[go: up one dir, main page]

JP5298973B2 - Optical amplifier, optical amplifier control method and program - Google Patents

Optical amplifier, optical amplifier control method and program Download PDF

Info

Publication number
JP5298973B2
JP5298973B2 JP2009056479A JP2009056479A JP5298973B2 JP 5298973 B2 JP5298973 B2 JP 5298973B2 JP 2009056479 A JP2009056479 A JP 2009056479A JP 2009056479 A JP2009056479 A JP 2009056479A JP 5298973 B2 JP5298973 B2 JP 5298973B2
Authority
JP
Japan
Prior art keywords
optical
temperature
edf
amplification
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009056479A
Other languages
Japanese (ja)
Other versions
JP2010212420A (en
Inventor
清人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009056479A priority Critical patent/JP5298973B2/en
Publication of JP2010212420A publication Critical patent/JP2010212420A/en
Application granted granted Critical
Publication of JP5298973B2 publication Critical patent/JP5298973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical amplifier that can be compensated for gain tilt that depends on temperature without an increase in power consumption and equipment size and with no reduction in band and no deterioration of signals. <P>SOLUTION: An EDF 3 is divided into n portions, and optical tunable filters 4-1 to 4-(n-1) are inserted between the divided EDF portions 3-1 to 3-(n). The temperature of the EDF 3 is detected by a thermistor 11. On the basis of the detected temperature of the EDF 3, the characteristics of the optical tunable filters 4-1 to 4-(n) is controlled by lengthening the effective length relating to amplification of the EDF 3 when the temperature is high and by shortening the effective length relating to amplification of the EDF 3 when the temperature is low, to compensate for a gain/wavelength tilt due to dependency on temperature. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光増幅媒体に励起光を供給して光増幅を行う光増幅器、光増幅器の制御方法及びプログラムに関するもので、特に、温度依存による利得傾斜の補償に関する。 The present invention relates to an optical amplifier that performs optical amplification by supplying pumping light to an optical amplification medium, an optical amplifier control method, and a program, and more particularly, to compensation for a temperature-dependent gain tilt.

光増幅器は、光信号を電気信号に変換せず、直接光の状態で増幅する増幅器である。このような光増幅器として、EDF(Erbium−doped fiber amplifier:エルビウム添加光増幅器)光増幅器が知られている。EDF光増幅器は、EDFに増幅用の励起光を注入すると、エルビウムイオンがレーザー光のエネルギーを吸収し、エネルギーの高い状態に一旦励起され、励起された状態から元のエネルギーの低い状態に戻るときに、誘導放出による光を放出し、信号光がこの光のエネルギーにより増幅されるのを利用したものである。   An optical amplifier is an amplifier that does not convert an optical signal into an electrical signal but amplifies it in the state of direct light. As such an optical amplifier, an EDF (Erbium-doped fiber amplifier) optical amplifier is known. When an EDF optical amplifier injects excitation light for amplification into the EDF, erbium ions absorb the energy of the laser light and are once excited into a high energy state and return from the excited state to the original low energy state. In addition, light by stimulated emission is emitted and signal light is amplified by the energy of this light.

EDF光増幅器では、温度依存による利得波長傾斜が発生する。そこで、図4に示すように、EDF203を断熱ケース214内に入れ、断熱ケース214内の温度を一定に保ち、温度依存による利得波長傾斜の発生を防止するようにしたものが提案されている。   In an EDF optical amplifier, a gain wavelength tilt due to temperature dependency occurs. Therefore, as shown in FIG. 4, an EDF 203 is put in a heat insulating case 214 to keep the temperature in the heat insulating case 214 constant and prevent occurrence of gain wavelength inclination due to temperature dependence.

図4において、エルビウム添加光ファイバ(以下、EDFと略称する)203は、断熱ケース214内に配置される。EDF203の前方に、励起光合波カプラ201が配設される。励起光合波カプラ201には、励起光源202から、励起光が供給される。 In FIG. 4, an erbium-doped optical fiber (hereinafter abbreviated as EDF) 203 is arranged in a heat insulating case 214. An excitation light multiplexing coupler 201 is disposed in front of the EDF 203. Excitation light is supplied from the excitation light source 202 to the excitation light multiplexing coupler 201.

