JP5297436B2 - Method for manufacturing vacuum insulated double container - Google Patents
Method for manufacturing vacuum insulated double container Download PDFInfo
- Publication number
- JP5297436B2 JP5297436B2 JP2010244847A JP2010244847A JP5297436B2 JP 5297436 B2 JP5297436 B2 JP 5297436B2 JP 2010244847 A JP2010244847 A JP 2010244847A JP 2010244847 A JP2010244847 A JP 2010244847A JP 5297436 B2 JP5297436 B2 JP 5297436B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- double container
- manufacturing
- outer cylinder
- heating furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 52
- 238000009413 insulation Methods 0.000 claims abstract description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 23
- 238000005121 nitriding Methods 0.000 claims description 18
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 3
- 230000026683 transduction Effects 0.000 claims description 2
- 238000010361 transduction Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 description 12
- 238000005219 brazing Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
Landscapes
- Packages (AREA)
- Thermally Insulated Containers For Foods (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Table Devices Or Equipment (AREA)
Abstract
Description
本発明は、真空断熱二重容器の製造方法に関するものである。 The present invention relates to a method for manufacturing a vacuum insulated double container.
ビール等の飲料を注ぐ容器として、これまで、ガラス製、陶製等の種々の素材のものが提案されており、本出願人は特開2003−129291号に開示される金属製(チタン製)の真空断熱二重容器を提案している。 As containers for pouring beverages such as beer, various materials such as glass and ceramics have been proposed so far, and the applicant of the present invention is made of metal (made of titanium) disclosed in Japanese Patent Application Laid-Open No. 2003-129291. A vacuum insulated double container is proposed.
本出願人は、この金属製の真空断熱二重容器について更なる研究開発を進めた結果、極めて商品価値の高い真空断熱二重容器を提供し得る画期的な製造方法を開発した。 As a result of further research and development of this metal vacuum insulated double container, the present applicant has developed an innovative manufacturing method capable of providing a vacuum insulated double container having extremely high commercial value.
添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
チタン製の外筒1内に空間部Sを介してチタン製の内筒2を配設し、前記外筒1と前記内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒1及び前記内筒2から成る被処理体3を真空加熱炉6で加熱しながら該被処理体3の前記空間部Sを脱気し且つ脱気孔を真空封止し、その後、前記真空加熱炉6内に窒素ガスTを導入して前記被処理体3の表面に窒化部10を形成し、続いて、前記窒化部10を加熱処理することを特徴とする真空断熱二重容器の製造方法に係るものである。 A titanium inner cylinder 2 is disposed in the titanium outer cylinder 1 through a space S, and a vacuum insulation is provided with the space S between the outer cylinder 1 and the inner cylinder 2 as a vacuum heat insulation space. In the method for manufacturing a double container, the space S of the object to be treated 3 is degassed and removed while the object to be treated 3 comprising the outer cylinder 1 and the inner cylinder 2 is heated in a vacuum heating furnace 6. the pore vacuum-sealed, then introducing nitrogen gas T in the vacuum heating furnace 6 to form a nitride portion 10 on the surface of the workpiece 3, then, be heat treatment the nitride portion 10 The present invention relates to a method for manufacturing a vacuum heat insulating double container.
また、チタン製の外筒1内に空間部Sを介してチタン製の内筒2を配設し、前記外筒1と前記内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法であって、前記外筒1及び前記内筒2から成る被処理体3を真空加熱炉6で加熱しながら該被処理体3の前記空間部Sを脱気し且つ脱気孔を真空封止し、その後、前記被処理体3を冷却し、続いて、前記被処理体3を前記真空加熱炉6で加熱し、その後、前記真空加熱炉6内に窒素ガスTを導入して前記被処理体3の表面に窒化部10を形成し、続いて、前記窒化部10を加熱処理することを特徴とする真空断熱二重容器の製造方法に係るものである。 Further, a titanium inner cylinder 2 is disposed in the titanium outer cylinder 1 via a space S, and the space S between the outer cylinder 1 and the inner cylinder 2 is used as a vacuum heat insulating space. A method for manufacturing a vacuum insulated double container, wherein the object 3 comprising the outer cylinder 1 and the inner cylinder 2 is heated in a vacuum heating furnace 6 while the space S of the object 3 is degassed. The deaeration holes are vacuum-sealed, and then the object to be processed 3 is cooled. Subsequently, the object to be processed 3 is heated in the vacuum heating furnace 6, and then the nitrogen gas T is placed in the vacuum heating furnace 6. said forming a nitride portion 10 on the surface of the object 3 is introduced, followed by those of the manufacturing method of vacuum insulation double container, wherein the heating treatment to Rukoto the nitride portion 10 .
