[go: up one dir, main page]

JP5312286B2 - Air conditioner control device, refrigeration device control device - Google Patents

Air conditioner control device, refrigeration device control device Download PDF

Info

Publication number
JP5312286B2
JP5312286B2 JP2009242215A JP2009242215A JP5312286B2 JP 5312286 B2 JP5312286 B2 JP 5312286B2 JP 2009242215 A JP2009242215 A JP 2009242215A JP 2009242215 A JP2009242215 A JP 2009242215A JP 5312286 B2 JP5312286 B2 JP 5312286B2
Authority
JP
Japan
Prior art keywords
air conditioning
refrigeration
capacity
air
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009242215A
Other languages
Japanese (ja)
Other versions
JP2011089679A (en
Inventor
尚季 涌田
博幸 橋本
康弘 小島
広有 柴
秀俊 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009242215A priority Critical patent/JP5312286B2/en
Publication of JP2011089679A publication Critical patent/JP2011089679A/en
Application granted granted Critical
Publication of JP5312286B2 publication Critical patent/JP5312286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、複数の空気調和機を制御する空気調和機の制御装置、及び複数の冷凍装置を制御する冷凍装置の制御装置に関するものである。   The present invention relates to an air conditioner control apparatus that controls a plurality of air conditioners, and a control apparatus for a refrigeration apparatus that controls a plurality of refrigeration apparatuses.

複数の空気調和機(以下「空調機」ともいう。)、または冷凍装置(以下「冷凍機」ともいう。)からなるシステムの消費電力を低減するために、経験的なルールや計画手法(数理計画やメタヒューリスティック手法など)により協調運転条件を求めて、空調機または冷凍機の制御要素を制御するものがある。   In order to reduce the power consumption of a system consisting of multiple air conditioners (hereinafter also referred to as “air conditioners”) or refrigeration equipment (hereinafter also referred to as “refrigerators”), empirical rules and planning methods (actual In some cases, the control elements of the air conditioner or the refrigerator are controlled by obtaining cooperative operation conditions by a plan or a metaheuristic method.

例えば、特許文献1に記載の複数冷凍機の運転技術では、複数冷凍機の冷凍容量と消費電力との関係をモデル化した近似式を求め、稼働実績データの重心を比較し相対値の変化分に基づき近似式を補正し、補正近似式に基づき複数冷凍機の全体消費電力を演算し、消費電力を小さくする場合の各冷凍機の冷凍容量を設定し運転状態を制御する。   For example, in the operation technique of a plurality of refrigerators described in Patent Document 1, an approximate expression that models the relationship between the refrigeration capacity and power consumption of the plurality of refrigerators is obtained, and the center of gravity of operation performance data is compared to compare the change in relative value. Based on the above, the approximate expression is corrected, the total power consumption of the plurality of refrigerators is calculated based on the corrected approximate expression, and the refrigeration capacity of each refrigerator when the power consumption is reduced is set to control the operation state.

例えば、特許文献2に記載の空調機運転制御装置では、多数の空調機器を組合せた装置における空調機器の最適運転条件を遺伝的アルゴリズム、相互統合型ニューロにより決定する。   For example, in the air conditioner operation control apparatus described in Patent Document 2, the optimum operation condition of the air conditioner in an apparatus in which a large number of air conditioners are combined is determined by a genetic algorithm and a mutually integrated neuro.

例えば、特許文献3に記載の運転制御方法では、1つの室内(空調ゾーン)に複数の空調機を有する場合に、各空調機の運転効率から優先的に運転すべき空調機を設定して、運転開始指示または出力増大指示を与えて、省エネルギー性と耐久性・信頼性向上を図る制御用コンピュータによる中央制御を行う。   For example, in the operation control method described in Patent Document 3, when a plurality of air conditioners are provided in one room (air conditioning zone), an air conditioner to be operated with priority from the operation efficiency of each air conditioner is set. Gives an operation start instruction or an output increase instruction, and performs central control by a control computer for improving energy saving, durability and reliability.

特開2007−85601号公報(3頁27〜39行、図4)JP 2007-85601 A (page 3, lines 27 to 39, FIG. 4) 特開平8−5126号公報(3頁左49〜右33行、図1)JP-A-8-5126 (page 3, left 49 to right 33, FIG. 1) 特開2008−57818号公報(3頁45〜4頁5行、図10)JP 2008-57818 A (3 pages 45 to 5 lines, FIG. 10)

同一空間を空調対象として複数の空調機(または冷凍機)が設置される場合、各空調機がそれぞれ単独で運転制御を行うと、一部の空調機の空調能力が過大となったり、一部の空調機の空調能力が過小となるなどの運転制御が行われ、システム全体としてのエネルギー消費量の削減を図ることができない。このため、複数の空調機の協調制御を行いエネルギー消費量の削減を図ることが望まれている。   When multiple air conditioners (or refrigerators) are installed in the same space for air conditioning, if each air conditioner individually controls operation, some air conditioners have excessive air conditioning capacity, Operation control is performed such that the air conditioning capacity of the air conditioner becomes too low, and it is impossible to reduce the energy consumption of the entire system. For this reason, it is desired to reduce energy consumption by performing cooperative control of a plurality of air conditioners.

従来の技術においては、複数の空調機または冷凍機からなるシステムの全体消費電力を低減するための、適切な空調能力または冷凍能力を決定する効率的な制御を行うことができない、という問題点があった。   In the conventional technology, there is a problem that efficient control for determining appropriate air conditioning capacity or refrigeration capacity cannot be performed in order to reduce the overall power consumption of a system including a plurality of air conditioners or refrigerators. there were.

例えば、前記特許文献1では、全体空調負荷を運転している空調機の容量比に応じて割り当てて空調能力を決定し、割り当てた空調能力に対する消費電力を、空調能力と消費電力の関係を示す近似モデル式から評価している。
しかし、容量比による割り当てでは、消費電力をさらに低減する空調能力の配分が存在する、もしくは、必ずしも消費電力を低減する空調能力の決定ができない。
本来は空調能力と消費電力の関係から、消費電力を低減することができる空調能力を決定する必要がある。
For example, in Patent Document 1, the air conditioning capacity is determined by allocating according to the capacity ratio of the air conditioner that is operating the entire air conditioning load, and the power consumption for the allocated air conditioning capacity is shown as the relationship between the air conditioning capacity and the power consumption. Evaluated from approximate model formula.
However, in the allocation based on the capacity ratio, there is an allocation of the air conditioning capability that further reduces the power consumption, or the air conditioning capability that reduces the power consumption cannot always be determined.
Originally, it is necessary to determine the air conditioning capacity capable of reducing the power consumption from the relationship between the air conditioning capacity and the power consumption.

また、運転する空調機の台数により全体空調負荷に見合う空調能力の配分量が変わるため、この空調能力の配分による消費電力量の多寡は、運転台数の選択と密接に関わっている。システム全体の消費電力の低減には、運転台数の選択も欠かせない。
このような観点から先行技術を見ると、前記の空調能力の決定と運転台数の選択を統合的に決定する効率的な制御を行うことができない、という問題点があった。
Also, since the amount of air conditioning capacity allocated to the overall air conditioning load varies depending on the number of air conditioners to be operated, the amount of power consumption due to this air conditioning capacity distribution is closely related to the selection of the number of operating air conditioners. The selection of the number of operating units is indispensable for reducing the power consumption of the entire system.
When the prior art is viewed from such a viewpoint, there is a problem in that it is not possible to perform efficient control in which the determination of the air conditioning capacity and the selection of the number of operating units are determined in an integrated manner.

また、先行技術例では演算方法の計算負荷が高い場合や、演算に必要な参照データが多い場合があり、実用上の制約から計算能力が低くメモリ量に限界のあるマイコンに実装できない、という問題点があった。   In addition, in the prior art example, there are cases where the calculation load of the calculation method is high or there are many reference data required for the calculation, and due to practical restrictions, the calculation capacity is low and it can not be mounted on a microcomputer with limited memory There was a point.

この発明は、上記のような課題を解決するためになされたもので、空調対象空間内の全体空調負荷と、空調機の空調能力の総和とのバランスを保ちながら消費電力の総和を低減することができる空気調和機の制御装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and reduces the total power consumption while maintaining a balance between the total air conditioning load in the air conditioning target space and the total air conditioning capacity of the air conditioner. It aims at obtaining the control apparatus of the air conditioner which can do.

また、冷凍対象空間内の全体冷凍負荷と、冷凍機の冷却能力の総和とのバランスを保ちながら消費電力の総和を低減することができる冷凍装置の制御装置を得ることを目的とする。   It is another object of the present invention to provide a control device for a refrigeration apparatus that can reduce the total power consumption while maintaining a balance between the total refrigeration load in the refrigeration target space and the total cooling capacity of the refrigerator.

この発明に係る空気調和機の制御装置は、
同一空間を空調対象として設置された複数の空気調和機を制御する空気調和機の制御装置であって、
前記複数の空気調和機毎に、消費電力を、空調能力を変数として近似した二次関数の係数の情報と、前記空調能力の範囲に関する情報とを含む性能モデルデータが記憶されるデータ記憶手段と、
前記複数の空気調和機の空調負荷の合計値である全体空調負荷を求める全体空調負荷算出手段と、
前記性能モデルデータと前記全体空調負荷とに基づいて、前記複数の空気調和機のそれぞれの空調能力を求める空調能力配分演算手段と、
前記空調能力に関する制御信号を、前記複数の空気調和機にそれぞれ送出する制御信号送出手段と
を備え、
前記空調能力配分演算手段は、
前記二次関数を前記空気調和機毎に加算して前記複数の空気調和機の消費電力の和を近似した多変数関数に、前記複数の空気調和機の空調能力の和が前記全体空調負荷と等しくなる制約条件を係数にもつ中間変数を加算した第2の多変数関数において、該第2の多変数関数の各空調能力が極値となる条件を満たす前記中間変数を、前記全体空調負荷と前記二次関数の係数とにより表した第1算出式と、
前記制約条件のもと、前記多変数関数が極値となる前記各空気調和機の空調能力を、前記中間変数と前記二次関数の係数とにより表した第2算出式と、
が予め設定され、
前記全体空調負荷算出手段が求めた前記全体空調負荷と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第1算出式に基づき、前記中間変数を求め、
該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記各空気調和機の空調能力をそれぞれ求め、
当該各空調能力のうち前記空調能力の範囲に属さない前記空気調和機の空調能力を、前記空調能力の範囲の限界値とし、
前記空調能力の範囲に属する空気調和機について、再度、前記中間変数を求め、該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記空調能力の範囲に属する各空気調和機の空調能力をそれぞれ求めるものである。
A control device for an air conditioner according to the present invention includes:
A control device for an air conditioner that controls a plurality of air conditioners installed in the same space for air conditioning,
For each of the plurality of air conditioners, the power consumption, data storage means and the information of the coefficients of the quadratic function that approximates the air-conditioning capacity as a variable, performance model data including the information about the range of the air conditioning capacity is stored When,
An overall air conditioning load calculating means for obtaining an overall air conditioning load that is a total value of the air conditioning loads of the plurality of air conditioners;
Based on the performance model data and the overall air conditioning load, air conditioning capacity distribution calculating means for obtaining the air conditioning capacity of each of the plurality of air conditioners,
Control signal sending means for sending a control signal related to the air conditioning capability to each of the plurality of air conditioners,
The air conditioning capacity distribution calculating means includes:
The sum of the air conditioning capabilities of the plurality of air conditioners is the total air conditioning load as a multivariable function that approximates the sum of power consumption of the plurality of air conditioners by adding the quadratic function for each air conditioner. In the second multivariable function obtained by adding intermediate variables having equal constraint conditions as coefficients, the intermediate variable that satisfies the condition that each air conditioning capability of the second multivariable function has an extreme value is the total air conditioning load. A first calculation formula expressed by the coefficient of the quadratic function;
Under the constraint condition, a second calculation formula representing the air conditioning capacity of each air conditioner in which the multivariable function is an extreme value by the intermediate variable and the coefficient of the quadratic function;
Is preset,
Based on the first calculation formula using the overall air conditioning load obtained by the overall air conditioning load calculating means and the coefficient information of the quadratic function of the performance model data, the intermediate variable is obtained,
Based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, the air conditioning capacity of each air conditioner is obtained,
The air conditioning capacity of the air conditioner that does not belong to the range of the air conditioning capacity among the air conditioning capacity is set as a limit value of the range of the air conditioning capacity,
For the air conditioner belonging to the range of the air conditioning capacity, again determine the intermediate variable, and based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, The air conditioning capacity of each air conditioner belonging to the range of the air conditioning capacity is obtained.

この発明に係る冷凍装置の制御装置は、
同一空間を冷却対象として設置された複数の冷凍装置を制御する冷凍装置の制御装置であって、
前記複数の冷凍装置毎に、消費電力を、冷凍能力を変数として近似した二次関数の係数の情報と、前記冷凍能力の範囲に関する情報とを含む性能モデルデータが記憶されるデータ記憶手段と、
前記複数の冷凍装置の冷凍負荷の合計値である全体冷凍負荷を求める全体冷凍負荷算出手段と、
前記性能モデルデータと前記全体冷凍負荷とに基づいて、前記複数の冷凍装置のそれぞれの冷凍能力を求める冷凍能力配分演算手段と、
前記冷凍能力に関する制御信号を、前記複数の冷凍装置にそれぞれ送出する制御信号送出手段と
を備え、
前記冷凍能力配分演算手段は、
前記二次関数を前記冷凍装置毎に加算して前記複数の冷凍装置の消費電力の和を近似した多変数関数に、前記複数の冷凍装置の冷凍能力の和が前記全体冷凍負荷と等しくなる制約条件を係数にもつ中間変数を加算した第2の多変数関数において、該第2の多変数関数の各冷凍能力が極値となる条件を満たす前記中間変数を、前記全体冷凍負荷と前記二次関数の係数とにより表した第1算出式と、
前記制約条件のもと、前記多変数関数が極値となる前記各冷凍装置の冷凍能力を、前記中間変数と前記二次関数の係数とにより表した第2算出式と、
が予め設定され、
前記全体冷凍負荷算出手段が求めた前記全体冷凍負荷と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第1算出式に基づき、前記中間変数を求め、
該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記各冷凍装置の冷凍能力をそれぞれ求め、
当該各冷凍能力のうち前記冷凍能力の範囲に属さない前記冷凍装置の冷凍能力を、前記冷凍能力の範囲の限界値とし、
前記冷凍能力の範囲に属する冷凍装置について、再度、前記中間変数を求め、該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記冷凍能力の範囲に属する各冷凍装置の冷凍能力をそれぞれ求めるものである。
A control device for a refrigeration apparatus according to the present invention includes:
A control device for a refrigeration apparatus that controls a plurality of refrigeration apparatuses installed in the same space as a cooling target,
For each of the plurality of refrigeration system, the power consumption, and the information of the coefficients of the quadratic function that approximates the refrigeration capacity as a variable, a data storage means for performance model data is stored containing information as to the scope of the refrigerating capacity ,
An overall refrigeration load calculating means for obtaining an overall refrigeration load that is a total value of the refrigeration loads of the plurality of refrigeration apparatuses;
Refrigeration capacity distribution calculating means for determining the refrigeration capacity of each of the plurality of refrigeration devices based on the performance model data and the total refrigeration load;
Control signal sending means for sending a control signal related to the refrigerating capacity to each of the plurality of refrigeration apparatuses,
The refrigeration capacity distribution calculating means is
Constraint that the sum of the refrigeration capacities of the plurality of refrigeration devices is equal to the total refrigeration load, in a multivariable function that approximates the sum of the power consumption of the plurality of refrigeration devices by adding the quadratic function for each refrigeration device In a second multivariable function obtained by adding an intermediate variable having a condition as a coefficient, the intermediate variable satisfying the condition that each refrigeration capacity of the second multivariable function becomes an extreme value is expressed as the total refrigeration load and the secondary A first calculation formula expressed by the coefficient of the function;
Under the constraint condition, a second calculation formula representing the refrigeration capacity of each refrigeration apparatus in which the multivariable function is an extreme value by the intermediate variable and the coefficient of the quadratic function;
Is preset,
Based on the first calculation formula using the total refrigeration load obtained by the total refrigeration load calculation means and information on the coefficient of the quadratic function of the performance model data, the intermediate variable is obtained,
Based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, the refrigeration capacity of each refrigeration device is determined,
Among the refrigeration capacities, the refrigeration capacity of the refrigeration apparatus that does not belong to the range of the refrigeration capacity, the limit value of the range of the refrigeration capacity,
For the refrigeration apparatus belonging to the range of the refrigeration capacity, again determine the intermediate variable, based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, The refrigeration capacity of each refrigeration apparatus belonging to the range of refrigeration capacity is obtained.

この発明は、複数の空気調和機の空調能力がそれぞれ空調能力の範囲に属し、且つ、複数の空気調和機の空調能力の和が全体空調負荷となる空調能力であって、複数の空気調和機の消費電力の和を最小とする複数の空気調和機のそれぞれの空調能力を求める。
このため、複数の空気調和機の空調能力をそれぞれ空調能力の範囲内としつつ、全体空調負荷と空気調和機の空調能力の総和とのバランスを保ちながら消費電力の総和を低減することができる。
The present invention relates to an air conditioning capability in which the air conditioning capabilities of a plurality of air conditioners belong to the range of the air conditioning capability, respectively, and the sum of the air conditioning capabilities of the plurality of air conditioners is an overall air conditioning load, and the plurality of air conditioners The air conditioning capacity of each of the plurality of air conditioners that minimizes the sum of the power consumptions of the air conditioners is obtained.
For this reason, it is possible to reduce the total power consumption while keeping the balance between the total air conditioning load and the total air conditioning capacity of the air conditioner while keeping the air conditioning capacity of the plurality of air conditioners within the range of the air conditioning capacity.

また、複数の冷凍装置の冷凍能力がそれぞれ冷凍能力の範囲に属し、且つ、複数の冷凍装置の冷凍能力の和が全体冷凍負荷となる冷凍能力であって、複数の冷凍装置の消費電力の和を最小とする複数の冷凍装置のそれぞれの冷凍能力を求める。
このため、複数の冷凍機の冷凍能力をそれぞれ冷凍能力の範囲内としつつ、全体冷凍負荷と冷凍装置の冷凍能力の総和とのバランスを保ちながら消費電力の総和を低減することができる。
Further, the refrigeration capacities of the plurality of refrigeration apparatuses belong to the range of the refrigeration capacities, and the sum of the refrigeration capacities of the plurality of refrigeration apparatuses is the total refrigeration load, and the sum of the power consumption of the plurality of refrigeration apparatuses. The refrigerating capacity of each of a plurality of refrigeration apparatuses that minimizes the above is obtained.
For this reason, it is possible to reduce the total power consumption while keeping the balance between the total refrigeration load and the total refrigeration capacity of the refrigeration apparatus while keeping the refrigeration capacity of the plurality of refrigerators within the range of the refrigeration capacity.

実施の形態1に係る空気調和機の全体構成図である。1 is an overall configuration diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る制御装置の機能ブロック図である。3 is a functional block diagram of a control device according to Embodiment 1. FIG. 実施の形態1に係る空気調和機の冷媒回路を概略的に示す図である。It is a figure which shows schematically the refrigerant circuit of the air conditioner which concerns on Embodiment 1. FIG. 空調能力と消費電力の関係を表す代表的なグラフである。It is a typical graph showing the relationship between an air-conditioning capability and power consumption. 実施の形態1に係る性能モデルデータのデータ形式を示す図である。6 is a diagram showing a data format of performance model data according to Embodiment 1. FIG. 実施の形態1に係る運転情報データのデータ形式を示す図である。It is a figure which shows the data format of the driving information data which concerns on Embodiment 1. FIG. 実施の形態1に係る空調負荷データのデータ形式を示す図である。It is a figure which shows the data format of the air-conditioning load data which concerns on Embodiment 1. FIG. 実施の形態1に係る協調制御処理の動作を示すフローチャートである。3 is a flowchart showing an operation of cooperative control processing according to the first embodiment. 実施の形態1に係る制約条件Qmin≦Q≦Qmaxを満足しない場合の処理を説明する図である。Is a diagram for explaining a process performed when that does not satisfy the constraint Q min ≦ Q ≦ Q max according to the first embodiment.

実施の形態1.
図1は実施の形態1に係る空気調和機の全体構成図である。
図1において、本実施の形態における空気調和機の制御装置(以下「制御装置10」という。)は、同一空間(以下「空調対象空間1」という。)を空調対象として設置された複数の空気調和機を制御するものである。
複数の空気調和機(以下「空調機」ともいう。)は、それぞれ、室内機2と室外機3とを備えている。各室内機2は、空調対象空間1の中に配置される。各室外機3は、空調対象空間1の外に配置される。室内機2と室外機3は冷媒配管により接続される。
この空調機は、制御装置10からの制御により、冷媒配管中を流れる冷媒の圧力を変化させて冷媒の吸熱、放熱により、空調対象空間1の空気調和を行うものである。
なお、ここでは例として、4台の空調機からなる空調機システムの全体構成を示しているが、一般的に、空調機はN(≧2)台でも良い。
なお、以下の説明において、4台の空調機を区別するときは、空調機No1〜No4で示す。
Embodiment 1 FIG.
1 is an overall configuration diagram of an air conditioner according to Embodiment 1. FIG.
In FIG. 1, the air conditioner control device (hereinafter referred to as “control device 10”) according to the present embodiment includes a plurality of airs that are installed in the same space (hereinafter referred to as “air-conditioning target space 1”). It controls the harmony machine.
Each of the plurality of air conditioners (hereinafter also referred to as “air conditioners”) includes an indoor unit 2 and an outdoor unit 3. Each indoor unit 2 is arranged in the air conditioning target space 1. Each outdoor unit 3 is arranged outside the air-conditioning target space 1. The indoor unit 2 and the outdoor unit 3 are connected by refrigerant piping.
This air conditioner performs the air conditioning of the air-conditioning target space 1 by changing the pressure of the refrigerant flowing in the refrigerant pipe under the control of the control device 10 to absorb and release the refrigerant.
In addition, although the whole structure of the air-conditioner system which consists of four air conditioners is shown here as an example, generally N (> = 2) air conditioners may be sufficient.
In addition, in the following description, when distinguishing four air conditioners, it shows by air conditioner No1-No4.

制御装置10は、各室内機2と通信線で接続されている。制御装置10は、室内機2及び室外機3に設置されているセンサ等によりセンシングされた計測データや運転状態に関する情報を入力情報として受け取る。
また、制御装置10は、ユーザが設定する空調機に関する設定情報や、当該制御装置10内部で演算した結果データ等を室内機2及び室外機3へ制御信号として送出する。
この制御装置10は、本発明を適用しない場合の通常のコントロール機能も併せ持ったリモコン等により構成しても良いし、通常のリモコンとは別に設けても良い。
なお、制御装置10は、計算機等であっても良い。また、制御装置10と各室内機2との通信は無線通信であっても良い。
The control device 10 is connected to each indoor unit 2 via a communication line. The control device 10 receives measurement data sensed by a sensor or the like installed in the indoor unit 2 and the outdoor unit 3 and information related to an operation state as input information.
In addition, the control device 10 sends setting information related to the air conditioner set by the user, result data calculated inside the control device 10, and the like to the indoor unit 2 and the outdoor unit 3 as control signals.
The control device 10 may be configured by a remote controller or the like that also has a normal control function when the present invention is not applied, or may be provided separately from the normal remote controller.
The control device 10 may be a computer or the like. The communication between the control device 10 and each indoor unit 2 may be wireless communication.

図2は実施の形態1に係る制御装置の機能ブロック図である。
図2に示すように、制御装置10は、データ格納部101、データ記憶部102、データ設定部103、全体空調負荷演算部104、空調能力配分演算部105、及び制御信号送出部106を備えている。
FIG. 2 is a functional block diagram of the control device according to the first embodiment.
As shown in FIG. 2, the control device 10 includes a data storage unit 101, a data storage unit 102, a data setting unit 103, an overall air conditioning load calculation unit 104, an air conditioning capacity distribution calculation unit 105, and a control signal sending unit 106. Yes.

なお、「データ格納部101」は、本発明における「データ格納手段」に相当する。
なお、「データ記憶部102」は、本発明における「データ記憶手段」に相当する。
また、「全体空調負荷演算部104」は、本発明における「全体空調負荷算出手段」に相当する。
また、「空調能力配分演算部105」は、本発明における「空調能力配分演算手段」に相当する。
また、「制御信号送出部106」は、本発明における「制御信号送出手段」に相当する。
The “data storage unit 101” corresponds to the “data storage unit” in the present invention.
The “data storage unit 102” corresponds to the “data storage unit” in the present invention.
The “total air conditioning load calculation unit 104” corresponds to “total air conditioning load calculation means” in the present invention.
The “air conditioning capacity distribution calculation unit 105” corresponds to “air conditioning capacity distribution calculation means” in the present invention.
The “control signal sending unit 106” corresponds to “control signal sending means” in the present invention.

データ格納部101は、ユーザから入力された設定データ、通信線を通じて入力される空調負荷データや運転情報データ、演算部で実行する演算途中の中間データ、演算終了後に得られる制御用の出力データを格納する。各データの内容は後述する。   The data storage unit 101 stores setting data input from the user, air conditioning load data and operation information data input through a communication line, intermediate data being calculated by the calculation unit, and output data for control obtained after the calculation is completed. Store. The contents of each data will be described later.

データ記憶部102は、全体空調負荷演算部104及び空調能力配分演算部105が演算に使用する基本的な定義データなどを記憶し、演算で必要なときに参照される。
データ記憶部102に記憶されるデータとしては、例えば、空調能力と消費電力との関係を定義した性能モデルを表す関数の係数データ、及び最大空調能力・最小空調能力(以下「性能モデルデータ」という。)などが、各空調機毎に記憶される。データの内容は後述する。
The data storage unit 102 stores basic definition data used by the overall air conditioning load calculation unit 104 and the air conditioning capacity distribution calculation unit 105 for reference, and is referred to when necessary for the calculation.
The data stored in the data storage unit 102 includes, for example, coefficient data of a function representing a performance model that defines the relationship between air conditioning capacity and power consumption, and maximum air conditioning capacity / minimum air conditioning capacity (hereinafter referred to as “performance model data”). Etc.) are stored for each air conditioner. The contents of the data will be described later.

データ設定部103は、演算に関する必要な種々のデータをセットしたり、初期化処理を実行する。   The data setting unit 103 sets various data necessary for calculation and executes initialization processing.

全体空調負荷演算部104は、データ格納部101から次の制御タイミングにおける各空調機の能力値(空調負荷)を参照する。そして、次の制御タイミングにおける各空調機の空調負荷の合計値である全体空調負荷を演算して求める。そして、実行後に得られる全体空調負荷データをデータ格納部101に書き込む。   The overall air conditioning load calculation unit 104 refers to the capacity value (air conditioning load) of each air conditioner at the next control timing from the data storage unit 101. Then, an overall air conditioning load that is the total value of the air conditioning loads of the respective air conditioners at the next control timing is calculated and obtained. Then, the entire air conditioning load data obtained after execution is written in the data storage unit 101.

空調能力配分演算部105は、データ格納部101から全体空調負荷データを参照する。また、データ記憶部102から性能モデルデータを参照する。そして、全体空調負荷とのバランスを保持し消費電力を低減する空調能力を、性能モデルを考慮して各室外機に割り当てる配分量を演算して求める処理を実行する。そして、実行後に得られる空調能力値をデータ格納部101に書き込む。詳細は後述する。   The air conditioning capacity distribution calculation unit 105 refers to the entire air conditioning load data from the data storage unit 101. Further, the performance model data is referred from the data storage unit 102. And the process which calculates | requires the air-conditioning capability which maintains a balance with the whole air-conditioning load and reduces power consumption by calculating the allocation amount allocated to each outdoor unit in consideration of the performance model is executed. Then, the air conditioning capacity value obtained after execution is written in the data storage unit 101. Details will be described later.

制御信号送出部106は、演算結果として得られた各空調機の空調能力をデータ格納部101より読み出し、当該空調能力を指示する制御信号を、通信線を通じて各空調機に送出する処理を実行する。   The control signal sending unit 106 reads out the air conditioning capability of each air conditioner obtained as a calculation result from the data storage unit 101, and executes a process of sending a control signal instructing the air conditioning capability to each air conditioner through a communication line. .

なお、全体空調負荷演算部104、空調能力配分演算部105、制御信号送出部106は、これらの機能を実現する回路デバイスなどのハードウェアで実現することもできるし、マイコンやCPUなどの演算装置(コンピュータ)上で実行されるソフトウェアとして実現することもできる。   The overall air conditioning load calculation unit 104, the air conditioning capacity distribution calculation unit 105, and the control signal transmission unit 106 can be realized by hardware such as a circuit device that realizes these functions, or an arithmetic device such as a microcomputer or a CPU. It can also be realized as software executed on a (computer).

なお、データ格納部101、データ記憶部102、データ設定部103は、例えばフラッシュメモリなどの記憶装置で構成することができる。   The data storage unit 101, the data storage unit 102, and the data setting unit 103 can be configured by a storage device such as a flash memory, for example.

図3は実施の形態1に係る空気調和機の冷媒回路を概略的に示す図である。
図3に示すように、各空調機は、室内機2と室外機3とが、液接続配管及びガス接続配管を介して接続されている。
なお、ここでは、1つの空調機の室内機2及び室外機3が1台である場合を説明するが、本発明はこれに限らず、複数備える構成であっても良い。
3 is a diagram schematically showing a refrigerant circuit of the air conditioner according to Embodiment 1. FIG.
As shown in FIG. 3, in each air conditioner, an indoor unit 2 and an outdoor unit 3 are connected via a liquid connection pipe and a gas connection pipe.
In addition, although the case where the indoor unit 2 and the outdoor unit 3 of one air conditioner are one is demonstrated here, this invention is not restricted to this, The structure provided with multiple may be sufficient.

室内機2は、室内熱交換器21、室内送風機22、温度センサ23を備えている。
室外機3は、圧縮機31、四方弁32、室外熱交換器33、室外送風機34、絞り装置35を備えている。これら圧縮機31、室外熱交換器33、絞り装置35、室内熱交換器21は環状に接続され、冷媒回路を構成する。
The indoor unit 2 includes an indoor heat exchanger 21, an indoor blower 22, and a temperature sensor 23.
The outdoor unit 3 includes a compressor 31, a four-way valve 32, an outdoor heat exchanger 33, an outdoor blower 34, and a throttle device 35. The compressor 31, the outdoor heat exchanger 33, the expansion device 35, and the indoor heat exchanger 21 are connected in an annular shape to form a refrigerant circuit.

室内熱交換器21は、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなる。この室内熱交換器21は、冷房運転時には冷媒の蒸発器として機能して室内の空気を冷却する。また、室内熱交換器21は、暖房運転時には冷媒の凝縮器として機能して室内の空気を加熱する。   The indoor heat exchanger 21 is composed of, for example, a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins. The indoor heat exchanger 21 functions as a refrigerant evaporator during cooling operation to cool indoor air. The indoor heat exchanger 21 functions as a refrigerant condenser during heating operation, and heats indoor air.

室内送風機22は、室内熱交換器21に付設され、室内熱交換器21に供給する空気の流量を可変することが可能なファン等からなる。この室内送風機22は、室内機2内に室内空気を吸入し、室内熱交換器21により冷媒との間で熱交換した空気を供給空気として空調対象空間1内に供給する。   The indoor blower 22 is attached to the indoor heat exchanger 21 and includes a fan that can vary the flow rate of air supplied to the indoor heat exchanger 21. The indoor blower 22 sucks room air into the indoor unit 2 and supplies the air that has been heat-exchanged with the refrigerant by the indoor heat exchanger 21 into the air-conditioning target space 1 as supply air.

温度センサ23は、例えばサーミスタにより構成される。この温度センサ23は、室内熱交換器21内の気液二相状態の冷媒の温度を検出する。すなわち、暖房運転時における凝縮温度、冷房運転時における蒸発温度を検出する。   The temperature sensor 23 is composed of, for example, a thermistor. This temperature sensor 23 detects the temperature of the refrigerant in the gas-liquid two-phase state in the indoor heat exchanger 21. That is, the condensation temperature during the heating operation and the evaporation temperature during the cooling operation are detected.

圧縮機31は、運転容量を可変することが可能であり、例えばインバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機を用いる。この圧縮機31は、制御装置10により制御される。
なお、本実施の形態では、圧縮機31が1台のみの場合を説明するが、これに限定されず、室内機2の接続台数等に応じて、2台以上の圧縮機31が並列に接続されたものであっても良い。
The compressor 31 can vary its operating capacity, and for example, a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used. The compressor 31 is controlled by the control device 10.
In the present embodiment, a case where only one compressor 31 is provided will be described. However, the present invention is not limited to this, and two or more compressors 31 are connected in parallel according to the number of indoor units 2 connected. It may be what was done.

四方弁32は、冷媒の流れの方向を切り換えるための弁である。この四方弁32は、冷房運転時には、圧縮機31の吐出側と室外熱交換器33とを接続し、圧縮機31の吸入側と室内熱交換器21とを接続するように、冷媒流路を切り換える。また、四方弁32は、暖房運転時には、圧縮機31の吐出側と室内熱交換器21とを接続し、圧縮機31の吸入側と室外熱交換器33とを接続するように、冷媒流路を切り換える。   The four-way valve 32 is a valve for switching the direction of refrigerant flow. In the cooling operation, the four-way valve 32 connects the discharge side of the compressor 31 and the outdoor heat exchanger 33 and connects the refrigerant flow path so as to connect the suction side of the compressor 31 and the indoor heat exchanger 21. Switch. The four-way valve 32 connects the discharge side of the compressor 31 and the indoor heat exchanger 21 and connects the suction side of the compressor 31 and the outdoor heat exchanger 33 during the heating operation. Switch.

室外熱交換器33は、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなる。この室外熱交換器33は、そのガス側が四方弁32に接続され、その液側が絞り装置35に接続される。室外熱交換器33は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。   The outdoor heat exchanger 33 is composed of, for example, a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins. The outdoor heat exchanger 33 has a gas side connected to the four-way valve 32 and a liquid side connected to the expansion device 35. The outdoor heat exchanger 33 functions as a refrigerant condenser during the cooling operation, and functions as a refrigerant evaporator during the heating operation.

室外送風機34は、室外熱交換器33に付設され、室外熱交換器33に供給する空気の流量を可変することが可能なファン等からなる。この室外送風機34は、室外機3内に室外空気を吸入し、室外熱交換器33により冷媒との間で熱交換した空気を室外に排出する。   The outdoor blower 34 is attached to the outdoor heat exchanger 33 and includes a fan that can vary the flow rate of air supplied to the outdoor heat exchanger 33. The outdoor blower 34 sucks outdoor air into the outdoor unit 3 and discharges the air heat-exchanged with the refrigerant by the outdoor heat exchanger 33 to the outside.

絞り装置35は、室外機3の液側配管に接続配置されている。この絞り装置35は、絞り開度が可変であり、冷媒回路内を流れる冷媒の流量の調節等を行う。   The expansion device 35 is connected to the liquid side piping of the outdoor unit 3. The throttle device 35 has a variable throttle opening and adjusts the flow rate of the refrigerant flowing in the refrigerant circuit.

温度センサ36は、例えばサーミスタにより構成される。この温度センサ36は、室外熱交換器33内の気液二相状態の冷媒の温度を検出する。すなわち、冷房運転時における凝縮温度、暖房運転時における蒸発温度を検出する。   The temperature sensor 36 is composed of, for example, a thermistor. This temperature sensor 36 detects the temperature of the refrigerant in the gas-liquid two-phase state in the outdoor heat exchanger 33. That is, the condensation temperature during the cooling operation and the evaporation temperature during the heating operation are detected.

以上、本実施の形態における空気調和機の制御装置10の構成を説明した。
次に、データ格納部101、データ記憶部102に格納される各種データについて説明する。
The configuration of the air conditioner control device 10 according to the present embodiment has been described above.
Next, various data stored in the data storage unit 101 and the data storage unit 102 will be described.

[性能モデルデータ]
図4は空調能力と消費電力の関係を表す代表的なグラフである。
図5は実施の形態1に係る性能モデルデータのデータ形式を示す図である。
空調機の消費電力は、主に圧縮機消費電力、電子基盤入力電力、室内/室外ファン入力電力などからなる。空調機における空調能力と消費電力の関係は、例えば図4に示すようになり、例えば以下の(数式1)のような二次式で十分に近似できる。
[Performance model data]
FIG. 4 is a representative graph showing the relationship between air conditioning capability and power consumption.
FIG. 5 is a diagram showing a data format of the performance model data according to the first embodiment.
The power consumption of the air conditioner mainly includes compressor power consumption, electronic board input power, indoor / outdoor fan input power, and the like. The relationship between the air conditioning capacity and the power consumption in the air conditioner is as shown in FIG. 4, for example, and can be sufficiently approximated by a quadratic expression such as the following (Equation 1).

Figure 0005312286
Figure 0005312286

ここで、Wk(kW)は空調機k(k=1,2,3…)の消費電力を示す。Qk(kW)は空調機kの空調能力を示す。ak,bk,ckは係数データを示す。 Here, Wk (kW) indicates the power consumption of the air conditioner k (k = 1, 2, 3,...). Q k (kW) indicates the air conditioning capability of the air conditioner k. a k , b k and c k indicate coefficient data.

各空調機に対する(数式1)の係数データは、空調機の最小能力値Qmin(kW)と最大能力値Qmax(kW)と併せて、性能モデルデータと定義する。
この性能モデルデータは、各空調機毎に、例えば図5に示すデータ形式でデータ記憶部102に記憶される。
The coefficient data of (Formula 1) for each air conditioner is defined as performance model data together with the minimum capacity value Q min (kW) and the maximum capacity value Q max (kW) of the air conditioner.
The performance model data is stored in the data storage unit 102 for each air conditioner, for example, in the data format shown in FIG.

なお、空調機の最小能力値Qmin及び最大能力値Qmaxは、空調機に応じて予め設定した値でも良いし、運転状態により動的に設定するようにしても良い。
運転状態により設定する場合には、例えば、所定の初期値を設定して、運転時間の経過に伴い最大能力値Qmaxを低下させるようにしたり、室外温度の低下に伴い最小能力値Qminを上昇させるようにする。このような運転状態に応じて動的に設定することで、外気温に応じた適正な冷媒の循環量を確保することができる。
Note that the minimum capacity value Q min and the maximum capacity value Q max of the air conditioner may be values set in advance according to the air conditioner, or may be dynamically set according to the operating state.
In the case of setting according to the operation state, for example, a predetermined initial value is set so that the maximum capacity value Q max is decreased as the operation time elapses, or the minimum capacity value Q min is decreased as the outdoor temperature decreases. Try to raise. By setting dynamically according to such an operating state, it is possible to ensure an appropriate refrigerant circulation amount according to the outside air temperature.

[運転情報データ]
図6は実施の形態1に係る運転情報データのデータ形式を示す図である。
各空調機に対する運転情報データは、現在の運転状態と次の制御タイミングにおける外部からの制御情報(ユーザによる主電源OFF等)や空調機による制御判断(空調機のサーモOFF後に機器保護のための強制停止時間がある等)に基づいて設定される次の制御タイミングでの運転状態を表す。
例えば、後述する協調制御により運転する場合に「1」、協調制御により運転を停止する場合に「0」、空調機の電源がOFFの場合に「−1」、協調制御の対象外とする場合に「−2」、と定義して、図6に示すデータ形式でデータ格納部101に格納する。
[Operation information data]
FIG. 6 is a diagram showing a data format of the driving information data according to the first embodiment.
The operation information data for each air conditioner includes control information from the outside (main power off by the user, etc.) at the current operation state and next control timing, and control judgment by the air conditioner (for equipment protection after the air conditioner thermo-off) This represents the operation state at the next control timing set based on the forced stop time or the like.
For example, “1” when driving by cooperative control to be described later, “0” when stopping operation by cooperative control, “−1” when the power supply of the air conditioner is OFF, and excluding the target of cooperative control “−2” is stored in the data storage unit 101 in the data format shown in FIG.

この運転情報データは、例えば、協調制御上、次のように扱う。
ある空調機に対する運転情報データが「1」のとき、当該空調機は次の制御タイミングで協調制御により運転させる状態(以下「バランス運転」という。)であり、それ以降に制御機能がサーモON/OFFへ必要に応じて状態を遷移させることができる。
ある空調機に対する運転情報データが「0」のとき、当該空調機は次の制御タイミングで協調制御により運転を停止させる状態(以下「バランス停止」という。)であり、それ以降に制御機能がサーモON/OFFへ必要に応じて状態を遷移させることができる。
なお、バランス停止の状態においては、圧縮機31のみを一時停止状態とするようにしても良い。
以上の2状態が協調制御の対象となる状態である。
This driving information data is handled as follows in the cooperative control, for example.
When the operation information data for a certain air conditioner is “1”, the air conditioner is in a state of being operated by cooperative control at the next control timing (hereinafter referred to as “balanced operation”). The state can be changed to OFF as required.
When the operation information data for a certain air conditioner is “0”, the air conditioner is in a state where the operation is stopped by cooperative control at the next control timing (hereinafter referred to as “balance stop”). The state can be changed to ON / OFF as necessary.
In the balance stop state, only the compressor 31 may be temporarily stopped.
The above two states are states to be subjected to cooperative control.

ある空調機に対する運転情報データが「−1」のとき、当該空調機の電源がOFFの状態である。電源OFFはユーザによる主電源スイッチの開放状態であり、ユーザにより主電源スイッチの閉路状態に切り換えられない限りサーモON/OFF状態または協調制御対象外の状態への復帰はない。
ある空調機に対する運転情報データが「−2」のとき、当該空調機は、主電源スイッチは閉路状態でありサーモON/OFFの状態であるが、ユーザによる設定または制御機能による判断により、協調制御対象となる空調機群から離脱し、協調制御の対象外の状態となる。
When the operation information data for a certain air conditioner is “−1”, the power supply of the air conditioner is OFF. The power OFF is an open state of the main power switch by the user, and there is no return to the thermo ON / OFF state or the state other than the cooperative control unless the user switches to the closed state of the main power switch.
When the operation information data for a certain air conditioner is “−2”, the main power switch is in the closed state and the thermo ON / OFF state, but the cooperative control is performed according to the setting by the user or the judgment by the control function. It leaves | separates from the air conditioner group used as object, and will be in the state outside the object of cooperative control.

[空調負荷データ]
各空調機に対する空調負荷データは、各空調機に具備されているセンサによる計測情報に基づいて次の制御タイミングで出力すべき空調能力を決定する。
ただし、空調負荷データは、電源OFFの状態にある空調機及び協調制御対象外の状態にある空調機からは得られないものとする。
[Air conditioning load data]
The air conditioning load data for each air conditioner determines the air conditioning capacity to be output at the next control timing based on the measurement information from the sensors provided in each air conditioner.
However, air conditioning load data cannot be obtained from an air conditioner that is in a power-off state or an air conditioner that is not subject to cooperative control.

本実施の形態では、当該空調能力を次の制御タイミングにおける各空調機の空調負荷(kW)とする。例えば、空調機の設定温度と室内温度との差(ΔTj)に応じて圧縮機31の回転数(Hz)を決定し、この回転数に応じて空調能力(kW)を求め、これを当該空調機の空調負荷(kW)とする。 In the present embodiment, the air conditioning capacity is the air conditioning load (kW) of each air conditioner at the next control timing. For example, the rotational speed (Hz) of the compressor 31 is determined according to the difference (ΔT j ) between the set temperature of the air conditioner and the room temperature, and the air conditioning capacity (kW) is determined according to this rotational speed, Let it be the air conditioning load (kW) of the air conditioner.

空調負荷データは通信線を通じて制御装置10に送信され、図7に示すデータ形式でデータ格納部101に格納する。   The air conditioning load data is transmitted to the control device 10 through the communication line, and is stored in the data storage unit 101 in the data format shown in FIG.

図7は実施の形態1に係る空調負荷データのデータ形式を示す図である。
図7においては、例えば図6に示す運転情報データのもとで得られた空調負荷データであり、電源OFFの状態である空調機No4以外の空調負荷(≧0)を表す。
例えば、ここでは電源OFFの状態である空調機に対しては空調負荷を「−1」と表現する。また、協調制御対象外の状態である空調機に対しては空調負荷を「−2」と表現すれば良い。
FIG. 7 is a diagram showing a data format of air conditioning load data according to the first embodiment.
In FIG. 7, for example, the air conditioning load data obtained based on the operation information data illustrated in FIG. 6 represents the air conditioning load (≧ 0) other than the air conditioner No 4 that is in the power-off state.
For example, the air conditioning load is expressed as “−1” for an air conditioner that is in a power OFF state. Moreover, what is necessary is just to express an air-conditioning load as "-2" with respect to the air conditioner which is a state outside a cooperative control object.

次に、実施の形態1の複数台の空調機による協調制御処理内容について説明する。
上記(数式1)の二次式で表される空調能力と消費電力との関係を使用して、次の制御タイミングで運転している空調機(ここでは空調機No1,2,3,4の4台とする)に対して消費電力を低減する空調能力の割り当ては次のように行う。
Next, the contents of cooperative control processing by the plurality of air conditioners of Embodiment 1 will be described.
Using the relationship between the air conditioning capacity and the power consumption expressed by the secondary expression of the above (Equation 1), the air conditioner operating at the next control timing (in this case, the air conditioners No 1, 2, 3, 4 The air conditioning capacity for reducing the power consumption is assigned to the four units as follows.

ある全体空調負荷Lに対して、全体空調負荷Lと運転中の空調能力Qk(k=1,2,3…)の総和のバランスを保ちながら消費電力Wk(k=1,2,3…)の総和を最小にする問題を考える。
ここで、Qmin、Qmaxは空調機の最小能力と最大能力である。
For a certain overall air conditioning load L, the power consumption W k (k = 1, 2, 3) while maintaining a balance between the total air conditioning load L and the total air conditioning capacity Q k (k = 1, 2, 3,...) During operation. Consider the problem of minimizing the sum of (...).
Here, Q min and Q max are the minimum capacity and maximum capacity of the air conditioner.

Figure 0005312286
Figure 0005312286

すなわち、各空調機の消費電力の和を、各空調機の空調能力Qを変数とした多変数関数とする。そして、各空調機の空調能力Qの和が全体空調負荷Lとなる制約条件のもと、上記の多変数関数が極値となる各空調機の空調能力Qをそれぞれ求める。   That is, the sum of the power consumption of each air conditioner is a multivariable function with the air conditioning capability Q of each air conditioner as a variable. Then, under the constraint that the sum of the air conditioning capacities Q of the respective air conditioners becomes the total air conditioning load L, the air conditioning capacities Q of the respective air conditioners where the above multivariable functions are extreme values are obtained.

上記(数式2)の問題の解は解析的に求めることができる。
ここでは、例えばラグランジュの未定乗数法を用いる場合を説明する。なお、上記の問題の解を求めるものであればこれに限るものではない。
The solution of the problem of (Formula 2) can be obtained analytically.
Here, for example, a case where the Lagrange's undetermined multiplier method is used will be described. Note that the present invention is not limited to this as long as it seeks a solution to the above problem.

まず、上記(数式2)に、各空調機の空調能力Qの和が全体空調負荷Lとなる制約条件を係数とする中間変数μを加え、以下の(数式3)のような第2の多変数関数Fを考える。   First, an intermediate variable μ whose coefficient is a constraint condition that the sum of the air conditioning capacities Q of the respective air conditioners becomes the overall air conditioning load L is added to the above (Equation 2), and a second multiplicity like Consider a variable function F.

Figure 0005312286
Figure 0005312286

次に、上記(数式3)の極値条件から以下の(数式4)を得る。   Next, the following (Formula 4) is obtained from the extreme value condition of the above (Formula 3).

Figure 0005312286
Figure 0005312286

上記(数式4)を整理すると、第2の多変数関数Fの各変数が極値となる条件を満たす中間変数μは、次の(数式5)で与えられる。   By arranging the above (Equation 4), an intermediate variable μ that satisfies the condition that each variable of the second multivariable function F is an extreme value is given by the following (Equation 5).

Figure 0005312286
Figure 0005312286

すなわち、全体空調負荷Lと空調能力Qkの総和とのバランス維持を表す制約式である(数式2)の、ラグランジュ乗数である中間変数μを用いると、各空調機の空調能力Qは次のように代数式で与えられる。 In other words, using the intermediate variable μ, which is a Lagrange multiplier in (Expression 2), which is a constraint expression representing the balance maintenance of the total air conditioning load L and the sum of the air conditioning capacity Q k , the air conditioning capacity Q of each air conditioner is Is given by an algebraic expression.

Figure 0005312286
Figure 0005312286

このように、中間変数μと、性能モデルデータとに基づき、各空調機の空調能力Qをそれぞれ求めることで、協調制御対象の複数の空調機により、最小の消費電力で全体空調負荷Lに見合うだけの空調能力を求めることができる。   In this way, by obtaining the air conditioning capability Q of each air conditioner based on the intermediate variable μ and the performance model data, the plurality of air conditioners subject to cooperative control meet the overall air conditioning load L with the minimum power consumption. Only air conditioning capability can be sought.

次に、実施の形態1における協調制御処理の動作を具体的に説明する。   Next, the operation of the cooperative control process in the first embodiment will be specifically described.

図8は実施の形態1に係る協調制御処理の動作を示すフローチャートである。
以下、図8のフローチャートに沿って説明する。
FIG. 8 is a flowchart showing the operation of the cooperative control process according to the first embodiment.
Hereinafter, a description will be given along the flowchart of FIG.

(S101)
開始処理S101により、制御装置10は、一連の演算処理をフローにしたがって開始する。
(S101)
With the start process S101, the control device 10 starts a series of arithmetic processes according to the flow.

(S102)
まず、初期データ読み込み処理S102において、データ設定部103は、データ記憶部102に予め記憶されている性能モデルデータD101を参照する。
また、データ設定部103は、データ格納部101に格納されている、協調制御対象であり計測可能な状態(バランス運転及びバランス停止の状態)の各空調機が計測した、次の制御タイミングにおける空調負荷データD102を参照する。
また、データ設定部103は、次の制御タイミングにおいて、バランス運転及びバランス停止の状態の空調機の運転情報データD103を参照する。
そして、データ設定部103は、参照した性能モデルデータD101、空調負荷データD102、運転情報データD103を、初期データとして設定して演算の初期化を実行する。
(S102)
First, in the initial data reading process S102, the data setting unit 103 refers to the performance model data D101 stored in advance in the data storage unit 102.
In addition, the data setting unit 103 is the air conditioning at the next control timing measured by each air conditioner that is stored in the data storage unit 101 and is a target of cooperative control and is in a measurable state (balance operation and balance stop state). Reference is made to the load data D102.
Further, the data setting unit 103 refers to the air conditioner operation information data D103 in the balance operation and balance stop states at the next control timing.
Then, the data setting unit 103 sets the referenced performance model data D101, the air conditioning load data D102, and the operation information data D103 as initial data, and initializes the calculation.

具体的には、データ設定部103は、運転情報データD103より制御対象となる運転台数をメモリ上の変数にセットし、運転台数分の性能モデルデータを空調機Noごとにメモリ上の変数にセットする。
このとき、全体空調負荷Lに対する変数、中間変数μ及び各空調機の空調能力Qk(k=1,2,3…)に対する変数を「0」に初期化しておく。
Specifically, the data setting unit 103 sets the number of operation targets to be controlled from the operation information data D103 to a variable on the memory, and sets performance model data for the number of operation units to a variable on the memory for each air conditioner No. To do.
At this time, a variable for the overall air conditioning load L, an intermediate variable μ, and a variable for the air conditioning capacity Q k (k = 1, 2, 3,...) Of each air conditioner are initialized to “0”.

(S103)
次に、全体空調負荷演算部104は、空調負荷データD102から全体空調負荷Lを求める。
具体的には次のように演算して求める。
まず、運転情報データD103に基づいて協調制御対象である空調機(バランス運転及びバランス停止の状態の空調機)を得る。そして、空調負荷データD102から、協調制御対象である空調機の空調負荷を得て、その合計値を全体空調負荷Lとして求める。
(S103)
Next, the overall air conditioning load calculation unit 104 obtains the overall air conditioning load L from the air conditioning load data D102.
Specifically, the calculation is performed as follows.
First, based on the operation information data D103, an air conditioner (an air conditioner in a balance operation and balance stop state) that is a target for cooperative control is obtained. Then, the air conditioning load of the air conditioner that is the object of cooperative control is obtained from the air conditioning load data D102, and the total value is obtained as the overall air conditioning load L.

例えば、運転情報データD103が、例えば図6であったとし、空調負荷データD102が、例えば図7のようにL1,L2,L3,−1であるとすると、協調制御対象であり、空調負荷の計測可能な状態の空調機No1〜3から求められる全体空調負荷は、L=L1+L2+L3である。 For example, assuming that the operation information data D103 is, for example, FIG. 6 and the air conditioning load data D102 is, for example, L 1 , L 2 , L 3 , −1 as shown in FIG. The total air conditioning load obtained from the air conditioners No. 1 to 3 in a state where the air conditioning load can be measured is L = L 1 + L 2 + L 3 .

(S104)
続いて、空調能力配分演算部105は、性能モデルデータD101と、空調負荷データD102、及び運転情報データD103から、上記(数式5)にしたがって中間変数μを求める。
そして、その結果をデータ格納部101の変数に格納する。
(S104)
Subsequently, the air conditioning capability distribution calculation unit 105 obtains the intermediate variable μ from the performance model data D101, the air conditioning load data D102, and the operation information data D103 according to the above (Formula 5).
Then, the result is stored in a variable of the data storage unit 101.

(S105)
次に、空調能力配分演算部105は、運転している空調機の中で最初の空調機(例えば、空調機Noが最も小さいもの)を一つ選択する。
(S105)
Next, the air conditioning capacity distribution calculation unit 105 selects one of the first air conditioners (for example, the one having the smallest air conditioner No.) among the air conditioners that are operating.

(S106)
空調能力配分演算部105は、上記処理S105により選択した空調機に対して、データ格納部101に格納されている中間変数μと性能モデルデータD101とから、上記(数式6)にしたがって空調能力Qkを求める。
そして、その結果をデータ格納部101の変数に格納する。
(S106)
The air conditioning capacity distribution calculation unit 105 determines the air conditioning capacity Q for the air conditioner selected in step S105 from the intermediate variable μ stored in the data storage unit 101 and the performance model data D101 according to the above (Equation 6). Find k .
Then, the result is stored in a variable of the data storage unit 101.

ここで、上記演算により求めた各空調機の空調能力Qkが、制約条件Qmin≦Q≦Qmaxの範囲に属さない場合が考えられる。
この場合のリカバー計算について説明する。
Here, there may be a case where the air conditioning capability Q k of each air conditioner obtained by the above calculation does not belong to the range of the constraint condition Q min ≦ Q ≦ Q max .
The recovery calculation in this case will be described.

図9は実施の形態1に係る制約条件Qmin≦Q≦Qmaxを満足しない場合の処理を説明する図である。図9の横軸は空調能力を示し、縦軸は上記(数式5)により求まる中間変数を示す。
例えば、運転情報データD103が図6であったとすると、バランス運転の状態の空調機は空調機No1、3である。このとき、上述の処理により、空調機No1の空調能力Q1と、空調機No3の空調能力Q3とが求まる。
例えば図9に示すように、空調能力Q1(点A3)が、Qmin(点A2)からQmax(点A1)の範囲内であったとする。
また、空調能力Q3(点B3)が、Qmin(点B2)からQmax(点B1)の範囲外(Qmin以下)であったとする。
FIG. 9 is a diagram for explaining processing when the constraint condition Q min ≦ Q ≦ Q max is not satisfied according to the first embodiment. The horizontal axis in FIG. 9 indicates the air conditioning capability, and the vertical axis indicates the intermediate variable obtained by the above (Formula 5).
For example, if the operation information data D103 is FIG. 6, the air conditioners in the balance operation state are the air conditioners No. 1 and No. 3. At this time, the air conditioning capability Q 1 of the air conditioner No 1 and the air conditioning capability Q 3 of the air conditioner No 3 are obtained by the above-described processing.
For example, as shown in FIG. 9, it is assumed that the air conditioning capability Q 1 (point A3) is within the range of Q min (point A2) to Q max (point A1).
Further, it is assumed that the air conditioning capability Q 3 (point B3) is outside the range from Q min (point B2) to Q max (point B1) (Q min or less).

空調能力配分演算部105は、以下のような処理を行う。
まず、性能モデルデータD103に設定された空調能力の範囲(Qmin≦Q≦Qmax)に属さない空調機の空調能力Qkを、空調能力の範囲の限界値(QminまたはQmax)とする。例えば、空調能力Qkが最小能力値Qminを下回った場合には、空調能力Qkを最小能力値Qminとする。空調能力Qkが最大能力値Qmaxを超えた場合には、空調能力Qkを最大能力値Qmaxとする。
図9の例では、空調機No3の空調能力Q3を、最小能力値Q3 minと同値のQ3’(点B2)に固定する。
The air conditioning capacity distribution calculation unit 105 performs the following processing.
First, the air conditioning capacity Q k of an air conditioner that does not belong to the air conditioning capacity range (Q min ≦ Q ≦ Q max ) set in the performance model data D103 is set to the limit value (Q min or Q max ) of the air conditioning capacity range. To do. For example, when the air conditioning capability Q k falls below the minimum capability value Q min , the air conditioning capability Q k is set as the minimum capability value Q min . When the air conditioning capability Q k exceeds the maximum capability value Q max , the air conditioning capability Q k is set as the maximum capability value Q max .
In the example of FIG. 9, the air conditioning capacity Q 3 of the air conditioner No3, fixed to the minimum capacity value Q 3 min and equivalence of Q 3 '(point B2).

次に、空調能力の範囲に属さない空調機以外の空調機について、再度、空調能力を求める。
このとき、全体空調負荷Lから空調能力の範囲に属さない空調機の空調能力を除いた第2の全体空調負荷L’を求める。
そして、この第2の全体空調負荷L’を用いて、改めて上記(数式5)にしたがって中間変数μ’を求める。この中間変数μ’と性能モデルデータD101とから、上記(数式6)にしたがって、空調能力の範囲に属する空調機の空調能力を求める。
すなわち、空調能力の範囲に属する空調機の空調能力の和が、第2の全体空調負荷L’となり、且つ、空調能力の範囲に属する空調機の消費電力の和が最小となるように、空調能力の範囲に属する空調機の空調能力を求める。
Next, the air conditioning capacity is obtained again for the air conditioners other than the air conditioner not belonging to the range of the air conditioning capacity.
At this time, the second overall air conditioning load L ′ obtained by excluding the air conditioning capability of the air conditioner that does not belong to the range of the air conditioning capability from the overall air conditioning load L is obtained.
Then, using this second overall air conditioning load L ′, an intermediate variable μ ′ is obtained again according to the above (Formula 5). From the intermediate variable μ ′ and the performance model data D101, the air conditioning capability of the air conditioner belonging to the range of the air conditioning capability is obtained according to the above (Equation 6).
That is, air conditioning is performed so that the sum of air conditioning capacities of air conditioners belonging to the range of air conditioning capacities becomes the second overall air conditioning load L ′ and the sum of power consumption of air conditioners belonging to the range of air conditioning capacities is minimized. Find the air conditioning capacity of an air conditioner that belongs to the capacity range.

図9の例では、全体空調負荷Lから空調機3の空調能力Q3’を除いた第2の全体空調負荷L’を求める。この例では空調能力の範囲に属する空調機が1台であるため、空調機No1の空調能力Q1が、第2の全体空調負荷L’と同値のQ1’(点A4)となる。つまり、空調能力Q3がQ3’に増加したため、Q1’はQ1より減少することになる。 In the example of FIG. 9, a second overall air conditioning load L ′ obtained by removing the air conditioning capability Q 3 ′ of the air conditioner 3 from the overall air conditioning load L is obtained. In this example, since there is one air conditioner belonging to the range of the air conditioning capacity, the air conditioning capacity Q 1 of the air conditioner No. 1 becomes Q 1 ′ (point A4) equivalent to the second overall air conditioning load L ′. That is, since the air conditioning capability Q 3 has increased to Q 3 ′, Q 1 ′ will decrease from Q 1 .

また、例えば、協調制御の対象となる空調機が4台で、内1台が制約条件Qmin≦Q≦Qmaxから外れた場合は、制約条件を外れた空調機の空調能力を制約条件の限界値に固定し、残りの3台にて改めて中間変数μを算出することになる。 Also, for example, if four air conditioners are subject to cooperative control and one of them falls outside the constraint condition Q min ≦ Q ≦ Q max , the air conditioning capacity of the air conditioner that deviates from the constraint condition The limit value is fixed, and the intermediate variable μ is calculated again with the remaining three units.

尚、図9においては、制約条件が1台外れるケースで説明したが、複数台外れる場合であっても、制約条件を外れた空調機を1台づつ制約条件内(限界値)に固定し、改めてそれぞれの中間変数μを算出する。   In addition, in FIG. 9, although the case where one constraint condition was removed was described, even when a plurality of units were removed, the air conditioners that deviated from the constraint condition were fixed within the constraint condition (limit value) one by one, Each intermediate variable μ is calculated again.

以上のようなリカバー計算を行うことで、各空調機の空調能力Qkがそれぞれ空調能力の範囲(Qmin≦Q≦Qmax)に属し、且つ、各空調機の空調能力Qkの和が全体空調負荷Lとなる空調能力であって、各空調機の消費電力Wkの和を最小とするような、それぞれの空調能力Qkを求めることができる。 By performing the recovery calculation as described above, the air conditioning capability Q k of each air conditioner belongs to the range of the air conditioning capability (Q min ≦ Q ≦ Q max ), and the sum of the air conditioning capabilities Q k of each air conditioner is Each air conditioning capability Q k that is the air conditioning capability that becomes the overall air conditioning load L and that minimizes the sum of the power consumption W k of each air conditioner can be obtained.

(S107)
続いて、空調機選択終了判定処理S107において、空調能力配分演算部105は、すべての運転している空調機に対して処理を終了したかどうかを判断する。
(S107)
Subsequently, in the air conditioner selection end determination process S107, the air conditioning capacity distribution calculation unit 105 determines whether or not the process has been completed for all the air conditioners in operation.

(S108)
終了していない場合には、未選択空調機選択処理S108に進み、空調能力配分演算部105は、未選択の空調機の中から次の空調機を選択して、処理S106に戻り処理を繰り返す。
空調機をすべて選択し空調能力の演算を完了した場合には、制御信号送出処理S109に進む。
(S108)
If not completed, the process proceeds to the unselected air conditioner selection process S108, and the air conditioning capacity distribution calculation unit 105 selects the next air conditioner from the unselected air conditioners, returns to process S106, and repeats the process. .
When all the air conditioners are selected and the calculation of the air conditioning capacity is completed, the process proceeds to the control signal transmission process S109.

(S109)
制御信号送出処理S109において、制御信号送出部106は、各空調機に対して一連の演算の結果求められた空調能力値を出力データとしてデータ格納部101より読み出す。
そして、当該空調能力値を実現する制御信号を、次の制御タイミングに合わせて通信線を通じて、各空調機に送出する。
(S109)
In the control signal transmission process S109, the control signal transmission unit 106 reads out from the data storage unit 101, as output data, the air conditioning capability value obtained as a result of a series of calculations for each air conditioner.
And the control signal which implement | achieves the said air-conditioning capability value is sent to each air conditioner through a communication line according to the following control timing.

(S110)
終了処理S110により、一連の演算処理を終了する。
(S110)
A series of arithmetic processing is ended by the end processing S110.

このような協調制御により、必要な全体空調負荷Lに見合うだけの能力を、運転中の協調制御対象となる各空調機に消費電力を低減するように配分して運転することができるため、全体空調システムとして消費電力を低減するような運転条件を求めて空調機を制御することができる。   By such cooperative control, it is possible to distribute and operate the capacity sufficient for the required overall air conditioning load L to reduce power consumption to each air conditioner that is the target of cooperative control during operation. The air conditioner can be controlled by obtaining an operating condition that reduces power consumption as an air conditioning system.

以上のように本実施の形態においては、性能モデルデータと全体空調負荷Lとに基づいて、複数の空調機の空調能力Qの和が全体空調負荷Lとなり、且つ、複数の空調機の消費電力Wの和が最小となるように、複数の空調機のそれぞれの空調能力Qを求める。
このため、空調対象空間1内の全体空調負荷Lと、運転中の空調機の空調能力Qkの総和とのバランスを保ちながら消費電力Wkの総和を低減することができる。
As described above, in the present embodiment, based on the performance model data and the overall air conditioning load L, the sum of the air conditioning capabilities Q of the plurality of air conditioners becomes the overall air conditioning load L, and the power consumption of the plurality of air conditioners The air conditioning capability Q of each of the plurality of air conditioners is obtained so that the sum of W is minimized.
Therefore, it is possible to reduce the overall air conditioning load L of the air-conditioning target space 1, the total sum of power consumption W k while keeping the balance of the sum of air conditioning capability Q k of air conditioners in operation.

また、複数の空調機のそれぞれの空調能力Qを求める過程において、空調能力の範囲に属さない空調機の空調能力を、空調能力の範囲の限界値とし、この空調機以外の空調機について、再度、空調能力を求める。
これにより、各空調機の空調能力をそれぞれ空調能力の範囲内としつつ、各空調機の空調能力の和が全体空調負荷となる空調能力であって、各空調機の消費電力の和を最小とする各空調機の空調能力を求めることができる。
したがって、空調能力が各空調機の最小能力値から最大能力値までの範囲を外れた場合であっても、実際の運用状況に対応しつつ、より詳細な省エネルギーを図ることができるという効果がある。
In addition, in the process of obtaining the air conditioning capacity Q of each of the plurality of air conditioners, the air conditioning capacity of the air conditioner that does not belong to the range of the air conditioning capacity is set as the limit value of the range of the air conditioning capacity. Ask for air conditioning capacity.
As a result, while the air conditioning capacity of each air conditioner is within the range of the air conditioning capacity, the sum of the air conditioning capacity of each air conditioner is the air conditioning capacity that becomes the overall air conditioning load, and the sum of the power consumption of each air conditioner is minimized. The air conditioning capability of each air conditioner to be performed can be obtained.
Therefore, even when the air conditioning capacity is out of the range from the minimum capacity value to the maximum capacity value of each air conditioner, there is an effect that more detailed energy saving can be achieved while responding to the actual operation status. .

また、全体空調負荷Lと性能モデルデータとを用いて(数式5)に基づき中間変数μを求め、この中間変数μと、性能モデルデータとに基づき、(数式6)により各空調機の空調能力Qkをそれぞれ求める。
このため、空調機の空調能力の総和が全体空調負荷となり、消費電力の総和が最小となる空調能力を、全体空調負荷Lと性能モデルデータとから算出することができる。
Further, an intermediate variable μ is obtained based on (Equation 5) using the overall air conditioning load L and the performance model data, and based on this intermediate variable μ and the performance model data, the air conditioning capacity of each air conditioner is obtained according to (Equation 6). seek Q k, respectively.
Therefore, the total air conditioning capacity of the air conditioner becomes the total air conditioning load, and the air conditioning capacity that minimizes the total power consumption can be calculated from the total air conditioning load L and the performance model data.

なお、実施の形態1では、図8で示すフローチャートを用いて複数台の空調機による協調制御処理内容を説明したが、このフローチャートは実質的に協調制御処理内容を実行するプログラムにより実現しても良い。このプログラムは、制御装置10としてのリモコンのマイコンに搭載されるが、制御装置10としてリモコンを使用せずに計算機で構成する場合には、例えば、記録媒体であるハードディスク等に格納されているものが考えられる。   In the first embodiment, the contents of cooperative control processing by a plurality of air conditioners have been described using the flowchart shown in FIG. 8, but this flowchart may be realized by a program that substantially executes the contents of cooperative control processing. good. This program is installed in the microcomputer of the remote controller as the control device 10, but when it is configured by a computer without using the remote controller as the control device 10, for example, it is stored in a hard disk or the like as a recording medium Can be considered.

また、このプログラムを記録したコンピュータ読取可能な媒体は、ハードディスクの他にCD−ROMやMO等であっても良い。
さらには、記録媒体を介することなくプログラム自体を、電気通信回線を介して取得するようにすることもできる。
In addition to the hard disk, the computer-readable medium on which the program is recorded may be a CD-ROM, MO, or the like.
Furthermore, the program itself can be acquired via an electric communication line without using a recording medium.

なお、上記実施の形態1においては、複数の空調機を制御する空調機の制御装置10について説明したが、これに限らず、同一空間を冷却対象として設置された複数の冷凍装置を制御する冷凍装置の制御装置であっても、上記実施の形態1の動作を適用することができる。
例えば、冷凍用のショーケース等の内部を、室内熱交換器21により冷却する冷凍装置を複数備えるシステムにおいて、同様に、複数の冷凍装置毎に冷凍能力と消費電力との関係と、冷凍能力の範囲に関する情報とを含む性能モデルデータを記憶させ、複数の冷凍装置の冷凍負荷の合計値である全体冷凍負荷を求める。
そして、性能モデルデータと全体冷凍負荷とに基づいて、複数の冷凍装置の冷凍能力がそれぞれ冷凍能力の範囲に属し、且つ、複数の冷凍装置の冷凍能力の和が全体冷凍負荷となる冷凍能力であって、複数の冷凍装置の消費電力の和を最小とする複数の冷凍装置のそれぞれの冷凍能力を求めることで、上記実施の形態1と同様の協調制御を行うことが可能である。これにより、各冷凍装置の冷凍能力をそれぞれ冷凍能力の範囲内としつつ、全体冷凍負荷と冷凍装置の冷凍能力の総和とのバランスを保ちながら消費電力の総和を低減することができる。
In the first embodiment, the air conditioner control device 10 that controls a plurality of air conditioners has been described. However, the present invention is not limited to this, and a refrigerating system that controls a plurality of refrigeration devices installed in the same space as a cooling target. Even the control device of the apparatus can apply the operation of the first embodiment.
For example, in a system including a plurality of refrigeration apparatuses that cool the interior of a refrigeration showcase or the like with the indoor heat exchanger 21, similarly, the relationship between the refrigeration capacity and the power consumption for each of the plurality of refrigeration apparatuses, Performance model data including information on the range is stored, and an overall refrigeration load that is the total value of the refrigeration loads of a plurality of refrigeration apparatuses is obtained.
Based on the performance model data and the total refrigeration load, the refrigeration capacities of the plurality of refrigeration apparatuses belong to the range of refrigeration capacities, and the sum of the refrigeration capacities of the plurality of refrigeration apparatuses is the total refrigeration load. Thus, by obtaining the refrigerating capacity of each of the plurality of refrigeration apparatuses that minimizes the sum of the power consumption of the plurality of refrigeration apparatuses, it is possible to perform cooperative control similar to that of the first embodiment. Thus, the total power consumption can be reduced while keeping the balance between the total refrigeration load and the total refrigerating capacity of the refrigerating apparatus while keeping the refrigerating capacity of each refrigerating apparatus within the range of the refrigerating capacity.

1 空調対象空間、2 室内機、3 室外機、10 制御装置、21 室内熱交換器、22 室内送風機、23 温度センサ、31 圧縮機、32 四方弁、33 室外熱交換器、34 室外送風機、35 絞り装置、36 温度センサ、100 運転制御手段、101 データ格納部、102 データ記憶部、103 データ設定部、104 全体空調負荷演算部、105 空調能力配分演算部、106 制御信号送出部。   DESCRIPTION OF SYMBOLS 1 Air-conditioning object space, 2 indoor unit, 3 outdoor unit, 10 control apparatus, 21 indoor heat exchanger, 22 indoor air blower, 23 temperature sensor, 31 compressor, 32 four-way valve, 33 outdoor heat exchanger, 34 outdoor air blower, 35 A throttle device, 36 temperature sensors, 100 operation control means, 101 data storage section, 102 data storage section, 103 data setting section, 104 overall air conditioning load calculation section, 105 air conditioning capacity distribution calculation section, 106 control signal sending section.

Claims (3)

同一空間を空調対象として設置された複数の空気調和機を制御する空気調和機の制御装置であって、
前記複数の空気調和機毎に、消費電力を、空調能力を変数として近似した二次関数の係数の情報と、前記空調能力の範囲に関する情報とを含む性能モデルデータが記憶されるデータ記憶手段と、
前記複数の空気調和機の空調負荷の合計値である全体空調負荷を求める全体空調負荷算出手段と、
前記性能モデルデータと前記全体空調負荷とに基づいて、前記複数の空気調和機のそれぞれの空調能力を求める空調能力配分演算手段と、
前記空調能力に関する制御信号を、前記複数の空気調和機にそれぞれ送出する制御信号送出手段と
を備え、
前記空調能力配分演算手段は、
前記二次関数を前記空気調和機毎に加算して前記複数の空気調和機の消費電力の和を近似した多変数関数に、前記複数の空気調和機の空調能力の和が前記全体空調負荷と等しくなる制約条件を係数にもつ中間変数を加算した第2の多変数関数において、該第2の多変数関数の各空調能力が極値となる条件を満たす前記中間変数を、前記全体空調負荷と前記二次関数の係数とにより表した第1算出式と、
前記制約条件のもと、前記多変数関数が極値となる前記各空気調和機の空調能力を、前記中間変数と前記二次関数の係数とにより表した第2算出式と、
が予め設定され、
前記全体空調負荷算出手段が求めた前記全体空調負荷と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第1算出式に基づき、前記中間変数を求め、
該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記各空気調和機の空調能力をそれぞれ求め、
当該各空調能力のうち前記空調能力の範囲に属さない前記空気調和機の空調能力を、前記空調能力の範囲の限界値とし、
前記空調能力の範囲に属する空気調和機について、再度、前記中間変数を求め、該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記空調能力の範囲に属する各空気調和機の空調能力をそれぞれ求める
ことを特徴とする空気調和機の制御装置。
A control device for an air conditioner that controls a plurality of air conditioners installed in the same space for air conditioning,
For each of the plurality of air conditioners, the power consumption, data storage means and the information of the coefficients of the quadratic function that approximates the air-conditioning capacity as a variable, performance model data including the information about the range of the air conditioning capacity is stored When,
An overall air conditioning load calculating means for obtaining an overall air conditioning load that is a total value of the air conditioning loads of the plurality of air conditioners;
Based on the performance model data and the overall air conditioning load, air conditioning capacity distribution calculating means for obtaining the air conditioning capacity of each of the plurality of air conditioners,
Control signal sending means for sending a control signal related to the air conditioning capability to each of the plurality of air conditioners,
The air conditioning capacity distribution calculating means includes:
The sum of the air conditioning capabilities of the plurality of air conditioners is the total air conditioning load as a multivariable function that approximates the sum of power consumption of the plurality of air conditioners by adding the quadratic function for each air conditioner. In the second multivariable function obtained by adding intermediate variables having equal constraint conditions as coefficients, the intermediate variable that satisfies the condition that each air conditioning capability of the second multivariable function has an extreme value is the total air conditioning load. A first calculation formula expressed by the coefficient of the quadratic function;
Under the constraint condition, a second calculation formula representing the air conditioning capacity of each air conditioner in which the multivariable function is an extreme value by the intermediate variable and the coefficient of the quadratic function;
Is preset,
Based on the first calculation formula using the overall air conditioning load obtained by the overall air conditioning load calculating means and the coefficient information of the quadratic function of the performance model data, the intermediate variable is obtained,
Based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, the air conditioning capacity of each air conditioner is obtained,
The air conditioning capacity of the air conditioner that does not belong to the range of the air conditioning capacity among the air conditioning capacity is set as a limit value of the range of the air conditioning capacity,
For the air conditioner belonging to the range of the air conditioning capacity, again determine the intermediate variable, and based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, An air conditioner control device, wherein the air conditioner capacity of each air conditioner belonging to the range of the air conditioner capacity is obtained .
前記空調能力配分演算手段は、
前記全体空調負荷から前記空調能力の範囲に属さない前記空気調和機の空調能力を除いた第2の全体空調負荷を求め、
前記第2の全体空調負荷と、前記空調能力の範囲に属する前記空気調和機の前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第1算出式に基づき、前記中間変数を求め、
該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記空調能力の範囲に属する空気調和機の空調能力を求める
ことを特徴とする請求項記載の空気調和機の制御装置。
The air conditioning capacity distribution calculating means includes:
Obtaining a second overall air conditioning load excluding the air conditioning capacity of the air conditioner that does not belong to the range of the air conditioning capacity from the overall air conditioning load;
Based on the first calculation formula using the second overall air conditioning load and information on the coefficient of the quadratic function of the performance model data of the air conditioner belonging to the range of the air conditioning capacity , the intermediate variable is Seeking
The air conditioning capacity of the air conditioner belonging to the range of the air conditioning capacity is obtained based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data. The control apparatus of the air conditioner of Claim 1 .
同一空間を冷却対象として設置された複数の冷凍装置を制御する冷凍装置の制御装置であって、
前記複数の冷凍装置毎に、消費電力を、冷凍能力を変数として近似した二次関数の係数の情報と、前記冷凍能力の範囲に関する情報とを含む性能モデルデータが記憶されるデータ記憶手段と、
前記複数の冷凍装置の冷凍負荷の合計値である全体冷凍負荷を求める全体冷凍負荷算出手段と、
前記性能モデルデータと前記全体冷凍負荷とに基づいて、前記複数の冷凍装置のそれぞれの冷凍能力を求める冷凍能力配分演算手段と、
前記冷凍能力に関する制御信号を、前記複数の冷凍装置にそれぞれ送出する制御信号送出手段と
を備え、
前記冷凍能力配分演算手段は、
前記二次関数を前記冷凍装置毎に加算して前記複数の冷凍装置の消費電力の和を近似した多変数関数に、前記複数の冷凍装置の冷凍能力の和が前記全体冷凍負荷と等しくなる制約条件を係数にもつ中間変数を加算した第2の多変数関数において、該第2の多変数関数の各冷凍能力が極値となる条件を満たす前記中間変数を、前記全体冷凍負荷と前記二次関数の係数とにより表した第1算出式と、
前記制約条件のもと、前記多変数関数が極値となる前記各冷凍装置の冷凍能力を、前記中間変数と前記二次関数の係数とにより表した第2算出式と、
が予め設定され、
前記全体冷凍負荷算出手段が求めた前記全体冷凍負荷と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第1算出式に基づき、前記中間変数を求め、
該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記各冷凍装置の冷凍能力をそれぞれ求め、
当該各冷凍能力のうち前記冷凍能力の範囲に属さない前記冷凍装置の冷凍能力を、前記冷凍能力の範囲の限界値とし、
前記冷凍能力の範囲に属する冷凍装置について、再度、前記中間変数を求め、該中間変数と、前記性能モデルデータの前記二次関数の係数の情報とを用いて前記第2算出式に基づき、前記冷凍能力の範囲に属する各冷凍装置の冷凍能力をそれぞれ求める
ことを特徴とする冷凍装置の制御装置。
A control device for a refrigeration apparatus that controls a plurality of refrigeration apparatuses installed in the same space as a cooling target,
For each of the plurality of refrigeration system, the power consumption, and the information of the coefficients of the quadratic function that approximates the refrigeration capacity as a variable, a data storage means for performance model data is stored containing information as to the scope of the refrigerating capacity ,
An overall refrigeration load calculating means for obtaining an overall refrigeration load that is a total value of the refrigeration loads of the plurality of refrigeration apparatuses;
Refrigeration capacity distribution calculating means for determining the refrigeration capacity of each of the plurality of refrigeration devices based on the performance model data and the total refrigeration load;
Control signal sending means for sending a control signal related to the refrigerating capacity to each of the plurality of refrigeration apparatuses,
The refrigeration capacity distribution calculating means is
Constraint that the sum of the refrigeration capacities of the plurality of refrigeration devices is equal to the total refrigeration load, in a multivariable function that approximates the sum of the power consumption of the plurality of refrigeration devices by adding the quadratic function for each refrigeration device In a second multivariable function obtained by adding an intermediate variable having a condition as a coefficient, the intermediate variable satisfying the condition that each refrigeration capacity of the second multivariable function becomes an extreme value is expressed as the total refrigeration load and the secondary A first calculation formula expressed by the coefficient of the function;
Under the constraint condition, a second calculation formula representing the refrigeration capacity of each refrigeration apparatus in which the multivariable function is an extreme value by the intermediate variable and the coefficient of the quadratic function;
Is preset,
Based on the first calculation formula using the total refrigeration load obtained by the total refrigeration load calculation means and information on the coefficient of the quadratic function of the performance model data, the intermediate variable is obtained,
Based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, the refrigeration capacity of each refrigeration device is determined,
Among the refrigeration capacities, the refrigeration capacity of the refrigeration apparatus that does not belong to the range of the refrigeration capacity, the limit value of the range of the refrigeration capacity,
For the refrigeration apparatus belonging to the range of the refrigeration capacity, again determine the intermediate variable, based on the second calculation formula using the intermediate variable and information on the coefficient of the quadratic function of the performance model data, A control device for a refrigerating apparatus, wherein the refrigerating capacity of each refrigerating apparatus belonging to a range of refrigerating capacity is obtained .
JP2009242215A 2009-10-21 2009-10-21 Air conditioner control device, refrigeration device control device Expired - Fee Related JP5312286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242215A JP5312286B2 (en) 2009-10-21 2009-10-21 Air conditioner control device, refrigeration device control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242215A JP5312286B2 (en) 2009-10-21 2009-10-21 Air conditioner control device, refrigeration device control device

Publications (2)

Publication Number Publication Date
JP2011089679A JP2011089679A (en) 2011-05-06
JP5312286B2 true JP5312286B2 (en) 2013-10-09

Family

ID=44108095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242215A Expired - Fee Related JP5312286B2 (en) 2009-10-21 2009-10-21 Air conditioner control device, refrigeration device control device

Country Status (1)

Country Link
JP (1) JP5312286B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473619B2 (en) * 2010-01-12 2014-04-16 三菱電機株式会社 Air conditioner control device
WO2013145810A1 (en) 2012-03-26 2013-10-03 三菱電機株式会社 Air conditioner control device and air conditioner control program
WO2015174176A1 (en) * 2014-05-12 2015-11-19 三菱電機株式会社 Ventilation controller and method for controlling ventilation
JP6540159B2 (en) * 2015-03-30 2019-07-10 ダイキン工業株式会社 Air conditioning system
WO2017098552A1 (en) * 2015-12-07 2017-06-15 三菱電機株式会社 Control device, air-conditioning system, and control method for air conditioners
JP6854896B2 (en) * 2019-02-14 2021-04-07 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning system, operation control method and program
CN113757931B (en) * 2021-08-18 2022-08-16 华北电力大学 Air conditioner control method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265803B2 (en) * 1994-03-18 2002-03-18 株式会社日立製作所 Multi-room air conditioner and control method thereof
JP3479861B2 (en) * 1995-11-28 2003-12-15 株式会社日立製作所 Operation control method for multiple refrigerators
JP2003161493A (en) * 2001-11-21 2003-06-06 Daikin Ind Ltd Air conditioning system control method and device
JP4155930B2 (en) * 2004-01-28 2008-09-24 三洋電機株式会社 Air conditioning control device and operation control method for air conditioning equipment
JP4115402B2 (en) * 2004-02-06 2008-07-09 三洋電機株式会社 Simulation apparatus, simulation method, and simulation system
JP4857051B2 (en) * 2006-03-01 2012-01-18 株式会社日立産機システム Refrigerator equipment operation method and equipment comprising a refrigerator

Also Published As

Publication number Publication date
JP2011089679A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP4980407B2 (en) Air conditioner control device, refrigeration device control device
JP4905939B2 (en) Operation control method for air conditioning system
JP5312286B2 (en) Air conditioner control device, refrigeration device control device
JP6731865B2 (en) Air conditioner outdoor unit, air conditioner, and air conditioning management method
US8306667B2 (en) Air-conditioning apparatus
JP5404556B2 (en) Air conditioner control device and refrigeration device control device
JP5452659B2 (en) Air conditioner
EP2148147B1 (en) Method of controlling air conditioner
JP5528512B2 (en) Control device, control method and program
WO2018110388A1 (en) Air conditioning system
US11098919B2 (en) Air conditioning system
JP5473619B2 (en) Air conditioner control device
JP7490831B2 (en) Air conditioning system control device, control method, control program, and air conditioning system
JP5452284B2 (en) Air conditioning system
JP5868251B2 (en) Control device and cooling / heating equipment system provided with the control device
JP5132757B2 (en) Control device, control method and program
KR20130053972A (en) Air conditioner and method for controlling the same
JP5538070B2 (en) Air conditioner
JP6365649B2 (en) Air conditioning system
KR101029988B1 (en) Automatic control of blower air volume according to the change of refrigerant flow rate in the direct expansion type air conditioner
JP6401054B2 (en) Information processing system and information processing system program
JP2007093152A (en) Air conditioner system
WO2022075412A1 (en) Control device and control system
JP5940608B2 (en) Heat medium circulation system
CN110715423B (en) Air conditioner, control method and device thereof, electronic equipment and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees