[go: up one dir, main page]

JP5329535B2 - Humidity control system using desiccant equipment - Google Patents

Humidity control system using desiccant equipment Download PDF

Info

Publication number
JP5329535B2
JP5329535B2 JP2010510448A JP2010510448A JP5329535B2 JP 5329535 B2 JP5329535 B2 JP 5329535B2 JP 2010510448 A JP2010510448 A JP 2010510448A JP 2010510448 A JP2010510448 A JP 2010510448A JP 5329535 B2 JP5329535 B2 JP 5329535B2
Authority
JP
Japan
Prior art keywords
air
cooling system
duct
air duct
humidity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010510448A
Other languages
Japanese (ja)
Other versions
JP2010529398A5 (en
JP2010529398A (en
Inventor
ファン,ウェイ
ドラマジアン,アルト
アレン ゴーウィング,ジョン
ディネイジ,ポール
タフト,リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munters Corp
Original Assignee
Munters Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munters Corp filed Critical Munters Corp
Publication of JP2010529398A publication Critical patent/JP2010529398A/en
Publication of JP2010529398A5 publication Critical patent/JP2010529398A5/ja
Application granted granted Critical
Publication of JP5329535B2 publication Critical patent/JP5329535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Air Conditioning Control Device (AREA)

Description

関連出願の相互参照Cross-reference of related applications

本出願は、2007年5月30日に出願された米国仮出願第60/924,764号の優先件の利益を主張する。   This application claims the priority benefit of US Provisional Application No. 60 / 924,764, filed May 30, 2007.

本発明は、湿度制御システムに関し、とくに乾燥剤装置の再生に役立つように低グレードの廃熱を利用する湿度制御装置に関する。   The present invention relates to a humidity control system, and more particularly to a humidity control device that utilizes low-grade waste heat to assist in the regeneration of a desiccant device.

屋内の施設における湿度レベルを快適な範囲に維持する空気処理システムを備えた各種システムが提案されている。これらのシステムのうちのある種類のものは、氷の表面が氷結温度に維持されるアイスアリーナ、あるいは大型アイスプラントからの廃熱を利用可能な冷凍保管設備等の他の用途に使用するためにとくに設計されている。そのようなシステムは、通常、直接気化タイプの一次冷媒システムによって冷却される、液体冷媒ループを使用する。アイスリンクコイルに接続された除湿器ユニットを、処理空気を乾燥するために使用するそのようなシステムは、例えば特許文献1に開示されている。一次冷却ユニットのコンプレッサからの廃熱ラインに接続された再熱コイルを用いて、処理空気流内における除湿ユニットを補完する他のそのようなシステムが、特許文献2に開示されている。この再熱コイルは、処理空気流からさらに湿気を除去するための乾燥剤媒体の吸収力を増大させるために、乾燥剤ホイールの再生セクションに供給される再生空気を加熱する。この再熱コイルシステムは、液体冷却システムと接続される除湿システムの処理空気セクションにおける除湿コイルとともに使用される。   Various systems have been proposed with an air treatment system that maintains a comfortable humidity level in indoor facilities. Some of these systems are intended for use in other applications such as ice arenas where the ice surface is maintained at freezing temperatures, or refrigerated storage facilities that can use waste heat from large ice plants. Specially designed. Such systems typically use a liquid refrigerant loop that is cooled by a direct vaporization type primary refrigerant system. Such a system that uses a dehumidifier unit connected to an ice rink coil to dry process air is disclosed, for example, in US Pat. Another such system is disclosed in U.S. Patent No. 5,677,097 that uses a reheat coil connected to the waste heat line from the compressor of the primary cooling unit to complement the dehumidification unit in the process air stream. This reheat coil heats the regeneration air supplied to the regeneration section of the desiccant wheel to increase the absorbency of the desiccant medium to further remove moisture from the process air stream. This reheat coil system is used with a dehumidification coil in the process air section of the dehumidification system connected to the liquid cooling system.

米国特許第6,321,551号明細書US Pat. No. 6,321,551 米国特許第6,935,131号明細書US Pat. No. 6,935,131

本発明の一態様によれば、除湿システムの乾燥剤ユニットに供給される再生空気を予熱するために、再活性化回路が提供される。再活性化回路は、回路用の蒸発器として機能する、コンプレッサおよび(水、塩水(brine)、または他の冷媒を使用する)冷媒熱交換器を有する、直接気化冷却回路と接続された再活性化空気冷却コンデンサコイル/除湿器コイルからなる。この再活性化回路は、氷床を凍結させる二次冷却回路における液体冷媒から熱を抽出するために、水源ヒートポンプとして機能する。低グレード(85−95度F(29.4−35℃)の低温)の熱は二次冷却プラントから排除され、乾燥剤材料を再生するために、空気冷却コンデンサコイルを通るさらに高グレードの熱(115−130度F(46.1−54.4℃)の高温)を発生するために、再活性化回路により抽出される。加熱された空気は、乾燥剤から湿気を除去し、大気中に放出する。   According to one aspect of the present invention, a reactivation circuit is provided to preheat the regenerative air supplied to the desiccant unit of the dehumidification system. The reactivation circuit is connected directly to the evaporative cooling circuit with a compressor and a refrigerant heat exchanger (using water, brine, or other refrigerant) that acts as an evaporator for the circuit Air-cooled condenser coil / dehumidifier coil. This reactivation circuit functions as a water source heat pump to extract heat from the liquid refrigerant in the secondary cooling circuit that freezes the ice sheet. Low grade (85-95 ° F. (29.4-35 ° C.) low temperature) heat is removed from the secondary cooling plant and higher grade heat through the air cooled condenser coil to regenerate the desiccant material. To generate (high temperature of 115-130 degrees F (46.1-54.4 ° C.)), it is extracted by the reactivation circuit. The heated air removes moisture from the desiccant and releases it to the atmosphere.

本発明の他の態様によれば、アイスリンク等を含む内部空間または包囲空間(enclosure)に循環される戻り空気または戻り空気と外気は、乾燥剤材料により連続する工程において除湿される。乾燥剤は、供給処理空気流および再活性化空気流の双方を通じて回転する、乾燥剤ホイールであることが好ましい。除湿コイルは、除湿ホイールの再生セクションの再活性化空気流の上流に配置され、連続するコンプレッサを有する直接気化冷却回路およびその後の分離空気冷却コンデンサコイルに接続されている。このシステムにより、包囲空間の湿度レベルが増加し、戻り空気および/または戻り空気と外気との混合気の湿度が所定レベルを超えた場合、第2ステージのコンプレッサが、空気が乾燥剤ホイールに到達する前に、空気を冷却し除湿するために作動されるであろう。乾燥剤に入る空気の湿度が上昇し続ければ、第3および第4ステージのコンプレッサも引き続き作動される。戻り空気湿度がその制御された設定点に戻されると、コンプレッサのステージは逆順にオフとされ、最終的に除湿器の作動が停止される。   According to another aspect of the present invention, the return air or return air and the outside air circulated into an internal space including an ice rink or the like or an enclosure is dehumidified in a continuous process by the desiccant material. The desiccant is preferably a desiccant wheel that rotates through both the feed process air stream and the reactivated air stream. The dehumidification coil is located upstream of the reactivation air flow in the regeneration section of the dehumidification wheel and is connected to a direct vaporization cooling circuit with a continuous compressor and a subsequent separated air cooling condenser coil. This system increases the humidity level of the enclosed space, and if the humidity of the return air and / or the mixture of return air and outside air exceeds a predetermined level, the second stage compressor causes the air to reach the desiccant wheel. It will be activated to cool and dehumidify the air before doing so. If the humidity of the air entering the desiccant continues to rise, the third and fourth stage compressors will continue to operate. When the return air humidity is returned to its controlled set point, the compressor stages are turned off in reverse order and eventually the dehumidifier is deactivated.

本発明のより一般的な実施形態において、乾燥剤再生または再活性化空気流を加熱するコンデンサコイル(condensing coil)用の熱を生成する冷却回路は、環境温度から分断された任意の低グレードの液体熱ループと接続される。これは、システムが環境状態に拘束されず、周囲の環境温度から独立して適切な再活性化温度の制御を行うことができるようにすることを意味する。したがって、水、グリコールおよび塩水ループは、上述した氷床冷却システム等の二次冷却剤ループから排除された熱に制限される必要がないが、公知の太陽熱ループ、冷却塔、地下水ループ、他の排除された熱の冷却ループ、または一年中45度F(7.2℃)から95度F(35℃)の間に温度が維持されるように設計されたあらゆるループを含むであろう。例えば、太陽により低温に加熱された水を使用する低グレードの太陽熱ループが使用できるであろう。   In a more general embodiment of the present invention, the cooling circuit that generates heat for the condensing coil that heats the desiccant regeneration or reactivation air stream may be of any low grade decoupled from ambient temperature. Connected with liquid heat loop. This means that the system is not constrained by environmental conditions and can provide appropriate reactivation temperature control independent of the ambient environmental temperature. Thus, the water, glycol and salt water loops need not be limited to heat removed from secondary coolant loops such as the ice sheet cooling system described above, but are known solar loops, cooling towers, groundwater loops, other Excluded heat cooling loops, or any loop designed to maintain temperature between 45 degrees F. (7.2 degrees C.) and 95 degrees F. (35 degrees C.) throughout the year will be included. For example, a low grade solar loop using water heated to a low temperature by the sun could be used.

本発明の上述したおよび他の目的、特徴および効果は、添付図面とともに参照されるべき以下の具体的な実施形態の詳細な説明により明らかとなるであろう。   The above and other objects, features and advantages of the present invention will become apparent from the following detailed description of specific embodiments, which should be referred to in conjunction with the accompanying drawings.

本発明による除湿システムの概略図Schematic of dehumidification system according to the present invention 本発明に使用される冷却システムの1つの詳細図Detailed view of one of the cooling systems used in the present invention

図1に示すように、本発明のシステム10は、包囲空間または建物(不図示)内にある氷床14を凍結するための冷却システム12を備える。システム10は、包囲空間から来て、ファン20の作動により包囲空間に戻る戻り空気流18の湿度を制御するよう動作可能な、湿度制御ユニット16をさらに備える。必要であれば、ある割合の外気を、公知の手法によりダクト22を通じて戻り空気流に導入することができる。   As shown in FIG. 1, the system 10 of the present invention comprises a cooling system 12 for freezing an ice sheet 14 in an enclosed space or building (not shown). The system 10 further comprises a humidity control unit 16 that is operable to control the humidity of the return air stream 18 that comes from the enclosure and returns to the enclosure by operation of the fan 20. If necessary, a proportion of outside air can be introduced into the return air stream through the duct 22 by known techniques.

冷却システム12は、アイスリンク、アイスプラント14等の床に配置され、供給および戻りライン26,28並びにポンプ29により蒸発器30と接続された一組のコイル(不図示)を有する、液体冷媒二次冷却システム24を備える。   The cooling system 12 is disposed on the floor of an ice rink, ice plant 14, etc., and has a set of coils (not shown) connected to the evaporator 30 by supply and return lines 26, 28 and a pump 29. A secondary cooling system 24 is provided.

蒸発器30は、ライン38により蒸発器30内のコイルに接続されるコンデンサ34およびコンプレッサ36を有する一次冷却システム32の一部を構成する。一次冷却システムは、蒸発器において液体冷却システムからの熱を吸収し、コンデンサ34においてその熱を大気に放出する従来の直接気化システムである。一次冷却システム32は、ライン42,44により冷媒ライン38に接続されたさらなる熱交換器40を備える。この熱交換器は、これもまた直接気化冷却システムである三次冷却システム50用の蒸発器として機能する。システム50は、湿度制御装置16のハウジング54内に配置されたコンプレッサ52を備える。その装置は、公知の壁および調整板により互いに分離された再生空気ダクト56および処理空気ダクト58を備える。   The evaporator 30 forms part of a primary cooling system 32 having a condenser 34 and a compressor 36 connected by lines 38 to coils in the evaporator 30. The primary cooling system is a conventional direct vaporization system that absorbs heat from the liquid cooling system in the evaporator and releases it to the atmosphere in the condenser 34. The primary cooling system 32 includes a further heat exchanger 40 connected to the refrigerant line 38 by lines 42 and 44. This heat exchanger functions as an evaporator for the tertiary cooling system 50, which is also a direct evaporative cooling system. The system 50 includes a compressor 52 disposed within the housing 54 of the humidity controller 16. The apparatus comprises a regeneration air duct 56 and a process air duct 58 separated from each other by known walls and adjustment plates.

除湿システム16は、再生ダクト56において再生され、処理空気ダクト58において空気を除湿するように、ハウジングに回転可能に取り付けられた公知の構造の乾燥剤ホイール装置60も備える。乾燥剤ホイールは、公知の構造を有し、任意の手法により回転可能に取り付けられる。   The dehumidification system 16 also includes a desiccant wheel device 60 of known construction that is regenerated in the regeneration duct 56 and is rotatably mounted on the housing to dehumidify air in the process air duct 58. The desiccant wheel has a known structure and is rotatably attached by any method.

再生空気は、それが乾燥剤ホイールを通った後に、再生空気を大気中に放出するファン64により、ハウジング54の開口62を通って大気から再生ダクト56に引き込まれる。   The regeneration air is drawn from the atmosphere into the regeneration duct 56 through the opening 62 in the housing 54 by a fan 64 that releases the regeneration air into the atmosphere after it passes through the desiccant wheel.

冷却システム50は、再生ダクト56における乾燥剤ホイールの上流側に取り付けられたコンデンサコイル66を備える。コイルは、ライン70によって熱交換器40に交互に接続されるコンプレッサ52に、冷媒ライン68により接続される。   The cooling system 50 includes a condenser coil 66 attached to the regeneration duct 56 upstream of the desiccant wheel. The coil is connected by a refrigerant line 68 to a compressor 52 that is alternately connected to the heat exchanger 40 by a line 70.

包囲空間内に供給される戻り空気および/または戻り空気と外気との除湿が必要である場合、コンプレッサ52が作動され、コンデンサから熱交換器40に冷却された冷媒を供給する。ライン70における冷却液の温度は、(ライン42から熱交換器40を通ってライン44に流れるライン38における冷却液により)熱交換器40において上昇し、コンプレッサ52に戻り、そこで冷媒が圧縮され、加熱されコンデンサコイル66に供給される。コンデンサコイルにおいて、冷媒はダクト62に入る供給空気により冷却され、その後大気に放出される前に、回転する乾燥剤ホイール60の再生部分に入る再生空気に熱を移す。その結果、氷冷却プラント等から排除された(ループ26,28の液体からの45度F(7.2℃)から95度F(35℃)の間の)低グレードの熱の一部は、(例えばライン68における液体の105度F(40.6℃)から135度F(57.2℃)の間の)より高グレードの熱を生成するために、乾燥剤ホイールを再生するための空気冷却コンデンサコイルを通じて、このヒートポンプアレンジにより抽出される。この加熱された空気は乾燥剤から湿気を除去し、乾燥剤を再生する。それはシステム32における冷媒を冷却することにも寄与する。   When it is necessary to dehumidify the return air supplied into the enclosed space and / or the return air and the outside air, the compressor 52 is activated to supply the cooled refrigerant from the condenser to the heat exchanger 40. The temperature of the coolant in line 70 rises in heat exchanger 40 (due to the coolant in line 38 flowing from line 42 through heat exchanger 40 to line 44) and back to compressor 52 where the refrigerant is compressed, It is heated and supplied to the capacitor coil 66. In the condenser coil, the refrigerant is cooled by the supply air entering the duct 62 and then transfers heat to the regeneration air entering the regeneration portion of the rotating desiccant wheel 60 before being released to the atmosphere. As a result, some of the low-grade heat (such as between 45 ° F (7.2 ° C) and 95 ° F (35 ° C)) from the liquid in the loops 26 and 28 is excluded from Air to regenerate the desiccant wheel to produce higher grade heat (e.g., between 105 degrees F (40.6 degrees C) and 135 degrees F (57.2 degrees C) of liquid in line 68). It is extracted by this heat pump arrangement through a cooling condenser coil. This heated air removes moisture from the desiccant and regenerates the desiccant. It also contributes to cooling the refrigerant in the system 32.

上述した除湿工程は、乾燥剤ホイールが供給および再活性化空気流を通じて回転する間持続する。しかしながら、リンクの湿度レベルが、追加の除湿を必要とする所定点を超える場合、戻り空気および/または外気/戻り空気が乾燥剤ホイールを通過する前に、さらなる除湿を行うために湿度制御装置16が配置される。図2から明らかなように、さらなる除湿を実行するために、除湿器は追加の冷却回路80を備え、冷却回路80は、除湿コイル88およびハウジング54の一端部に取り付けられた空気冷却コンデンサコイル90にライン86により接続された多重コンプレッサ82,83,84に接続される。このように、乾燥剤ホイールが単独で提供可能な除湿を超えたさらなる除湿が必要とされる場合、空気が乾燥剤ホイールに入る前に、圧縮された冷媒を空気から湿気を除去する除湿コイルに供給するために、コンプレッサ82が作動される。これと同時に、空気が乾燥剤ホイールに到達する前に、それが空気を冷却する。除湿コイルにおいて冷媒により空気から吸収された熱は、ファン92によって冷却されるコンデンサコイル90において大気に放出され、コンプレッサ82に戻される。なおもさらなる除湿が必要であれば、第2および第3ステージのコンプレッサ83,84が作動できる。   The dehumidification process described above continues as the desiccant wheel rotates through the supply and reactivation air flow. However, if the humidity level of the link exceeds a predetermined point that requires additional dehumidification, the humidity controller 16 to perform further dehumidification before the return air and / or outside air / return air passes through the desiccant wheel. Is placed. As can be seen from FIG. 2, to perform further dehumidification, the dehumidifier includes an additional cooling circuit 80 that includes an air cooling condenser coil 90 attached to the dehumidifying coil 88 and one end of the housing 54. Are connected to multiple compressors 82, 83, 84 connected by a line 86. Thus, if further dehumidification is required beyond the dehumidification that the desiccant wheel can provide on its own, the compressed refrigerant is transferred to a dehumidifying coil that removes moisture from the air before it enters the desiccant wheel. To supply, the compressor 82 is activated. At the same time, it cools the air before it reaches the desiccant wheel. The heat absorbed from the air by the refrigerant in the dehumidifying coil is released to the atmosphere in the condenser coil 90 cooled by the fan 92 and returned to the compressor 82. If further dehumidification is required, the second and third stage compressors 83, 84 can be activated.

図2からより明らかなように、冷却回路80は、実際は3つの独立した冷却回路であり、それらの個々の冷却回路においてコイル88,90の異なる部分を使用する。したがって、コンプレッサ82は、ライン82′によりコイルセクション88′および90′に接続され;コンプレッサ83は、ライン83′によりコイルセクション88″,90″に接続され;コンプレッサ84は、ライン84′によりコイルセクション88′″,90′″に接続される。要求に応じて、各回路は別々に作動される。戻り空気が乾燥剤ホイールに入る前に、戻り空気をこのように冷却および除湿することにより、処理空気流からさらに湿気を除去する乾燥剤ホイールの能力を増大させ、戻り空気がホイールにより所望とする処理戻り温度に再加熱される。   As is more apparent from FIG. 2, the cooling circuit 80 is actually three independent cooling circuits and uses different portions of the coils 88, 90 in their respective cooling circuits. Thus, compressor 82 is connected to coil sections 88 'and 90' by line 82 '; compressor 83 is connected to coil sections 88 ", 90" by line 83'; compressor 84 is coil section by line 84 '. 88 '", 90'". Each circuit is operated separately on demand. This cooling and dehumidification of the return air before it enters the desiccant wheel increases the ability of the desiccant wheel to further remove moisture from the process air stream, making the return air desired by the wheel. Reheated to process return temperature.

所望とされるかまたは必要であれば、処理空気の一部またはすべてを、当業者に周知の適切なダクトワーク100を用いて乾燥剤ホイールを迂回させることができる。また、当業者であれば想起するであろう適切な温度および湿度センサ並びに関連する制御が、各種コンプレッサを選択的に作動させるために提供される。   If desired or necessary, some or all of the process air can be diverted to the desiccant wheel using a suitable ductwork 100 known to those skilled in the art. Appropriate temperature and humidity sensors and associated controls, as would be conceived by those skilled in the art, are also provided for selectively operating various compressors.

したがって、システムは、基本的な冷却システム12または32を変更することなく、状態が変化するとともに不定量の作り出された空気を扱うための十分な能力を提供する。   Thus, the system provides sufficient capacity to handle variable amounts of produced air as conditions change without changing the basic cooling system 12 or 32.

図面を用いて本発明の具体的な実施形態を本明細書に説明したが、本発明がこれらの実施形態に限定されるものではなく、当業者であれば、本発明の主題および精神を逸脱することなく、種々の変形および修正が可能であることが理解されよう。   Although specific embodiments of the present invention have been described herein with reference to the drawings, the present invention is not limited to these embodiments, and those skilled in the art will depart from the subject matter and spirit of the present invention. It will be understood that various changes and modifications can be made without doing so.

10 システム
12,24,32,50 冷却システム
16 除湿システム
10 System 12, 24, 32, 50 Cooling system 16 Dehumidification system

Claims (8)

加熱負荷、該加熱負荷を冷却するための第1の冷却システム、および該第1のシステムから熱を除去するための第2の冷却システムを備えた包囲空間用の湿度制御システムであって、処理空気ダクトおよび再生空気ダクトを有するハウジングと、前記包囲空間からの戻り空気および/または大気を処理空気ダクトへ供給する手段と;大気を前記再生ダクトに供給する手段と、前記処理空気ダクトおよび前記再生空気ダクトを通じて回転するために前記ハウジングに回転可能に取り付けられ、これにより前記処理空気ダクトにおいて湿気を吸収し、前記再生ダクトにおいて前記湿気を放出する乾燥剤ホイールと;前記再生ダクトにおける前記乾燥剤ホイールの上流側のコンデンサコイル、該コンデンサコイルに接続されたコンプレッサ、並びに該コンプレッサおよび前記第2の冷却システムに接続された熱交換器を有する第3の冷却システムであって、これにより、前記再生ダクトにおいて前記乾燥剤ホイールに供給される空気の温度を増大させるために前記コンデンサコイルに供給される、高グレードの熱を生成するために、該第3の冷却システムにより前記熱交換器から吸収された低グレードの熱が前記コンプレッサにより使用される第3の冷却システムと;前記処理空気流における前記乾燥剤ホイールの上流側の除湿コイル、該処理空気流における除湿コイルに接続された複数のコンプレッサ、および該複数のコンプレッサに接続されたコンデンサコイルを有する第4の冷却システムであって、これにより、前記処理空気ダクトにおいて、空気が前記乾燥剤ホイールに入る前に該空気を選択的に除湿するために、該乾燥剤ホイールに供給される前記空気の湿度のレベルに応じて、該第4の冷却システムにおける前記複数のコンプレッサが順次作動可能である第4の冷却システムとを備えたことを特徴とする湿度制御システム。 A humidity control system for an enclosed space comprising a heating load, a first cooling system for cooling the heating load, and a second cooling system for removing heat from the first system, the process comprising: A housing having an air duct and a regenerative air duct; means for supplying return air and / or atmosphere from the enclosed space to the processing air duct; means for supplying air to the regeneration duct; the processing air duct and the regeneration A desiccant wheel rotatably mounted on the housing for rotation through an air duct, thereby absorbing moisture in the process air duct and releasing the moisture in the regeneration duct; and the desiccant wheel in the regeneration duct A capacitor coil upstream of the compressor, a compressor connected to the capacitor coil, and A third cooling system having a compressor and a heat exchanger connected to said second cooling system, thereby, the to increase the temperature of the air supplied to the desiccant wheel in said regeneration duct A third cooling system in which low grade heat absorbed from the heat exchanger by the third cooling system is used by the compressor to generate high grade heat supplied to a capacitor coil; upstream of the dehumidification coil of the desiccant wheel in the process air flow, a plurality of compressors connected in dehumidification coil in said process air stream, and a fourth cooling system having a capacitor connected coils to the plurality of compressors So that in the process air duct before air enters the desiccant wheel To selectively dehumidified air, depending on the level of humidity of the air supplied to the desiccant wheel, a fourth cooling system the plurality of compressors in the cooling system of the fourth can be sequentially operated And a humidity control system. 処理空気ダクトおよび再生空気ダクトを有するハウジングと、包囲空間用の湿度制御システムであって、前記包囲空間および/または大気からの戻り空気を前記処理空気ダクトに供給する手段と;前記大気を前記再生ダクトに供給する手段と、前記処理空気ダクトおよび前記再生空気ダクトを通じて回転するために前記ハウジングに回転可能に取り付けられ、前記処理空気ダクトにおいて湿気を吸収し、前記再生空気ダクトにおいて前記湿気を放出するための乾燥剤ホイールと;前記再生ダクトにおける前記乾燥剤ホイールの上流側のコンデンサコイルおよび該コンデンサコイルに接続されたヒートポンプを有する冷却システムであって、該ヒートポンプが、熱交換器および前記コンデンサコイルと該熱交換器との間に接続された再循環液体ループであって、該再循環液体ループから前記再活性化空気流に熱を移すための再循環液体ループを有する冷却システムと;前記処理空気流における前記乾燥剤ホイールの上流側の除湿コイル、該処理空気流における除湿コイルに接続された複数のコンプレッサ、および該複数のコンプレッサに接続されたコンデンサコイルを有する他の冷却システムであって、これにより、前記処理空気ダクトにおいて、空気が前記乾燥剤ホイールに入る前に該空気を選択的に除湿するために、該乾燥剤ホイールに供給される前記空気の湿度のレベルに応じて、該他の冷却システムにおける前記複数のコンプレッサが順次作動可能である他の冷却システムとを備えたことを特徴とする湿度制御システム。 A housing having a process air duct and a regenerative air duct; and a humidity control system for an enclosed space, the means for supplying return air from the enclosed space and / or the atmosphere to the process air duct; Means for supplying to the duct, and is rotatably mounted on the housing for rotation through the processing air duct and the regeneration air duct, absorbs moisture in the processing air duct and releases the moisture in the regeneration air duct A cooling system having a condenser coil upstream of the desiccant wheel in the regeneration duct and a heat pump connected to the condenser coil, the heat pump comprising: a heat exchanger; and the condenser coil Recirculating liquid connected between the heat exchangers A-loop cooling system and having a recirculation liquid loop for transferring heat to the reactivation airflow from the recirculation liquid loop; upstream of the dehumidification coil of the desiccant wheel in the process air flow, Another cooling system having a plurality of compressors connected to a dehumidification coil in the process air stream and a condenser coil connected to the plurality of compressors, whereby in the process air duct, the air is the desiccant Depending on the level of humidity of the air supplied to the desiccant wheel, the plurality of compressors in the other cooling system can be operated sequentially to selectively dehumidify the air before entering the wheel. A humidity control system comprising another cooling system. 前記液体ループが、大気温度から隔離されてなることを特徴とする請求項記載の湿度制御システム。 The humidity control system according to claim 2 , wherein the liquid loop is isolated from the atmospheric temperature. 前記液体ループが、地下水またはグリコールループからなる群からの液体を含むことを特徴とする請求項記載の湿度制御システム。 The humidity control system of claim 2 , wherein the liquid loop includes liquid from a group consisting of groundwater or glycol loops. 前記液体ループが、冷却塔ループであることを特徴とする請求項記載の湿度制御システム。 The humidity control system according to claim 2 , wherein the liquid loop is a cooling tower loop. 前記液体ループが、低グレードの太陽熱ループであることを特徴とする請求項記載の湿度制御システム。 The humidity control system of claim 2 , wherein the liquid loop is a low grade solar loop. 前記液体ループが、一年中45度F(7.2℃)から95度F(35℃)の間に維持されることを特徴とする請求項記載の湿度制御システム。 The humidity control system of claim 2 , wherein the liquid loop is maintained between 45 degrees F (7.2 degrees C) and 95 degrees F (35 degrees C) throughout the year. 前記ヒートポンプにより生成される前記再生空気の温度が、105度F(40.6℃)から135度F(57.2℃)の間にあることを特徴とする請求項記載の湿度制御システム。 The humidity control system according to claim 2, wherein the temperature of the regeneration air generated by the heat pump is between 105 degrees F (40.6 degrees C) and 135 degrees F (57.2 degrees C).
JP2010510448A 2007-05-30 2008-05-27 Humidity control system using desiccant equipment Active JP5329535B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US92476407P 2007-05-30 2007-05-30
US60/924,764 2007-05-30
PCT/US2008/064844 WO2008150758A1 (en) 2007-05-30 2008-05-27 Humidity control system using a desiccant device

Publications (3)

Publication Number Publication Date
JP2010529398A JP2010529398A (en) 2010-08-26
JP2010529398A5 JP2010529398A5 (en) 2013-02-14
JP5329535B2 true JP5329535B2 (en) 2013-10-30

Family

ID=40094063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010510448A Active JP5329535B2 (en) 2007-05-30 2008-05-27 Humidity control system using desiccant equipment

Country Status (15)

Country Link
US (1) US20100192605A1 (en)
EP (1) EP2153134A1 (en)
JP (1) JP5329535B2 (en)
KR (1) KR20100028025A (en)
CN (1) CN101715533A (en)
AU (1) AU2008260212B2 (en)
BR (1) BRPI0811378A2 (en)
CA (1) CA2688182A1 (en)
EG (1) EG25395A (en)
IL (1) IL202241A (en)
MX (1) MX2009012855A (en)
MY (1) MY149193A (en)
TR (1) TR200908758T1 (en)
WO (1) WO2008150758A1 (en)
ZA (1) ZA200908070B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050953A1 (en) * 2008-10-30 2010-05-06 Hewlett-Packard Development Company, L.P. Multi-stage humidity control system and method
CA3046529C (en) 2010-06-24 2023-01-31 University Of Saskatchewan Liquid-to-air membrane energy exchanger
US8790451B1 (en) * 2010-09-17 2014-07-29 Pvt Solar, Inc. Method and system for integrated home cooling utilizing solar power
BR112013009954B1 (en) * 2010-11-22 2022-02-15 Munters Corporation DEHUMIDIFIER SYSTEM AND DEHUMIDIFYING METHOD OF AN AIR FLOW
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
CN104515215B (en) * 2013-09-27 2017-02-22 上海英泰格瑞低碳技术设计有限公司 Supplied air deep dehumidification and accurate humidity control system
WO2015192249A1 (en) 2014-06-20 2015-12-23 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
CN107249715B (en) 2014-08-19 2020-11-06 北狄空气应对加拿大公司 Liquid-gas film energy exchanger
CA2975167C (en) 2014-11-20 2023-02-21 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for generating liquid water from air
CN104676798B (en) * 2015-03-17 2017-04-05 黄国和 A kind of all-weather solar water source heat pump air conditioning system
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
EP3295088B1 (en) 2015-05-15 2022-01-12 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
CN108027221B (en) 2015-06-26 2021-03-09 北狄空气应对加拿大公司 Three-fluid liquid-gas film energy exchanger
US10834855B2 (en) 2016-01-08 2020-11-10 Nortek Air Solutions Canada, Inc. Integrated make-up air system in 100% air recirculation system
CN109073265B (en) 2016-03-08 2021-09-28 北狄空气应对加拿大公司 System and method for providing cooling to a thermal load
TWI718284B (en) 2016-04-07 2021-02-11 美商零質量純水股份有限公司 Solar thermal unit
AU2017267967B2 (en) 2016-05-20 2022-04-14 Source Global, PBC Systems and methods for water extraction control
US11892193B2 (en) 2017-04-18 2024-02-06 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
MX2020000464A (en) 2017-07-14 2021-01-08 Zero Mass Water Inc Systems for controlled treatment of water with ozone and related methods therefor.
AU2018329665B2 (en) 2017-09-05 2023-11-16 Source Global, PBC Systems and methods for managing production and distribution of liquid water extracted from air
AU2018329660B2 (en) 2017-09-05 2023-11-09 Source Global, PBC Systems and methods to produce liquid water extracted from air
US11555421B2 (en) 2017-10-06 2023-01-17 Source Global, PBC Systems for generating water with waste heat and related methods therefor
AU2018380168B2 (en) 2017-12-06 2023-11-02 Source Global, PBC Systems for constructing hierarchical training data sets for use with machine-learning and related methods therefor
AU2019221791B2 (en) 2018-02-18 2024-05-23 Source Global, PBC Systems for generating water for a container farm and related methods therefor
AU2019265024B2 (en) 2018-05-11 2024-09-26 Source Global, PBC Systems for generating water using exogenously generated heat, exogenously generated electricity, and exhaust process fluids and related methods therefor
BR112021007178A2 (en) 2018-10-19 2021-07-20 Source Global, PBC systems and methods to generate liquid water using highly efficient techniques that optimize production
US20200124566A1 (en) 2018-10-22 2020-04-23 Zero Mass Water, Inc. Systems and methods for detecting and measuring oxidizing compounds in test fluids
MX2021012655A (en) 2019-04-22 2021-11-12 Source Global Pbc Water vapor adsorption air drying system and method for generating liquid water from air.
SE543617C2 (en) * 2019-09-13 2021-04-20 Munters Europe Ab A dehumidification system and a method operating said dehumidification system
US11814820B2 (en) 2021-01-19 2023-11-14 Source Global, PBC Systems and methods for generating water from air
CN114543176B (en) * 2022-02-16 2023-04-18 青岛海信日立空调系统有限公司 Air conditioning equipment
CN114543171B (en) * 2022-02-16 2023-04-18 青岛海信日立空调系统有限公司 Air conditioner

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011731A (en) * 1974-11-15 1977-03-15 Gershon Meckler Air conditioning apparatus utilizing solar energy and method
US5020334A (en) * 1990-02-23 1991-06-04 Gas Research Institute Localized air dehumidification system
US5579647A (en) * 1993-01-08 1996-12-03 Engelhard/Icc Desiccant assisted dehumidification and cooling system
CN1123738C (en) * 1997-03-25 2003-10-08 株式会社荏原制作所 Air conditioning system
JP2000329375A (en) * 1999-05-17 2000-11-30 Ebara Corp Air conditioner, air conditioning/refrigerating system and operating method for air conditioner
US6185952B1 (en) * 1999-07-01 2001-02-13 International Business Machines Corporation Refrigeration system for cooling chips in test
US6557365B2 (en) * 2001-02-28 2003-05-06 Munters Corporation Desiccant refrigerant dehumidifier
US6711907B2 (en) * 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
US20030221438A1 (en) * 2002-02-19 2003-12-04 Rane Milind V. Energy efficient sorption processes and systems
JP2003262360A (en) * 2002-03-06 2003-09-19 Asahi Kogyosha Co Ltd Cooling and heating system using solar wall unit
US6751964B2 (en) * 2002-06-28 2004-06-22 John C. Fischer Desiccant-based dehumidification system and method
US6935131B1 (en) * 2004-09-09 2005-08-30 Tom Backman Desiccant assisted dehumidification system for aqueous based liquid refrigerant facilities
JP2006308229A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
MX2009012855A (en) 2009-12-15
EG25395A (en) 2011-12-27
AU2008260212B2 (en) 2012-06-07
US20100192605A1 (en) 2010-08-05
AU2008260212A1 (en) 2008-12-11
KR20100028025A (en) 2010-03-11
IL202241A (en) 2012-10-31
TR200908758T1 (en) 2010-01-21
ZA200908070B (en) 2010-07-28
CN101715533A (en) 2010-05-26
JP2010529398A (en) 2010-08-26
BRPI0811378A2 (en) 2017-05-02
IL202241A0 (en) 2010-06-16
EP2153134A1 (en) 2010-02-17
MY149193A (en) 2013-07-31
WO2008150758A1 (en) 2008-12-11
CA2688182A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5329535B2 (en) Humidity control system using desiccant equipment
US7338548B2 (en) Dessicant dehumidifer for drying moist environments
CN100551480C (en) dehumidification system
US8631661B2 (en) Energy recovery enhanced condenser reactivated desiccant refrigerant dehumidifier
US6854279B1 (en) Dynamic desiccation cooling system for ships
JP4816267B2 (en) Humidity control device
US9303885B1 (en) Desiccant dehumidification system and method
JP2010529398A5 (en)
CN104981282A (en) Compact desiccant cooling system
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
JP6018938B2 (en) Air conditioning system for outside air treatment
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
KR101445378B1 (en) Apparatus for dehumidifying and cooling air
CA2722405A1 (en) High efficiency desiccant dehumidifier system
US12215887B1 (en) Dual-wheel HVAC system and method having improved dew point control
US11333371B1 (en) Dual-wheel HVAC system and method having improved dew point control
JP2017199169A (en) Cooling system, and information processing system using the same
JP2017009187A (en) Air conditioner
JP2005134025A (en) Cooling system combining desiccant air conditioner and cooling device
JP2019184161A (en) Air conditioning system
JP2007071502A (en) Dehumidifying air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250