また、請求項1,2いずれか1項に記載の真空断熱二重容器の製造方法において、前記窒化部10の加熱処理は前記真空加熱炉6で行うことを特徴とする真空断熱二重容器の製造方法に係るものである。 Moreover, the manufacturing method of the vacuum heat insulation double container of any one of Claim 1, 2 WHEREIN: The heat processing of the said nitriding part 10 are performed in the said vacuum heating furnace 6, The vacuum heat insulation double container characterized by the above-mentioned . It relates to a manufacturing method.
また、請求項1〜3いずれか1項に記載の真空断熱二重容器の製造方法において、前記真空加熱炉6内の温度が700℃以下になった時点で該真空加熱炉6内に窒素ガスTを導入することを特徴とする真空断熱二重容器の製造方法に係るものである。 In the manufacturing method of the vacuum insulated double container according to any one of claims 1 to 3 nitrogen into the vacuum heating furnace 6 when the temperature of the vacuum heating furnace 6 became 7 00 ° C. or less The present invention relates to a method for producing a vacuum heat insulating double container characterized by introducing a gas T.
また、請求項1〜4いずれか1項に記載の真空断熱二重容器の製造方法において、前記被処理体3の開口部3aを閉塞した状態で前記真空加熱炉6内へ窒素ガスTを導入することを特徴とする真空断熱二重容器の製造方法に係るものである。 Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-4 , the nitrogen gas T is introduce | transduced in the said vacuum heating furnace 6 in the state which obstruct | occluded the opening part 3a of the said to-be-processed object 3. The present invention relates to a method for manufacturing a vacuum heat insulating double container.
また、請求項1〜5いずれか1項に記載の真空断熱二重容器の製造方法において、前記窒素ガスTの導入による昇圧により前記外筒1及び前記内筒2の表面に凹凸部4,5を設けることを特徴とする真空断熱二重容器の製造方法に係るものである。 Moreover, in the manufacturing method of the vacuum heat insulation double container of any one of Claims 1-5 , uneven | corrugated | grooved parts 4 and 5 are formed in the surface of the said outer cylinder 1 and the said inner cylinder 2 by the pressure_rising | flushing by introduction | transduction of the said nitrogen gas T. It is related with the manufacturing method of the vacuum heat insulation double container characterized by providing.
本発明により得られる真空断熱二重容器は、金属表面に形成された窒化部を加熱処理して変色せしめることで得られる従来にない独特な質感を呈する極めて高品位な真空断熱二重容器となり、しかも、この真空断熱二重容器の表面に設けられる独特な質感が、該真空断熱二重容器を製造する際の真空加熱炉内の冷却に用いられる窒素ガスによる窒化を利用したものであるから、確実に実現できるものであり、前述した高品位な真空断熱二重容器を確実且つ効率良く製造することができるなど従来にない作用効果を発揮する画期的な真空断熱二重容器の製造方法となる。 The vacuum heat insulation double container obtained by the present invention becomes a very high quality vacuum heat insulation double container that exhibits an unprecedented unique texture obtained by heat-treating and discoloring the nitriding part formed on the metal surface, Moreover, since the unique texture provided on the surface of the vacuum insulated double container is based on nitriding with nitrogen gas used for cooling in the vacuum heating furnace when manufacturing the vacuum insulated double container, An innovative vacuum insulated double container manufacturing method that exhibits unprecedented effects, such as the above-mentioned high-quality vacuum insulated double container reliably and efficiently, which can be surely realized Become.
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.
本発明は、外筒1及び内筒2から成る被処理体3を真空加熱炉6で加熱しながら該被処理体3の空間部Sを脱気し且つ脱気孔を真空封止し、その後、真空加熱炉6内に窒素ガスTを導入して被処理体3の表面に窒化部10を形成し、続いて、この窒化部10を加熱処理すると、この被処理体3の表面は、白色に近いつや消し調に変色して独特な質感を呈する。 The present invention degass the space S of the object to be processed 3 while heating the object to be processed 3 consisting of the outer cylinder 1 and the inner cylinder 2 in the vacuum heating furnace 6 and vacuum seals the deaeration holes, Nitrogen gas T is introduced into the vacuum heating furnace 6 to form a nitriding part 10 on the surface of the object 3 to be processed. Subsequently, when the nitriding part 10 is heat-treated, the surface of the object 3 to be processed becomes white. It changes color to a near matte tone and exhibits a unique texture.
従って、簡易な方法により、表面が白色に近いつや消し調の独特な質感を呈する今までに無い全く新しいデザインの容器を製造することができる。 Therefore, it is possible to manufacture an entirely new design container that has a unique texture with a matte finish near the white surface by a simple method.
本発明の具体的な一実施例について図面に基づいて説明する。 A specific embodiment of the present invention will be described with reference to the drawings.
本実施例は、外筒1内に空間部Sを介して内筒2を配設し、外筒1と内筒2との間の空間部Sを真空断熱空間部とする真空断熱二重容器の製造方法である。尚、本実施例では、真空断熱二重容器を、ワインやウイスキーなどのアルコール飲料を飲む際に使用するタンブラーとして構成しているが、これに限るものではない。 In the present embodiment, the inner cylinder 2 is disposed in the outer cylinder 1 via the space S, and the vacuum insulation double container having the space S between the outer cylinder 1 and the inner cylinder 2 as a vacuum insulation space. It is a manufacturing method. In the present embodiment, the vacuum insulated double container is configured as a tumbler used when drinking alcoholic beverages such as wine and whiskey, but is not limited thereto.
また、本実施例に係る外筒1及び内筒2は、図1,2に図示したように金属製(チタン製)の有底筒状体であり、内筒2は外筒1に比して径小で高さが低く設定され、また、夫々の開口部1a,2aは略同一径に設定されている。尚、外筒1及び内筒2を構成する素材はステンレスなどその他の金属でも良い。 The outer cylinder 1 and the inner cylinder 2 according to the present embodiment are metal (titanium) bottomed cylindrical bodies as shown in FIGS. 1 and 2, and the inner cylinder 2 is in comparison with the outer cylinder 1. The diameter is small and the height is set low, and the openings 1a and 2a are set to have substantially the same diameter. The material constituting the outer cylinder 1 and the inner cylinder 2 may be other metals such as stainless steel.
従って、外筒1内に内筒2を配して開口部1a,2a同士を接合して、外筒1と内筒2との間に空間部Sが形成される。 Accordingly, the opening 1a by disposing the inner cylinder 2 into the outer cylinder 1, by joining 2a together, spatial portion S is formed between the inner cylinder 2 and the outer cylinder 1.
尚、本明細書におけるチタンとは、純チタン及びチタン合金を示す。また、外筒1及び内筒2夫々の素材(成分)や板厚や大きさ(形状)は、後述する真空断熱二重容器として製造した際に、該真空断熱二重容器の機能(特に断熱機能)を低下させない程度に凹凸部4,5が形成されることを考慮して適宜選択される。 In addition, the titanium in this specification shows pure titanium and a titanium alloy. The material (component), thickness and size (shape) of each of the outer cylinder 1 and the inner cylinder 2 are the functions (particularly heat insulation) of the vacuum heat insulating double container when manufactured as a vacuum heat insulating double container described later. It is appropriately selected in consideration of the formation of the concavo-convex portions 4 and 5 to such an extent that the function) is not lowered.
また、外筒1の底部中央には凹部1bが設けられ、この凹部1bの中央位置には真空封止する際の脱気孔1b’が設けられる。 Moreover, the bottom center of the outer cylinder 1 is provided with recesses 1b, deaerating hole 1b 'is provided et the when vacuum sealing the center of the recess 1b.
また、外筒1及び内筒2には、図1,2に図示したように後述する製造過程においてその表面に凹凸部4,5が無数に設けられている。 The outer cylinder 1 and the inner cylinder 2 are provided with an infinite number of concave and convex portions 4 and 5 on the surfaces thereof in the manufacturing process described later as shown in FIGS.
従って、この外筒1と内筒2とから成る真空断熱二重容器の表面に設けられる凹凸部4,5により、チタン製(金属製)でありながら、あたかも陶器のようなデコボコ感のあるデザインを呈することになる。 Therefore, the uneven parts 4 and 5 provided on the surface of the vacuum heat insulating double container composed of the outer cylinder 1 and the inner cylinder 2 are made of titanium (metal), but have a design that feels like a pottery. Will be presented.
以上の外筒1及び内筒2を用いた真空断熱二重容器の製造方法について説明する。 The manufacturing method of the vacuum heat insulation double container using the above outer cylinder 1 and the inner cylinder 2 is demonstrated.
先ず、外筒1内に内筒2を配して互いに開口部1a,2a同士を溶接(アルゴン溶接)により接合し、被処理体3を設ける。この被処理体3を構成する外筒1の内面と内筒2の外面との間には空間部Sが形成される。この空間部Sは後に真空処理されることで真空断熱空間部となる。 First, the inner cylinder 2 is arranged in the outer cylinder 1, the openings 1a and 2a are joined to each other by welding (argon welding), and the object to be processed 3 is provided. A space S is formed between the inner surface of the outer cylinder 1 and the outer surface of the inner cylinder 2 constituting the workpiece 3. This space part S becomes a vacuum heat insulation space part by vacuum processing later.
続いて、外筒1と内筒2との空間部Sを脱気し且つ脱気孔1b’を真空封止する。 Subsequently, the space S between the outer cylinder 1 and the inner cylinder 2 is deaerated and the deaeration hole 1b 'is vacuum-sealed.
具体的には、図3,4に図示したように被処理体3を真空加熱炉6内に配する。この際、被処理体3は開口部3aが閉塞されるように平坦な載置面6aに逆さ状態に配され、この状態で外筒1の底部に設けた脱気孔1b’の周囲にロウ材7(チタンロウ)を配するとともに、このロウ材7の上に封止板8を載せる。 Specifically, as shown in FIGS. 3 and 4, the workpiece 3 is placed in the vacuum heating furnace 6. At this time, the object to be processed 3 is placed upside down on the flat mounting surface 6a so that the opening 3a is closed, and in this state, the brazing material is disposed around the deaeration hole 1b 'provided at the bottom of the outer cylinder 1. 7 (titanium brazing) is disposed, and a sealing plate 8 is placed on the brazing material 7.
この状態で真空加熱炉6内の温度を約800℃以上とするとともに、徐々に脱気して真空状態(10-3〜10-4Torr)とし、更に、温度を約1050℃まで上げる。 In this state, the temperature in the vacuum heating furnace 6 is set to about 800 ° C. or higher, gradually deaerated to a vacuum state (10 −3 to 10 −4 Torr), and the temperature is further increased to about 1050 ° C.
この際、ロウ材7が熔融して外筒1と封止板8が一体化して脱気孔1b’が閉塞され、外筒1と内筒2との間の空間部Sが真空状態のまま封止されて真空断熱空間部が形成される(図5参照)。 At this time, the brazing material 7 is melted, the outer cylinder 1 and the sealing plate 8 are integrated, the deaeration hole 1b ′ is closed, and the space S between the outer cylinder 1 and the inner cylinder 2 is sealed in a vacuum state. It stops and a vacuum heat insulation space part is formed (refer FIG. 5).
加熱を停止して自然冷却により真空加熱炉6内の温度が700℃よりも低い温度(約630℃〜670℃)に下がった時点で真空加熱炉6内に窒素ガスTを導入して常圧に戻し(この時点で凹凸部4,5が形成される)、一気に常温まで温度を下げて被処理体3を冷却して真空封止作業は完了する。 When the heating is stopped and the temperature in the vacuum heating furnace 6 is lowered to a temperature lower than 700 ° C. (about 630 ° C. to 670 ° C.) by natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 and normal pressure is applied. Then, the uneven portions 4 and 5 are formed. At this time, the temperature is lowered to room temperature to cool the workpiece 3 and the vacuum sealing operation is completed.
具体的には、真空加熱炉6内の温度をチタンの再結晶温度以上、且つチタンの変態点880℃(α組織からβ組織の変わる温度)を超える約1,050℃とするとともに、真空状態(10-3〜10-4Torr)とし、この状態を15分〜20分保持する。これにより、被処理体3の外筒1及び内筒2は再結晶し(β組織となり)、延性が増加する(再結晶しない部分は結晶粒が粗大化した状態となっている。)。その後、加熱を停止し、自然冷却により真空加熱炉6内の温度が約700℃以下になった時点で、真空加熱炉6内に窒素ガスTを導入して一気に常圧常温まで戻して被処理体3を急速冷却する。この加熱冷却常圧処理において、外筒1及び内筒2には凹凸部4,5が生じる。 Specifically, the temperature of the titanium in the recrystallization temperature or more in a vacuum heating furnace 6, and with from about 1,050 ° C. greater than the (temperature change of β tissue from α tissue) transformation point 880 ° C. Titanium, vacuum The state (10 −3 to 10 −4 Torr) is set, and this state is maintained for 15 to 20 minutes. Thereby , the outer cylinder 1 and the inner cylinder 2 of the to-be-processed object 3 are recrystallized (become β structure), and ductility is increased (the crystal grains are coarsened in the portion not recrystallized). Thereafter, the heating is stopped, and when the temperature in the vacuum heating furnace 6 becomes about 700 ° C. or less due to natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 to return to normal pressure and normal temperature at once. The body 3 is rapidly cooled. In this heating / cooling normal pressure process, the outer cylinder 1 and the inner cylinder 2 have uneven portions 4 and 5.
大気圧状況下に戻す(窒素ガスを導入する)処理を700℃よりも低い温度で行なうのは、約700℃以上の高温下においては素材が柔らか過ぎてしまい、この状態で大気圧環境下(常圧下)に戻すと外筒1及び内筒2に大きく凹む部分が生じて外筒1と内筒2とが当接してしまう部位ができてしまい、これを防止するためである。ただ、あまりにも低い温度で常圧下に戻しても凹凸は形成されにくく且つ時間がかかり過ぎてしまい、生産性が悪くなる。 The process of returning to atmospheric pressure (introducing nitrogen gas) at a temperature lower than 700 ° C. is because the material is too soft at a high temperature of about 700 ° C. or higher. When the pressure is returned to normal pressure), the outer cylinder 1 and the inner cylinder 2 are largely recessed, and a portion where the outer cylinder 1 and the inner cylinder 2 come into contact with each other is formed. This is to prevent this. However, even if the pressure is returned to normal pressure at a too low temperature, the unevenness is hardly formed and it takes too much time, resulting in poor productivity.
この大気圧環境下の真空加熱炉6内におかれた外筒1及び内筒2は、その表面にはくっきりとした大きな凹凸部4,5が無数に形成され(図5参照)、窒素ガスTの導入により常温に戻ってこの凹凸部4,5は固定される。 The outer cylinder 1 and the inner cylinder 2 placed in the vacuum heating furnace 6 under the atmospheric pressure environment have countless large uneven portions 4 and 5 formed on the surface (see FIG. 5), and nitrogen gas With the introduction of T, the concavo-convex portions 4 and 5 are fixed by returning to normal temperature.
また、図示していないが、この真空封止作業の際には、予め各被処理体3にはカバー体が被嵌されており、窒素ガスTを用いた急速冷却の際には、各被処理体3が窒素ガスTに触れないようにしている。この真空封止作業の際に被処理体3にカバー体を被嵌するのは、ロウ材7としてチタンロウを採用した場合、高温化で窒素ガスTに触れるとロウ材としての性能が急激に低下してしまうからであり、ロウ材7が窒素ガスTに触れないようにする為である。尚、被処理体3に窒化部10を形成しないように冷却する場合にはアルゴンガスを用いても良い。 Although not shown, a cover body is previously fitted to each object 3 during this vacuum sealing operation, and each object is covered during rapid cooling using nitrogen gas T. The treatment body 3 is prevented from touching the nitrogen gas T. In the vacuum sealing operation, the cover body is fitted to the object 3 to be processed. When a titanium brazing material is used as the brazing material 7, when the nitrogen gas T is touched at a high temperature, the performance as the brazing material sharply decreases. This is because the brazing material 7 does not touch the nitrogen gas T. Note that argon gas may be used when the object to be processed 3 is cooled so as not to form the nitriding portion 10.
続いて、真空封止作業が済んだ被処理体3の表面に窒化部10(窒化層・窒化皮膜)を形成する。 Subsequently, a nitride portion 10 (nitride layer / nitride film) is formed on the surface of the workpiece 3 that has been vacuum-sealed.
具体的には、真空加熱炉6内で、被処理体3をカバー体で被嵌されない状態とし、この状態で前述と同様に加熱するとともに窒素ガスTを用いて急速冷却すると、被処理体3の表面には、窒素ガスTに触れることで窒化部10が形成される(図6参照)。この窒化部10は黒色でつや消し状態である。尚、被処理体3の内面(内筒2の内面)は、窒素ガスTに触れない為に窒化せず、素材(チタン)が持つ色に輝く質感を呈する(図1参照)。 Specifically, in the vacuum heating furnace 6, the object to be processed 3 is not covered with the cover body, and when heated in the same manner as described above and rapidly cooled using the nitrogen gas T, the object to be processed 3 is obtained. A nitriding portion 10 is formed on the surface of the substrate by contacting the nitrogen gas T (see FIG. 6). The nitriding portion 10 is black and frosted. Note that the inner surface of the object to be processed 3 (the inner surface of the inner cylinder 2) is not nitrided because it does not touch the nitrogen gas T, and exhibits a texture shining in the color of the material (titanium) (see FIG. 1).
続いて、被処理体3の窒化部10を加熱処理して完成する。 Subsequently, the nitriding portion 10 of the object to be processed 3 is completed by heat treatment.
具体的には、被処理体3を真空加熱炉6内に配した状態とする。この際、被処理体3は開口部3aが閉塞されるように平坦な載置面6aに逆さ状態に配され、更に、被処理体3にはカバー体11が被嵌されている。 Specifically, the workpiece 3 is placed in the vacuum heating furnace 6. At this time, the object to be processed 3 is arranged upside down on the flat mounting surface 6a so that the opening 3a is closed, and a cover body 11 is fitted on the object to be processed 3.
この状態で真空加熱炉6内の温度を約1050℃まで上げると、窒化部10は加熱されて白色(灰色)になる(図7参照)。 When the temperature in the vacuum heating furnace 6 is raised to about 1050 ° C. in this state, the nitriding section 10 is heated to become white (gray) (see FIG. 7).
加熱を停止して自然冷却により真空加熱炉6内の温度が700℃よりも低い温度(約630℃〜670℃)に下がった時点で真空加熱炉6内に窒素ガスTを導入して常圧に戻し(この時点で凹凸部4,5が形成される)、一気に常温まで温度を下げて被処理体3を冷却して窒化部10の加熱処理は完了する(図8参照)。この際、被処理体3にはカバー体11が被嵌されているため、再び黒色の窒化部10が形成されることが防止される。 When the heating is stopped and the temperature in the vacuum heating furnace 6 is lowered to a temperature lower than 700 ° C. (about 630 ° C. to 670 ° C.) by natural cooling, nitrogen gas T is introduced into the vacuum heating furnace 6 and normal pressure is applied. Then, the uneven portions 4 and 5 are formed at this time, and the temperature of the object to be processed 3 is cooled down to room temperature at a stretch to complete the heat treatment of the nitriding portion 10 (see FIG. 8). At this time, since the cover body 11 is fitted on the object 3 to be processed, it is possible to prevent the black nitrided portion 10 from being formed again.
この窒化部10を加熱処理した後の被処理体3の表面は、白色に近いつや消し調(灰色)に変色して独特な質感を呈する。 The surface of the object to be processed 3 after the nitriding portion 10 is heat-treated changes its color to a matte tone (gray) close to white and exhibits a unique texture.
本実施例は上述のように構成したから、金属表面に形成された窒化部10を加熱処理して変色せしめることで得られる従来にない独特な質感を呈する極めて高品位な真空断熱二重容器が得られることになり、しかも、この真空断熱二重容器の表面に設けられる独特な質感が、該真空断熱二重容器を製造する際の真空加熱炉内を冷却する際の窒素ガスによる窒化を利用したものであるから、確実に実現できるものであり、前述した高品位な真空断熱二重容器を確実且つ効率良く製造することができる。 Since the present embodiment is configured as described above, there is an extremely high-quality vacuum insulated double container that exhibits an unprecedented unique texture obtained by heat-treating and discoloring the nitriding portion 10 formed on the metal surface. In addition, the unique texture provided on the surface of this vacuum insulated double container uses nitridation by nitrogen gas when cooling the inside of the vacuum heating furnace when manufacturing the vacuum insulated double container Therefore, the above-described high-quality vacuum insulated double container can be reliably and efficiently manufactured.
また、本実施例は、チタン製でありながら、その表面に設けられる凹凸部4,5から成る凹凸感からあたかも陶器のようなデザインを呈する極めて高品位な(芸術性の高い)高品位で且つ同じものが二つとないという付加価値を有する真空断熱二重容器が得られることになり、しかも、この真空断熱二重容器の表面に設けられる凹凸部がチタンの再結晶を利用したものであるから、確実に実現できるものであり、前述した高品位で且つ同じものが二つとない真空断熱二重容器を確実且つ効率良く製造することができることになる。 In addition, the present embodiment is made of titanium, and has an extremely high-grade (high artistic) high-quality that exhibits a design like a pottery from the unevenness formed by the uneven portions 4 and 5 provided on the surface thereof. A vacuum insulated double container having the added value that there is no two of the same will be obtained, and the uneven part provided on the surface of this vacuum insulated double container uses recrystallization of titanium. Therefore, it is possible to reliably and efficiently manufacture the above-described high-quality vacuum insulated double container that does not have two identical ones.
また、本実施例は、被処理体3の外筒1及び内筒2を加熱することで結晶粒の大きな独特な風合いのデザイン(チタン結晶模様)が得られ、しかも、このチタン結晶模様の大きさや形状や配置等がランダムとなり、よって、前述した凹凸部4,5だけでなく様々な模様のものを意図せずとも製造することができる。実際の製造工程において再結晶しない部分も生じることになり、これがかえってオリジナルな模様として現れることになり、しかも、本実施例は加熱して常温に戻す工程を複数回繰り返し行なうから、その都度異なった部位に凹凸が形成されることになり、このことによってもオリジナルな模様が形成されることになる。 Further, in this embodiment, a unique texture design (titanium crystal pattern) with large crystal grains can be obtained by heating the outer cylinder 1 and the inner cylinder 2 of the object 3 to be processed. The sheath, shape, arrangement, and the like are random, so that not only the uneven portions 4 and 5 described above but also various patterns can be manufactured without intention. In the actual manufacturing process, a portion that does not recrystallize will also appear, and this will appear as an original pattern. In addition, in this example, the process of heating and returning to room temperature is repeated a plurality of times. Concavities and convexities are formed on the part, and this also forms an original pattern.
また、本実施例は、外筒1だけでなく内筒2もチタン製としたから、オールチタン製とすることでより一層高級感を増すことができる。 Further, in the present embodiment, not only the outer cylinder 1 but also the inner cylinder 2 is made of titanium, so that the quality can be further enhanced by making it all titanium.
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 The present invention is not limited to the present embodiment, and the specific configuration of each component can be designed as appropriate.
S 空間部
T 窒素ガス
1 外筒
2 内筒
3 被処理体
3a開口部
4 凹凸部
5 凹凸部
6 真空加熱炉
10 窒化部
S space part T nitrogen gas 1 outer cylinder 2 inner cylinder 3 to-be-processed object 3a opening part 4 uneven part 5 uneven part 6 vacuum heating furnace
10 Nitriding part
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010244847A JP5297436B2 (en) | 2010-10-30 | 2010-10-30 | Method for manufacturing vacuum insulated double container |
CN201110329547.2A CN102530401B (en) | 2010-10-30 | 2011-10-26 | The manufacture method of vacuum thermal-insulation double-layer container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010244847A JP5297436B2 (en) | 2010-10-30 | 2010-10-30 | Method for manufacturing vacuum insulated double container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012097311A JP2012097311A (en) | 2012-05-24 |
JP5297436B2 true JP5297436B2 (en) | 2013-09-25 |
Family
ID=46338697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010244847A Active JP5297436B2 (en) | 2010-10-30 | 2010-10-30 | Method for manufacturing vacuum insulated double container |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5297436B2 (en) |
CN (1) | CN102530401B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5977669B2 (en) * | 2012-12-28 | 2016-08-24 | 株式会社セブン・セブン | Method for manufacturing vacuum insulated double container |
JP6295279B2 (en) * | 2016-01-05 | 2018-03-14 | 株式会社セブン・セブン | Method for manufacturing vacuum insulated double container |
JP6343314B2 (en) * | 2016-09-07 | 2018-06-13 | 株式会社セブン・セブン | Shochu storage container |
CN114190744A (en) * | 2021-12-23 | 2022-03-18 | 浙江厚岸科技发展有限公司 | Three-layer vacuum cup with titanium metal inner container |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4895863A (en) * | 1972-03-21 | 1973-12-08 | ||
JPH06299318A (en) * | 1993-04-08 | 1994-10-25 | Citizen Watch Co Ltd | Method for finishing titanium ornament |
EP0672489A1 (en) * | 1994-03-18 | 1995-09-20 | Asulab S.A. | Titanium based article with high hardness and high gloss process for preparing and process for hardening and colouring the surface of this article |
JP2943626B2 (en) * | 1994-10-04 | 1999-08-30 | 日本鋼管株式会社 | Surface hardening method for titanium material |
CN1185724A (en) * | 1996-02-09 | 1998-06-24 | 日本酸素株式会社 | Heat accumulating pan and heat insulation cooking container |
JP4664465B2 (en) * | 2000-04-19 | 2011-04-06 | シチズンホールディングス株式会社 | Base material with hard decorative coating |
EP1245409A4 (en) * | 2000-04-19 | 2009-08-19 | Citizen Holdings Co Ltd | Tableware and method for surface treatment thereof, substrate having hard decorative coating film and method for production thereof, and cutlery |
JP4767298B2 (en) * | 2008-09-22 | 2011-09-07 | 株式会社セブン・セブン | Method for manufacturing vacuum insulated double container |
-
2010
- 2010-10-30 JP JP2010244847A patent/JP5297436B2/en active Active
-
2011
- 2011-10-26 CN CN201110329547.2A patent/CN102530401B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102530401B (en) | 2015-11-18 |
JP2012097311A (en) | 2012-05-24 |
CN102530401A (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5297436B2 (en) | Method for manufacturing vacuum insulated double container | |
JP4211185B2 (en) | Glass substrate storage jig for CVD and ALE equipment | |
CN103691953B (en) | The manufacture method of the manufacture method of tungsten titanium target material and tungsten titanium target material combination | |
JPH11221667A (en) | Manufacture of metallic vacuum double container | |
TW200643996A (en) | Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet | |
JP5312431B2 (en) | Method for manufacturing vacuum insulated double container | |
JP2011235318A (en) | Method for surface treatment of die-casting die | |
KR102540252B1 (en) | Method for manufacturing a semiconductor device | |
JPWO2018128160A1 (en) | Alloy member and surface hardening method thereof | |
JP4767298B2 (en) | Method for manufacturing vacuum insulated double container | |
CN104741773A (en) | Welding method for tungsten-titanium-aluminum target material component | |
JP7074715B2 (en) | Heat dissipation device | |
JPH11164784A (en) | Metallic vacuum double container | |
TW200609384A (en) | The manufacturing method of an Al2O3 thin film having array nano-pores | |
TW201217279A (en) | Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate | |
JP5977669B2 (en) | Method for manufacturing vacuum insulated double container | |
CN109468554A (en) | The removing method of cold rolling aluminium flanging part annealing hickie | |
JP6295279B2 (en) | Method for manufacturing vacuum insulated double container | |
JPH1015631A (en) | Manufacture of container made of metal | |
JP7451073B2 (en) | Manufacturing method of composite molded body | |
JP2010046673A (en) | Method for manufacturing integrally-formed hollow article by hot blow-forming, mold and to-be-formed material used in the same method for manufacturing integrally-formed hollow article by hot blow-forming | |
WO2018128160A1 (en) | Alloy member and method for hardening surface thereof | |
JP2009516130A (en) | Surface treatment process for pump ceramic seal ring and ring obtained by the above process | |
TWI827089B (en) | Gas quench for diffusion bonding | |
JP5441537B2 (en) | Diaphragm for electroacoustic transducer by water vapor pressure molding and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5297436 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |