[go: up one dir, main page]

JP5277722B2 - Polishing method of silicon carbide single crystal wafer surface - Google Patents

Polishing method of silicon carbide single crystal wafer surface Download PDF

Info

Publication number
JP5277722B2
JP5277722B2 JP2008133348A JP2008133348A JP5277722B2 JP 5277722 B2 JP5277722 B2 JP 5277722B2 JP 2008133348 A JP2008133348 A JP 2008133348A JP 2008133348 A JP2008133348 A JP 2008133348A JP 5277722 B2 JP5277722 B2 JP 5277722B2
Authority
JP
Japan
Prior art keywords
polishing
single crystal
wafer
silicon carbide
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008133348A
Other languages
Japanese (ja)
Other versions
JP2009283629A (en
Inventor
弘克 矢代
辰雄 藤本
泰三 星野
崇 藍郷
正和 勝野
弘志 柘植
正史 中林
芳生 平野
昇 大谷
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008133348A priority Critical patent/JP5277722B2/en
Publication of JP2009283629A publication Critical patent/JP2009283629A/en
Application granted granted Critical
Publication of JP5277722B2 publication Critical patent/JP5277722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective method of obtaining a surface of high quality by removing a layer deteriorated by processing from the surface of a silicon carbide single crystal wafer which has been rough-lapped for chemical stability, and then finish polishing. <P>SOLUTION: The polishing method efficiently provides a surface of high quality with no deteriorated layer by processing that occurs after diamond mechanical polishing, by oxidizing the surface of silicon carbide single crystal wafer that has been rough-lapped in diamond mechanical polishing, and then removing an oxide film on the surface by finish polishing. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、単結晶ウェハの研磨方法に関し、特に、青色発光ダイオードや電子デバイス等の基板ウェハの母材となる良質で大型の炭化珪素単結晶ウェハの表面研磨方法に関するものである。   The present invention relates to a method for polishing a single crystal wafer, and more particularly, to a method for polishing a surface of a high-quality, large-sized silicon carbide single crystal wafer that is a base material for a substrate wafer such as a blue light emitting diode or an electronic device.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、放射線に強い等の物理的、化学的性質から耐環境性半導体材料として注目されている。また、近年、青色から紫外にかけての短波長光デバイス、高周波高耐圧電子デバイス等の基板ウェハとして、SiC単結晶ウェハの需要が高まっている。しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は、未だ確立されていない。それ故、SiCは、上述のような多くの利点及び可能性を有する半導体材料にも拘らず、その実用化が阻まれていた。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because of its physical and chemical properties such as excellent heat resistance and mechanical strength, and resistance to radiation. In recent years, the demand for SiC single crystal wafers is increasing as a substrate wafer for short wavelength optical devices from blue to ultraviolet, high frequency high voltage electronic devices, and the like. However, a crystal growth technique that can stably supply a high-quality SiC single crystal having a large area on an industrial scale has not yet been established. Therefore, practical use of SiC has been hindered despite the semiconductor materials having many advantages and possibilities as described above.

従来、研究室程度の規模では、例えば、昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を用いて、珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では、大面積の単結晶は得られるが、基板との格子不整合が約20%もあること等により、多くの欠陥(〜107cm-2)を含むSiC単結晶しか成長させることができず、高品質のSiC単結晶を得ることは容易でない。 Conventionally, on a laboratory scale scale, for example, a SiC single crystal was grown by a sublimation recrystallization method (Rayleigh method) to obtain a SiC single crystal of a size capable of manufacturing a semiconductor element. However, with this method, the area of the obtained single crystal is small, and it is difficult to control its size and shape with high accuracy. Also, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. In addition, a cubic SiC single crystal is grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). With this method, a single crystal with a large area can be obtained, but only a SiC single crystal containing many defects (up to 10 7 cm -2 ) can be grown due to the lattice mismatch of about 20% with the substrate. It is not easy to obtain a high-quality SiC single crystal.

これらの問題点を解決するために、SiC単結晶{0001}ウェハを種結晶として用いて、昇華再結晶を行う改良型のレーリー法が提案されている(非特許文献1)。この方法では、種結晶を用いているため、結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を100Pa〜15kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。現在、口径2インチ(50mm)〜4インチ(100mm)のSiC単結晶インゴットは成長できるようになり、ウェハに加工されて、種々のデバイス作製に供されるようになって来た。   In order to solve these problems, an improved Rayleigh method for performing sublimation recrystallization using a SiC single crystal {0001} wafer as a seed crystal has been proposed (Non-patent Document 1). Since this method uses a seed crystal, the nucleation process of the crystal can be controlled, and the atmospheric pressure is controlled to about 100 Pa to 15 kPa with an inert gas to control the crystal growth rate with good reproducibility. it can. At present, SiC single crystal ingots having a diameter of 2 inches (50 mm) to 4 inches (100 mm) can be grown, processed into wafers, and used for various devices.

ウェハに加工するに際しては、成長したインゴットを所望の直径、即ち、2インチ(50mm)〜4インチ(100mm)で目的に合致する口径の円柱形に加工した後、ウェハにスライスして、更に表面を研磨する工程を踏む。   When processing into a wafer, the grown ingot is processed into a cylindrical shape with a desired diameter, that is, 2 inches (50 mm) to 4 inches (100 mm), and then sliced into a wafer, and further surface-treated The process of polishing is taken.

表面の研磨では、SiCが大変硬いために、それより硬いダイヤモンド等を研磨剤として表面を機械的に研磨し、平坦な面を作る。しかし、ダイヤモンド砥粒で研磨したSiCウェハ表面には転位等の結晶欠陥が多数発生するために、表面に残留応力や機械的な歪(本来占めるべき位置からの分子のズレ)、即ち、加工変質層が残り、そのままでは表面に性能の良い半導体素子を作製するのは困難である。この表面に半導体素子を作ると、素子が正常に動作しなかったり、動作しても著しく性能が劣化したりする可能性が高くなる。   In surface polishing, SiC is very hard, so the surface is mechanically polished using a harder diamond or the like as an abrasive to create a flat surface. However, since many crystal defects such as dislocations are generated on the SiC wafer surface polished with diamond abrasive grains, residual stress and mechanical distortion (displacement of molecules from the position that should originally occupy) on the surface, that is, processing alteration If the layer remains, it is difficult to produce a semiconductor device with good performance on the surface. If a semiconductor element is formed on this surface, there is a high possibility that the element will not operate normally or that the performance will deteriorate significantly even if it operates.

そのため、例えば、特許文献1或いは特許文献2に記載されているように、過酸化水素水、或いは、二酸化マンガン、或いは、三酸化マンガン等でSiCウェハ表面を酸化しながら、酸化クロム砥粒で、仕上げ研磨するような工夫がなされている。
特開2001-205555号公報 特開2006-121111号公報 Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) pp.146-150
Therefore, for example, as described in Patent Document 1 or Patent Document 2, while oxidizing the SiC wafer surface with hydrogen peroxide, manganese dioxide, manganese trioxide, etc., with chromium oxide abrasive grains, The device has been devised such as finish polishing.
JP 2001-205555 JP 2006-121111 JP Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, vol.52 (1981) pp.146-150

上記したように、ダイヤモンド等の硬質砥粒による機械的な研磨加工だけでは、SiC単結晶ウェハ表面に加工変質層が残るため、半導体素子作製に適した高品質なウェハ表面が得られないが、酸化クロム等を用いて加工変質層を除去すると、クロムが研磨面に化学的に結合して残留し、表面金属汚染を引き起こすおそれがある。また、酸化剤を用いることで、酸化剤に曝される研磨装置表面も酸化するので、長期的には装置の劣化に繋がる。また、酸化剤の二酸化マンガンと三酸化マンガンは、表面金属汚染を引き起こすおそれがある。   As described above, only mechanical polishing with hard abrasive grains such as diamond leaves a work-affected layer on the SiC single crystal wafer surface, so a high-quality wafer surface suitable for semiconductor device fabrication cannot be obtained. When the work-affected layer is removed using chromium oxide or the like, chromium remains chemically bonded to the polished surface, which may cause surface metal contamination. Further, by using an oxidizing agent, the surface of the polishing apparatus exposed to the oxidizing agent is also oxidized, leading to deterioration of the apparatus in the long term. Further, the oxidizing agents manganese dioxide and manganese trioxide may cause surface metal contamination.

そこで、本発明は、上記のような表面金属汚染や研磨装置の劣化が起こらず、高品質な表面を得る炭化珪素単結晶ウェハ表面の研磨方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for polishing a surface of a silicon carbide single crystal wafer that obtains a high-quality surface without causing the above-described surface metal contamination or deterioration of a polishing apparatus.

高性能半導体素子作製に耐え得る高品質な大口径SiC単結晶ウェハ表面を実現するためには、金属汚染を引き起こさないで、SiC基板の表面下部の加工変質層を酸化させて柔らかい物質に変えて、剥離する方法が有効である。そこで、本発明者らは、研磨条件について鋭意比較検討・観察・解析を行った結果、荒研磨(ラップ)した炭化珪素単結晶ウェハ表面を、酸化した後に、仕上げ研磨(ポリッシュ)で表面の酸化膜を除去することが加工変質層の除去に有効であることを見出し、本発明を完成させるに至った。   In order to realize a high-quality large-diameter SiC single crystal wafer surface that can withstand the fabrication of high-performance semiconductor elements, the work-affected layer at the bottom of the SiC substrate surface is oxidized to a soft material without causing metal contamination. The peeling method is effective. Therefore, the present inventors conducted extensive comparative examination, observation, and analysis on the polishing conditions, and as a result, oxidized the surface of the silicon carbide single crystal wafer that was rough polished (lapped), and then oxidized the surface by finish polishing (polish). The inventors have found that removing the film is effective for removing the work-affected layer, and have completed the present invention.

即ち、本発明は、
(1)ウェハ表面の方位がSi(0001)面から(1−210)方向に4°方傾いている炭化珪素単結晶ウェハの表面を機械研磨により荒研磨した後、熱酸化し、形成された酸化膜を仕上げ研磨によって除去することを特徴とする炭化珪素単結晶ウェハ表面の研磨方法、
)炭化珪素単結晶ウェハの熱酸化が、水分を含んだ酸素ガス雰囲気下での熱酸化である()に記載の炭化珪素単結晶ウェハ表面の研磨方法、
)荒研磨により炭化珪素単結晶ウェハの表層部に形成された加工変質層を酸化し、酸化された加工変質層を仕上げ研磨によって除去する(1)又は(2)に記載の炭化珪素単結晶ウェハ表面の研磨方法、
)仕上げ研磨で用いる研磨剤が、酸化珪素と炭化珪素の間のヌープ硬度を有する研磨剤である(1)〜()のいずれかに記載の炭化珪素単結晶ウェハ表面の研磨方法、
)前記研磨剤が、シリカ、ガーネット、ジルコニア及びアルミナから選ばれた1種又は2種以上である(記載の炭化珪素単結晶ウェハ表面の研磨方法、
である。
That is, the present invention
(1) The surface of the silicon carbide single crystal wafer whose orientation on the wafer surface is inclined 4 ° from the Si (0001) plane to the (1-210) direction is roughly polished by mechanical polishing , and then thermally oxidized to form A method for polishing a surface of a silicon carbide single crystal wafer, wherein the oxide film is removed by finish polishing,
( 2 ) The method for polishing a silicon carbide single crystal wafer surface according to ( 1 ), wherein the thermal oxidation of the silicon carbide single crystal wafer is thermal oxidation in an oxygen gas atmosphere containing moisture,
( 3 ) The silicon carbide single crystal according to (1) or (2) , wherein the work-affected layer formed on the surface layer portion of the silicon carbide single crystal wafer is oxidized by rough polishing, and the oxidized work-affected layer is removed by finish polishing. Polishing method of crystal wafer surface,
( 4 ) The polishing method for a silicon carbide single crystal wafer surface according to any one of (1) to ( 3 ), wherein the polishing agent used in finish polishing is a polishing agent having a Knoop hardness between silicon oxide and silicon carbide.
( 5 ) The polishing method for a silicon carbide single crystal wafer surface according to ( 4 ) , wherein the abrasive is one or more selected from silica, garnet, zirconia and alumina.
It is.

本発明の研磨方法によれば、金属汚染を引き起こさないで、SiC基板の表面部の加工変質層を酸化させて柔らかい酸化珪素に変えて、該酸化珪素層を除去することで、仕上げ研磨後のSiC単結晶ウェハ表面には、ダメージを受けたSiCの加工変質層が残らず、表面の凹凸が0.3nm以下と大変小さい、高品質表面が安定して得られる。さらに、硬さが酸化珪素と炭化珪素の中間に位置する研磨剤を用いることで効率的に剥離・除去することができる。   According to the polishing method of the present invention, the work-affected layer on the surface portion of the SiC substrate is oxidized and changed to soft silicon oxide without causing metal contamination, and the silicon oxide layer is removed to remove the silicon oxide layer. The SiC single crystal wafer surface does not have a damaged damaged layer of SiC, and the surface irregularity is as small as 0.3 nm or less, and a high quality surface can be obtained stably. Furthermore, it can peel and remove efficiently by using the abrasive | polishing agent located in the middle of a silicon oxide and silicon carbide.

本発明における研磨のメカニズムを説明する。炭化珪素単結晶ウェハ表面の研磨工程で、荒研磨(ラップ)後の表面は鏡面で平坦であるが、表面下に加工変質層が残り、そのままでは表面に性能の良い半導体素子を作製するのは困難である。そこで、荒研磨後に表面下の加工変質層を酸化して、シリカとほぼ同じ硬度のSiOxに変える。表面を酸化する方法として、表面を酸化剤に曝す方法があるが、炭化珪素単結晶では酸化剤分子が表面下に拡散しないので、適切でない。また、酸素イオンを炭化珪素単結晶ウェハ表面にイオン注入して酸化する方法は、注入イオンにより更に表面下にダメージが発生するので、適さない。したがって、表面下にダメージを残さず、効果的に荒研磨後の加工変質層を酸化するには、表面を熱酸化することが、最良の形態である。 The polishing mechanism in the present invention will be described. In the polishing process of the silicon carbide single crystal wafer surface, the surface after rough polishing (lapping) is mirror-like and flat, but a work-affected layer remains under the surface, and if it is left as it is, a semiconductor element with good performance is produced on the surface. Have difficulty. Therefore, after rough polishing, the work-affected layer below the surface is oxidized and changed to SiO x having the same hardness as silica. As a method for oxidizing the surface, there is a method in which the surface is exposed to an oxidant. However, silicon carbide single crystal is not appropriate because oxidant molecules do not diffuse below the surface. In addition, the method of oxidizing oxygen ions on the surface of a silicon carbide single crystal wafer and oxidizing it is not suitable because the ions further damage the surface. Therefore, in order to effectively oxidize the work-affected layer after rough polishing without leaving any damage below the surface, it is best to thermally oxidize the surface.

SiCウェハ表面の熱酸化は、水分を含む大気圧の酸素雰囲気中でSiCウェハを加熱することで、容易に実現できる。雰囲気ガスは、酸素ガスを水中にバブリングして得たwetO2を用いる。大気圧雰囲気の電気炉中で加熱しているSiCウェハにwetO2を供給することで、SiCウェハが常時wetO2に曝されて、SiCウェハ表面下の加工変質層を含む表面部分が酸化される。この熱酸化プロセスにおいて特段の厳格な制限はないので、雰囲気に関しては、容易に実現できる大気圧が最良の形態である。即ち、SiCウェハは開放系の石英管中でヒーターにて加熱し、雰囲気ガスは、ガスボンベから供給される酸素ガスをお湯に潜らせて水分の加えたwetO2を、SiCウェハを入れて加熱する石英管に供給し、その後大気に放散する。ガス流量は1.7×10-4〜1.7×10-1Pa・m3/secの範囲で任意に選び、お湯は超純水等を用いる必要はなく、通常の水道水を40〜100℃に温めて使用するのが最良の形態である。温める意味は、wetO2を石英管に供給することでSiCウェハの温度が下がったり、加熱炉に不要な熱勾配が発生したりするのを防ぐためである。SiCウェハを加熱する際の温度は、高い方が酸化を促進するので望ましいが、高過ぎると石英管が軟化変形するおそれがある。したがって、温度範囲は800℃以上1400℃未満、望ましくは1000℃以上1200℃未満が最良の形態である。 Thermal oxidation of the SiC wafer surface can be easily realized by heating the SiC wafer in an atmospheric oxygen atmosphere containing moisture. As the atmospheric gas, wetO 2 obtained by bubbling oxygen gas into water is used. By supplying wetO 2 to a SiC wafer heated in an electric furnace in an atmospheric pressure atmosphere, the SiC wafer is constantly exposed to wetO 2 and the surface portion including the work-affected layer under the SiC wafer surface is oxidized. . Since there is no particular strict limitation in this thermal oxidation process, the atmospheric pressure that can be easily realized is the best mode for the atmosphere. In other words, the SiC wafer is heated by a heater in an open quartz tube, and the atmosphere gas is heated by putting the oxygen gas supplied from the gas cylinder in hot water and adding wet moisture to wetO 2 in the SiC wafer. It is supplied to the quartz tube and then diffused into the atmosphere. The gas flow rate is arbitrarily selected within the range of 1.7 × 10 −4 to 1.7 × 10 −1 Pa · m 3 / sec, and it is not necessary to use ultrapure water as hot water. Warm normal tap water to 40 to 100 ° C. It is the best form to use. The meaning of warming is to prevent the temperature of the SiC wafer from being lowered by supplying wetO 2 to the quartz tube and unnecessary thermal gradients from being generated in the heating furnace. A higher temperature for heating the SiC wafer is desirable because it promotes oxidation, but if it is too high, the quartz tube may be softened and deformed. Accordingly, the best mode is a temperature range of 800 ° C. or higher and lower than 1400 ° C., desirably 1000 ° C. or higher and lower than 1200 ° C.

硬度の観点から考えると、SiCがヌープ硬度2500(修正モース硬度13)に対して、アルミナのヌープ硬度は2100(修正モース硬度12)、ジルコニアの修正モース硬度が11、ガーネットの修正モース硬度が10、シリカのヌープ硬度は750〜820(修正モース硬度は5(溶融石英)〜6(結晶))であり、アルミナ、ジルコニア、ガーネット、シリカの方がSiCより遥かに柔らかいので、アルミナ、ジルコニア、ガーネット、シリカでSiCを機械的効率的に研磨することは困難である。本発明では、SiCウェハ表面を酸化することによって表面のSiCをシリカ同等の硬度のSiOxに変えることで、効率的に仕上げ研磨できる。即ち、SiCのCは酸化されてCO2となってSiC表面から脱離し、表面にはSiCのSiがSiOxの形で残る。このSiOxをアルミナ、ジルコニア、ガーネット、シリカで機械的に研磨除去することで、SiCの表面は効率的に仕上げ研磨され、加工変質層が除去される。本発明の仕上げ研磨法では、アルミナ、ジルコニア、ガーネット、シリカがSiCより柔らかいために、SiOxが除去された後のSiC単結晶表面に加工変質層は残らない。尚、SiCの砥粒で仕上げ研磨すると、研磨後のウェハ表面にダメージ層を新たに形成することがあるので、SiC砥粒は適さない。他方、アルミナ、ジルコニア、ガーネット、シリカの少なくとも2種類以上を混合した研磨剤を用いても、酸化された加工変質層を除去することができる。 From the viewpoint of hardness, SiC has a Knoop hardness of 2500 (modified Mohs hardness of 13), alumina has a Knoop hardness of 2100 (modified Mohs hardness of 12), zirconia has a modified Mohs hardness of 11, and garnet has a modified Mohs hardness of 10. The Knoop hardness of silica is 750-820 (modified Mohs hardness is 5 (fused quartz) -6 (crystal)), and alumina, zirconia, garnet, and silica are much softer than SiC, so alumina, zirconia, garnet It is difficult to mechanically polish SiC with silica. In the present invention, the surface of SiC wafer is oxidized to change the surface SiC to SiO x having a hardness equivalent to that of silica, thereby enabling efficient finish polishing. In other words, SiC C is oxidized to CO 2 and desorbed from the SiC surface, and SiC Si remains on the surface in the form of SiO x . By mechanically polishing and removing this SiO x with alumina, zirconia, garnet, and silica, the surface of SiC is efficiently finish-polished and the work-affected layer is removed. In the finish polishing method of the present invention, since alumina, zirconia, garnet, and silica are softer than SiC, a work-affected layer does not remain on the surface of the SiC single crystal after the removal of SiO x . Note that, when final polishing is performed with SiC abrasive grains, a damaged layer may be newly formed on the polished wafer surface, so SiC abrasive grains are not suitable. On the other hand, the oxidized work-affected layer can also be removed by using an abrasive in which at least two of alumina, zirconia, garnet, and silica are mixed.

アルミナ、ジルコニア、ガーネット、シリカ砥粒の条件に関して、形状に関しては、球形に近い通常の形状であれば特段制限はない。粒径に関しても特段制限はなく、平均粒径で10〜100nmの範囲にある市販品を使用して何ら障害は生じない。   Regarding the conditions of alumina, zirconia, garnet, and silica abrasive grains, the shape is not particularly limited as long as it is a normal shape close to a sphere. There is no particular limitation on the particle size, and there is no problem using a commercial product having an average particle size in the range of 10 to 100 nm.

仕上げ研磨では、研磨布として市販されているバフを用いることに特段の制限はない。また、ウェハと研磨布の相対速度にも特段制限はないので、好ましい研磨定盤の回転条件範囲は、研磨装置側の設備能力で決定して支障はない。常識的な例として、10〜200rpm程度の範囲で問題はない。研磨時の研磨面圧力に関しては、大きい方が研磨効率が上がるので有利である。しかし、大きな研磨面圧力は装置に負荷をかけるので、その観点からは研磨面圧力は小さい方が望ましい。本発明では、0.01kg/cm2程度の僅かな研磨面圧力でも表面が研磨できることは確認しているが、効率向上のために装置に過大な負荷がかからない程度に大きな研磨面圧力で研磨する。本発明で適用する面圧力としては、0.01kg/cm2程度の僅かな研磨面圧力から3.0kg/cm2程度の大きな圧力まで広範囲で有効であることは確認している。より好ましくは、装置構成上適切な範囲が良い。面圧力を0.05〜0.2kg/cm2の範囲で装置を構成すると、研磨効率も下がらず、力学的な装置負荷も過大にならないので、より好ましい。 In the final polishing, there is no particular limitation on using a buff sold as a polishing cloth. Further, since there is no particular limitation on the relative speed between the wafer and the polishing pad, the preferable rotation condition range of the polishing surface plate is determined by the equipment capacity on the polishing apparatus side, and there is no problem. As a common sense example, there is no problem in the range of about 10 to 200 rpm. With respect to the polishing surface pressure during polishing, a larger value is advantageous because polishing efficiency increases. However, since a large polishing surface pressure imposes a load on the apparatus, it is desirable that the polishing surface pressure be small from that viewpoint. In the present invention, it has been confirmed that the surface can be polished even with a slight polishing surface pressure of about 0.01 kg / cm 2, but polishing is performed with a large polishing surface pressure so that an excessive load is not applied to the apparatus in order to improve efficiency. The surface pressure applied in the present invention, it is widespread valid from slight polishing surface pressure of about 0.01 kg / cm 2 to a large pressure of about 3.0 kg / cm 2 is confirmed. More preferably, a range suitable for the apparatus configuration is good. It is more preferable that the apparatus is configured with a surface pressure in the range of 0.05 to 0.2 kg / cm 2 because the polishing efficiency is not lowered and the mechanical apparatus load is not excessive.

ラップで生じる加工変質層の量は、ラップに用いる砥粒の大きさ、研磨時の圧力等々の諸条件によって決まり、ウェハ断面のTEM観察などによって、加工変質層の厚さを測定することができる。即ち、「ダメージのないSiC層」ではSiC分子が本来あるべき位置に規則的に配置されているためにTEMで観察すると一様に明るい像が得られる。これに対して、「加工変質層」には転位等の結晶欠陥が多数存在して、SiC分子が本来占めるべき位置からずれているためにTEMの電子線が散乱されてしまい、不均一な暗い像となる。加工変質層の厚さは、TEM像で最表面から深さ方向にどのくらい暗い部分があるかで見積もれる。しかし、非破壊で加工変質層の厚さを正確に見積もることは難しいので、TEM観察をした時の過去のラップ条件と同じ条件で研磨した場合に過去と同等の厚さの加工変質層が生じると仮定する。留意すべき点は、TEM観察で見積もれる加工変質層の厚さは、観察したその部分のデータであり、ウェハ全体ではTEM観察した部分よりも加工変質層が薄い部分も厚い部分も存在することである。したがって、ウェハ表面全体から加工変質層を完全に除去するために、表面を酸化する厚さは、加工変質層より厚めに設定する。経験的には、TEM観察で見積もった加工変質層厚さの2倍の厚さを酸化すれば、完全に加工変質層は酸化される。尚、荒研磨(ラップ)の手段については特に制限はなく、例えばダイヤモンド砥粒を用いた研磨のような通常行われる機械研磨等を例示することができる。   The amount of the work-affected layer generated by lapping depends on various conditions such as the size of the abrasive grains used in the lapping and the pressure during polishing, and the thickness of the work-affected layer can be measured by TEM observation of the wafer cross section. . That is, in the “damaged SiC layer”, SiC molecules are regularly arranged at the positions where they should be, and therefore a uniform bright image can be obtained by TEM observation. On the other hand, the “work-affected layer” has many crystal defects such as dislocations, and the TEM electron beam is scattered because the SiC molecules are shifted from the positions that should be originally occupied. Become a statue. The thickness of the work-affected layer can be estimated by how dark the TEM image is in the depth direction from the outermost surface. However, since it is difficult to accurately estimate the thickness of the work-affected layer in a non-destructive manner, a work-affected layer with a thickness equivalent to the past is generated when polished under the same conditions as the past lapping conditions during TEM observation. Assume that It should be noted that the thickness of the work-affected layer that can be estimated by TEM observation is the data of the observed part, and the entire wafer has a part with a thinner or thicker work-affected layer than the part observed by TEM. It is. Therefore, in order to completely remove the work-affected layer from the entire wafer surface, the thickness for oxidizing the surface is set to be thicker than the work-affected layer. Empirically, if the thickness of the work-affected layer estimated by TEM observation is oxidized twice, the work-affected layer is completely oxidized. The means for rough polishing (lapping) is not particularly limited, and examples thereof include mechanical polishing that is usually performed such as polishing using diamond abrasive grains.

以下に、本発明を実施例で説明する。
先ず、コロイダルシリカスラリーを用いて本発明を実施した例を説明する。SiCウェハは、直径4インチ(100mm)の4H-SiC単結晶ウェハで、ウェハ表面の方位は、Si(0001)面から(1-210)方向に4°傾いている。
Hereinafter, the present invention will be described with reference to examples.
First, the example which implemented this invention using the colloidal silica slurry is demonstrated. The SiC wafer is a 4H-SiC single crystal wafer having a diameter of 4 inches (100 mm), and the orientation of the wafer surface is inclined 4 ° in the (1-210) direction from the Si (0001) plane.

本発明による仕上げ研磨前のSiCウェハの表面状態は、ダイヤモンド遊離砥粒で機械研磨した状態で、ウェハ表面の凹凸は、AFMで測定した結果、Ra=0.8nmであった。また、加工変質層の厚さは、断面TEMで評価したところ15nm程度であった。尚、表面粗さRaはJIS B0601:2001に準拠する算術平均粗さである。   The surface state of the SiC wafer before finish polishing according to the present invention was mechanically polished with diamond free abrasive grains, and the unevenness on the wafer surface was Ra = 0.8 nm as measured by AFM. The thickness of the work-affected layer was about 15 nm as evaluated by cross-sectional TEM. The surface roughness Ra is an arithmetic average roughness based on JIS B0601: 2001.

図1に示すように、汎用の酸素ボンベから供給する酸素ガスを80℃に熱したお湯に潜らせてwetO2を作り、電気炉中でSiCウェハ入れて加熱する石英管に供給する。流量は凡そ1.7×10-3Pa・m3/secであった。炉の温度は1100℃で、2時間加熱した。その結果、荒研磨工程で発生したSiCウェハ表面下の加工変質層は全て酸化された。即ち、本ウェハのSi面側表面には厚さ凡そ20nmの酸化膜が形成され、C面側表面には厚さ凡そ200nmの酸化膜が形成された。したがって、加工変質層は全て酸化されたことになる。 As shown in FIG. 1, oxygen gas supplied from a general-purpose oxygen cylinder is immersed in hot water heated to 80 ° C. to produce wetO 2, which is supplied to a quartz tube that is heated in a SiC wafer in an electric furnace. The flow rate was approximately 1.7 × 10 −3 Pa · m 3 / sec. The furnace temperature was 1100 ° C. and heated for 2 hours. As a result, the work-affected layer under the SiC wafer surface generated in the rough polishing process was all oxidized. That is, an oxide film having a thickness of about 20 nm was formed on the Si surface side surface of the wafer, and an oxide film having a thickness of about 200 nm was formed on the C surface side surface. Therefore, all the work-affected layers are oxidized.

このウェハのSi面を0.2kg/cm2の研磨面圧力で研磨定盤に押し付け、研磨定盤を40rpmで回転させることによって研磨した。研磨剤は、コロイダルシリカ固形分を濃度20mass%含むスラリーで、pHは弱アルカリ(pH〜10)に調整した。スラリーは毎時1リットルの割合でローラーポンプで供給した。研磨機下部から排出されたスラリーは回収して再度ローラーポンプで研磨定盤に循環供給した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。 The Si surface of this wafer was pressed against the polishing surface plate with a polishing surface pressure of 0.2 kg / cm 2 and polished by rotating the polishing surface plate at 40 rpm. The abrasive was a slurry containing a colloidal silica solid content of 20 mass%, and the pH was adjusted to a weak alkali (pH˜10). The slurry was fed by a roller pump at a rate of 1 liter per hour. The slurry discharged from the lower part of the polishing machine was recovered and circulated and supplied again to the polishing platen with a roller pump. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm). A wafer bonding plate is affixed with a single 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm). Polished.

この条件で6時間研磨した結果、表面の加工変質層は完全に除去され、断面TEMで表面のダメージを観察したが、全くダメージは検出できなかった。また、AFMで表面の凹凸を測定したところ、Ra=0.1nmと、非常に平坦性に優れていた。   As a result of polishing for 6 hours under these conditions, the work-affected layer on the surface was completely removed, and surface damage was observed with a cross-sectional TEM, but no damage was detected. In addition, when the surface irregularities were measured by AFM, Ra = 0.1 nm was found to be very excellent in flatness.

次に、アルミナスラリーを用いて本発明を実施した例を説明する。SiCウェハは、コロイダルシリカスラリーの実施例と同じく、直径4インチ(100mm)の4H-SiC単結晶ウェハで、ウェハ表面の方位は、Si(0001)面から(1-210)方向に4°傾いている。   Next, the example which implemented this invention using the alumina slurry is demonstrated. The SiC wafer is a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) as in the colloidal silica slurry example, and the orientation of the wafer surface is inclined 4 ° from the Si (0001) plane to the (1-210) direction. ing.

本発明による仕上げ研磨前のSiCウェハの表面状態は、ダイヤモンド遊離砥粒で機械研磨した状態で、ウェハ表面の凹凸は、AFMで測定した結果、Ra=0.8nmであった。また、加工変質層の厚さは、断面TEMで評価したところ15nm程度であった。   The surface state of the SiC wafer before finish polishing according to the present invention was mechanically polished with diamond free abrasive grains, and the unevenness on the wafer surface was Ra = 0.8 nm as measured by AFM. The thickness of the work-affected layer was about 15 nm as evaluated by cross-sectional TEM.

図1に示すように、汎用の酸素ボンベから供給する酸素ガスを80℃に熱したお湯に潜らせてwetO2を作り、電気炉中でSiCウェハ入れて加熱する石英管に供給する。流量は凡そ1.7×10-3Pa・m3/secであった。炉の温度は1100℃で、2時間加熱した。その結果、荒研磨工程で発生したSiCウェハ表面下の加工変質層は全て酸化された。即ち、本ウェハのSi面側表面には厚さ凡そ20nmの酸化膜が形成され、C面側表面には厚さ凡そ200nmの酸化膜が形成された。したがって、加工変質層は全て酸化されたことになる。 As shown in FIG. 1, oxygen gas supplied from a general-purpose oxygen cylinder is immersed in hot water heated to 80 ° C. to produce wetO 2, which is supplied to a quartz tube that is heated in a SiC wafer in an electric furnace. The flow rate was approximately 1.7 × 10 −3 Pa · m 3 / sec. The furnace temperature was 1100 ° C. and heated for 2 hours. As a result, the work-affected layer under the SiC wafer surface generated in the rough polishing process was all oxidized. That is, an oxide film having a thickness of about 20 nm was formed on the Si surface side surface of the wafer, and an oxide film having a thickness of about 200 nm was formed on the C surface side surface. Therefore, all the work-affected layers are oxidized.

このウェハのC面を0.2kg/cm2の研磨面圧力で研磨定盤に押し付け、研磨定盤を40rpmで回転させることによって研磨した。研磨剤は、アルミナ固形分を濃度20mass%含むスラリーで、pHは弱アルカリ(pH〜10)に調整した。スラリーは毎時1リットルの割合でローラーポンプで供給した。研磨機下部から排出されたスラリーは回収して再度ローラーポンプで研磨定盤に循環供給した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。 The C surface of this wafer was pressed against a polishing surface plate with a polishing surface pressure of 0.2 kg / cm 2 and polished by rotating the polishing surface plate at 40 rpm. The abrasive was a slurry containing alumina solid content of 20 mass%, and the pH was adjusted to a weak alkali (pH˜10). The slurry was fed by a roller pump at a rate of 1 liter per hour. The slurry discharged from the lower part of the polishing machine was recovered and circulated and supplied again to the polishing platen with a roller pump. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm). A wafer bonding plate is affixed with a single 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm). Polished. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm), and a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) is affixed to the wafer affixing plate, and one affixing plate is placed on the polishing surface plate. Polished.

この条件で6時間研磨した結果、表面の加工変質層は完全に除去され、断面TEMで表面のダメージを観察したが、全くダメージは検出できなかった。また、AFMで表面の凹凸を測定したところ、Ra=0.1nmと、非常に平坦性に優れていた。   As a result of polishing for 6 hours under these conditions, the work-affected layer on the surface was completely removed, and surface damage was observed with a cross-sectional TEM, but no damage was detected. In addition, when the surface irregularities were measured by AFM, Ra = 0.1 nm was found to be very excellent in flatness.

同じ条件で再現性を確かめたところ、常に、仕上げ研磨後の表面からは加工変質層が除去されており、AFMで測定した表面の凹凸は、常に0.3nm以下の値で仕上げられた。   When reproducibility was confirmed under the same conditions, the work-affected layer was always removed from the surface after finish polishing, and the surface irregularities measured by AFM were always finished with a value of 0.3 nm or less.

また、ジルコニアスラリーを用いて本発明を実施した例を説明する。SiCウェハは、コロイダルシリカスラリーの実施例と同じく、直径4インチ(100mm)の4H-SiC単結晶ウェハで、ウェハ表面の方位は、Si(0001)面から(1-210)方向に4°傾いている。   Moreover, the example which implemented this invention using the zirconia slurry is demonstrated. The SiC wafer is a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) as in the colloidal silica slurry example, and the orientation of the wafer surface is inclined 4 ° from the Si (0001) plane to the (1-210) direction. ing.

本発明による仕上げ研磨前のSiCウェハの表面状態は、ダイヤモンド遊離砥粒で機械研磨した状態で、ウェハ表面の凹凸は、AFMで測定した結果、Ra=0.8nmであった。また、加工変質層の厚さは、断面TEMで評価したところ15nm程度であった。   The surface state of the SiC wafer before finish polishing according to the present invention was mechanically polished with diamond free abrasive grains, and the unevenness on the wafer surface was Ra = 0.8 nm as measured by AFM. The thickness of the work-affected layer was about 15 nm as evaluated by cross-sectional TEM.

図1に示すように、汎用の酸素ボンベから供給する酸素ガスを80℃に熱したお湯に潜らせてwetO2を作り、電気炉中でSiCウェハ入れて加熱する石英管に供給する。流量は凡そ1.7×10-3Pa・m3/secであった。炉の温度は1100℃で、2時間加熱した。その結果、荒研磨工程で発生したSiCウェハ表面下の加工変質層は全て酸化された。即ち、本ウェハのSi面側表面には厚さ凡そ20nmの酸化膜が形成され、C面側表面には厚さ凡そ200nmの酸化膜が形成された。したがって、加工変質層は全て酸化されたことになる。 As shown in FIG. 1, oxygen gas supplied from a general-purpose oxygen cylinder is immersed in hot water heated to 80 ° C. to produce wetO 2, which is supplied to a quartz tube that is heated in a SiC wafer in an electric furnace. The flow rate was approximately 1.7 × 10 −3 Pa · m 3 / sec. The furnace temperature was 1100 ° C. and heated for 2 hours. As a result, the work-affected layer under the SiC wafer surface generated in the rough polishing process was all oxidized. That is, an oxide film having a thickness of about 20 nm was formed on the Si surface side surface of the wafer, and an oxide film having a thickness of about 200 nm was formed on the C surface side surface. Therefore, all the work-affected layers are oxidized.

このウェハのC面を0.2kg/cm2の研磨面圧力で研磨定盤に押し付け、研磨定盤を40rpmで回転させることによって研磨した。研磨剤は、ジルコニア固形分を濃度20mass%含むスラリーで、pHは弱アルカリ(pH〜10)に調整した。スラリーは毎時1リットルの割合でローラーポンプで供給した。研磨機下部から排出されたスラリーは回収して再度ローラーポンプで研磨定盤に循環供給した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。 The C surface of this wafer was pressed against a polishing surface plate with a polishing surface pressure of 0.2 kg / cm 2 and polished by rotating the polishing surface plate at 40 rpm. The abrasive was a slurry containing zirconia solid content at a concentration of 20 mass%, and the pH was adjusted to a weak alkali (pH˜10). The slurry was fed by a roller pump at a rate of 1 liter per hour. The slurry discharged from the lower part of the polishing machine was recovered and circulated and supplied again to the polishing platen with a roller pump. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm). A wafer bonding plate is affixed with a single 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm). Polished. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm), and a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) is affixed to the wafer affixing plate, and one affixing plate is placed on the polishing surface plate. Polished.

この条件で12時間研磨した結果、表面の加工変質層は完全に除去され、断面TEMで表面のダメージを観察したが、全くダメージは検出できなかった。また、AFMで表面の凹凸を測定したところ、Ra=0.1nmと、非常に平坦性に優れていた。   As a result of polishing for 12 hours under these conditions, the work-affected layer on the surface was completely removed, and surface damage was observed with a cross-sectional TEM, but no damage was detected. In addition, when the surface irregularities were measured by AFM, Ra = 0.1 nm was found to be very excellent in flatness.

同じ条件で再現性を確かめたところ、常に、仕上げ研磨後の表面からは加工変質層が除去されており、AFMで測定した表面の凹凸は、常に0.3nm以下の値で仕上げられた。   When reproducibility was confirmed under the same conditions, the work-affected layer was always removed from the surface after finish polishing, and the surface irregularities measured by AFM were always finished with a value of 0.3 nm or less.

更に、ガーネットスラリーを用いて本発明を実施した例を説明する。SiCウェハは、コロイダルシリカスラリーの実施例と同じく、直径4インチ(100mm)の4H-SiC単結晶ウェハで、ウェハ表面の方位は、Si(0001)面から(1-210)方向に4°傾いている。   Furthermore, the example which implemented this invention using the garnet slurry is demonstrated. The SiC wafer is a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) as in the colloidal silica slurry example, and the orientation of the wafer surface is inclined 4 ° from the Si (0001) plane to the (1-210) direction. ing.

本発明による仕上げ研磨前のSiCウェハの表面状態は、ダイヤモンド遊離砥粒で機械研磨した状態で、ウェハ表面の凹凸は、AFMで測定した結果、Ra=0.8nmであった。また、加工変質層の厚さは、断面TEMで評価したところ15nm程度であった。   The surface state of the SiC wafer before finish polishing according to the present invention was mechanically polished with diamond free abrasive grains, and the unevenness on the wafer surface was Ra = 0.8 nm as measured by AFM. The thickness of the work-affected layer was about 15 nm as evaluated by cross-sectional TEM.

図1に示すように、汎用の酸素ボンベから供給する酸素ガスを80℃に熱したお湯に潜らせてwetO2を作り、電気炉中でSiCウェハ入れて加熱する石英管に供給する。流量は凡そ1.7×10-3Pa・m3/secであった。炉の温度は1100℃で、2時間加熱した。その結果、荒研磨工程で発生したSiCウェハ表面下の加工変質層は全て酸化された。即ち、本ウェハのSi面側表面には厚さ凡そ20nmの酸化膜が形成され、C面側表面には厚さ凡そ200nmの酸化膜が形成された。したがって、加工変質層は全て酸化されたことになる。 As shown in FIG. 1, oxygen gas supplied from a general-purpose oxygen cylinder is immersed in hot water heated to 80 ° C. to produce wetO 2, which is supplied to a quartz tube that is heated in a SiC wafer in an electric furnace. The flow rate was approximately 1.7 × 10 −3 Pa · m 3 / sec. The furnace temperature was 1100 ° C. and heated for 2 hours. As a result, the work-affected layer under the SiC wafer surface generated in the rough polishing process was all oxidized. That is, an oxide film having a thickness of about 20 nm was formed on the Si surface side surface of the wafer, and an oxide film having a thickness of about 200 nm was formed on the C surface side surface. Therefore, all the work-affected layers are oxidized.

このウェハのC面を0.2kg/cm2の研磨面圧力で研磨定盤に押し付け、研磨定盤を40rpmで回転させることによって研磨した。研磨剤は、ガーネット固形分を濃度20mass%含むスラリーで、pHは弱アルカリ(pH〜10)に調整した。スラリーは毎時1リットルの割合でローラーポンプで供給した。研磨機下部から排出されたスラリーは回収して再度ローラーポンプで研磨定盤に循環供給した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。 The C surface of this wafer was pressed against a polishing surface plate with a polishing surface pressure of 0.2 kg / cm 2 and polished by rotating the polishing surface plate at 40 rpm. The abrasive was a slurry containing a garnet solid content of 20 mass%, and the pH was adjusted to a weak alkali (pH˜10). The slurry was fed by a roller pump at a rate of 1 liter per hour. The slurry discharged from the lower part of the polishing machine was recovered and circulated and supplied again to the polishing platen with a roller pump. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm). A wafer bonding plate is affixed with a single 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm). Polished. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm), and a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) is affixed to the wafer affixing plate, and one affixing plate is placed on the polishing surface plate. Polished.

この条件で24時間研磨した結果、表面の加工変質層は完全に除去され、断面TEMで表面のダメージを観察したが、全くダメージは検出できなかった。また、AFMで表面の凹凸を測定したところ、Ra=0.1nmと、非常に平坦性に優れていた。   As a result of polishing for 24 hours under these conditions, the work-affected layer on the surface was completely removed, and surface damage was observed with a cross-sectional TEM, but no damage was detected. In addition, when the surface irregularities were measured by AFM, Ra = 0.1 nm was found to be very excellent in flatness.

同じ条件で再現性を確かめたところ、常に、仕上げ研磨後の表面からは加工変質層が除去されており、AFMで測定した表面の凹凸は、常に0.3nm以下の値で仕上げられた。   When reproducibility was confirmed under the same conditions, the work-affected layer was always removed from the surface after finish polishing, and the surface irregularities measured by AFM were always finished with a value of 0.3 nm or less.

更にまた、ガーネットスラリーとコロイダルシリカスラリーを混合して用いて本発明を実施した例を説明する。SiCウェハは、コロイダルシリカスラリーの実施例と同じく、直径4インチ(100mm)の4H-SiC単結晶ウェハで、ウェハ表面の方位は、Si(0001)面から(1-210)方向に4°傾いている。   Furthermore, the example which implemented this invention using the garnet slurry and the colloidal silica slurry mixed is demonstrated. The SiC wafer is a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) as in the colloidal silica slurry example, and the orientation of the wafer surface is inclined 4 ° from the Si (0001) plane to the (1-210) direction. ing.

本発明による仕上げ研磨前のSiCウェハの表面状態は、ダイヤモンド遊離砥粒で機械研磨した状態で、ウェハ表面の凹凸は、AFMで測定した結果、Ra=0.8nmであった。また、加工変質層の厚さは、断面TEMで評価したところ15nm程度であった。   The surface state of the SiC wafer before finish polishing according to the present invention was mechanically polished with diamond free abrasive grains, and the unevenness on the wafer surface was Ra = 0.8 nm as measured by AFM. The thickness of the work-affected layer was about 15 nm as evaluated by cross-sectional TEM.

図1に示すように、汎用の酸素ボンベから供給する酸素ガスを80℃に熱したお湯に潜らせてwetO2を作り、電気炉中でSiCウェハ入れて加熱する石英管に供給する。流量は凡そ1.7×10-3Pa・m3/secであった。炉の温度は1100℃で、2時間加熱した。その結果、荒研磨工程で発生したSiCウェハ表面下の加工変質層は全て酸化された。即ち、本ウェハのSi面側表面には厚さ凡そ20nmの酸化膜が形成され、C面側表面には厚さ凡そ200nmの酸化膜が形成された。したがって、加工変質層は全て酸化されたことになる。 As shown in FIG. 1, oxygen gas supplied from a general-purpose oxygen cylinder is immersed in hot water heated to 80 ° C. to produce wetO 2, which is supplied to a quartz tube that is heated in a SiC wafer in an electric furnace. The flow rate was approximately 1.7 × 10 −3 Pa · m 3 / sec. The furnace temperature was 1100 ° C. and heated for 2 hours. As a result, the work-affected layer under the SiC wafer surface generated in the rough polishing process was all oxidized. That is, an oxide film having a thickness of about 20 nm was formed on the Si surface side surface of the wafer, and an oxide film having a thickness of about 200 nm was formed on the C surface side surface. Therefore, all the work-affected layers are oxidized.

このウェハのSi面を0.2kg/cm2の研磨面圧力で研磨定盤に押し付け、研磨定盤を40rpmで回転させることによって研磨した。研磨剤は、ガーネット固形分を濃度10mass%とコロイダルシリカ固形分を濃度10mass%含むスラリーで、pHは弱アルカリ(pH〜10)に調整した。スラリーは毎時1リットルの割合でローラーポンプで供給した。研磨機下部から排出されたスラリーは回収して再度ローラーポンプで研磨定盤に循環供給した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。研磨定盤は直径15インチ(380mm)のバフ盤であり、ウェハ貼付け板には直径4インチ(100mm)の4H-SiC単結晶ウェハを一枚貼付け、貼付け板一枚を研磨定盤に載せて研磨した。 The Si surface of this wafer was pressed against the polishing surface plate with a polishing surface pressure of 0.2 kg / cm 2 and polished by rotating the polishing surface plate at 40 rpm. The abrasive was a slurry containing a garnet solid content of 10 mass% and a colloidal silica solid content of 10 mass%, and the pH was adjusted to a weak alkali (pH to 10). The slurry was fed by a roller pump at a rate of 1 liter per hour. The slurry discharged from the lower part of the polishing machine was recovered and circulated and supplied again to the polishing platen with a roller pump. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm). A wafer bonding plate is affixed with a single 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm). Polished. The polishing surface plate is a buffing machine with a diameter of 15 inches (380 mm), and a 4H-SiC single crystal wafer with a diameter of 4 inches (100 mm) is affixed to the wafer affixing plate, and one affixing plate is placed on the polishing surface plate. Polished.

この条件で3時間研磨した結果、表面の加工変質層は完全に除去され、断面TEMで表面のダメージを観察したが、全くダメージは検出できなかった。また、AFMで表面の凹凸を測定したところ、Ra=0.1nmと、非常に平坦性に優れていた。   As a result of polishing for 3 hours under these conditions, the work-affected layer on the surface was completely removed, and surface damage was observed with a cross-sectional TEM, but no damage was detected. In addition, when the surface irregularities were measured by AFM, Ra = 0.1 nm was found to be very excellent in flatness.

同じ条件で再現性を確かめたところ、常に、仕上げ研磨後の表面からは加工変質層が除去されており、AFMで測定した表面の凹凸は、常に0.3nm以下の値で仕上げられた。   When reproducibility was confirmed under the same conditions, the work-affected layer was always removed from the surface after finish polishing, and the surface irregularities measured by AFM were always finished with a value of 0.3 nm or less.

尚、従来技術として、コロイダルシリカとアルカリ液の相乗作用を利用する研磨方法では、表面の凹凸がAFMでの測定値でRa=0.5〜0.8nm程度に平坦化されるに留まった。この時、研磨面圧力は0.5kg/cm2で、研磨定盤の回転速度は80rpmであり、本発明の実施例より高い圧力をかけて高回転速度で研磨したが、加工変質層の除去には48時間以上かかり、スループットが悪化した。 As a conventional technique, in a polishing method using the synergistic action of colloidal silica and an alkali solution, the surface irregularities are only flattened to Ra = 0.5 to 0.8 nm as measured by AFM. At this time, the polishing surface pressure was 0.5 kg / cm 2 and the rotation speed of the polishing platen was 80 rpm, and polishing was performed at a high rotation speed by applying a higher pressure than the examples of the present invention. Took more than 48 hours and the throughput deteriorated.

また、別の従来技術として、酸化クロムで研磨した場合は、コロイダルシリカとアルカリ液の相乗作用を利用する研磨方法よりは平坦性に優れるが、表面の評価結果は、表面の凹凸のAFMでの測定値はRa=0.4nmであった。この時、酸化クロムは不織布のバフ盤にすり込んで研磨定盤上に保持し、研磨面圧力は0.15kg/cm2で、研磨定盤は80rpmで回転させた。研磨後のウェハ表面を蛍光X線分析装置(XRF)で分析した所、残留するクロムが検出され、金属汚染が確認できた。他方、本発明方法による研磨後のウェハ表面には金属汚染が見出せなかった。
これらの比較から本発明方法の優位性は明らかである。
Moreover, as another conventional technique, when polished with chromium oxide, the polishing method using the synergistic action of colloidal silica and an alkaline solution is superior in flatness, but the surface evaluation result is the surface irregularity in AFM. The measured value was Ra = 0.4 nm. At this time, chromium oxide was rubbed into a non-woven buffing plate and held on the polishing platen, the polishing surface pressure was 0.15 kg / cm 2 , and the polishing platen was rotated at 80 rpm. When the polished wafer surface was analyzed with a fluorescent X-ray analyzer (XRF), residual chromium was detected and metal contamination could be confirmed. On the other hand, no metal contamination was found on the wafer surface after polishing by the method of the present invention.
From these comparisons, the superiority of the method of the present invention is clear.

熱酸化装置の構成Configuration of thermal oxidizer

Claims (5)

ウェハ表面の方位がSi(0001)面から(1−210)方向に4°方傾いている炭化珪素単結晶ウェハの表面を機械研磨により荒研磨した後、熱酸化し、形成された酸化膜を仕上げ研磨によって除去することを特徴とする炭化珪素単結晶ウェハ表面の研磨方法。 The surface of the silicon carbide single crystal wafer, whose wafer surface orientation is inclined 4 ° in the (1-210) direction from the Si (0001) plane, is roughly polished by mechanical polishing , and then thermally oxidized to form the formed oxide film. A method for polishing a surface of a silicon carbide single crystal wafer, wherein the polishing is performed by finish polishing. 炭化珪素単結晶ウェハの熱酸化が、水分を含んだ酸素ガス雰囲気下での熱酸化である請求項に記載の炭化珪素単結晶ウェハ表面の研磨方法。 Thermal oxidation of the silicon carbide single crystal wafer, a polishing method of a silicon carbide single crystal wafer surface according to claim 1 which is thermal oxidation in an oxygen gas atmosphere containing moisture. 荒研磨により炭化珪素単結晶ウェハの表層部に形成された加工変質層を酸化し、酸化された加工変質層を仕上げ研磨によって除去する請求項1又は2に記載の炭化珪素単結晶ウェハ表面の研磨方法。 The polishing of the silicon carbide single crystal wafer surface according to claim 1 or 2 , wherein the work-affected layer formed on the surface layer portion of the silicon carbide single crystal wafer by rough polishing is oxidized, and the oxidized work-affected layer is removed by finish polishing. Method. 仕上げ研磨で用いる研磨剤が、酸化珪素と炭化珪素の間のヌープ硬度を有する研磨剤である請求項1〜のいずれかに記載の炭化珪素単結晶ウェハ表面の研磨方法。 The method for polishing a surface of a silicon carbide single crystal wafer according to any one of claims 1 to 3 , wherein the polishing agent used in finish polishing is a polishing agent having a Knoop hardness between silicon oxide and silicon carbide. 前記研磨剤が、シリカ、ガーネット、ジルコニア及びアルミナから選ばれた1種又は2種以上である請求項4に記載の炭化珪素単結晶ウェハ表面の研磨方法。 The method for polishing a surface of a silicon carbide single crystal wafer according to claim 4, wherein the abrasive is one or more selected from silica, garnet, zirconia, and alumina.
JP2008133348A 2008-05-21 2008-05-21 Polishing method of silicon carbide single crystal wafer surface Active JP5277722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133348A JP5277722B2 (en) 2008-05-21 2008-05-21 Polishing method of silicon carbide single crystal wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133348A JP5277722B2 (en) 2008-05-21 2008-05-21 Polishing method of silicon carbide single crystal wafer surface

Publications (2)

Publication Number Publication Date
JP2009283629A JP2009283629A (en) 2009-12-03
JP5277722B2 true JP5277722B2 (en) 2013-08-28

Family

ID=41453793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133348A Active JP5277722B2 (en) 2008-05-21 2008-05-21 Polishing method of silicon carbide single crystal wafer surface

Country Status (1)

Country Link
JP (1) JP5277722B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614677B2 (en) * 2010-02-25 2014-10-29 国立大学法人大阪大学 Precision processing method and apparatus for difficult-to-process materials
JP5206733B2 (en) 2010-05-25 2013-06-12 株式会社デンソー Wafer processing method and polishing apparatus and cutting apparatus used therefor
JP6106419B2 (en) * 2012-12-12 2017-03-29 昭和電工株式会社 Method for manufacturing SiC substrate
JP6662130B2 (en) * 2016-03-16 2020-03-11 株式会社リコー Wet etching equipment
CN112892391B (en) * 2021-01-27 2022-07-12 中国工程物理研究院激光聚变研究中心 Polishing solution moisture online adjustment precision control device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857895B1 (en) * 2003-07-23 2007-01-26 Soitec Silicon On Insulator PROCESS FOR PREPARING EPIREADY SURFACE ON SIN THIN FILMS
JP4539140B2 (en) * 2004-03-29 2010-09-08 住友電気工業株式会社 Silicon carbide substrate and method for manufacturing the same
JP4846445B2 (en) * 2006-05-19 2011-12-28 新日本製鐵株式会社 Finish polishing method for silicon carbide single crystal wafer surface

Also Published As

Publication number Publication date
JP2009283629A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4846445B2 (en) Finish polishing method for silicon carbide single crystal wafer surface
JP2007204286A (en) Method for manufacturing epitaxial wafer
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
Deng et al. Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing
JP5277722B2 (en) Polishing method of silicon carbide single crystal wafer surface
JP5469840B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP2008036783A (en) Grinding method and grinding device
JP2009124153A (en) Method for producing semiconductor wafer with polished edge part
CN106133209A (en) Single-crystal silicon carbide substrate, silicon carbide epitaxy substrate and their manufacture method
JP5267177B2 (en) Method for manufacturing silicon carbide single crystal substrate
CN105340066A (en) Method for producing SiC substrate
WO2011021691A1 (en) Method for producing epitaxial silicon wafer
JP5795461B2 (en) Epitaxial silicon wafer manufacturing method
JP2019178062A (en) Silicon carbide substrate, manufacturing method thereof, and manufacturing method of silicon carbide semiconductor device
JP2016139751A (en) Sapphire substrate polishing method and sapphire substrate obtained
US20140030892A1 (en) Method for manufacturing silicon carbide substrate
WO2016170721A1 (en) Method for manufacturing epitaxial wafer
KR102165589B1 (en) Silicon wafer polishing method, silicon wafer manufacturing method and silicon wafer
US20140030874A1 (en) Method for manufacturing silicon carbide substrate
Deng et al. Damage-free and atomically-flat finishing of single crystal SiC by combination of oxidation and soft abrasive polishing
JP2009038220A (en) Dummy wafer
WO2010016510A1 (en) Method for manufacturing a semiconductor wafer
JP2010263095A (en) Method for producing silicon epitaxial wafer
Murata et al. Abrasive-free surface finishing of glass using a Ce film
TW202305915A (en) Method for producing silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5277722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350