[go: up one dir, main page]

JP7074715B2 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP7074715B2
JP7074715B2 JP2019082348A JP2019082348A JP7074715B2 JP 7074715 B2 JP7074715 B2 JP 7074715B2 JP 2019082348 A JP2019082348 A JP 2019082348A JP 2019082348 A JP2019082348 A JP 2019082348A JP 7074715 B2 JP7074715 B2 JP 7074715B2
Authority
JP
Japan
Prior art keywords
pure titanium
plane
metal plate
heat dissipation
metal mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019082348A
Other languages
Japanese (ja)
Other versions
JP2019135443A (en
Inventor
チアング クエイ-フェング
リン チへ-イェヘ
Original Assignee
エイジア ヴァイタル コンポーネンツ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイジア ヴァイタル コンポーネンツ カンパニー リミテッド filed Critical エイジア ヴァイタル コンポーネンツ カンパニー リミテッド
Publication of JP2019135443A publication Critical patent/JP2019135443A/en
Application granted granted Critical
Publication of JP7074715B2 publication Critical patent/JP7074715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、放熱装置に関し、特に、純チタン金属で製造された放熱装置に関する。 The present invention relates to a radiator, and more particularly to a radiator made of pure titanium metal.

現行の電子機器は、計算速度が益々速くなるにつれ、その内部の電子素子に高熱を発生させやすく、この電子素子の放熱の問題について、当業者は、ヒートパイプ、熱板、ベイパーチャンバー、放熱器などといった少なくとも1つの放熱手段を直接該電子素子と接触させて両者の熱的な結合を行い、更にファンを追加して該放熱手段と結合させて強制放熱の効果を向上させてきた。 Current electronic devices tend to generate high heat in the electronic elements inside them as the calculation speed becomes faster, and those skilled in the art have dealt with the problem of heat dissipation of these electronic elements, such as heat pipes, heat plates, vapor chambers, and radiators. At least one heat radiating means such as, etc. has been brought into direct contact with the electronic element to thermally couple the two, and a fan has been added to combine the heat radiating means with the heat radiating means to improve the effect of forced heat dissipation.

該放熱手段は、一般的にアルミニウム又は銅或いはステンレス鋼等の素材を選定し、銅とアルミニウム及びステンレス鋼等の素材が放熱効果及び熱伝導率が高い等といった特徴を利用し、特に銅の熱伝導率が高いという利点を有することにより、銅が最もよく熱伝導装置の材料として使用されている。しかしながら、銅にも欠点があり、銅(Cu)が高温還元工程を経た後は、結晶粒成長により結晶が粗大化することで降伏強度(Yield Strength)が大幅に下がり、且つ銅の質量は重く、その硬度は低いため比較的に変形しやすく、変形した後は元の状態に戻らなくなる。 The heat radiating means generally selects a material such as aluminum, copper or stainless steel, and utilizes the characteristics that copper and materials such as aluminum and stainless steel have high heat radiating effect and thermal conductivity, and particularly heat of copper. Due to its high conductivity advantage, copper is most often used as a material for thermal conductivity devices. However, copper also has a drawback. After copper (Cu) has undergone a high temperature reduction step, the crystals are coarsened due to the growth of crystal grains, so that the yield strength is significantly reduced and the mass of copper is heavy. Since its hardness is low, it is relatively easy to deform, and after it is deformed, it cannot return to its original state.

また、現行のスマート携帯型デバイス(例えば、スマートフォン、タブレット、タブレットコンピュータ或いはノートパソコン)及びウェアラブルデバイス又は薄型化を必要とされる電子デバイスは、より薄型化された受動型放熱装置で放熱を行う必要があるため、当業者は銅板体を銅箔に置換させることで薄型化の要求を満たすようにしなければならない。しかし、銅箔は薄型化の要求は満たすが、その構造が更に軟らかくなり、十分な構造支持強度に欠けるため、多くの特殊な利用分野にはあまり適さず、支持力を持っていないため、外力を受けると容易に変形すると共に内部の熱伝導構造も破壊されてしまう。 In addition, current smart portable devices (for example, smartphones, tablets, tablet computers or laptop computers) and wearable devices or electronic devices that require thinning need to dissipate heat with a thinner passive heat dissipation device. Therefore, those skilled in the art must meet the demand for thinning by replacing the copper plate with a copper foil. However, although copper foil meets the demand for thinning, its structure becomes softer and lacks sufficient structural support strength, so it is not very suitable for many special applications and does not have support capacity, so external force. When it receives it, it is easily deformed and the internal heat conduction structure is also destroyed.

これ以外にも、先に述べたアルミニウム又は銅或いはステンレス鋼等の素材を用いた放熱手段は、さまざまの特殊な環境若しくは過酷な気候条件下(例えば腐食、高湿、高塩分、極寒、高温、真空又は宇宙空間)において使用できないという問題がある。また当業者は、銅の代替材料としてチタン合金を使用している。チタン合金は高い硬度、耐腐食性、耐高温、耐極寒及び軽質量等といった有用な特性を持っているが、その加工が極めて困難であり、切削加工又は一部の従来にない加工方式を用いる場合を除き、チタン合金に対して塑性変形を行うことは非常に難しいため、チタン合金を銅の代替材料として使用することは多くの場合まだ不可能である。 In addition to this, the above-mentioned heat dissipation means using materials such as aluminum or copper or stainless steel can be used in various special environments or harsh climatic conditions (for example, corrosion, high humidity, high salt content, extremely cold, high temperature, etc.). There is a problem that it cannot be used in vacuum or outer space. Those skilled in the art also use titanium alloys as an alternative to copper. Titanium alloys have useful properties such as high hardness, corrosion resistance, high temperature resistance, extreme cold resistance and light mass, but their processing is extremely difficult, and cutting or some unconventional processing methods are used. Except for cases, it is very difficult to plastically deform titanium alloys, so it is often still impossible to use titanium alloys as an alternative to copper.

そこで、上記従来技術の欠点を解決するため、本発明の主な目的は、商業用純チタンを銅に代替して放熱装置の材料とすると共に、優れた放熱効果を奏する放熱装置を提供することである。 Therefore, in order to solve the above-mentioned drawbacks of the prior art, a main object of the present invention is to replace commercial pure titanium with copper as a material for a heat dissipation device and to provide a heat dissipation device having an excellent heat dissipation effect. Is.

上記目的を達成するため、本発明は、
第1平面と第2平面とを備え、前記第1平面に複数の凸部を有する第1純チタン金属板体と、第3平面と第4平面を備え、前記第3平面を金属メッシュで構成した第2純チタン金属体と前記第1純チタン金属板体の前記第1平面と前記第2チタン金属体の第3平面との間に形成された密閉ハウジングと、前記密閉ハウジング内に充填された作動流体とを含み、前記第1純チタン金属板体と前記第2純チタン金属板体は、400℃~700℃の雰囲気炉の中で30分~90分の間熱処理されていることを特徴とする。
In order to achieve the above object, the present invention
A first pure titanium metal plate having a first plane and a second plane and having a plurality of protrusions on the first plane, a third plane and a fourth plane, and the third plane is composed of a metal mesh. The sealed housing formed between the second pure titanium metal body, the first plane of the first pure titanium metal plate, and the third plane of the second titanium metal body, and the sealed housing are filled. The first pure titanium metal plate and the second pure titanium metal plate are heat-treated in an atmosphere furnace at 400 ° C. to 700 ° C. for 30 to 90 minutes, including the working fluid. It is a feature.

本発明で開示する放熱装置によるときは、純チタンに対して塑性加工を行うことができないという従来の欠陥を改善でき、更に極薄で可撓性を有し、チタンの特性である軽量で強度のある放熱装置の構造及びその製造方法を提供できる。即ち、前記第1、2純チタン金属板体に対して熱処理を行うことによりプレス加工等の塑性加工が可能となる。プレス加工によって第1純チタン金属板体に形成された前記複数の凸部は作動流体との間の熱伝導面積を増大させ、作動流体を凝縮する効果や補強効果を高めると共に、毛管力を生じさせて作動流体の流動を促進し、また、第2純チタン金属板体に設けた前記金属メッシュも作動流体との間の熱伝導面積を増大させるため、第2純チタン金属板体による吸熱効果を向上させることができる。本発明のその他の効果については、以下において個別に説明する。 When the heat dissipation device disclosed in the present invention is used, it is possible to improve the conventional defect that plastic working cannot be performed on pure titanium, and it is ultra-thin and flexible, and is lightweight and strong, which is a characteristic of titanium. It is possible to provide a structure of a heat dissipation device and a method for manufacturing the same. That is, by heat-treating the first and second pure titanium metal plates, plastic working such as press working becomes possible. The plurality of protrusions formed on the first pure titanium metal plate by pressing increase the heat conduction area with the working fluid, enhance the effect of condensing the working fluid and the reinforcing effect, and generate capillary force. The metal mesh provided on the second pure titanium metal plate also increases the heat conduction area between the working fluid and the working fluid, so that the heat absorption effect of the second pure titanium metal plate is increased. Can be improved. Other effects of the present invention will be described individually below.

本発明の実施例1に係る放熱装置の立体分解図である。It is a three-dimensional exploded view of the heat dissipation device which concerns on Example 1 of this invention. 本発明の実施例1に係る放熱装置の組立断面図である。It is an assembly sectional view of the heat dissipation device which concerns on Example 1 of this invention. 本発明の実施例2に係る放熱装置の組立断面図である。It is an assembly sectional view of the heat dissipation device which concerns on Example 2 of this invention. 本発明の実施例3に係る放熱装置の組立断面図である。It is an assembly sectional view of the heat dissipation device which concerns on Example 3 of this invention. 本発明の実施例4に係る放熱装置の組立断面図である。It is an assembly sectional view of the heat dissipation device which concerns on Example 4 of this invention. 本発明に係る放熱装置の金属メッシュの電子顕微鏡写真である。It is an electron micrograph of the metal mesh of the heat dissipation device which concerns on this invention. 本発明に係る放熱装置の第1、2、3コーティング層の電子顕微鏡写真である。It is an electron micrograph of the first, second, and third coating layers of the heat dissipation device which concerns on this invention. 本発明に係る放熱装置の第1、2、3コーティング層の電子顕微鏡写真である。It is an electron micrograph of the first, second, and third coating layers of the heat dissipation device which concerns on this invention. 本発明に係る放熱装置の第1、2、3コーティング層の電子顕微鏡写真である。It is an electron micrograph of the first, second, and third coating layers of the heat dissipation device which concerns on this invention. 本発明の実施例1に係る放熱装置の製造方法のステップフローチャートである。It is a step flowchart of the manufacturing method of the heat radiating apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る放熱装置の製造方法のステップフローチャートである。It is a step flowchart of the manufacturing method of the heat dissipation device which concerns on Example 2 of this invention.

本発明の上記目的及びその構造と機能上の特徴を、添付図面の好ましい実施例をもって説明する。 The above object of the present invention and its structural and functional features will be described with reference to preferred embodiments of the accompanying drawings.

図1、図2を参照すると、これらは本発明の実施例1に係る放熱装置の立体分解図及び組立断面図である。図に示すように、本発明の放熱装置1は、第1純チタン金属板体11と第2純チタン金属板体12とを含む。
前記第1純チタン金属板体11は、第1平面111と第2平面112を備え、前記第1平面111は複数の凸部113(図2)を有し、それらの凸部113はプレス加工により形成され、前記第2平面112が凝縮側(放熱側)となる。
Referring to FIGS. 1 and 2, these are a three-dimensional exploded view and an assembly sectional view of the heat dissipation device according to the first embodiment of the present invention. As shown in the figure, the heat dissipation device 1 of the present invention includes a first pure titanium metal plate 11 and a second pure titanium metal plate 12.
The first pure titanium metal plate 11 includes a first plane 111 and a second plane 112, the first plane 111 has a plurality of convex portions 113 (FIG. 2), and the convex portions 113 are stamped. The second plane 112 is the condensation side (heat dissipation side).

前記第2純チタン金属板体12は、第3平面121と第4平面122とを備え、前記第3平面121には金属メッシュ123(図2)を設け、これらの第1、2純チタン金属板体11、12が互いに対向して覆い被せられることによって密閉ハウジング13を画成し、該密閉ハウジング13に作動流体(図示せず)が充てんされ、前記第4平面122が吸熱側となる。 The second pure titanium metal plate 12 includes a third plane 121 and a fourth plane 122, and a metal mesh 123 (FIG. 2) is provided on the third plane 121, and these first and second pure titanium metals are provided. The sealed housing 13 is defined by covering the plates 11 and 12 so as to face each other, the closed housing 13 is filled with a working fluid (not shown), and the fourth plane 122 is on the heat absorbing side.

図3を参照すると、同図は本発明の実施例2に係る放熱装置の組立断面図である。図に示すように、本実施例は前記実施例1の一部構造とその技術的特徴が同じであるため、ここではその説明は省略する。本実施例と前記実施例1の相違点は、本実施例においては、その凸部113の表面に第1コーティング層114を有し、また前記金属メッシュ123(図5参照)と前記第3平面121の間に第2コーティング層124を有し、前記金属メッシュ123表面に第3コーティング層125を有し、これらの第1、2、3コーティング層114、124、125が親水性コーティング層又は疎水性コーティング層のうちのいずれかの特性を持ち、前記親水性コーティング層は二酸化チタン或いは二酸化ケイ素のうちのいずれか(図6、図7、図8、図9参照)とすることである。 Referring to FIG. 3, the figure is an assembled cross-sectional view of the heat dissipation device according to the second embodiment of the present invention. As shown in the figure, since this embodiment has the same technical features as the partial structure of the first embodiment, the description thereof will be omitted here. The difference between the present embodiment and the first embodiment is that, in the present embodiment, the first coating layer 114 is provided on the surface of the convex portion 113, and the metal mesh 123 (see FIG. 5) and the third plane surface are provided. A second coating layer 124 is provided between 121 and a third coating layer 125 is provided on the surface of the metal mesh 123, and these first, second and third coating layers 114, 124 and 125 are hydrophilic coating layers or hydrophobic. It has the property of any of the sex coating layers, and the hydrophilic coating layer is either titanium dioxide or silicon dioxide (see FIGS. 6, 7, 8 and 9).

前記第1、2、3コーティング層114、124、125は、選択的に親水性又は疎水性の特性を持たせるように選定し、主に区域及び用途に分け、例えば第1平面111の第1コーティング層114については親水性コーティング層或いは疎水性コーティング層のうちのいずれかを選定できる。前記第3平面121上の第2コーティング層124については親水性コーティング層を選択し、その主な目的は、吸水力及び第3平面121と金属メッシュ123間の結合力を増すことである。前記金属メッシュ123上の第3コーティング層125については親水性コーティング層を選定し、それは主に含水量を増加すると共に、液体(作動流体)の還流の効果を増すことである。 The first, second and third coating layers 114, 124 and 125 are selected to selectively have hydrophilic or hydrophobic properties and are mainly divided into areas and uses, for example, the first of the first plane 111. For the coating layer 114, either a hydrophilic coating layer or a hydrophobic coating layer can be selected. A hydrophilic coating layer is selected for the second coating layer 124 on the third plane 121, the main purpose of which is to increase the water absorption capacity and the binding force between the third plane 121 and the metal mesh 123. For the third coating layer 125 on the metal mesh 123, a hydrophilic coating layer is selected, which is primarily to increase the water content and increase the effect of liquid (working fluid) reflux.

前記金属メッシュ123は、純チタン素材又はステンレス鋼或いは銅若しくはアルミニウム又はその他の金属材質のいずれかとし、本実施例が純チタン素材で説明するがこれに限られるものではなく、当然純チタンとステンレスの複合編み物とすることができる。 The metal mesh 123 is made of either pure titanium material, stainless steel, copper, aluminum, or other metal material, and the present embodiment describes the pure titanium material, but the present invention is not limited to this, and of course, pure titanium and stainless steel. Can be a composite knitting.

前記第1、2純チタン金属板体11、12としては、商業用純チタンを選択し、塑性加工前に事前熱処理を経ることにより塑性加工を行うことができる。 As the first and second pure titanium metal plates 11 and 12, commercial pure titanium can be selected and plastic working can be performed by subjecting it to preheat treatment before plastic working.

図4を参照すると、同図は本発明の実施例3に係る放熱装置の組立断面図である。図に示すように、本実施例は前記実施例1の一部構造とその技術的特徴が同じであるため、ここではその説明を省略する。本実施例と前記実施例1の相違点は、本実施例においては、前記第1純チタン金属板体11の第2平面112上に、第1平面111にある凸部113と対応する部位に凹部115が設けられ、これらをエンボス加工方式で形成した構造とする点である。このように第1純チタン金属板体11の第2平面112上に複数の凹部115を設けることによって、第2平面112の凝縮(放熱)効果を高めることができる。 Referring to FIG. 4, the figure is an assembled cross-sectional view of the heat dissipation device according to the third embodiment of the present invention. As shown in the figure, since this embodiment has the same technical features as the partial structure of the first embodiment, the description thereof will be omitted here. The difference between the present embodiment and the first embodiment is that, in the present embodiment, the portion corresponding to the convex portion 113 on the first plane 111 is located on the second plane 112 of the first pure titanium metal plate 11. The point is that the recesses 115 are provided, and these are formed by an embossing method. By providing the plurality of recesses 115 on the second flat surface 112 of the first pure titanium metal plate 11 in this way, the condensation (heat dissipation) effect of the second flat surface 112 can be enhanced.

図5を参照すると、本発明の実施例4に係る放熱装置の組立断面図である。図に示すように、本実施例は前記実施例1の一部構造技術的特徴と同じであるため、ここではその説明を省略する。本実施例4と前記実施例1の相違点は、前記金属メッシュ123が第1金属メッシュ123aと第2金属メッシュ123bとを備え、前記第1金属メッシュ123aが純チタン素材で、前記第2金属メッシュ123bがステンレス鋼素材であり、また、前記した第1、2金属メッシュ123a、123bが互いに積層して設けられ、該第1、2金属メッシュ123a、123bが各々該第1、2純チタン金属板体11、12と結合している。 Referring to FIG. 5, it is an assembly sectional view of the heat dissipation device according to the fourth embodiment of the present invention. As shown in the figure, since this embodiment has the same partial structural technical features as those of the first embodiment, the description thereof will be omitted here. The difference between the fourth embodiment and the first embodiment is that the metal mesh 123 includes a first metal mesh 123a and a second metal mesh 123b, the first metal mesh 123a is a pure titanium material, and the second metal. The mesh 123b is made of stainless steel, and the first and second metal meshes 123a and 123b are provided by laminating each other, and the first and second metal meshes 123a and 123b are the first and second pure titanium metals, respectively. It is bonded to the plates 11 and 12.

図10を参照すると、同図10は本発明に係る放熱装置の製造方法のステップフローチャートである。以下に図1、図2、図3、図4、図5、図6、図7、図8、図9を一緒に参照して説明する。図に示すように、本発明に係る放熱装置の製造方法は、次のステップS1~S5を含む。 Referring to FIG. 10, FIG. 10 is a step flowchart of a method for manufacturing a heat radiating device according to the present invention. Hereinafter, FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. 9 will be referred to and described together. As shown in the figure, the method for manufacturing a heat radiating device according to the present invention includes the following steps S1 to S5.

ステップS1:第1純チタン金属板体及び第2純チタン金属板体を用意して、以下の事前洗浄作業を行う。
製造加工しようとする第1、2純チタン金属板体11、12に対し事前洗浄作業を行う。洗浄作業は、まずアセトンで拭き取ってから、超音波洗浄機により脱イオン水を用いて洗い流し、最後に窒素ガスで第1、2純チタン金属板体11、12の表面を乾燥させる。前記第1、2純チタン金属板体11、12は一般的なチタン合金ではなく、商業用純チタンを選択して用いる。純チタンを選定する利点は、強度(引張強さ/密度)が比較的高いことであり、純チタンの引張強さは銅より優れ、また純チタン(Ti)の密度(4.54g/cm3)は、銅(Cu)の密度(8.96g/cm3)の約2分の1であるため、同じ体積において、高比強度の純チタン(Ti)が、より一層の強度と軽量化を兼ね備えることができる。
Step S1: Prepare the first pure titanium metal plate and the second pure titanium metal plate, and perform the following pre-cleaning work.
Pre-cleaning work is performed on the first and second pure titanium metal plates 11 and 12 to be manufactured and processed. In the cleaning operation, first wipe with acetone, then rinse with deionized water using an ultrasonic cleaner, and finally, the surfaces of the first and second pure titanium metal plates 11 and 12 are dried with nitrogen gas. For the first and second pure titanium metal plates 11 and 12, commercial pure titanium is selected and used instead of a general titanium alloy. The advantage of choosing pure titanium is that it has a relatively high strength (tensile strength / density), the tensile strength of pure titanium is superior to that of copper, and the density of pure titanium (Ti) (4.54 g / cm 3 ). ) Is about half the density of copper (Cu) (8.96 g / cm 3 ), so pure titanium (Ti) with high specific strength in the same volume provides further strength and weight reduction. Can be combined.

純チタンは、常温下でその表面に厚さ数百Å(1Å=10-10m)の安定性が高く、付着力も強い一層の酸化膜(TiO2、Ti23、TiO)を形成し、且つ損傷後も直ちに再生できるという特性を有し、このことは、純チタンが強い安定化頃向を有する金属であることを示している。よって、純チタンの耐食能力は、銅(Cu)よりはるかに優れ、ベイパーチャンバーの各種環境における運用に有利にある。更にまた、純チタンは、湿潤環境、海水、塩素含有溶液、次亜塩素酸、硝酸、クロム酸及び一般的な酸化性酸の環境下においても優れた耐腐食特性を持っている。 Pure titanium forms a layer of oxide film (TIO 2 , Ti 2 O 3 , TIO) on its surface at room temperature, which is highly stable with a thickness of several hundred Å (1 Å = 10 -10 m) and has strong adhesion. However, it has the property of being able to be regenerated immediately after damage, which indicates that pure titanium is a metal having a strong stabilizing tendency. Therefore, the corrosion resistance of pure titanium is far superior to that of copper (Cu), which is advantageous for the operation of the vapor chamber in various environments. Furthermore, pure titanium has excellent corrosion resistance even in moist environments, seawater, chlorine-containing solutions, hypochlorite, nitric acid, chromic acid and general oxidizing acids.

ステップS2:前記第1、2純チタン金属板体に対して以下の熱処理を行う。
前記第1、2純チタン金属板体11、12を雰囲気炉(図示せず)に入れ、該雰囲気炉内にアルゴンガスを吹き込むと共に400℃~700℃まで加熱し、その加熱時間を30~90分間とする。その主な目的は第1、2純チタン金属板体11、12に塑性加工ができるようにすることである。
Step S2: The following heat treatment is performed on the first and second pure titanium metal plates.
The first and second pure titanium metal plates 11 and 12 are placed in an atmosphere furnace (not shown), argon gas is blown into the atmosphere furnace, and the mixture is heated to 400 ° C. to 700 ° C., and the heating time is 30 to 90. Minutes. Its main purpose is to enable plastic working on the first and second pure titanium metal plates 11 and 12.

ステップS3:前記第1純チタン金属板体にプレス加工を行って複数の凸部を形成する。
機械加工としてのプレス加工により、前記第1純チタン金属板体11の一側に複数の凸部113を形成させ、それらの凸部113が作動流体を凝縮する効果及び支持強度の高い構造体とする効果等を有するようにする。
Step S3: The first pure titanium metal plate is pressed to form a plurality of convex portions.
By press working as machining, a plurality of convex portions 113 are formed on one side of the first pure titanium metal plate 11, and the convex portions 113 have an effect of condensing the working fluid and a structure having high support strength. To have the effect of

ステップS4:前記第2純チタン金属板体の一側に金属メッシュを結合する。
拡散接合方式によって、該第2純チタン金属板体12の第3平面121に金属メッシュ123を結合するステップであり、その場合、前記第2純チタン金属板体12[純チタンのチタン放熱板(Ti-VC)]と金属メッシュの拡散接合温度は650℃~850℃で、プロセス雰囲気は正圧の高純アルゴンガス(Ar)或いは高真空環境(10-4~10-6torr)としなければならず、プロセス圧力は1kg~5kgで、プロセス時間は30min~90minとする。純チタンは、化学的に非常に活性な金属であり、883℃で相変態(相転移温度/Phase Transformation Temperature)を呈し、即ち、883℃以上ではβ相となってBCC(body-centered cubic;体心立方格子)結晶構造を有し、883℃以下ではα相となってHCP(六方最密充填構造)結晶構造を有する。
Step S4: A metal mesh is bonded to one side of the second pure titanium metal plate body.
It is a step of connecting the metal mesh 123 to the third plane 121 of the second pure titanium metal plate 12 by the diffusion bonding method, and in that case, the second pure titanium metal plate 12 [pure titanium titanium heat dissipation plate ( Ti-VC)] and the metal mesh have a diffusion bonding temperature of 650 ° C to 850 ° C, and the process atmosphere must be positive pressure high pure argon gas (Ar) or high vacuum environment (10 -4 to 10 -6 torr). The process pressure is 1 kg to 5 kg, and the process time is 30 min to 90 min. Pure titanium is a chemically very active metal and exhibits a phase transformation temperature at 883 ° C, that is, becomes a β phase at 883 ° C or higher and becomes a BCC (body-centered cubic;). It has a body-centered cubic lattice) crystal structure, and at 883 ° C or lower, it becomes an α phase and has an HCP (hexagonal closest packed structure) crystal structure.

純チタンは、高温環境において、多くの元素及び化合物と反応を起こし且つ材料の相変化を発生することができ、例えば空気中のチタンは、250℃で水素吸蔵を開始し、500℃で酸素吸蔵を開始し、600℃で窒素吸蔵を開始する。温度が高くなるにつれ純チタンのガスを吸蔵する能力が更に強くなり、水素(H)、酸素(O)、炭素(C)、窒素(N)が純チタンと反応を起こすことで、侵入型固溶体を材料に形成させ、機械的性質が変化し、更に欠陥が生じ、TiO2、TiC、TiN及びTiH2等の関連化合物を形成し、材料性質に対して不良な影響(硬脆化)を及ぼす。そのためプロセス温度、プロセス雰囲気(環境制御)は、純チタン放熱板の製造関連の熱工程にとって極めて重要なことである。 Pure titanium can react with many elements and compounds and cause phase changes in materials in high temperature environments, for example titanium in the air begins to occlude hydrogen at 250 ° C and store oxygen at 500 ° C. Is started, and nitrogen storage is started at 600 ° C. As the temperature rises, the ability to occlude pure titanium gas becomes stronger, and hydrogen (H), oxygen (O), carbon (C), and nitrogen (N) react with pure titanium to cause an intrusive solid solution. Is formed on the material, the mechanical properties change, further defects occur, and related compounds such as TiO 2 , TiC, TiN and TiH 2 are formed, which has a bad influence (hard brittleness) on the material properties. .. Therefore, the process temperature and process atmosphere (environmental control) are extremely important for the thermal process related to the manufacture of pure titanium heat sinks.

従来の銅放熱板(Cu-VC)においては、金属メッシュの拡散接合温度は750℃~950℃で、プロセス雰囲気が15%H2+85%N2、プロセス圧力が1kg~5kg、プロセス時間が40min~60minで行われていた。その場合、高温プロセスにおいて純チタンのような相変態挙動は起こさないが、結晶粒が加熱により成長、粗大化され、機械的性質の大幅な低下が起こってしまう(軟らかくなる)。 In the conventional copper heat sink (Cu-VC), the diffusion bonding temperature of the metal mesh is 750 ° C to 950 ° C, the process atmosphere is 15% H 2 + 85% N 2 , the process pressure is 1 kg to 5 kg, and the process time is 40 min. It was done in ~ 60 minutes. In that case, the phase transformation behavior unlike that of pure titanium does not occur in the high temperature process, but the crystal grains are grown and coarsened by heating, and the mechanical properties are significantly deteriorated (softened).

ステップS5:前記第1純チタン金属板11の凸部113を有する一側と前記第2純チタン金属板体12の金属メッシュ123を有する一側を互いに対向させて覆い被せ、これら第1、2純チタン金属板体のエッジ部封止を行って前記密閉ハウジング13を形成すると共に、この密閉ハウジング13への注水(作動流体の充てん)、排気、口部116、126に対する口部封止作業を行う。 Step S5: One side of the first pure titanium metal plate 11 having the convex portion 113 and one side of the second pure titanium metal plate 12 having the metal mesh 123 are opposed to each other and covered with the first and second sides. The edge portion of the pure titanium metal plate is sealed to form the sealed housing 13, and water injection (filling of working fluid), exhaust, and mouth sealing work for the mouths 116 and 126 are performed on the sealed housing 13. conduct.

即ち、先に述べたプロセスステップ(S1~S4)を行った前記第1、2純チタン金属板体11、12に対して、エッジ部封止等のステップを行う。即ち、前記第1、2純チタン金属板体11、12の第1、3平面111、121(凸部113及び金属メッシュ123を有する)を互いに対向させて覆い被せた後、該第1、2純チタン金属板体11、12のエッジ部にレーザー溶接方法によりエッジ部封止の処理を施してから、順次に注水(作動流体の充てん)及び排気を行い、最後に口部116、126に対する口部封止等のステップを行う。 That is, steps such as edge sealing are performed on the first and second pure titanium metal plates 11 and 12 that have undergone the process steps (S1 to S4) described above. That is, after the first and third planes 111 and 121 (having the convex portion 113 and the metal mesh 123) of the first and second pure titanium metal plates 11 and 12 are opposed to each other and covered with each other, the first and second planes are covered. The edges of the pure titanium metal plates 11 and 12 are sealed by a laser welding method, and then water is injected (filled with working fluid) and exhausted in sequence, and finally the mouths 116 and 126 are treated. Perform steps such as partial sealing.

前記エッジ部封止工程では、レーザー溶接技術を使用する。レーザー励起源はディスク型(Disk)固体Yb:YAG(イットリウム・アルミニウム・ガーネット)とし、レーザー波長を1030nm、レーザー出力を100~500W(材料の厚さに応じて決定)とし、その動作環境としては、保護ガスとする必要性から、ヘリウムガス或いはアルゴンガスを吹き込み、それらの漏洩率を1.0×10-8mbar・L/secより小さくして行うか、又は真空環境10-2torr内で行うかを選択して実施する。 Laser welding technology is used in the edge sealing step. The laser excitation source is a disk type (Disk) solid Yb: YAG (yttrium aluminum garnet), the laser wavelength is 1030 nm, the laser output is 100 to 500 W (determined according to the thickness of the material), and the operating environment is Since it is necessary to use a protective gas, helium gas or argon gas is blown in, and the leakage rate thereof is made smaller than 1.0 × 10 -8 mbar · L / sec, or in a vacuum environment 10-2 torr. Select whether to do it or not.

レーザー溶接の利点は、エネルギーを集中でき(小さなエリアで溶接を行うことができ、付近材料に影響を及ぼさない)、作業時間も短かく(素子全体の機械的性質を変えにくい)、超清浄化溶接(何らの溶接材も必要としない)が可能で、迅速な自動化生産が比較的容易に実現できることである。 The advantages of laser welding are that energy can be concentrated (welding can be performed in a small area and does not affect nearby materials), working time is short (it is difficult to change the mechanical properties of the entire element), and ultra-cleaning is performed. Welding (no welding material required) is possible, and rapid automated production can be achieved relatively easily.

図11を参照すると、同図は本発明の実施例2に係る放熱装置の製造方法のステップフローチャートである。以下に図1、図2、図3、図4、図5、図6、図7、図8、図9を一緒に参照しながら説明する。図に示すように、本発明の実施例2に係る放熱装置の製造方法は、まず次のステップS1~S5を含む。即ち、
第1純チタン金属板体及び第2純チタン金属板体を用意し、これらの事前洗浄作業を行うステップS1と、
前記第1、2純チタン金属板体に対し熱処理を行うステップS2と、
前記第1純チタン金属板体にプレス加工を行って複数の凸部を形成するステップS3と、
該第2純チタン金属板体の一側に金属メッシュを結合するステップS4と、
前記第1純チタン金属板体の凸部を有する一側と該第2純チタン金属板体の金属メッシュを有する一側を互いに対向させて覆い被せ、これら第1、2純チタン金属板体のエッジ部封止を行って密閉ハウジングを形成すると共に、この密閉ハウジングへの作動流体の充てん、排気、口部封止作業を行うステップS5と、を含む。
Referring to FIG. 11, the figure is a step flowchart of a method for manufacturing a heat radiating device according to a second embodiment of the present invention. Hereinafter, a description will be given with reference to FIGS. 1, 2, 3, 4, 4, 5, 6, 6, 7, 8, and 9. As shown in the figure, the method for manufacturing a heat dissipation device according to a second embodiment of the present invention first includes the following steps S1 to S5. That is,
Step S1 in which the first pure titanium metal plate and the second pure titanium metal plate are prepared and their pre-cleaning work is performed, and
Step S2 for heat-treating the first and second pure titanium metal plates,
Step S3, in which the first pure titanium metal plate is pressed to form a plurality of convex portions,
Step S4, in which a metal mesh is bonded to one side of the second pure titanium metal plate,
One side of the first pure titanium metal plate having a convex portion and one side of the second pure titanium metal plate having a metal mesh are opposed to each other and covered with each other, and these first and second pure titanium metal plates are covered. This includes step S5 in which the closed portion is sealed to form a closed housing, and the closed housing is filled with working fluid, exhausted, and the mouth portion is sealed.

本実施例は、前記実施例1の一部ステップと同じであるため、ここではその説明を省略する。本実施例と前記実施例1の相違点を説明すれば、本実施例では前記第2純チタン金属板体の一側に金属メッシュを結合するステップS4の後に、更に前記第1、2純チタン金属板体に対して表面改質処理を行い、該第1、2純チタン金属板体の表面及び該金属メッシュの表面に少なくとも1つのコーティング層を形成するステップS6を有することである。 Since this embodiment is the same as a partial step of the first embodiment, the description thereof will be omitted here. Explaining the difference between the present embodiment and the first embodiment, in the present embodiment, after the step S4 in which the metal mesh is bonded to one side of the second pure titanium metal plate, the first and second pure titanium are further described. The step S6 is to perform a surface modification treatment on the metal plate to form at least one coating layer on the surface of the first and second pure titanium metal plates and the surface of the metal mesh.

前記第1、2純チタン金属板体に対する前記表面改質処理は、下記の4つの方式のいずれかを選択して行うことができる。
第1方式:該第1、2純チタン金属板体11、12を雰囲気炉(図示せず)に入れ、該雰囲気炉内を真空手段で吸引すると共に400℃~700℃まで加熱し、その加熱時間を30~90分間とし、プロセス雰囲気を正圧の純アルゴンガス(Ar)とし、該第1、2純チタン金属板体11、12の表面に過熱還元を発生させ、このプロセスはいずれもプロセス雰囲気内の微量酸素を制御して純チタン材表面に微細なチタン鋭錐石(Anatase)の二酸化チタンナノロッド(TiO2 nano-rods)を生成させ、その構造は良好な親水性を有し、且つ時効性も長い(1~2週間)。ただし時間の経過及び環境の影響(湿気)に伴い、親水性の効果が低下する。その場合、製品にUV光を照射し、その照射時間を約20min~60minとする(UV光の強弱に応じて決定)と、光触媒作用により親水性が回復する。
第2方式:該第1、2純チタン金属板体11、12を雰囲気炉に入れ、該雰囲気炉内を真空手段で吸引すると共に400℃~700℃まで加熱し、その加熱時間を30~90分間とし、該第1、2純チタン金属板体11、12の表面に過熱還元を発生させ、このプロセスはいずれもプロセス雰囲気内の微量酸素を制御して純チタン材表面に微細なチタン鋭錐石(Anatase)の二酸化チタンナノロッド(TiO2 nano-rods)を生成させ、その構造は良好な親水性を有し、且つ時効性も長い(1~2週間)。ただし時間の経過及び環境の影響(湿気)に伴い、親水性の効果が低下する。その場合、製品にUV光を照射し、その照射時間を約20min~60minとする(UV光の強弱に応じて決定)と、光触媒作用により親水性が回復する。
第3方式:ゾル-ゲルコーティング(Sol-gel coating)処理を行う。主に第2純チタン金属板体12表面の金属メッシュ123について処理を行う。まず一層の結晶型二酸化ケイ素(SiO2)で被覆して基材層とし、80℃オーブンで乾燥した後、次にその上に一層のチタン鋭錐石(Anatase)の二酸化チタン(TiO2)をコーティングし、そして熱処理コーティング層の緻密化・焼結処理(Fully dense sintering treatment)を行うことによりSiO2/TiO2複合膜を形成する。前記緻密化・焼結処理の温度を400℃~700℃とし、焼結時間を30~90minとし、プロセス雰囲気を正圧の純アルゴンガス(Ar)とする。SiO2/TiO2複合膜の親水性は良好で、且つ時効性も長い(1~2週間)。ただし時間の経過及び環境の影響(湿気)に伴い、親水性の効果が低下する。その場合、製品にUV光を照射し、その照射時間を約20min~60minとする(UV光の強弱に応じて決定)と、SiO2/TiO2複合膜の表層の光触媒作用により親水性が回復する。
第4方式:ゾル-ゲルコーティング(Sol-gel coating)処理を行う。主に第2純チタン金属板体12表面の金属メッシュ123について処理を行う。まず一層の結晶型二酸化ケイ素(SiO2)で被覆して基材層とし、80℃オーブンで乾燥した後、次にその上に一層のチタン鋭錐石(Anatase)の二酸化チタン(TiO2)をコーティングし、そして熱処理コーティング層の緻密化・焼結処理(Fully dense sintering treatment)を行うことによりSiO2/TiO2複合膜を形成する。前記緻密化・焼結処理の温度を400℃~700℃とし、焼結時間を30~90minとし、プロセス環境を真空吸引とする。SiO2/TiO2複合膜の親水性は良好で、且つ時効性も長い(1~2週間)。ただし時間の経過及び環境の影響(湿気)に伴い、親水性の効果が低下する。その場合、製品にUV光を照射し、その照射時間を約20min~60minとする(UV光の強弱に応じて決定)と、SiO2/TiO2複合膜の表層の光触媒作用により親水性が回復する。
The surface modification treatment for the first and second pure titanium metal plates can be performed by selecting one of the following four methods.
First method: The first and second pure titanium metal plates 11 and 12 are placed in an atmosphere furnace (not shown), and the inside of the atmosphere furnace is sucked by vacuum means and heated to 400 ° C. to 700 ° C., and the heating thereof is performed. The time was set to 30 to 90 minutes, the process atmosphere was set to positive pressure pure argon gas (Ar), and superheat reduction was generated on the surfaces of the first and second pure titanium metal plates 11 and 12, both of which were processes. By controlling the trace oxygen in the atmosphere, fine titanium dioxide nano - rods of titanium sharp cone (Anatase) are generated on the surface of pure titanium material, and its structure has good hydrophilicity and has good hydrophilicity. It has a long aging effect (1 to 2 weeks). However, with the passage of time and the influence of the environment (humidity), the hydrophilic effect decreases. In that case, when the product is irradiated with UV light and the irradiation time is set to about 20 min to 60 min (determined according to the intensity of the UV light), the hydrophilicity is restored by the photocatalytic action.
Second method: The first and second pure titanium metal plates 11 and 12 are placed in an atmosphere furnace, and the inside of the atmosphere furnace is sucked by vacuum means and heated to 400 ° C. to 700 ° C., and the heating time is 30 to 90. Overheat reduction is generated on the surfaces of the first and second pure titanium metal plates 11 and 12 for a minute, and in each of these processes, trace oxygen in the process atmosphere is controlled and fine titanium anatase is formed on the surface of the pure titanium material. It produces anatase titanium dioxide nano - rods, the structure of which has good hydrophilicity and long aging (1-2 weeks). However, with the passage of time and the influence of the environment (humidity), the hydrophilic effect decreases. In that case, when the product is irradiated with UV light and the irradiation time is set to about 20 min to 60 min (determined according to the intensity of the UV light), the hydrophilicity is restored by the photocatalytic action.
Third method: Sol-gel coating treatment is performed. The metal mesh 123 on the surface of the second pure titanium metal plate 12 is mainly processed. First, a layer of crystalline silicon dioxide (SiO 2 ) is coated to form a base layer, which is dried in an oven at 80 ° C., and then a layer of titanium anatase titanium dioxide (TIO 2 ) is placed on the base layer. A SiO 2 / TiO 2 composite film is formed by coating and performing a fully dense sintering treatment of the heat-treated coating layer. The temperature of the densification / sintering treatment is 400 ° C. to 700 ° C., the sintering time is 30 to 90 min, and the process atmosphere is a positive pressure pure argon gas (Ar). The hydrophilicity of the SiO 2 / TiO 2 composite film is good, and the aging is long (1 to 2 weeks). However, with the passage of time and the influence of the environment (humidity), the hydrophilic effect decreases. In that case, when the product is irradiated with UV light and the irradiation time is set to about 20 min to 60 min (determined according to the intensity of UV light), the hydrophilicity is restored by the photocatalytic action of the surface layer of the SiO 2 / TiO 2 composite film. do.
Fourth method: Sol-gel coating treatment is performed. The metal mesh 123 on the surface of the second pure titanium metal plate 12 is mainly processed. First, a layer of crystalline silicon dioxide (SiO 2 ) is coated to form a base layer, which is dried in an oven at 80 ° C., and then a layer of titanium anatase titanium dioxide (TIO 2 ) is placed on the base layer. A SiO 2 / TiO 2 composite film is formed by coating and performing a fully dense sintering treatment of the heat-treated coating layer. The temperature of the densification / sintering treatment is 400 ° C. to 700 ° C., the sintering time is 30 to 90 min, and the process environment is vacuum suction. The hydrophilicity of the SiO 2 / TiO 2 composite film is good, and the aging is long (1 to 2 weeks). However, with the passage of time and the influence of the environment (humidity), the hydrophilic effect decreases. In that case, when the product is irradiated with UV light and the irradiation time is set to about 20 min to 60 min (determined according to the intensity of UV light), the hydrophilicity is restored by the photocatalytic action of the surface layer of the SiO 2 / TiO 2 composite film. do.

本発明は、銅に代替して主に商業用純チタンを基材材料として製造されたベイパーチャンバー等の放熱装置を提供できる。また本発明によれば、銅の代替材料として純チタンを使用することが実現でき、純チタンの利点によって銅材料の欠点を改善できる。本発明は又、純チタンを銅、アルミニウム、ステンレス鋼等の代替材料として使用可能とする以外に、更に、純チタン自体の質量が軽く、強度が高く、耐食性が高いという特性を利用して、携帯型デバイス又はモバイルデバイスの載置台座或いは載置中枠を製造でき、且つ同時に、載置構造と放熱構造とを直接一体的に統合して製造し、現行のモバイルデバイス又は携帯型デバイスの薄型化の構造に適合させ、載置機能を持つだけでなく放熱の効果も持たせることができる。 INDUSTRIAL APPLICABILITY The present invention can provide a heat dissipation device such as a vapor chamber manufactured mainly by using pure titanium for commercial use as a base material instead of copper. Further, according to the present invention, it is possible to realize that pure titanium can be used as a substitute material for copper, and the advantages of pure titanium can improve the drawbacks of the copper material. The present invention also makes use of the characteristics that pure titanium itself can be used as an alternative material for copper, aluminum, stainless steel, etc., and that pure titanium itself has a light mass, high strength, and high corrosion resistance. A portable device or a mounting pedestal or a mounting frame for a mobile device can be manufactured, and at the same time, the mounting structure and the heat dissipation structure are directly integrated and manufactured, and the thinness of the current mobile device or portable device is manufactured. It can be adapted to the structure of titanium and not only has a mounting function but also has a heat dissipation effect.

以上に述べた各実施例の金属メッシュは、純チタン素材又はステンレス鋼或いは銅若しくはアルミニウム又はその他の金属素材のいずれかを選択でき、或いは同時に2枚の金属メッシュが各々純チタン素材及びステンレス鋼素材の各々1枚を選択し、また2枚の金属メッシュを互いに重ねて該第1、2純チタン金属板体の間に設けることができる。 For the metal mesh of each example described above, either pure titanium material or stainless steel or copper or aluminum or other metal material can be selected, or at the same time, two metal meshes are pure titanium material and stainless steel material, respectively. One of each of the above can be selected, and two metal meshes can be overlapped with each other and provided between the first and second pure titanium metal plates.

薄型の純チタン材料は、形状記憶合金としての機能を持たせることにより、外力を受けて曲がって変形し、外力を除去した後、再び元の状態に戻ることができるため、直接純チタン材料をスマートウォッチと統合して使用したり、若しくは純チタン材料で直接腕時計ベルトとして製造でき、これにより放熱用及び支持用という用途を持たせ得るだけでなく、同時に又装着用とすることもできる。 By giving the thin pure titanium material a function as a shape memory alloy, it bends and deforms under external force, and after removing the external force, it can return to its original state again. It can be used in combination with a smart watch, or it can be manufactured directly as a wristwatch belt from pure titanium material, which can be used not only for heat dissipation and support, but also for wearing at the same time.

1 放熱装置
11 第1純チタン金属板体
12 第2純チタン金属板体
111 第1平面
112 第2平面
113 凸部
114 第1コーティング層
115 凹部
116 口部
121 第3平面
122 第4平面
123 金属メッシュ
124 第2コーティング層
125 第3コーティング層
126 口部
13 密閉ハウジング
1 Heat dissipation device 11 1st pure titanium metal plate 12 2nd pure titanium metal plate 111 1st plane 112 2nd plane 113 Convex part 114 1st coating layer 115 Concave part 116 Mouth 121 3rd plane 122 4th plane 123 Metal Mesh 124 2nd coating layer 125 3rd coating layer 126 Mouth 13 Sealed housing

Claims (7)

第1平面と第2平面とを備え、前記第1平面複数の凸部を有する第1純チタン金属板体と、
第3平面と第4平面を備え、前記第3平面を金属メッシュで構成した第2純チタン金属板体と、
前記第1純チタン金属板体の前記第1平面と前記第2純チタン金属板体の第3平面との間に形成された密閉ハウジングと、
前記密閉ハウジング内に充填された作動流体とを含み、
前記第1純チタン金属板体と前記第2純チタン金属板体は、400℃~700℃の雰囲気炉の中で30分~90分の間熱処理されていることを特徴とする、放熱装置。
A first pure titanium metal plate body having a first plane and a second plane and having a plurality of protrusions on the first plane,
A second pure titanium metal plate body having a third plane and a fourth plane and having the third plane made of a metal mesh,
A sealed housing formed between the first plane of the first pure titanium metal plate and the third plane of the second pure titanium metal plate.
Containing the working fluid filled in the sealed housing
The first pure titanium metal plate body and the second pure titanium metal plate body are heat-treated in an atmosphere furnace at 400 ° C. to 700 ° C. for 30 minutes to 90 minutes.
前記第1純チタン金属板体の前記凸部はプレス加工によって形成されていることを特徴とする請求項1に記載の放熱装置。 The heat dissipation device according to claim 1 , wherein the convex portion of the first pure titanium metal plate is formed by press working . 前記第1純チタン金属板体の前記凸部の表面に第1コーティング層が設けられ、また前記金属メッシュと前記第3平面の間に第2コーティング層が設けられ、前記金属メッシュ表面に第3コーティング層が設けられ、前記第1、第2、第3コーティング層の各々が個別に親水性コーティング層又は疎水性コーティング層のうちのいずれか一つの特性を持つことを特徴とする請求項1に記載の放熱装置。 A first coating layer is provided on the surface of the convex portion of the first pure titanium metal plate, and a second coating layer is provided between the metal mesh and the third plane, and the metal mesh surface is provided with a second coating layer. Is characterized in that a third coating layer is provided, and each of the first, second, and third coating layers individually has the property of any one of a hydrophilic coating layer and a hydrophobic coating layer. Item 1. The heat dissipation device according to Item 1. 前記親水性コーティング層は、二酸化チタン或いは二酸化ケイ素のうちのいずれか一つであることを特徴とする請求項に記載の放熱装置。 The heat dissipation device according to claim 3 , wherein the hydrophilic coating layer is any one of titanium dioxide and silicon dioxide. 前記第2平面が凝縮側で、前記第4平面が吸熱側であることを特徴とする請求項1に記載の放熱装置。 The heat dissipation device according to claim 1, wherein the second plane is on the condensation side and the fourth plane is on the endothermic side. 前記金属メッシュは、純チタン素材又はステンレス鋼或いは銅若しくはアルミニウム又はその他の金属材質のいずれか一つとすることを特徴とする請求項1に記載の放熱装置。 The heat dissipation device according to claim 1, wherein the metal mesh is made of any one of pure titanium material, stainless steel, copper, aluminum, and other metal materials. 前記金属メッシュは、第1金属メッシュと第2金属メッシュとを備え、前記第1金属メッシュが純チタン素材で、前記第2金属メッシュがステンレス鋼素材であり、また前記述第1、2金属メッシュが互いに積層して設けられることを特徴とする請求項1に記載の放熱装置。 The metal mesh includes a first metal mesh and a second metal mesh, the first metal mesh is a pure titanium material, the second metal mesh is a stainless steel material, and the first and second metal meshes described above are used. The heat radiating device according to claim 1, wherein the heat radiating devices are provided so as to be laminated on each other.
JP2019082348A 2017-07-12 2019-04-23 Heat dissipation device Active JP7074715B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017136639 2017-07-12
JP2017136639 2017-07-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017198563A Division JP6660925B2 (en) 2017-07-12 2017-10-12 Manufacturing method of heat dissipation device

Publications (2)

Publication Number Publication Date
JP2019135443A JP2019135443A (en) 2019-08-15
JP7074715B2 true JP7074715B2 (en) 2022-05-24

Family

ID=65355395

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017198563A Active JP6660925B2 (en) 2017-07-12 2017-10-12 Manufacturing method of heat dissipation device
JP2019082348A Active JP7074715B2 (en) 2017-07-12 2019-04-23 Heat dissipation device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017198563A Active JP6660925B2 (en) 2017-07-12 2017-10-12 Manufacturing method of heat dissipation device

Country Status (1)

Country Link
JP (2) JP6660925B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110650591B (en) * 2019-08-09 2021-07-23 精电(河源)显示技术有限公司 Process for manufacturing flexible circuit board
CN110421001B (en) * 2019-08-13 2023-10-24 常州恒创热管理有限公司 Phase-change temperature-equalizing plate formed by stamping and processing method
CN111417272B (en) * 2020-03-19 2021-05-11 东莞市东准电子科技有限公司 A power box with aluminum-plastic composite direct heat transfer
CN113566625A (en) * 2020-09-23 2021-10-29 昆山同川铜业科技有限公司 Capillary liquid absorbing core, manufacturing method of capillary liquid absorbing core and phase-change latent heat type heat radiator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151354A (en) 2008-12-24 2010-07-08 Sony Corp Heat transport device and electronic apparatus
JP3170057U (en) 2011-06-17 2011-09-01 奇▲こう▼科技股▲ふん▼有限公司 Heat dissipation unit and heat dissipation module
JP2012189260A (en) 2011-03-10 2012-10-04 Kiko Kagi Kofun Yugenkoshi Radiation unit having hydrophilic compound thin film, and method of depositing hydrophilic compound thin film
JP2015225813A (en) 2014-05-29 2015-12-14 株式会社神戸製鋼所 Method for manufacturing separator material for fuel batteries

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163354A (en) * 1988-12-16 1990-06-22 Raimuzu:Kk Manufacture of clad titanium-base alloy member
JP2011017463A (en) * 2009-07-07 2011-01-27 Sony Corp Manufacturing method of heat transport device, and the heat transport device
JP2011127780A (en) * 2009-12-15 2011-06-30 Sony Corp Heat transport device and electronic equipment
JP2013068380A (en) * 2011-09-26 2013-04-18 Aisin Seiki Co Ltd Method of manufacturing self-excited oscillation heat pipe, and base for self-excited oscillation heat pipe
CN111023879A (en) * 2015-03-26 2020-04-17 株式会社村田制作所 Thin heat radiation plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151354A (en) 2008-12-24 2010-07-08 Sony Corp Heat transport device and electronic apparatus
JP2012189260A (en) 2011-03-10 2012-10-04 Kiko Kagi Kofun Yugenkoshi Radiation unit having hydrophilic compound thin film, and method of depositing hydrophilic compound thin film
JP3170057U (en) 2011-06-17 2011-09-01 奇▲こう▼科技股▲ふん▼有限公司 Heat dissipation unit and heat dissipation module
JP2015225813A (en) 2014-05-29 2015-12-14 株式会社神戸製鋼所 Method for manufacturing separator material for fuel batteries

Also Published As

Publication number Publication date
JP2019135443A (en) 2019-08-15
JP2019020106A (en) 2019-02-07
JP6660925B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP7074715B2 (en) Heat dissipation device
CN107809881A (en) Heat sink and method for manufacturing the same
JP6466541B2 (en) Manufacturing method of heat dissipation unit
CN104754913B (en) Heat-conductive composite material piece and preparation method thereof
US20180369971A1 (en) Method of manufacturing a heat dissipation device
US10890382B2 (en) Heat dissipation device
CN207427670U (en) heat sink
US20160133598A1 (en) Direct metal bonding method
JP2006140435A (en) Bendable heat spreader with wire mesh-based microstructure and method of manufacturing same
CN107809880A (en) Method for manufacturing heat dissipation unit
US11033949B2 (en) Method of manufacturing a heat dissipation unit
US11065671B2 (en) Method of manufacturing a heat dissipation device
CN106835054A (en) The method of diamond single crystal surface metalation treatment
US20180361505A1 (en) Manufacturing method of heat dissipation unit
CN103753123A (en) Method for manufacturing multilayer amorphous alloy and copper composite structure through intermediate layer diffusion
TWI625503B (en) Heat dissipation device and manufacturing method thereof
CN111128929A (en) Heat dissipation material and processing technology thereof
CN112113449B (en) Vaporizing plate, manufacturing method of vaporizing plate, electronic device and electronic device
US20180372431A1 (en) Heat dissipation device
TWI644610B (en) Manufacturing method of heat dissipation unit
US20210381777A1 (en) Method of manufacturing a heat dissipation device
CN113956062B (en) A kind of ceramic substrate AlN/Ti layered composite material and its preparation method and application
JP2021186837A (en) Atomic diffusion bonding method and bonding structure
JP2684927B2 (en) Optical element substrate
CN116103554B (en) A stainless steel chromium-tantalum alloy material, a stainless steel soaking plate, and a preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150