また、この断熱ケース214内には、ヒータ213、サーミスタ211が配置される。サーミスタ211により、断熱ケース214内の温度が検出される。このサーミスタ211の温度検出出力が温度制御回路212に送られる。温度制御回路212は、サーミスタ211から送られる断熱ケース214内の温度データを元にヒータ213を制御して、断熱ケース214内の温度を一定に保つ。これにより、EDF203の温度依存による利得波長傾斜の発生が防止される。   Further, a heater 213 and a thermistor 211 are disposed in the heat insulating case 214. The thermistor 211 detects the temperature in the heat insulating case 214. The temperature detection output of the thermistor 211 is sent to the temperature control circuit 212. The temperature control circuit 212 controls the heater 213 based on the temperature data in the heat insulation case 214 sent from the thermistor 211 to keep the temperature in the heat insulation case 214 constant. As a result, the occurrence of gain wavelength tilt due to temperature dependence of the EDF 203 is prevented.

また、特許文献1(特開2001−185788号公報)には、希土類ファイバの正味の利得によって波長間利得偏差が発生することを利用して、温度による利得偏差と打ち消させることで、波長間利得偏差を無くすようにしたものが記載されている。   Further, Patent Document 1 (Japanese Patent Laid-Open No. 2001-185788) discloses that an inter-wavelength gain deviation is generated by the net gain of a rare earth fiber, and cancels out the gain deviation due to temperature, thereby inter-wavelength gain. It describes what eliminates the deviation.

また、特許文献2(特開2003−332660号公報)には、S−band(1460〜1530nm)の増幅器で一般的に使用する希土類ツリウムを添加したTDFの増幅帯域上限が1510nm程度までしか伸びないことから、S−bandの長波長側でも利得が得られる光増幅器として、EDFとTDFのハイブリッド型の増幅器が記載されている。その中で、EDF型増幅器側には複数のEDFに間にEDFの増幅帯域の主要領域である1530nmより長波側の領域を光フィルタでカットすることが記載されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2003-332660), the upper limit of the amplification band of TDF doped with rare earth thulium generally used in S-band (1460-1530 nm) amplifiers extends only to about 1510 nm. Therefore, a hybrid amplifier of EDF and TDF is described as an optical amplifier capable of obtaining a gain even on the long wavelength side of the S-band. Among them, the EDF type amplifier side describes that a region on the longer wave side than 1530 nm, which is the main region of the EDF amplification band, is cut between a plurality of EDFs with an optical filter.

特開2001−185788号公報JP 2001-185788 A 特開2003−332660号公報JP 2003-332660 A

WDM(Wavelength Division Multiplexing:波長分割多重方式)は、波長の違う光信号を複数多重して伝送容量を増やす技術である。近年、伝送容量増大ための波長多重数増の要求はますます大きくなってきているが、波長帯域を広げるために、EDFによる光増幅器の広帯域化が必要とされる。WDM通信用光増幅器には、Si系光ファイバの最低ロス波長1.55um帯に増幅帯を持つEDFを一般には増幅媒体として用いる。昨今ではWDMの波長多重数は80波のものも登場し、EDF光増幅器にも帯域幅30nmを越える広帯域化が求められている。   WDM (Wavelength Division Multiplexing) is a technique for increasing transmission capacity by multiplexing a plurality of optical signals having different wavelengths. In recent years, there has been an increasing demand for an increase in the number of wavelength division multiplexing for increasing the transmission capacity, but in order to widen the wavelength band, it is necessary to increase the bandwidth of the optical amplifier by EDF. In an optical amplifier for WDM communication, an EDF having an amplification band in the lowest loss wavelength 1.55um band of a Si optical fiber is generally used as an amplification medium. Recently, a WDM wavelength multiplexing number of 80 waves has appeared, and EDF optical amplifiers are also required to have a bandwidth exceeding 30 nm.

波長帯域が拡大するにつれ、EDFの温度依存性の利得波長傾斜が無視できなくなった。すなわち、EDFが持つ利得の波長依存性は、大きく分けて利得平坦度と利得傾斜がある。前者は温度などにはあまり依存せず、固定のフィルタで補償するが後者は温度やEDFの利得によって変化するためダイナミックに補償する必要がある。   As the wavelength band expands, the temperature dependent gain wavelength slope of the EDF cannot be ignored. That is, the wavelength dependence of the gain of the EDF is roughly divided into gain flatness and gain inclination. The former does not depend much on temperature or the like, and is compensated by a fixed filter, but the latter changes depending on the temperature and the gain of the EDF and needs to be compensated dynamically.

この問題の第一の回避策は波長数の増加を高密度化で対応し、使用する波長帯域を広げないことである。この方法では波長間隔が狭まることによりクロストークが増大するためWDM通信の波長合分波をより精密に行う必要があり、コスト増大の要因となる。また、四光波混合や相互位相変調などの非線形現象による信号劣化のリスクが増大するため、非線形効果を抑制するために信号パワーを低下させる必要があり、結果として伝送距離を縮める要因になる。   The first workaround for this problem is to cope with the increase in the number of wavelengths by increasing the density and not to expand the wavelength band to be used. In this method, since the crosstalk increases due to narrowing of the wavelength interval, it is necessary to perform wavelength multiplexing / demultiplexing of WDM communication more precisely, which causes an increase in cost. Further, since the risk of signal degradation due to nonlinear phenomena such as four-wave mixing and cross-phase modulation increases, it is necessary to reduce the signal power in order to suppress the nonlinear effect, resulting in a factor of shortening the transmission distance.

この問題の第二の回避策は、図4に示したように、EDFを常時一定の温度に保つことである。しかし一般にWDM通信用光増幅器の場合EDFの長さが数10mであり巻き取りの半径も最低3cm必要なため、EDFを収める断熱ケース214の体積は数10cm3程度必要になり、光増幅器の小型化を妨げる要因である。また、この空間を加熱あるいは必要に応じて冷却するためには光増幅器が信号増幅に使う消費電力とほぼ同等の莫大な消費電力が必要である。 A second workaround for this problem is to keep the EDF at a constant temperature, as shown in FIG. However, in general, in the case of an optical amplifier for WDM communication, the length of the EDF is several tens of meters and the winding radius is also required to be at least 3 cm. It is a factor that hinders. In addition, in order to heat this space or to cool it as necessary, an enormous amount of power consumption equivalent to the power consumption used by the optical amplifier for signal amplification is required.

また、特許文献1に示されるものでは、希土類ファイバの正味の利得によって波長間利得偏差が発生することを利用して、温度による利得偏差と打ち消させるために、光可変減衰器を用いている。このため、光可変減衰器による信号のロスが生じる。   Moreover, in what is shown in Patent Document 1, an optical variable attenuator is used in order to cancel out the gain deviation due to temperature by utilizing the fact that the gain deviation between wavelengths is generated by the net gain of the rare earth fiber. For this reason, signal loss due to the optical variable attenuator occurs.

また、特許文献2に示されるものは、S−bandの長波側でも利得が得られるようにしたTDFとEDFのハイブリット型増幅器であるが、この中に配置されているフィルタは固定型のフィルタであり、温度などの外乱に応じて制御するものではない。   In addition, what is disclosed in Patent Document 2 is a TDF / EDF hybrid amplifier that can obtain a gain even on the long wave side of the S-band, and the filter disposed therein is a fixed filter. Yes, it does not control according to disturbances such as temperature.

上述の課題を鑑み、本発明は、消費電力の増大や、装置の大型化を招くことがなく、また、帯域の減少や信号劣化を伴うことなく、温度に依存する利得傾斜を補償できるようにした光増幅器、光増幅器の制御方法及びプログラムを提供することを目的とする。   In view of the above-described problems, the present invention can compensate for a temperature-dependent gain tilt without increasing power consumption, increasing the size of the apparatus, and without reducing the bandwidth or causing signal degradation. It is an object of the present invention to provide an optical amplifier, an optical amplifier control method, and a program.

上述の課題を解決するために、本発明は、複数に分割された光増幅媒体と、光増幅媒体に励起光を供給する励起光発生手段と、光増幅媒体の温度を検出する温度検出手段と、光増幅媒体の温度に応じて、光増幅媒体の増幅に係わる実効長を可変させる制御手段とを備えることを特徴とする。 In order to solve the above problems, the present invention includes an optical amplifying medium is divided into a plurality of excitation light generating means for supplying pumping light to the optical amplifying medium, a temperature detecting means for detecting the temperature of the optical amplification medium And a control means for varying the effective length related to amplification of the optical amplification medium according to the temperature of the optical amplification medium.

また、光増幅媒体に励起光を供給して光増幅を行う光増幅器の制御方法において、光増幅媒体を複数に分割し、光増幅媒体の温度に応じて、光増幅媒体の増幅に係わる実効長を可変させることを特徴とする。 Further, in an optical amplifier control method for performing optical amplification by supplying pumping light to an optical amplification medium, the optical amplification medium is divided into a plurality of parts, and an effective length related to amplification of the optical amplification medium according to the temperature of the optical amplification medium. Is variable.

本発明によれば、ヒータによるEDFの温度調整や、光アッテネータ等の光学デバイスによる利得傾斜の補償を行うことなしに、温度依存による利得傾斜を補償することができる。このため、機器の大型化や消費電力の増大を伴うことがなく、また、光パワーのロスが生じない。また、EDFを断熱ケース等に収納する必要がないため、EDF実装の自由度が大きくなり、効率的な配置が可能になる。   According to the present invention, the temperature-dependent gain tilt can be compensated without adjusting the temperature of the EDF by the heater or compensating the gain tilt by an optical device such as an optical attenuator. For this reason, there is no increase in equipment size or power consumption, and no optical power loss occurs. Further, since it is not necessary to store the EDF in a heat insulating case or the like, the degree of freedom for mounting the EDF is increased, and efficient arrangement is possible.

本発明の第1の実施形態のブロック図である。It is a block diagram of a 1st embodiment of the present invention. 温度依存の利得波長傾斜の説明に用いるグラフである。It is a graph used for description of a temperature dependent gain wavelength inclination. 本発明の第2の実施形態のブロック図である。It is a block diagram of the 2nd Embodiment of this invention. 従来の光増幅器の説明に用いるブロック図である。It is a block diagram used for description of the conventional optical amplifier.

以下、本発明の実施の形態について図面を参照しながら説明する。
<第1の実施形態>
図1に示すように、本発明の第1の実施形態の光増幅器では、光増幅媒体としてのエルビウム添加光ファイバ(以下、EDFと略称する)3がn個に分割される。分割された各EDF3−1〜3−(n)の間に、可変光フィルタ4−1〜4−(n−1)が挿入される。可変光フィルタ4−1〜4−(n−1)は、励起光を通過させる特性と、励起光を遮断させる特性とに可変できる。EDF3の前方に、励起光合波カプラ1が配設される。励起光合波カプラ1には、励起光源2から、励起光が供給される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIG. 1, in the optical amplifier according to the first embodiment of the present invention, an erbium-doped optical fiber (hereinafter abbreviated as EDF) 3 as an optical amplification medium is divided into n pieces. Variable optical filters 4-1 to 4- (n-1) are inserted between the divided EDFs 3-1 to 3- (n). The variable optical filters 4-1 to 4- (n-1) can be changed to a characteristic that allows the excitation light to pass therethrough and a characteristic that blocks the excitation light. The excitation light multiplexing coupler 1 is disposed in front of the EDF 3. Excitation light is supplied from the excitation light source 2 to the excitation light multiplexing coupler 1.

また、温度検出手段としてのサーミスタ11により、EDF3の温度が検出される。このサーミスタ11の温度検出出力が光フィルタ波長制御回路15に送られる。光フィルタ波長制御回路15は、サーミスタ11から送られるEDF3の温度データを元に、可変光フィルタ4−1〜4(n)を制御して、EDF3の増幅に係わる実効長を温度に応じて変化させる。これにより、EDF3の温度依存による利得波長傾斜が補償できる。   Further, the temperature of the EDF 3 is detected by the thermistor 11 as temperature detecting means. The temperature detection output of the thermistor 11 is sent to the optical filter wavelength control circuit 15. The optical filter wavelength control circuit 15 controls the variable optical filters 4-1 to 4 (n) based on the temperature data of the EDF 3 sent from the thermistor 11, and changes the effective length related to the amplification of the EDF 3 according to the temperature. Let Thereby, the gain wavelength inclination due to temperature dependence of the EDF 3 can be compensated.

つまり、図2は、EDFによる光増幅器の温度依存による利得波長傾斜を示すものである。図2において、横軸は波長を示し、縦軸は利得を示す。ここでは、0度、25度、50度の各温度での利得波長傾斜が示されている。   That is, FIG. 2 shows the gain wavelength tilt due to temperature dependence of the optical amplifier by EDF. In FIG. 2, the horizontal axis indicates the wavelength, and the vertical axis indicates the gain. Here, the gain wavelength inclination at each temperature of 0 degree, 25 degrees, and 50 degrees is shown.

図2から明らかなように、EDFは温度が上がると、短波側の利得が上がるような利得傾斜が発生し、EDFの温度が下がると、長波側の利得が上がるような利得傾斜が発生する。一方、EDFの長さと利得との関係では、EDFの長さを長くするほど、長波側の利得が上がるような利得傾斜が発生する。したがって、EDFの温度が上昇したら、EDFの長さが長くなるように制御すれば、温度依存性の利得波長傾斜が補償できる。   As is apparent from FIG. 2, the EDF has a gain slope that increases the gain on the short wave side when the temperature rises, and a gain slope that increases the gain on the long wave side when the temperature of the EDF decreases. On the other hand, with respect to the relationship between the length of the EDF and the gain, a gain slope is generated such that the longer the EDF length, the higher the gain on the long wave side. Therefore, when the temperature of the EDF rises, temperature-dependent gain wavelength tilt can be compensated by controlling the length of the EDF to be long.

そこで、本発明の第1の実施形態では、サーミスタ11によりEDF3の温度を検出し、EDF3の温度を元に、可変光フィルタ4−1〜4−(n)の特性を制御して、高温時にはEDF3の増幅に係わる実効長を長くし、低温時には、EDF3の増幅に係わる実効長を短くして、温度依存による利得波長傾斜が補償するようにしている。   Therefore, in the first embodiment of the present invention, the temperature of the EDF 3 is detected by the thermistor 11, and the characteristics of the variable optical filters 4-1 to 4- (n) are controlled based on the temperature of the EDF 3, so that the temperature is high. The effective length related to the amplification of the EDF 3 is lengthened, and the effective length related to the amplification of the EDF 3 is shortened at a low temperature so that the gain wavelength inclination due to temperature dependence is compensated.

すなわち、EDF3の温度が最も高温時には、全ての可変光フィルタ4−1〜4−(n)が励起光源2からの励起光が通過するように特性が制御される。この場合には、EDF3の増幅に係わる実効長は、EDF3−1〜3−(n)の全ての合計の長さになる。このように、高温時には、EDF3の増幅に係わる実効長が長くなるため、長波側の利得が上がり、温度依存による短波側の利得の上昇を補償できる。 That is, when the temperature of the EDF 3 is the highest, the characteristics of all the variable optical filters 4-1 to 4- (n) are controlled so that the excitation light from the excitation light source 2 passes. In this case, the effective length related to the amplification of the EDF 3 is the total length of all the EDFs 3-1 to 3- (n). As described above, since the effective length related to the amplification of the EDF 3 becomes long at high temperatures, the gain on the long wave side is increased and the increase in the gain on the short wave side due to temperature dependence can be compensated.

EDF3の温度がそれより少し低下すると、可変光フィルタ4−(n−1)の特性が励起光源2からの励起光を遮断するように制御される。この場合には、EDF3の増幅に係わる実効長は、EDF3−1〜3−(n−1)の合計の長さになり、EDF3の増幅に係わる実効長が少し短くなる。 When the temperature of the EDF 3 is slightly lowered, the characteristics of the variable optical filter 4- (n-1) are controlled so as to block the excitation light from the excitation light source 2. In this case, the effective length related to the amplification of the EDF 3 is the total length of the EDFs 3-1 to 3- (n-1), and the effective length related to the amplification of the EDF 3 is slightly shortened.

以下、EDF3の温度が高温から低温になるに従って、可変光フィルタ4−(n−1)、4−(n−2)、…の順(励起光源に近づく順)に、励起光源2からの励起光を遮断するように、可変光フィルタ4−1〜4−(n)の特性が制御される。これにより、EDF3の温度が高温から低温になるに従って、EDF3の増幅に係わる実効長が順次短くなる。 Hereinafter, as the temperature of the EDF 3 decreases from a high temperature to a low temperature, excitation from the excitation light source 2 is performed in the order of the variable optical filters 4- (n-1), 4- (n-2) ,. The characteristics of the variable optical filters 4-1 to 4- (n) are controlled so as to block light . As a result, as the temperature of the EDF 3 decreases from a high temperature to a low temperature, the effective length related to the amplification of the EDF 3 is sequentially shortened.

最も低温時には、最も励起光源2に近い可変光フィルタ4−1の特性が励起光を遮断するように制御される。この場合には、EDF3の増幅に係わる実効長は、EDF3−1の長さのみになる。このように、低温時には、EDF3の増幅に係わる実効長が短くなるため、短波側の利得が上がり、温度依存による長波側の利得の上昇を補償できる。 At the lowest temperature, the characteristics of the variable optical filter 4-1 closest to the excitation light source 2 are controlled so as to block the excitation light . In this case, the effective length related to the amplification of the EDF 3 is only the length of the EDF 3-1. As described above, since the effective length related to the amplification of the EDF 3 is shortened at a low temperature, the gain on the short wave side is increased, and the increase in the gain on the long wave side due to temperature dependence can be compensated.

以上説明したように、本発明の第1の実施形態によれば、EDF3の温度を計測し、この温度に応じて、EDF3の増幅に係わる実効長を変化させることで、温度依存による利得波長傾斜を補償することができる。   As described above, according to the first embodiment of the present invention, the temperature of the EDF 3 is measured, and the effective wavelength related to the amplification of the EDF 3 is changed in accordance with the temperature, so that the gain wavelength inclination depending on the temperature is changed. Can be compensated.

<第2の実施形態>
図3は、本発明の第2の実施形態を示すものである。図3に示すように、本発明の第2の実施形態の光増幅器では、EDF103がn個に分割される。分割された各EDF103−1〜103−(n)の間に、光フィルタ104−1〜104−(n−1)が挿入される。各光フィルタ104−1〜104−(n−1)の帯域は異なっている。EDF103の前方に、励起光合波カプラ101が配設される。励起光合波カプラ101には、可変波長励起光源102から、励起光が供給される。可変波長励起光源102からの励起光の波長は、励起光波長制御回路115からの制御信号により可変できる。
<Second Embodiment>
FIG. 3 shows a second embodiment of the present invention. As shown in FIG. 3, in the optical amplifier according to the second embodiment of the present invention, the EDF 103 is divided into n pieces. Optical filters 104-1 to 104- (n-1) are inserted between the divided EDFs 103-1 to 103- (n). The bands of the optical filters 104-1 to 104- (n-1) are different. In front of the EDF 103, an excitation light multiplexing coupler 101 is disposed. A pumping light multiplexing coupler 101 from the variable-wavelength excitation light source 102, the excitation light is supplied. The wavelength of the excitation light from the variable wavelength excitation light source 102 can be varied by a control signal from the pumping light wavelength control circuit 115.

また、サーミスタ111により、EDF3の温度が検出される。このサーミスタ111の温度検出出力が励起光波長制御回路115に送られる。励起光波長制御回路115は、サーミスタ111から送られるEDF3の温度データを元に、可変波長励起光源102からの励起光の波長を制御して、EDF3の増幅に係わる実効長を温度に応じて変化させる。 Further, the thermistor 111 detects the temperature of the EDF 3. The temperature detection output of the thermistor 111 is sent to the excitation light wavelength control circuit 115. Pumping light wavelength control circuit 115, based on the temperature data EDF3 sent from the thermistor 111, and controls the wavelength of the excitation light from the variable wavelength excitation light source 102, depending on the temperature the effective length relating to the amplification of EDF3 change Let

前述の第1の実施形態では、サーミスタ11によりEDF3の温度を検出し、EDF3の温度を元に、可変光フィルタ4−1〜4−(n)の特性を制御して、EDF3の増幅に係わる実効長を可変させている。   In the first embodiment described above, the temperature of the EDF 3 is detected by the thermistor 11, and the characteristics of the variable optical filters 4-1 to 4- (n) are controlled based on the temperature of the EDF 3, thereby relating to the amplification of the EDF 3. The effective length is varied.

これに対して、この第2の実施形態では、サーミスタ111によりEDF103の温度を検出し、EDF103の温度を元に、可変波長励起光源102からの励起光の波長を制御して、EDF3の増幅に係わる実効長を可変させている。 In contrast, in this second embodiment, detects the temperature of EDF103 by the thermistor 111, based on the temperature of EDF103, by controlling the wavelength of the excitation light from the variable wavelength excitation light source 102, the amplification of EDF3 The effective length involved is varied.

すなわち、EDF3の温度が最も高温時には、全ての光フィルタ104−1〜104−(n)が励起光が通過するように、可変波長励起光源102からの励起光の波長が制御される。この場合には、EDF103の増幅に係わる実効長は、EDF103−1〜103−(n)の全ての合計の長さになる。このように、高温時には、EDF103の増幅に係わる実効長が長くなるため、長波側の利得が上がり、温度依存による短波側の利得の上昇を補償できる。 That is, when the hottest temperature of EDF3 is, all light filter 104-1~104- (n) is to pass the excitation light, the wavelength of the excitation light from the variable-wavelength excitation light source 102 is controlled. In this case, the effective length related to the amplification of the EDF 103 is the total length of all the EDFs 103-1 to 103- (n). As described above, since the effective length related to amplification of the EDF 103 becomes longer at high temperatures, the gain on the long wave side is increased, and the increase in the gain on the short wave side due to temperature dependence can be compensated.

EDF103の温度がそれより少し低下すると、光フィルタ104−(n−1)が励起光を遮断し、他の光フィルタは全て励起光を通過するように、可変波長励起光源102からの励起光の波長が制御される。この場合には、EDF103の増幅に係わる実効長は、EDF103−1〜103−(n−1)の合計の長さになり、EDF103の増幅に係わる実効長が少し短くなる。 When the temperature of the EDF 103 decreases slightly, the optical filter 104- (n-1) blocks the excitation light, and all the other optical filters pass the excitation light . The wavelength is controlled. In this case, the effective length related to the amplification of the EDF 103 is the total length of the EDFs 103-1 to 103- (n-1), and the effective length related to the amplification of the EDF 103 is slightly shortened.

以下、EDF103の温度が高温から低温になるに従って、光フィルタ104−(n−1)、104−(n−2)、…の順(励起光源に近づく順)に、励起光を遮断するように、可変波長励起光源102からの励起光の波長が制御される。これにより、EDF103の温度が高温から低温になるに従って、EDF103の増幅に係わる実効長が順次短くなる。 Hereinafter, as the temperature of the EDF 103 decreases from a high temperature to a low temperature, the excitation light is blocked in the order of the optical filters 104- (n-1), 104- (n-2),. , the wavelength of the excitation light from the variable-wavelength excitation light source 102 is controlled. As a result, as the temperature of the EDF 103 decreases from a high temperature to a low temperature, the effective length related to the amplification of the EDF 103 is sequentially shortened.

最も低温時には、最も励起光源に近い光フィルタ104−1の特性が励起光を遮断するように、可変波長励起光源102からの励起光の波長が制御される。この場合には、EDF103の増幅に係わる実効長は、EDF103−1の長さのみになる。このように、低温時には、EDF103の増幅に係わる実効長が短くなるため、短波側の利得が上がり、温度依存による長波側の利得の上昇を補償できる。 During the coldest, so that the characteristic of the optical filter 104-1 is closest to the excitation light source to block the excitation light, the wavelength of the excitation light from the variable-wavelength excitation light source 102 is controlled. In this case, the effective length related to the amplification of the EDF 103 is only the length of the EDF 103-1. As described above, since the effective length related to the amplification of the EDF 103 is shortened at a low temperature, the gain on the short wave side is increased, and the increase in the gain on the long wave side due to temperature dependence can be compensated.

なお、上述の実施形態では、前方励起の構成について説明したが、本発明は、後方励起の構成でも、同様に適用できる。   In the above-described embodiment, the configuration of forward excitation has been described. However, the present invention can be similarly applied to the configuration of backward excitation.

本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。   The present invention is not limited to the above-described embodiments, and various modifications and applications can be made without departing from the gist of the present invention.

1 励起光合波カプラ1
2 励起光源
3,3−1〜3−(n) EDF
4,4−1〜4−(n−1) 可変光フィルタ
11 サーミスタ
15 光フィルタ波長制御回路
103,103−1〜103−(n) EDF
104,104−1〜104−(n−1) 光フィルタ
101 励起光合波カプラ
102 可変波長励起光源
104 光フィルタ
111 サーミスタ
115 励起光波長制御回路
201 励起光合波カプラ
202 励起光源
211 サーミスタ
212 温度制御回路
213 ヒータ
214 断熱ケース
1 Pumping light coupler 1
2 Excitation light source 3,3-1 to 3- (n) EDF
4,4-1 to 4- (n-1) Variable optical filter 11 Thermistor 15 Optical filter wavelength control circuit 103, 103-1 to 103- (n) EDF
104, 104-1 to 104- (n-1) Optical filter 101 Excitation light multiplexing coupler 102 Variable wavelength excitation light source 104 Optical filter 111 Thermistor 115 Excitation light wavelength control circuit 201 Excitation light multiplexing coupler 202 Excitation light source 211 Thermistor 212 Temperature control circuit 213 Heater 214 Thermal insulation case

Claims (5)

複数に分割された光増幅媒体と、
前記光増幅媒体に励起光を供給する励起光発生手段と、
前記光増幅媒体の温度を検出する温度検出手段と、
前記光増幅媒体の温度に応じて、前記光増幅媒体の増幅に係わる実効長を可変させる制御手段と
を備え、
前記複数に分割された各光増幅媒体の間に、前記励起光を通過/遮断させる特性の可変光フィルタを挿入し、
前記制御手段は、前記光増幅媒体の温度に応じて、前記可変光フィルタを制御して、前記光増幅媒体の増幅に係わる実効長を可変させることを特徴とする光増幅器。
An optical amplification medium divided into a plurality of parts;
An excitation light generating means for supplying pumping light to said optical amplifying medium,
Temperature detecting means for detecting the temperature of the optical amplification medium;
Control means for varying an effective length related to amplification of the optical amplification medium according to the temperature of the optical amplification medium;
With
Inserting a variable optical filter having a characteristic of passing / blocking the excitation light between each of the plurality of divided optical amplification media,
The control means controls the variable optical filter in accordance with the temperature of the optical amplifying medium to vary the effective length related to the amplification of the optical amplifying medium.
複数に分割された光増幅媒体と、
前記光増幅媒体に励起光を供給する励起光発生手段と、
前記光増幅媒体の温度を検出する温度検出手段と、
前記光増幅媒体の温度に応じて、前記光増幅媒体の増幅に係わる実効長を可変させる制御手段と
を備え、
前記複数に分割された各光増幅媒体の間に、それぞれ特定の波長の励起光の通過帯域を有する光フィルタを挿入し、
前記制御手段は、前記光増幅媒体の温度に応じて、前記励起光の波長を制御して、前記光増幅媒体の増幅に係わる実効長を可変させることを特徴とする光増幅器。
An optical amplification medium divided into a plurality of parts;
Excitation light generating means for supplying excitation light to the optical amplification medium;
Temperature detecting means for detecting the temperature of the optical amplification medium;
Control means for varying an effective length related to amplification of the optical amplification medium according to the temperature of the optical amplification medium;
With
Inserting an optical filter having a passband of excitation light of a specific wavelength between each of the plurality of divided optical amplification media,
An optical amplifier characterized in that the control means controls the wavelength of the pumping light according to the temperature of the optical amplifying medium to vary the effective length related to amplification of the optical amplifying medium.
前記光増幅媒体は、エルビウム添加光ファイバであることを特徴とする請求項1または2に記載の光増幅器。 The optical amplifier according to claim 1 , wherein the optical amplification medium is an erbium-doped optical fiber. 光増幅媒体に励起光を供給して光増幅を行う光増幅器の制御方法において、
前記光増幅媒体を複数に分割し、
前記複数に分割された各光増幅媒体の間に、前記励起光を通過/遮断させる特性の可変光フィルタを挿入し、
前記光増幅媒体の温度に応じて、前記可変光フィルタを制御して、前記光増幅媒体の増幅に係わる実効長を可変させる
ことを特徴とする光増幅器の制御方法。
In a control method of an optical amplifier that performs optical amplification by supplying excitation light to an optical amplification medium,
Dividing the optical amplification medium into a plurality of parts;
Inserting a variable optical filter having a characteristic of passing / blocking the excitation light between each of the plurality of divided optical amplification media,
An optical amplifier control method , wherein the effective length related to amplification of the optical amplification medium is varied by controlling the variable optical filter according to the temperature of the optical amplification medium.
請求項1ないし3のいずれかに記載した光増幅器における前記制御手段を実行させる光増幅器の制御プログラム。 4. An optical amplifier control program for executing the control means in the optical amplifier according to claim 1 .
JP2009056479A 2009-03-10 2009-03-10 Optical amplifier, optical amplifier control method and program Expired - Fee Related JP5298973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056479A JP5298973B2 (en) 2009-03-10 2009-03-10 Optical amplifier, optical amplifier control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056479A JP5298973B2 (en) 2009-03-10 2009-03-10 Optical amplifier, optical amplifier control method and program

Publications (2)

Publication Number Publication Date
JP2010212420A JP2010212420A (en) 2010-09-24
JP5298973B2 true JP5298973B2 (en) 2013-09-25

Family

ID=42972307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056479A Expired - Fee Related JP5298973B2 (en) 2009-03-10 2009-03-10 Optical amplifier, optical amplifier control method and program

Country Status (1)

Country Link
JP (1) JP5298973B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638636B (en) * 2017-10-09 2024-10-18 科大国盾量子技术股份有限公司 Control and state monitoring device for semiconductor laser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618008B2 (en) * 1995-03-17 2005-02-09 富士通株式会社 Optical amplifier
JP2001210903A (en) * 1999-11-17 2001-08-03 Fujikura Ltd Optical amplifier
JP2003179288A (en) * 2001-12-10 2003-06-27 Mitsubishi Cable Ind Ltd Optical amplifying device and amplifying method for light using the same

Also Published As

Publication number Publication date
JP2010212420A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4900501B2 (en) Optical amplifier and optical amplification method
JP5239141B2 (en) Optical amplification device and control method thereof
JP3903650B2 (en) Optical amplifier and optical amplifier control method
JP3771403B2 (en) Rare earth doped waveguide optical amplifier and optical communication system
JP4703164B2 (en) Optical amplifier
JP2000277842A (en) Optical components, and optical amplifier and characteristics control method for the same
JP2004158652A (en) Optical amplifier, transmission wavelength characteristic control method in optical amplifier, and optical transmission system
JP4635402B2 (en) Optical amplifier and optical amplification method
JP4399496B2 (en) Optical amplifier, optical amplification repeater, and pumping light supply control method
JP4750688B2 (en) Raman amplifier
JP6879364B2 (en) Optical amplifier and control method of optical amplifier
JP5298973B2 (en) Optical amplifier, optical amplifier control method and program
US20040196882A1 (en) Optical amplifier
EP1385279B1 (en) Optical amplifier
JP4281245B2 (en) Optical amplifier
JP3811134B2 (en) Optical amplifier
JP5103963B2 (en) Multistage optical amplifier and control method thereof
WO2017085822A1 (en) Optical amplifier
US7079311B2 (en) Optical amplifier and optical communication system including the same
JP2011249531A (en) Optical amplifier device and optical amplifier medium
JP5884654B2 (en) Optical amplifier and optical amplifier control method
JP4000732B2 (en) Optical amplifier
JP2004296581A (en) Optical amplifier and control method therefor
JP5839092B2 (en) Optical amplification device and optical amplification medium
JP2003188443A (en) Optical amplifier

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees