に、第二種の複屈折層345を透過することにより、ポアンカレ球上の点R2で表わされる第二種の複屈折層345の進相軸を中心に特定角度の回転変換を受け、点P5に到達する。このときの回転方向は点R2から原点Oを向かうように見て時計回りである。この点P5は、第二の偏光子350の消光位Eと一致している。このようにして、図12の液晶表示装置300は、方位45°,極60°の斜め方向から観察した場合も、正面方向から観察した場合と同様に、バックライトからの光を遮断することができる。
最後に、図12の円偏光VAモード液晶表示装置300を、方位0°において、60°傾斜した方向から観察した場合の偏光状態について考える。この条件において、バックライトから出射した光が各偏光子310,350、各複屈折層320,340、液晶セル330を透過する毎の偏光状態をポアンカレ球のS1−S2平面で図示すると図15のようになる。
まず、第一の偏光子310を透過した直後の偏光状態はポアンカレ球上で点P0に位置し、点Eで表わされる第二の偏光子350が吸収できる偏光状態、すなわち、第二の偏光子350の消光位(吸収軸方位)と一致している。そして、第一のλ/4板320を透過することにより、点P0にあった偏光状態は、ポアンカレ球上の点Q1で表わされる第一のλ/4板320の遅相軸を中心に特定角度の回転変換を受け、点P1に到達する。このときの回転方向は点Q1から原点Oを向かうように見て反時計回りである。
次に、VAモード液晶セル330を透過することにより、ポアンカレ球上の点Lで表わされる液晶セル330の遅相軸を中心に特定角度の回転変換を受け、点P2に到達する。このときの回転方向は点Lから原点Oを向かうように見て反時計回りである。次に、第三種の複屈折層335を透過することにより、ポアンカレ球上の点R3で表わされる第三種の複屈折層335の遅相軸を中心に特定角度の回転変換を受け、点P3に到達する。このときの回転方向は点R3から原点Oを向かうように見て反時計回りである。次に、第二のλ/4板340を透過することにより、点Q2で表わされる第二のλ/4板340の遅相軸を中心に特定角度の回転変換を受け、点P4に到達する。最後に、第二種の複屈折層345を透過するが、点P4にあった偏光状態は、ポアンカレ球上の点R2で表わされる第二種の複屈折層345の進相軸を中心に特定角度の回転変換を受けても偏光状態は点P4から変化せず、この点P4は、第二の偏光子350の消光位Eと一致する。このようにして、図12の液晶表示装置300は、方位0°,極60°の斜め方向から観察しても、正面方向から観察した場合と同様に、バックライトからの光を遮断することができ、良好な黒表示が得られる。
このようにして、2ndステップを終えた図12の液晶表示装置300は、正面方向、方位0°の斜め方向、及び、方位45°の斜め方向の全てにおいて、バックライトからの光を遮断することができ、良好な黒表示が得られる。
なお、図13、図14及び図15において点P1〜P5の位置は第一及び第二のλ/4板320,340のNz係数Nzq、液晶セル330の厚み方向位相差Rlc、第三種の複屈折層335の厚み方向位相差R3、並びに、第二種の複屈折層345のNz係数Nz2及び面内位相差R2に依存するが、図13、図14及び図15では一例としてNzq=1.6、Rlc=320nm、R3=−129nm、Nz2=−0.30、R2=118nmの形態を図示している。偏光状態の変換を分かりやすくするために、各点の位置は大まかに示されており、厳密には正確ではないものもある。また、図を明瞭に示すため、点P1〜P5の変換については軌跡を表す矢印を図示していない。
そして、本発明者が検討した結果、第一及び第二のλ/4板320,340のNz係数Nzqに応じて、第二種の複屈折層345の最適なNz係数Nz2及び位相差値R2があることが判明した。図16及び図17は、いずれも図12の円偏光VAモード液晶表示装置300を、第二の偏光子350の吸収軸方位45°において、60°傾斜した方向から観察した場合の偏光状態についてポアンカレ球のS1−S2平面で図示したもので、図16はNzq=2.0、Rlc=320nm、R3=−61nm、Nz2=−1.00、R2=94nmの形態を、図17はNzq=2.35、Rlc=320nm、R3=0nm、Nz2=−1.80、R2=90nmの形態を示している。
図15、図16及び図17からわかるように、第一及び第二のλ/4板320,340のNz係数Nzqが大きくなるにつれて、第二種の複屈折層345透過直前の偏光状態を表す点P4が消光位である点Eから離れるため、点P4と点Eを重ねるために必要なP4→P5変換の回転半径を大きくする必要がある。本発明者が検討した結果、回転半径を大きくするためには第二種の複屈折層345の二軸性を増す必要がある。すなわち、Nz係数をより小さくする必要がある。
ここで、コンピューターシミュレーションにより、第一及び第二のλ/4板320,340のNz係数Nzqと、第二種の複屈折層345のNz係数Nz2及び面内位相差R2の最適値との関係を調べた結果を表3、図18及び図19に示した。表3、図18及び図19よりわかるように、Nzqと、最適なNz2、R2との関係は一般に簡単ではないが、1.0≦Nzq≦2.9の範囲では、下記式(B)及び(C)が充分によい近似を与える。図18及び図19中に示した実線がそれを表わしている。
Nz2=−0.63×Nzq2+0.56×Nzq+0.40 (B)
R2=43nm×Nzq2−226nm×Nzq+370nm (C)
Nz2=−0.63×Nzq2+0.56×Nzq+0.40 (B)
R2=43nm×Nzq2−226nm×Nzq+370nm (C)
広い視角範囲においてコントラスト比が高い液晶表示を実現する観点から、上記第二種の複屈折層345のNz2及びR2は、表3、図18及び図19に示した最適値であることが最も好ましいが、斜め視角でのコントラスト比を大きく低下させない範囲であれば、最適値から多少ずれていてもよい。本発明の作用効果を充分に奏する観点からは、Nz2は最適値±0.35の範囲が好ましい。R2は最適値±30nmの範囲が好ましい。
また、表3及び図18によると、Nzq<1.40の範囲で、Nz2の最適値は、0<Nz2<1の範囲となる。この範囲内のNz係数を示す複屈折層は、nx>nz>nyの関係を満たす二軸性位相差フィルムであるため、第二種の複屈折層に該当せず、第二種の複屈折層よりも製造が難しく高コストのフィルムである。したがって、この観点からは、1.40≦Nzqを満たすことが好ましい。また、本発明者は、Nzq<1.40の範囲について、より低コストかつ簡便に、広い視角範囲においてコントラスト比が高い液晶表示を実現する方法を検討した。その結果、Nzq<1.40の範囲では、表3、図18及び図19に示した最適なNz2,R2を満たす複屈折層の代わりとして、Nz2=0,R2=138nmの第二種の複屈折層を用いれば、同様の作用効果を充分に奏することができることを見出した。例えば、Nzq=1.00,1.10,1.20,1.30の各例で、Nz2=0に固定して最適なR2を計算してみると、Nzqによらず、いずれも138nmとなった。本発明の作用効果を充分に奏する観点からは、−0.35≦Nz2≦0を満たし、かつ108nm≦R2≦168nm(最適値138nm±30nmの範囲)を満たすことが好ましい。
なお、上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
また、本発明の液晶表示装置は、上述したように、第三種の複屈折層を有してもよいし、有さなくてもよい。
このように、本発明は、第一の偏光子、面内位相差がλ/4に調整された第一の第一種の複屈折層、対向する一対の基板を備える液晶セル、該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子をこの順に有する液晶表示装置であって、該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、該液晶セルは、該一対の基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有し、かつ、下記式(12)及び(13)の少なくとも一方を満たす垂直配向型の液晶セルである液晶表示装置でもある。
Rth_c(B)/Rth_c(G)>Δn_LC(B)/Δn_LC(G) (12)
Rth_c(R)/Rth_c(G)<Δn_LC(R)/Δn_LC(G) (13)
式中、Rth_c(B)、Rth_c(G)及びRth_c(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
Rth_c(B)/Rth_c(G)>Δn_LC(B)/Δn_LC(G) (12)
Rth_c(R)/Rth_c(G)<Δn_LC(R)/Δn_LC(G) (13)
式中、Rth_c(B)、Rth_c(G)及びRth_c(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
本発明の第二の液晶表示装置は、第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子を構成要素として備えるものである限り、その他の部材により特に限定されるものではない。
本発明の第二の液晶表示装置は、第一の第一種の複屈折層と液晶セルとの間、及び、液晶セルと第二の第一種の複屈折層との間に、第三種の複屈折層を有さないこと以外は、上述した本発明の第一の液晶表示装置と同じ構成を有する。したがって、本発明の第二の液晶表示装置は、本発明の第一の液晶表示装置と、同様の効果を奏し得るとともに、同様の好適な形態を適用し得るので、その詳細な説明は省略する。
なお、本発明の第二の液晶表示装置としては、例えば、図20に示すように、第一の偏光子410、第一のλ/4板(第一種の複屈折層)420、VAモード液晶セル430、第二のλ/4板440、第二種の複屈折層445及び第二の偏光子450をこの順に積層して得られた円偏光VAモード液晶表示装置400が挙げられる。すなわち、図20の液晶表示装置400は、第三種の複屈折層を含まないこと以外は、図12の液晶表示装置300と同じである。なお、図20中、第一及び第二の偏光子410,450に描かれた矢印は、その吸収軸の方位を表し、第一及び第二のλ/4板420,440に描かれた矢印は、その遅相軸の方位を表し、第二種の複屈折層445に描かれた矢印は、その進相軸の方位を表し、VAモード液晶セル430に描かれた楕円体は、その屈折率楕円体の形状を表している。
本発明は更に、第一の偏光子、面内位相差がλ/4に調整された第一の第一種の複屈折層、対向する一対の基板を備える液晶セル、該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、第二種の複屈折層、及び、第二の偏光子をこの順に有する液晶表示装置であって、該液晶表示装置は、該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間の少なくとも一方に、第三種の複屈折層を少なくとも一層有し、該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、該液晶セルは、該一対の基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有し、かつ、下記式(14)及び(15)の少なくとも一方を満たす垂直配向型の液晶セルである液晶表示装置でもある。
Rth_t(B)/Rth_t(G)>Δn_LC(B)/Δn_LC(G) (14)
Rth_t(R)/Rth_t(G)<Δn_LC(R)/Δn_LC(G) (15)
式中、Rth_t(B)、Rth_t(G)及びRth_t(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差と該第三種の複屈折層の厚み方向位相差との合計値を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
Rth_t(B)/Rth_t(G)>Δn_LC(B)/Δn_LC(G) (14)
Rth_t(R)/Rth_t(G)<Δn_LC(R)/Δn_LC(G) (15)
式中、Rth_t(B)、Rth_t(G)及びRth_t(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差と該第三種の複屈折層の厚み方向位相差との合計値を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
本発明の第三の液晶表示装置は、第一の偏光子、第一の第一種の複屈折層、液晶セル、第二の第一種の複屈折層、第二種の複屈折層、第三種の複屈折層、及び、第二の偏光子を構成要素として備えるものである限り、その他の部材により特に限定されるものではない。
本発明の第三の液晶表示装置は、第一の第一種の複屈折層と液晶セルとの間、及び、液晶セルと第二の第一種の複屈折層との間の少なくとも一方に、第三種の複屈折層を少なくとも一層有すること以外は、上述した本発明の第一の液晶表示装置と同じ構成を有する。したがって、本発明の第三の液晶表示装置は、本発明の第一の液晶表示装置と、同様の効果を奏し得るとともに、同様の好適な形態を適用し得るので、その詳細な説明は省略する。
なお、本発明の第三の液晶表示装置としては、例えば、図12の液晶表示装置300が挙げられる。
本発明の第一〜第三の液晶表示装置によれば、広い視角範囲においてコントラスト比が高く、かつ広い視角範囲及び波長範囲において黒表示時の光漏れを抑制することができる。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
(本発明の第一の実施形態)
本発明を適用した液晶表示装置の第一の実施の形態について、図21を参照しながら説明する。図21は、本発明の第一の実施形態の液晶表示装置の構成を示す断面模式図である。
本発明を適用した液晶表示装置の第一の実施の形態について、図21を参照しながら説明する。図21は、本発明の第一の実施形態の液晶表示装置の構成を示す断面模式図である。
本発明の第一の実施形態の液晶表示装置は、図21に示すように、第一の偏光子11、第一のλ/4板(第一種の複屈折層)12、VAモード液晶セル10、第三種の複屈折層13、第二のλ/4板14、第二種の複屈折層15及び第二の偏光子16をこの順に積層して得られた円偏光VAモード液晶表示装置である。
液晶セル10は、第一及び第二の透明基板1r、1fと、それらの透明基板1r、1f間に封入され、透明基板1r、1fに対して垂直配向させた液晶からなる液晶層3とを含んで構成されている。透明基板1fには、青色のカラーフィルタ層2Bが配置された青色画素と、緑色のカラーフィルタ層2Gが配置された緑色画素と、赤色のカラーフィルタ層2Rが配置された赤色画素とが一定の順番で配列されており、相互に隣接する青色、緑色及び赤色の3つのサブピクセル(サブ画素)により1つのピクセル(画素)が構成され、種々の色表示を可能としている。なお、本発明の第一の実施形態(図21)では、カラーフィルタ層2B、2G、2Rは第二の透明基1f側に形成されているが、第一の透明基板11r側に形成されていてもよい。
(本発明の第二の実施形態)
本発明を適用した液晶表示装置の第二の実施の形態について、図22を参照しながら説明する。図22は、本発明の第二の実施形態の液晶表示装置の構成を示す断面模式図である。
本発明を適用した液晶表示装置の第二の実施の形態について、図22を参照しながら説明する。図22は、本発明の第二の実施形態の液晶表示装置の構成を示す断面模式図である。
本発明の第二の実施形態の液晶表示装置は、図22に示すように、第一の偏光子11、第一のλ/4板(第一種の複屈折層)12、VAモード液晶セル10、第二のλ/4板14、第二種の複屈折層15及び第二の偏光子16をこの順に積層して得られた円偏光VAモード液晶表示装置である。
本発明の第二の実施形態は、第三種の複屈折層を含まないことを除いては、第一の実施形態と同様であるので詳しい説明を省略する。
以下、本発明の第一及び第二の実施形態における各構成部材について詳述する。
(複屈折層)
本発明に用いられる複屈折層としては、材料や光学的性能について特に限定されず、例えば、ポリマーフィルムを延伸したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができる。複屈折層の形成方法としては特に限定されない。ポリマーフィルムから形成される複屈折層の場合、例えば溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の複屈折層を同時に形成する方法を用いてもよい。所望の位相差が発現しさえすれば、無延伸であってもよいし、延伸が施されてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、斜め延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。特に、λ/4板については、円偏光板を構成するために偏光子と略45°の相対角度を成して積層するため、ロールフィルムの流れ方向に対して斜め方向に延伸配向させる斜め延伸法を用いることが特に好ましい。また、液晶性材料から形成される複屈折層の場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現しさえすれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。さらに、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料から形成される複屈折層の場合も、液晶性材料から形成される複屈折層と同様の形成方法を用いてもよい。以下、複屈折層の種類別にさらに具体的に説明する。
本発明に用いられる複屈折層としては、材料や光学的性能について特に限定されず、例えば、ポリマーフィルムを延伸したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができる。複屈折層の形成方法としては特に限定されない。ポリマーフィルムから形成される複屈折層の場合、例えば溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の複屈折層を同時に形成する方法を用いてもよい。所望の位相差が発現しさえすれば、無延伸であってもよいし、延伸が施されてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、斜め延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。特に、λ/4板については、円偏光板を構成するために偏光子と略45°の相対角度を成して積層するため、ロールフィルムの流れ方向に対して斜め方向に延伸配向させる斜め延伸法を用いることが特に好ましい。また、液晶性材料から形成される複屈折層の場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現しさえすれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。さらに、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料から形成される複屈折層の場合も、液晶性材料から形成される複屈折層と同様の形成方法を用いてもよい。以下、複屈折層の種類別にさらに具体的に説明する。
(第一種の複屈折層:第一及び第二のλ/4板)
第一種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを延伸加工したもの等を適宜用いることができる。固有複屈折が正の材料としては、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。
第一種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを延伸加工したもの等を適宜用いることができる。固有複屈折が正の材料としては、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。
(第二種の複屈折層)
第二種の複屈折層としては、固有複屈折が負の材料を成分として含むフィルムを延伸加工したもの、固有複屈折が正の材料を成分として含むフィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等を適宜用いることができる。なかでも、製造方法の簡便化の観点からは、固有複屈折が負の材料を成分として含むフィルムを延伸加工したものが好ましい。固有複屈折が負の材料としては、例えば、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物、ポリスチレン、ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルピリジン、ポリメチルメタクリレート、ポリメチルアクリレート、N置換マレイミド共重合体、フルオレン骨格を有するポリカーボネート、トリアセチルセルロース(特にアセチル化度の小さいもの)等が挙げられる。なかでも、光学特性、生産性及び耐熱性の観点からは、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物が好適である。このような樹脂組成物を成分として含むフィルムの製造方法については、例えば、特開2008−146003号公報に開示がある。
第二種の複屈折層としては、固有複屈折が負の材料を成分として含むフィルムを延伸加工したもの、固有複屈折が正の材料を成分として含むフィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等を適宜用いることができる。なかでも、製造方法の簡便化の観点からは、固有複屈折が負の材料を成分として含むフィルムを延伸加工したものが好ましい。固有複屈折が負の材料としては、例えば、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物、ポリスチレン、ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルピリジン、ポリメチルメタクリレート、ポリメチルアクリレート、N置換マレイミド共重合体、フルオレン骨格を有するポリカーボネート、トリアセチルセルロース(特にアセチル化度の小さいもの)等が挙げられる。なかでも、光学特性、生産性及び耐熱性の観点からは、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物が好適である。このような樹脂組成物を成分として含むフィルムの製造方法については、例えば、特開2008−146003号公報に開示がある。
(第三種の複屈折層)
第三種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを縦横二軸延伸加工したもの、コレステリック(カイラルネマチック)液晶やディスコチック液晶等の液晶性材料を塗布したもの、ポリイミドやポリアミド等を含む非液晶性材料を塗布したもの等を適宜用いることができる。
第三種の複屈折層としては、固有複屈折が正の材料を成分として含むフィルムを縦横二軸延伸加工したもの、コレステリック(カイラルネマチック)液晶やディスコチック液晶等の液晶性材料を塗布したもの、ポリイミドやポリアミド等を含む非液晶性材料を塗布したもの等を適宜用いることができる。
(偏光子)
偏光子としては、例えば、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたもの等を適宜用いることができる。
偏光子としては、例えば、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させたもの等を適宜用いることができる。
(液晶セル)
液晶セル10は、液晶分子の傾斜方向を画素内で複数に分割した配向分割型のVAモード、いわゆるMVAモード(Multi−domain VA:マルチドメイン型VAモード)であり、液晶層3中の液晶分子を基板面に垂直に配向させることで黒表示を行う。また、液晶セルの駆動形式としては、TFT方式(アクティブマトリクス方式)のほか、単純マトリクス方式(パッシブマトリクス方式)、プラズマアドレス方式等であってもよい。液晶セル10の構成としては、例えば、それぞれに電極が形成された一対の基板間に液晶層3を狭持し、それぞれの電極間に電圧を印加することで表示を行うものが挙げられる。透明基板1r、1fには、従来のものを適宜用いることができ、例えばガラスを使用することができる。液晶層3についても、従来のものを適宜用いることができ、例えば、誘電率異方性が負のネマチック液晶を使用することができる。垂直配向は、典型的にはポリイミド等からなる垂直配向膜(図示せず)を使用することで実現できる。
液晶セル10は、液晶分子の傾斜方向を画素内で複数に分割した配向分割型のVAモード、いわゆるMVAモード(Multi−domain VA:マルチドメイン型VAモード)であり、液晶層3中の液晶分子を基板面に垂直に配向させることで黒表示を行う。また、液晶セルの駆動形式としては、TFT方式(アクティブマトリクス方式)のほか、単純マトリクス方式(パッシブマトリクス方式)、プラズマアドレス方式等であってもよい。液晶セル10の構成としては、例えば、それぞれに電極が形成された一対の基板間に液晶層3を狭持し、それぞれの電極間に電圧を印加することで表示を行うものが挙げられる。透明基板1r、1fには、従来のものを適宜用いることができ、例えばガラスを使用することができる。液晶層3についても、従来のものを適宜用いることができ、例えば、誘電率異方性が負のネマチック液晶を使用することができる。垂直配向は、典型的にはポリイミド等からなる垂直配向膜(図示せず)を使用することで実現できる。
カラーフィルタ層2B、2G、2Rには、従来のものを適宜用いることができる。例えば、顔料分散型のカラーフィルタ層を使用することができる。本発明の第一及び第二の実施形態(図21及び22)では、(青色カラーフィルタ層2Bの厚み)<(緑色カラーフィルタ層2Gの厚み)<(赤色カラーフィルタ層2Rの厚み)となるように設定されており、それに伴って液晶層3の厚みが、(赤色画素の液晶層3の厚み)<(緑色画素の液晶層3の厚み)<(青色画素の液晶層3の厚み)の関係を満たしている。この関係は、後述の通り、液晶セル10の厚み方向位相差と第三種の複屈折層13の位相差の合計値の波長分散を最適化すべく決定される。したがって、本発明の第一の実施形態では、液晶セル10の厚み方向位相差と第三種の複屈折層13の位相差との合計値の波長分散が上記式(14)及び(15)の少なくとも一方を満足しさえすれば、各色サブ画素の液晶層3の厚みは上記の関係に限定されるものではない。また、本発明の第二の実施形態では、液晶セル10の厚み方向位相差の波長分散が上記式(12)及び(13)少なくとも一方を満足しさえすれば、各色サブ画素の液晶層3の厚みは上記の関係に限定されるものではない。カラーフィルタ層2B、2G、2R等が有する位相差及びその波長分散、液晶層3を形成する液晶材料の複屈折の波長分散や、第三種の複屈折層の波長分散によって、最適な液晶層3の厚みは異なるためである。
なお、本発明の第一及び第二の実施形態では、カラーフィルタ層2B、2G、2Rの厚みを各色画素で調整することで液晶層3の厚みを調整しているが、カラーフィルタ層2B、2G、2Rの厚みは各色画素で一定とし、それとは別に透明材料からなる厚み調整層を設けることで液晶層3の厚みを調整するものであってもよい。もちろん、カラーフィルタ層2B、2G、2Rと厚み調整層の両方を各色画素で異なる厚みとし、液晶層3の厚みを調整するものであってもよい。
なお、ここまでの説明で図示と説明を省略した液晶セル構成部材(例えば配向膜、透明電極、TFT素子、金属配線等)についても、それぞれ従来のものを適宜使用することが可能である。
次に、液晶セル10の位相差について説明する。本発明者が検討した結果、従来技術のカラーフィルタ層は、一般にCプレート型の位相差を有することがわかっている。Cプレート型の位相差とは、面内方向(x方向、y方向)の主屈折率をnx、ny、面外方向(z方向)の主屈折率をnzとするとき、nx≒ny≠nzの関係を満たし、光学軸が面外方向にある位相差のことである。z方向からの光線入射に対して複屈折がおこらないため、液晶表示装置を法線方向から観察した場合の光学特性には影響を与えないが、斜め方向から観察した場合の光学特性には影響を与える。また、Cプレートは(異常光屈折率)−(常光屈折率)の値の正又は負に応じて、ポジ型Cプレート又はネガ型Cプレートと分類されることもある。すなわち、nx≒ny<nzであればポジ型Cプレート、nx≒ny>nzであればネガ型Cプレートである。カラーフィルタ層の各色領域は、一般に、着色組成物を視認側の透明基板に塗工することにより形成されている。着色組成物は、透明樹脂からなるバインダーと、顔料等の色素とからなる。カラーフィルタ層の位相差を調整する方法としては、バインダーと顔料の混合物の塗工時の溶媒の種類や粘度を制御する方法、バインダー樹脂材料そのものの複屈折を制御する方法、カラーフィルタ層の厚みを制御する方法等が例示できる。
液晶層3の厚み方向位相差Rthは、液晶層3の配向状態が垂直配向の場合、液晶の複屈折Δnとセル厚dの積Δn×dで表わされる。波長450nm、波長550nm及び波長650nmそれぞれにおける液晶の複屈折をΔn(B)、Δn(G)及びΔn(R)とすると、一般的な液晶材料では、Δn(B)/Δn(G)=1.05及びΔn(R)/Δn(G)=0.97のような値となる。したがって、例えばセル厚d=3.4μmとして従来の液晶セルを作製すると、液晶層のRthの波長分散はRth(B)/Rth(G)=1.05及びRth(R)/Rth(G)=0.97のような値となる。
一方、カラーフィルタ層の厚みを各色画素で調整することで、液晶層3の厚みを各色画素で調整すれば、液晶セル10の厚み方向位相差Rth_c(B)、Rth_c(G)及びRth_c(R)の相対関係は任意に調整が可能であり、第三種の複屈折層13の波長分散特性も考慮して、液晶層3の厚みを各色画素で調整すれば、本発明の効果を得るために必要な上記式(12)〜(15)の条件を満足することができる。
以下、評価方法について詳述する。
(R、Rth、Nz係数、nx、ny、nzの測定方法)
デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo−scan)を用いて測定した。面内位相差Rは複屈折層の法線方向から実測した。主屈折率nx、ny、nz、厚み方向位相差Rth及びNz係数は、複屈折層の法線方向、法線方向から−50°〜50°傾斜した各斜め方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸と直交する方位とした。また、nx、ny、nz、Rxz及びNzは、カーブフィッティングの計算条件として与える平均屈折率=(nx+ny+nz)/3に依存するが、各複屈折層の平均屈折率を1.5に統一して計算した。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算した。
デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo−scan)を用いて測定した。面内位相差Rは複屈折層の法線方向から実測した。主屈折率nx、ny、nz、厚み方向位相差Rth及びNz係数は、複屈折層の法線方向、法線方向から−50°〜50°傾斜した各斜め方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸と直交する方位とした。また、nx、ny、nz、Rxz及びNzは、カーブフィッティングの計算条件として与える平均屈折率=(nx+ny+nz)/3に依存するが、各複屈折層の平均屈折率を1.5に統一して計算した。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算した。
(液晶表示装置のコントラスト比−視野角特性の測定方法)
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて測定した。光源にはシャープ社製液晶テレビ(シャープ社製、LC−42GX3W)搭載のバックライトを用いた。方位45°,極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(45、60)とした。また、方位0°,極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(0、60)とした。
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて測定した。光源にはシャープ社製液晶テレビ(シャープ社製、LC−42GX3W)搭載のバックライトを用いた。方位45°,極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(45、60)とした。また、方位0°,極60°の斜め方向における白表示と黒表示の輝度を測定し、その比をCR(0、60)とした。
(液晶表示装置の色度視野角測定方法)
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて測定した。光源にはシャープ社製液晶テレビ(商品名:LC37−GH1)搭載のバックライトを用いた。正面方向(極角0°)における黒表示のu’v’色度点と、方位45°,極60°の斜め方向における黒表示のu’v’色度点とを測定し、その2点間の距離をΔE(45、60)とした。また、正面方向(極角0°)における黒表示のu’v’色度点と、方位0°,極60°の斜め方向における黒表示のu’v’色度点とを測定し、その2点間の距離をΔE(0、60)とした。
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて測定した。光源にはシャープ社製液晶テレビ(商品名:LC37−GH1)搭載のバックライトを用いた。正面方向(極角0°)における黒表示のu’v’色度点と、方位45°,極60°の斜め方向における黒表示のu’v’色度点とを測定し、その2点間の距離をΔE(45、60)とした。また、正面方向(極角0°)における黒表示のu’v’色度点と、方位0°,極60°の斜め方向における黒表示のu’v’色度点とを測定し、その2点間の距離をΔE(0、60)とした。
以下に実施例を揚げ本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
また、各例の偏光子、複屈折層及び液晶セルに関し、材料名、軸角度、面内位相差R、厚み方向位相差Rth又はRlc、及び、Nz係数については、下記の表4に示す通りである。表4中、各複屈折層の軸は面内遅相軸の方位角で定義し、偏光子の軸は吸収軸の方位角で定義してある。なお、第二種の複屈折層については面内進相軸が設計上重要であるが、表4中では、他の複屈折層と同様に、第二種の複屈折層の軸は面内遅相軸の方位角で定義してある。第二種の複屈折層の面内進相軸は、第二種の複屈折層の面内遅相軸に直交している。また、表4中、各複屈折層の材料名については、以下の略号を用いて示してある。
NB:ノルボルネン
ChLC:コレステリック液晶
PI:ポリイミド
TAC:トリアセチルセルロース
A:アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物
また、各例の偏光子、複屈折層及び液晶セルに関し、材料名、軸角度、面内位相差R、厚み方向位相差Rth又はRlc、及び、Nz係数については、下記の表4に示す通りである。表4中、各複屈折層の軸は面内遅相軸の方位角で定義し、偏光子の軸は吸収軸の方位角で定義してある。なお、第二種の複屈折層については面内進相軸が設計上重要であるが、表4中では、他の複屈折層と同様に、第二種の複屈折層の軸は面内遅相軸の方位角で定義してある。第二種の複屈折層の面内進相軸は、第二種の複屈折層の面内遅相軸に直交している。また、表4中、各複屈折層の材料名については、以下の略号を用いて示してある。
NB:ノルボルネン
ChLC:コレステリック液晶
PI:ポリイミド
TAC:トリアセチルセルロース
A:アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物
<実施例1>
本発明の第一の実施の形態と同様の液晶表示装置を実際に製造し実施例1とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
本発明の第一の実施の形態と同様の液晶表示装置を実際に製造し実施例1とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
<実施例2>
本発明の第二の実施の形態と同様の液晶表示装置を実際に製造し実施例2とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
本発明の第二の実施の形態と同様の液晶表示装置を実際に製造し実施例2とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
<実施例3>
図23は、実施例2の液晶表示装置の構成を示す断面模式図である。液晶セルのカラーフィルタ層の厚みと位相差を変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差との合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、実施例3の液晶表示装置とした。より詳細には、透明基板1fには、青色のカラーフィルタ層22Bが配置された青色画素と、緑色のカラーフィルタ層22Gが配置された緑色画素と、赤色のカラーフィルタ層22Rが配置された赤色画素とが一定の順番で配列されている。また、(青色カラーフィルタ層22Bの厚み)=(緑色カラーフィルタ層22Gの厚み)=(赤色カラーフィルタ層22Rの厚み)となるように設定されており、それに伴って液晶層23の厚みが各色画素で一定となっている。他方、カラーフィルタ層の位相差を各色画素で調整することで、液晶セル10の厚み方向位相差Rth_c(B)、Rth_c(G)及びRth_c(R)の相対関係を調整している。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
図23は、実施例2の液晶表示装置の構成を示す断面模式図である。液晶セルのカラーフィルタ層の厚みと位相差を変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差との合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、実施例3の液晶表示装置とした。より詳細には、透明基板1fには、青色のカラーフィルタ層22Bが配置された青色画素と、緑色のカラーフィルタ層22Gが配置された緑色画素と、赤色のカラーフィルタ層22Rが配置された赤色画素とが一定の順番で配列されている。また、(青色カラーフィルタ層22Bの厚み)=(緑色カラーフィルタ層22Gの厚み)=(赤色カラーフィルタ層22Rの厚み)となるように設定されており、それに伴って液晶層23の厚みが各色画素で一定となっている。他方、カラーフィルタ層の位相差を各色画素で調整することで、液晶セル10の厚み方向位相差Rth_c(B)、Rth_c(G)及びRth_c(R)の相対関係を調整している。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
<実施例4>
液晶セルのカラーフィルタ層の厚みと位相差を変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差との合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、実施例4の液晶表示装置とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
液晶セルのカラーフィルタ層の厚みと位相差を変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差との合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、実施例4の液晶表示装置とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
<実施例5>
液晶セルのカラーフィルタ層の厚みと位相差を変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差との合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、実施例5の液晶表示装置とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
液晶セルのカラーフィルタ層の厚みと位相差を変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差との合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、実施例5の液晶表示装置とした。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
<比較例1>
図24は、比較例1の液晶表示装置の構成を示す断面模式図である。液晶セルのカラーフィルタ層の厚みを変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差の合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、比較例1の液晶表示装置とした。より詳細には、透明基板1fには、青色のカラーフィルタ層32Bが配置された青色画素と、緑色のカラーフィルタ層32Gが配置された緑色画素と、赤色のカラーフィルタ層32Rが配置された赤色画素とが一定の順番で配列されている。また、(青色カラーフィルタ層32Bの厚み)=(緑色カラーフィルタ層32Gの厚み)=(赤色カラーフィルタ層32Rの厚み)となるように設定されており、それに伴って液晶層33の厚みが各色画素で一定となっている。ただし、カラーフィルタ層の位相差は調整されていない。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
図24は、比較例1の液晶表示装置の構成を示す断面模式図である。液晶セルのカラーフィルタ層の厚みを変更し、液晶セルの厚み方向位相差と第三種の複屈折層の位相差の合計値の波長分散特性を変更したことを除いては、実施例1と同様の液晶表示装置を作成し、比較例1の液晶表示装置とした。より詳細には、透明基板1fには、青色のカラーフィルタ層32Bが配置された青色画素と、緑色のカラーフィルタ層32Gが配置された緑色画素と、赤色のカラーフィルタ層32Rが配置された赤色画素とが一定の順番で配列されている。また、(青色カラーフィルタ層32Bの厚み)=(緑色カラーフィルタ層32Gの厚み)=(赤色カラーフィルタ層32Rの厚み)となるように設定されており、それに伴って液晶層33の厚みが各色画素で一定となっている。ただし、カラーフィルタ層の位相差は調整されていない。光学パラメータ(位相差とその波長分散)等の各種パラメータは、他の例のものとあわせて表4及び5にまとめてある。
(評価結果)
各実施例及び比較例の光学パラメータ(位相差とその波長分散)と、コントラスト視野角、色度視野角の測定結果を表4及び5に示す。表5に示した評価結果から、本発明の実施例1〜5の液晶表示装置は、比較例1の液晶表示装置と比べて、CR(45、60)とCR(0、60)は同等以上で、ΔE(0、60)は小さく、表示性能が優れることがわかった。すなわち、本発明により、広い視角範囲において着色がなく、コントラスト比が高い高品位な液晶表示装置の提供が可能であることが実証された。
各実施例及び比較例の光学パラメータ(位相差とその波長分散)と、コントラスト視野角、色度視野角の測定結果を表4及び5に示す。表5に示した評価結果から、本発明の実施例1〜5の液晶表示装置は、比較例1の液晶表示装置と比べて、CR(45、60)とCR(0、60)は同等以上で、ΔE(0、60)は小さく、表示性能が優れることがわかった。すなわち、本発明により、広い視角範囲において着色がなく、コントラスト比が高い高品位な液晶表示装置の提供が可能であることが実証された。
なお、各例の液晶表示装置は、直線偏光板(第二の偏光素子)とλ/4板との組み合わせからなる円偏光板を液晶セルの両側に備えることから、いずれも円偏光VAモードで表示を行っている。円偏光VAモードは、透過率改善効果のほかに、反射防止効果を得ることができることから、コントラスト比の向上に有効である。円偏光VAモードによる反射防止機能は、液晶表示装置の周囲から一旦液晶表示装置内に入射して液晶表示装置内で反射する光、いわゆる内部反射による反射光を円偏光板の働きによって液晶表示装置外に出射させないようにするものである。したがって、円偏光VAモードによれば、液晶セル内のブラックマトリックス、配線、電極等の表面で反射した光が、液晶表示装置外へ出射しにくくなり、特に、周囲が明るい状況(明環境)において液晶表示装置のコントラスト比が低下することを防止できる。
一方、明環境における液晶表示装置のコントラスト比を低下させる反射光としては、上記の内部反射による反射光のほかに、液晶表示装置の周囲から液晶表示装置内に入射することなく液晶表示装置の表面で反射する光、いわゆる表面反射による反射光が挙げられる。円偏光VAモードの液晶表示装置は、内部反射による反射光が抑制される結果、表面反射による反射光の量が、表示画面の視認性に顕著な影響を及ぼすことになる。したがって、円偏光VAモードの液晶表示装置に対して表面反射による反射光を低減する対策を施すことによって、明環境において非常に高いコントラスト比が得られ、表示画面を見る者は、表示品位の顕著な向上を実感することができる。
表面反射の抑制に用いられる反射防止膜としては、屈折率が異なる複数の膜を積層して形成した反射防止膜、微細な突起及び窪みが表面に形成された反射防止膜が挙げられる。なかでも、後者の反射防止膜の一種である「モスアイ(蛾の目)フィルム」は、可視光の波長(380〜780nm)よりも小さな突起が表面に多数設けられた構造を有し、表面反射の抑制において非常に優れた効果を奏することができる。図25(a)に示すように、モスアイフィルムに入射する光は、表面に設けられた微細な突起361を介してフィルム基材部362に至るため、空気層とフィルム基材部との間にある突起と空気層とが混在する領域(図中のA−B間領域)は、フィルムを構成する材料の屈折率(樹脂膜の場合、1.5程度)と空気の屈折率(1.0)との中間的な屈折率をもつ領域とみなすことができる。すなわち、この領域の屈折率は、図25(b)に示すように、突起及び空気層の体積比の変化に対応して、フィルムの表面に接する空気の屈折率から、フィルムを構成する材料の屈折率まで、可視光の波長よりも短い距離内で連続的に徐々に大きくなる。その結果、モスアイフィルムに入射する光は、空気−フィルム間の界面を屈折率の異なる界面として認識しなくなり、界面で生じる光の反射を大幅に抑制できる。モスアイフィルムによれば、例えば、可視光の表面反射率を0.15%程度にすることが可能である。
モスアイフィルムは、屈折率が異なる界面に配置すれば反射率を低減する効果を奏することができるが、図12に示す構成では、第二の偏光子350よりも内部で生じた内部反射は、第二の偏光子350及び第二のλ/4板340の組み合わせからなる円偏光板によって、抑制することができる。したがって、図12の構成にモスアイフィルムを付加する場合には、図26に示すモスアイフィルム360のように、第二の偏光子350よりも表示面側に配置される。第二の偏光子350よりも表示面側に、保護板等の部材が配置されて複数の界面がある場合には、界面ごとにモスアイフィルムを設けてもよく、少なくとも液晶表示装置の外部に露出される面(表示面)に配置されることが好ましい。
同様に、図20の構成にモスアイフィルムを付加する場合には、図27に示すモスアイフィルム460のように、第二の偏光子450よりも表示面側に配置される。第二の偏光子450よりも表示面側に、保護板等の部材が配置されて複数の界面がある場合には、界面ごとにモスアイフィルムを設けてもよく、少なくとも液晶表示装置の外部に露出される面に配置されることが好ましい。
モスアイフィルムの具体例としては、高さ約200nmの略円錐形状の突起が、頂点間の距離約200nmで多数表面に形成された樹脂膜が挙げられる。
モスアイフィルムの製造方法としては、金型に刻み込んだナノメートルサイズ(1〜1000μm)の凹凸を、基板上に塗布した樹脂材料に押し付けて形状を転写する技術、いわゆるナノインプリント技術が挙げられる。ナノインプリント技術において樹脂材料を硬化させる方法としては、熱ナノインプリント技術、UVナノインプリント技術等が挙げられる。UVナノインプリント技術は、透明基板上に紫外線硬化樹脂の薄膜を成膜し、該薄膜上に金型を押し付けて、その後に紫外線を照射することにより、透明基板上に金型の反転形状のモスアイ構造を有する薄膜を形成するものである。
ナノインプリント技術により、大量に安く、モスアイ構造を有する薄膜を製造するためには、バッチ処理よりもロール・ツー・ロール処理を用いる方が好適である。ロール・ツー・ロール処理によれば、金型ロールを用いて連続的にモスアイ構造を有する薄膜を製造することができる。そのような金型ロールとしては、研磨された円柱状又は円筒状のアルミニウム管の外周面に、陽極酸化法によりナノメートルサイズの窪みを形成したものが挙げられる。陽極酸化法によれば、ナノメートルサイズの窪みを表面に、ランダムに、ほぼ均一に形成することが可能であり、金型ロールの表面に、連続生産に好適な継ぎ目のない(シームレスな)モスアイ構造を形成することができる。
なお、上述した実施例における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本願は、2009年10月7日に出願された日本国特許出願2009−233704号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1r、1f 透明基板
2R、2G、2B、22R、22G、22B、32R、32G、32B カラーフィルタ層
3、23、33 液晶層
11 第一の偏光子
12 第一のλ/4板
10、20、30 VAモード液晶セル
13 第三種の複屈折層
14 第二のλ/4板
15 第二種の複屈折層
16 第二の偏光子
100 円偏光VAモード液晶表示装置
110 第一の偏光子
111 第一の偏光子の吸収軸
120 第一のλ/4板
121 第一のλ/4板の遅相軸
130 VAモード液晶セル
140 第二のλ/4板
141 第二のλ/4板の遅相軸
150 第二の偏光子
151 第二の偏光子の吸収軸
200 円偏光VAモード液晶表示装置
210 第一の偏光子
220 第一のλ/4板
230 VAモード液晶セル
235 第三種の複屈折層
240 第二のλ/4板
250 第二の偏光子
300 円偏光VAモード液晶表示装置
310 第一の偏光子
320 第一のλ/4板
330 VAモード液晶セル
335 第三種の複屈折層
340 第二のλ/4板
345 第二種の複屈折層
350 第二の偏光子
360 モスアイフィルム
361 突起
362 フィルム基材部
400 円偏光VAモード液晶表示装置
410 第一の偏光子
420 第一のλ/4板
430 VAモード液晶セル
440 第二のλ/4板
445 第二種の複屈折層
450 第二の偏光子
460 モスアイフィルム
2R、2G、2B、22R、22G、22B、32R、32G、32B カラーフィルタ層
3、23、33 液晶層
11 第一の偏光子
12 第一のλ/4板
10、20、30 VAモード液晶セル
13 第三種の複屈折層
14 第二のλ/4板
15 第二種の複屈折層
16 第二の偏光子
100 円偏光VAモード液晶表示装置
110 第一の偏光子
111 第一の偏光子の吸収軸
120 第一のλ/4板
121 第一のλ/4板の遅相軸
130 VAモード液晶セル
140 第二のλ/4板
141 第二のλ/4板の遅相軸
150 第二の偏光子
151 第二の偏光子の吸収軸
200 円偏光VAモード液晶表示装置
210 第一の偏光子
220 第一のλ/4板
230 VAモード液晶セル
235 第三種の複屈折層
240 第二のλ/4板
250 第二の偏光子
300 円偏光VAモード液晶表示装置
310 第一の偏光子
320 第一のλ/4板
330 VAモード液晶セル
335 第三種の複屈折層
340 第二のλ/4板
345 第二種の複屈折層
350 第二の偏光子
360 モスアイフィルム
361 突起
362 フィルム基材部
400 円偏光VAモード液晶表示装置
410 第一の偏光子
420 第一のλ/4板
430 VAモード液晶セル
440 第二のλ/4板
445 第二種の複屈折層
450 第二の偏光子
460 モスアイフィルム
Claims (18)
- nx>ny≧nzの関係を満たす複屈折層を第一種の複屈折層、
nx<ny≦nzの関係を満たす複屈折層を第二種の複屈折層、
nx≒ny≧nzの関係を満たす複屈折層を第三種の複屈折層、と定義するとき、
第一の偏光子、
面内位相差がλ/4に調整された第一の第一種の複屈折層、
対向する一対の基板を備える液晶セル、
該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、
第二種の複屈折層、及び、
第二の偏光子
をこの順に有する液晶表示装置であって、
該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、
該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、
該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、
該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、
該液晶セルは、該一対の基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有し、かつ、下記式(1)及び(2)の少なくとも一方を満たす垂直配向型の液晶セルであることを特徴とする液晶表示装置。
Rth_all(B)/Rth_all(G)>Δn_LC(B)/Δn_LC(G) (1)
Rth_all(R)/Rth_all(G)<Δn_LC(R)/Δn_LC(G) (2)
式中、Rth_all(B)、Rth_all(G)及びRth_all(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差に、該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間の少なくとも一方に第三種の複屈折層が少なくとも一層存在する場合には波長450nm、波長550nm及び波長650nmにおける該第三種の複屈折層の厚み方向位相差を加えた値を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。 - 前記液晶表示装置は、青色、緑色及び赤色のカラーフィルタ層が設けられた領域に対応する前記液晶層の厚みをそれぞれd(R)、d(G)及びd(B)とするとき、d(R)、d(G)及びd(B)のうちの少なくとも一つが他と異なることを特徴とする請求項1記載の液晶表示装置。
- 前記液晶表示装置は、波長650nmにおける赤色のカラーフィルタ層の厚み方向位相差をRth_cf(R)、波長550nmにおける緑色のカラーフィルタ層の厚み方向位相差をRth_cf(G)、波長450nmにおける青色のカラーフィルタ層の厚み方向位相差をRth_cf(B)とするとき、Rtf_cf(R)、Rth_cf(G)及びRth_cf(B)のうちの少なくとも一つが他と異なることを特徴とする請求項1記載の液晶表示装置。
- 前記液晶表示装置は、前記第一の第一種の複屈折層と前記液晶セルとの間、及び、前記液晶セルと前記第二の第一種の複屈折層との間の少なくとも一方に、前記第三種の複屈折層を少なくとも一層有することを特徴とする請求項1〜3のいずれかに記載の液晶表示装置。
- 前記第一及び第二の第一種の複屈折層のNz係数をNzq、
前記液晶セルの黒表示時の厚み方向位相差をRlc、
前記第一の第一種の複屈折層と前記第二の第一種の複屈折層との間に配置された少なくとも一層の第三種の複屈折層の厚み方向位相差の総和をR3、と定義するとき、
下記式(3)〜(5)を満足することを特徴とする請求項4記載の液晶表示装置。
1.0≦Nzq≦2.9 (3)
(169nm×Nzq−81nm)−30nm≦Rlc+R3 (4)
Rlc+R3≦(169nm×Nzq−81nm)+30nm (5) - 前記第二種の複屈折層のNz係数をNz2、面内位相差をR2、と定義するとき、
下記式(6)〜(9)を満足することを特徴とする請求項5記載の液晶表示装置。
(−0.63×Nzq2+0.56×Nzq+0.40)−0.35≦Nz2 (6)
Nz2≦(−0.63×Nzq2+0.56×Nzq+0.40)+0.35 (7)
(43nm×Nzq2−226nm×Nzq+370nm)−30nm≦R2 (8)
R2≦(43nm×Nzq2−226nm×Nzq+370nm)+30nm (9) - 1.40≦Nzqを満たすことを特徴とする請求項6記載の液晶表示装置。
- 前記第一及び第二の第一種の複屈折層のNz係数をNzq、と定義するとき、
Nzq<2.00を満たすことを特徴とする請求項4〜7のいずれかに記載の液晶表示装置。 - 前記第一及び第二の第一種の複屈折層のNz係数をNzq、
前記第二種の複屈折層のNz係数をNz2、面内位相差をR2、と定義するとき、
Nzq<1.40を満たし、−0.35≦Nz2≦0を満たし、かつ108nm≦R2≦168nmを満たすことを特徴とする請求項4又は5記載の液晶表示装置。 - 前記液晶表示装置は、前記第一の第一種の複屈折層と前記液晶セルとの間、及び、前記液晶セルと前記第二の第一種の複屈折層との間に、前記第三種の複屈折層を有さないことを特徴とする請求項1〜3のいずれかに記載の液晶表示装置。
- 前記第一及び第二の第一種の複屈折層のNz係数をNzq、
前記液晶セルの黒表示時の厚み方向位相差をRlc、と定義するとき、
下記式(3)、(10)及び(11)を満足することを特徴とする請求項10記載の液晶表示装置。
1.0≦Nzq≦2.9 (3)
(169nm×Nzq−81nm)−30nm≦Rlc (10)
Rlc≦(169nm×Nzq−81nm)+30nm (11) - 前記第二種の複屈折層のNz係数をNz2、面内位相差をR2、と定義するとき、
下記式(6)〜(9)を満足することを特徴とする請求項11記載の液晶表示装置。
(−0.63×Nzq2+0.56×Nzq+0.40)−0.35≦Nz2 (6)
Nz2≦(−0.63×Nzq2+0.56×Nzq+0.40)+0.35 (7)
(43nm×Nzq2−226nm×Nzq+370nm)−30nm≦R2 (8)
R2≦(43nm×Nzq2−226nm×Nzq+370nm)+30nm (9) - 1.40≦Nzqを満たすことを特徴とする請求項12記載の液晶表示装置。
- 前記第一及び第二の第一種の複屈折層のNz係数をNzq、
前記第二種の複屈折層のNz係数をNz2、面内位相差をR2、と定義するとき、
Nzq<1.40を満たし、−0.35≦Nz2≦0を満たし、かつ108nm≦R2≦168nmを満たすことを特徴とする請求項10又は11記載の液晶表示装置。 - 前記第一及び第二の第一種の複屈折層のNz係数をNzq、と定義するとき、
2.00≦Nzqを満たすことを特徴とする請求項10〜14のいずれかに記載の液晶表示装置。 - 前記液晶表示装置は、モスアイフィルムを更に備え、
該モスアイフィルムは、前記液晶表示装置の外部に露出される表示面に配置されることを特徴とする請求項1〜15のいずれかに記載の液晶表示装置。 - nx>ny≧nzの関係を満たす複屈折層を第一種の複屈折層、
nx<ny≦nzの関係を満たす複屈折層を第二種の複屈折層、と定義するとき、
第一の偏光子、
面内位相差がλ/4に調整された第一の第一種の複屈折層、
対向する一対の基板を備える液晶セル、
該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、
第二種の複屈折層、及び、
第二の偏光子
をこの順に有する液晶表示装置であって、
該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、
該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、
該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、
該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、
該液晶セルは、該一対の基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有し、かつ、下記式(12)及び(13)の少なくとも一方を満たす垂直配向型の液晶セルであることを特徴とする液晶表示装置。
Rth_c(B)/Rth_c(G)>Δn_LC(B)/Δn_LC(G) (12)
Rth_c(R)/Rth_c(G)<Δn_LC(R)/Δn_LC(G) (13)
式中、Rth_c(B)、Rth_c(G)及びRth_c(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。 - nx>ny≧nzの関係を満たす複屈折層を第一種の複屈折層、
nx<ny≦nzの関係を満たす複屈折層を第二種の複屈折層、
nx≒ny≧nzの関係を満たす複屈折層を第三種の複屈折層、と定義するとき、
第一の偏光子、
面内位相差がλ/4に調整された第一の第一種の複屈折層、
対向する一対の基板を備える液晶セル、
該第一の第一種の複屈折層と略同じNz係数を有し、面内位相差がλ/4に調整された第二の第一種の複屈折層、
第二種の複屈折層、及び、
第二の偏光子
をこの順に有する液晶表示装置であって、
該液晶表示装置は、該第一の第一種の複屈折層と該液晶セルとの間、及び、該液晶セルと該第二の第一種の複屈折層との間の少なくとも一方に、第三種の複屈折層を少なくとも一層有し、
該第一の第一種の複屈折層の面内遅相軸は、該第一の偏光子の吸収軸に対して略45°の角度をなし、
該第二の第一種の複屈折層の面内遅相軸は、該第一の第一種の複屈折層の面内遅相軸に対して略直交し、
該第二の偏光子の吸収軸は、該第一の偏光子の吸収軸に対して略直交し、
該第二種の複屈折層の面内進相軸は、該第二の偏光子の吸収軸に対して略直交し、
該液晶セルは、該一対の基板間に、液晶層と、青色、緑色及び赤色のうちのいずれかの色をそれぞれ分離する少なくとも青色、緑色及び赤色のカラーフィルタ層とを有し、かつ、下記式(14)及び(15)の少なくとも一方を満たす垂直配向型の液晶セルであることを特徴とする液晶表示装置。
Rth_t(B)/Rth_t(G)>Δn_LC(B)/Δn_LC(G) (14)
Rth_t(R)/Rth_t(G)<Δn_LC(R)/Δn_LC(G) (15)
式中、Rth_t(B)、Rth_t(G)及びRth_t(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶セルの厚み方向位相差と該第三種の複屈折層の厚み方向位相差との合計値を表し、Δn_LC(B)、Δn_LC(G)及びΔn_LC(R)はそれぞれ、波長450nm、波長550nm及び波長650nmにおける該液晶層を構成する液晶材料の複屈折を表す。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011535299A JP5330529B2 (ja) | 2009-10-07 | 2010-05-20 | 液晶表示装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009233704 | 2009-10-07 | ||
JP2009233704 | 2009-10-07 | ||
JP2011535299A JP5330529B2 (ja) | 2009-10-07 | 2010-05-20 | 液晶表示装置 |
PCT/JP2010/058547 WO2011043098A1 (ja) | 2009-10-07 | 2010-05-20 | 液晶表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011043098A1 JPWO2011043098A1 (ja) | 2013-03-04 |
JP5330529B2 true JP5330529B2 (ja) | 2013-10-30 |
Family
ID=43856578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011535299A Active JP5330529B2 (ja) | 2009-10-07 | 2010-05-20 | 液晶表示装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9019451B2 (ja) |
EP (1) | EP2487536B1 (ja) |
JP (1) | JP5330529B2 (ja) |
KR (1) | KR20120050517A (ja) |
CN (1) | CN102549485B (ja) |
BR (1) | BR112012007789A2 (ja) |
RU (1) | RU2012118606A (ja) |
WO (1) | WO2011043098A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4888853B2 (ja) | 2009-11-12 | 2012-02-29 | 学校法人慶應義塾 | 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置 |
JP5503985B2 (ja) * | 2010-01-29 | 2014-05-28 | 日東電工株式会社 | 広視野角円偏光板を備えた液晶表示装置 |
JP5497546B2 (ja) * | 2010-06-14 | 2014-05-21 | 日東電工株式会社 | 液晶パネルおよび液晶表示装置 |
JP2015200681A (ja) * | 2012-08-27 | 2015-11-12 | シャープ株式会社 | 液晶表示装置 |
US9239490B2 (en) * | 2012-09-14 | 2016-01-19 | Apple, Inc. | Displays with reflective polarizers |
US9568772B2 (en) * | 2012-09-14 | 2017-02-14 | Apple Inc. | Displays with elevated backlight efficiency |
JP5370601B1 (ja) * | 2013-02-08 | 2013-12-18 | 東洋紡株式会社 | 画像表示装置 |
JP6001505B2 (ja) * | 2013-06-13 | 2016-10-05 | 富士フイルム株式会社 | 液晶表示装置 |
JP6063822B2 (ja) * | 2013-06-13 | 2017-01-18 | 富士フイルム株式会社 | 液晶表示装置 |
JP2015082035A (ja) * | 2013-10-23 | 2015-04-27 | デクセリアルズ株式会社 | 位相差素子及びその製造方法、液晶表示装置、並びに投射型画像表示装置 |
CN103558710B (zh) | 2013-11-11 | 2016-04-13 | 京东方科技集团股份有限公司 | Tft液晶显示面板 |
JP6938455B2 (ja) * | 2014-05-07 | 2021-09-22 | デクセリアルズ株式会社 | 眼鏡装着者用保護具 |
EP2963506B1 (fr) * | 2014-07-04 | 2019-03-20 | The Swatch Group Research and Development Ltd. | Ensemble d'affichage comprenant deux dispositifs d'affichage superposés |
JP2016062017A (ja) * | 2014-09-19 | 2016-04-25 | 株式会社ジャパンディスプレイ | 表示装置 |
KR101882553B1 (ko) * | 2014-12-31 | 2018-07-26 | 삼성에스디아이 주식회사 | 광학 필름, 이를 포함하는 액정 표시 장치 및 이의 제조방법 |
US10054734B2 (en) | 2015-05-08 | 2018-08-21 | Apple Inc. | Liquid crystal display with backlight |
US11199745B2 (en) * | 2015-08-13 | 2021-12-14 | Zeon Corporation | Liquid crystal display device |
CN105629580A (zh) * | 2016-03-11 | 2016-06-01 | 武汉华星光电技术有限公司 | 一种液晶显示面板及装置 |
US20190155082A1 (en) * | 2016-04-14 | 2019-05-23 | Sharp Kabushiki Kaisha | Liquid crystal display panel and liquid crystal display device |
US10312228B2 (en) * | 2017-01-25 | 2019-06-04 | Innolux Corporation | Display device |
CN108319066B (zh) * | 2018-02-11 | 2022-03-22 | 京东方科技集团股份有限公司 | 彩膜基板及其制造方法、显示装置 |
CN109613761B (zh) * | 2019-01-31 | 2021-06-04 | 上海天马微电子有限公司 | 显示装置 |
CN110047900B (zh) * | 2019-04-26 | 2021-07-23 | 武汉华星光电半导体显示技术有限公司 | 显示面板和电子设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006514754A (ja) * | 2003-01-28 | 2006-05-11 | エルジー・ケム・リミテッド | ネガティブ補償フィルムを有する垂直配向液晶表示装置 |
JP2008134587A (ja) * | 2006-10-30 | 2008-06-12 | Nitto Denko Corp | マルチギャップ構造を有する液晶セルを備える液晶パネル、及び液晶表示装置 |
JP2008249915A (ja) * | 2007-03-30 | 2008-10-16 | Casio Comput Co Ltd | 液晶表示素子 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002040428A (ja) | 1999-09-28 | 2002-02-06 | Stanley Electric Co Ltd | 液晶表示装置 |
TW588171B (en) | 2001-10-12 | 2004-05-21 | Fujitsu Display Tech | Liquid crystal display device |
JP4080245B2 (ja) | 2001-10-12 | 2008-04-23 | シャープ株式会社 | 液晶表示装置 |
JP4105437B2 (ja) | 2002-01-11 | 2008-06-25 | スタンレー電気株式会社 | 垂直配向型液晶表示装置 |
TWI226961B (en) * | 2003-01-30 | 2005-01-21 | Chi Mei Optoelectronics Corp | Multi-domain vertical alignment LCD using circular polarized light |
JP2006251050A (ja) * | 2005-03-08 | 2006-09-21 | Toshiba Matsushita Display Technology Co Ltd | 液晶表示素子 |
JP2007101874A (ja) * | 2005-10-04 | 2007-04-19 | Toshiba Matsushita Display Technology Co Ltd | 液晶表示素子 |
JP4726130B2 (ja) * | 2006-02-08 | 2011-07-20 | 日東電工株式会社 | 液晶表示装置 |
JP5057807B2 (ja) | 2006-09-14 | 2012-10-24 | 旭化成イーマテリアルズ株式会社 | アクリル系樹脂およびスチレン系樹脂を含む位相差フィルム |
JP4692464B2 (ja) | 2006-10-16 | 2011-06-01 | 株式会社デンソー | 車両用交流発電機 |
US8203673B2 (en) * | 2006-11-17 | 2012-06-19 | Nippon Oil Corporation | Elliptical polarizer and vertical alignment type liquid crystal display device comprising the same |
US20080158488A1 (en) * | 2006-12-21 | 2008-07-03 | Fujifilm Corporation | Liquid Crystal Display Device |
JP2009015927A (ja) | 2007-07-02 | 2009-01-22 | Sony Corp | クロック生成回路、記録装置及びクロック生成方法 |
JP5194621B2 (ja) * | 2007-08-02 | 2013-05-08 | 日本ゼオン株式会社 | 液晶表示装置 |
US20090161044A1 (en) * | 2007-12-21 | 2009-06-25 | Zhibing Ge | Wide viewing angle circular polarizers |
US8199283B2 (en) * | 2008-02-27 | 2012-06-12 | Stanley Electric Co., Ltd. | Vertical alignment type liquid crystal display device with viewing angle characteristics improved by disposing optical plates |
CN101971084B (zh) * | 2008-03-13 | 2012-07-04 | 夏普株式会社 | 液晶显示装置 |
JP2009233704A (ja) | 2008-03-27 | 2009-10-15 | Jfe Engineering Corp | 配管溶接に用いる裏当て治具 |
-
2010
- 2010-05-20 EP EP10821770.4A patent/EP2487536B1/en active Active
- 2010-05-20 BR BR112012007789A patent/BR112012007789A2/pt not_active IP Right Cessation
- 2010-05-20 US US13/499,999 patent/US9019451B2/en not_active Expired - Fee Related
- 2010-05-20 CN CN201080043881.5A patent/CN102549485B/zh not_active Expired - Fee Related
- 2010-05-20 JP JP2011535299A patent/JP5330529B2/ja active Active
- 2010-05-20 KR KR1020127008857A patent/KR20120050517A/ko not_active Application Discontinuation
- 2010-05-20 WO PCT/JP2010/058547 patent/WO2011043098A1/ja active Application Filing
- 2010-05-20 RU RU2012118606/28A patent/RU2012118606A/ru not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006514754A (ja) * | 2003-01-28 | 2006-05-11 | エルジー・ケム・リミテッド | ネガティブ補償フィルムを有する垂直配向液晶表示装置 |
JP2008134587A (ja) * | 2006-10-30 | 2008-06-12 | Nitto Denko Corp | マルチギャップ構造を有する液晶セルを備える液晶パネル、及び液晶表示装置 |
JP2008249915A (ja) * | 2007-03-30 | 2008-10-16 | Casio Comput Co Ltd | 液晶表示素子 |
Also Published As
Publication number | Publication date |
---|---|
US9019451B2 (en) | 2015-04-28 |
EP2487536A1 (en) | 2012-08-15 |
CN102549485A (zh) | 2012-07-04 |
KR20120050517A (ko) | 2012-05-18 |
RU2012118606A (ru) | 2013-11-20 |
CN102549485B (zh) | 2014-12-17 |
EP2487536B1 (en) | 2020-04-08 |
WO2011043098A1 (ja) | 2011-04-14 |
JPWO2011043098A1 (ja) | 2013-03-04 |
BR112012007789A2 (pt) | 2016-08-30 |
US20120200811A1 (en) | 2012-08-09 |
EP2487536A4 (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330529B2 (ja) | 液晶表示装置 | |
JP4669909B2 (ja) | 液晶表示装置 | |
JP4792545B2 (ja) | 液晶表示装置 | |
JP5259824B2 (ja) | 液晶表示装置 | |
JP5265614B2 (ja) | 円偏光板 | |
JP4476293B2 (ja) | 液晶表示装置 | |
WO2009113208A1 (ja) | 液晶表示装置 | |
WO2012133137A1 (ja) | 液晶表示装置 | |
WO2013111867A1 (ja) | 液晶表示装置 | |
WO2012133155A1 (ja) | 液晶表示装置 | |
WO2012133140A1 (ja) | 液晶表示装置 | |
WO2012105428A1 (ja) | 液晶表示装置 | |
WO2012133141A1 (ja) | 液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130725 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5330529 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |