[go: up one dir, main page]

JP5264301B2 - Sludge incineration method using fluidized bed incinerator - Google Patents

Sludge incineration method using fluidized bed incinerator Download PDF

Info

Publication number
JP5264301B2
JP5264301B2 JP2008149131A JP2008149131A JP5264301B2 JP 5264301 B2 JP5264301 B2 JP 5264301B2 JP 2008149131 A JP2008149131 A JP 2008149131A JP 2008149131 A JP2008149131 A JP 2008149131A JP 5264301 B2 JP5264301 B2 JP 5264301B2
Authority
JP
Japan
Prior art keywords
fuel supply
temperature
sand layer
fluidized bed
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008149131A
Other languages
Japanese (ja)
Other versions
JP2009293878A (en
Inventor
渉 神山
直樹 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008149131A priority Critical patent/JP5264301B2/en
Publication of JP2009293878A publication Critical patent/JP2009293878A/en
Application granted granted Critical
Publication of JP5264301B2 publication Critical patent/JP5264301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique controlling &Delta;T by increasing or decreasing the number of used fuel supply guns while controlling the fuel supply amount to each fuel supply gun, and keeping the optimum combustion efficiency in a sand layer section while keeping a temperature of a free board section at a constant temperature necessary for complete decomposition of a dioxin component, in a fluidized bed type incinerator composed of the sand layer section and the free board section. <P>SOLUTION: In incinerating sludge in the fluidized bed type incinerator 1 comprising a number of fuel supply guns 13 on the sand layer section 2, the number of used fuel supply guns 13 is increased or decreased so that temperature difference &Delta;Tp (measured value) between a temperature (Ts) of the sand layer section and a temperature (Tf) of the free board becomes a target value &Delta;Ts, while controlling the total amount of the fuel supply amount to each fuel supply gun 13 so that the temperature of the free board section 3 becomes the constant temperature necessary for complete decomposition of the dioxin component. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は流動床式焼却炉による汚泥焼却方法に関するものである。   The present invention relates to a sludge incineration method using a fluidized bed incinerator.

従来から下水汚泥の焼却にはダイオキシンを発生させにくい流動床式焼却炉が広く使用されており、一般的に約800度での焼却が行われてきた。焼却対象となる汚泥の水分含有率変化や有機成分等の変化に起因して汚泥の燃焼状態が変動した際には、燃焼炉内の温度管理が必要となるが、炉内温度管理の従来方式としては、図1に示すように、制御切替え装置16で、砂層部2温度又はフリーボード部3温度の何れか一方を制御対象として選択し、制御対象温度を目標温度に近づけるように燃料流量を制御する方法が一般的であった。特に、燃料供給ガン13は砂層部2に燃料供給を行うものであるため、燃料コントロールにより砂層部2の温度を制御する炉内温度管理方法が一般的であった(特許文献1、特許文献2)。   Conventionally, fluidized bed incinerators that hardly generate dioxins have been widely used for incineration of sewage sludge. Generally, incineration at about 800 degrees has been performed. When the sludge combustion state fluctuates due to changes in the moisture content of sludge to be incinerated or changes in organic components, temperature control in the combustion furnace is required. As shown in FIG. 1, the control switching device 16 selects either the sand layer part 2 temperature or the freeboard part 3 temperature as the control target, and the fuel flow rate is adjusted so that the control target temperature approaches the target temperature. The method of control was common. In particular, since the fuel supply gun 13 supplies fuel to the sand layer portion 2, a furnace temperature management method for controlling the temperature of the sand layer portion 2 by fuel control is generally used (Patent Documents 1 and 2). ).

しかし、近年ダイオキシン類対策措置法に基づく排出基準を満たすために、流動床式焼却炉1のフリーボード部3で排ガスを2秒以上850度以上に保つことが必要となり、前記炉内温度管理の内、フリーボード部3温度を検出し、フリーボード部3温度を前記目標温度に近づけるように燃料流量を助燃料制御部7でフィードバック制御する方法が主流となっている。   However, in recent years, in order to satisfy the emission standards based on the Dioxin Countermeasures Law, it has become necessary to keep the exhaust gas at 850 degrees or more for 2 seconds or more in the freeboard section 3 of the fluidized bed incinerator 1. Among them, the mainstream method is to detect the temperature of the freeboard unit 3 and feedback control the fuel flow rate by the auxiliary fuel control unit 7 so that the temperature of the freeboard unit 3 approaches the target temperature.

図1に示すように、助燃料制御部7は、流量指示調節計(FIC)9と温度指示調節計(TIC)8と、助燃料演算器12とで構成されている。温度指示調節計(TIC)8は、入力された設定炉頂部温度SV1とフリーボード部温度計6の測定した炉頂部温度PV1の偏差に応じて、助燃料演算器12に対して制御出力MV1を出力する。助燃料演算器12は受信した制御出力MV1に基づき、炉頂部温度PV1が設定炉頂部温度SV1に近づくように、フィードバック制御を実行するための演算を行う。   As shown in FIG. 1, the auxiliary fuel control unit 7 includes a flow rate indicating controller (FIC) 9, a temperature indicating controller (TIC) 8, and an auxiliary fuel calculator 12. The temperature indicating controller (TIC) 8 sends a control output MV1 to the auxiliary fuel calculator 12 according to the deviation between the input set furnace top temperature SV1 and the furnace top temperature PV1 measured by the freeboard thermometer 6. Output. The auxiliary fuel calculator 12 performs a calculation for executing feedback control based on the received control output MV1 so that the furnace top temperature PV1 approaches the set furnace top temperature SV1.

助燃料演算器12には、所定のデータ記憶領域に、予め熱収支計算により導出し、または当該計算結果を実際の運転データを基に修正した相関関係式(以下、「第1相関関係式」という。)が格納されており、第1相関関係式を用いて必要助燃料使用量を演算している。演算された必要助燃料使用量は、流量指示調節計(FIC)9に助燃料使用量の設定値SV2として入力され、流量指示調節計9は、助燃料流量計10の測定値である測定助燃料使用量PV2が設定助燃料使用量SV2となるように制御出力MV2を行い、助燃料供給バルブの開閉を操作し、流量調整が行われる。   In the auxiliary fuel computing unit 12, a correlation equation (hereinafter referred to as “first correlation equation”) derived in advance by a heat balance calculation in a predetermined data storage area or modified based on actual operation data. And the required auxiliary fuel consumption is calculated using the first correlation equation. The calculated required auxiliary fuel consumption is input to the flow rate indicating controller (FIC) 9 as the auxiliary fuel consumption setting value SV2, and the flow rate indicating controller 9 is a measurement auxiliary value that is a measurement value of the auxiliary fuel flow meter 10. The control output MV2 is performed so that the fuel usage amount PV2 becomes the set auxiliary fuel usage amount SV2, the opening and closing of the auxiliary fuel supply valve is operated, and the flow rate is adjusted.

但し、図1に示す燃料流量の制御方法は、前記のように砂層部2温度又はフリーボード部3温度の何れか一方を検出し、目標温度に近づけるように燃料流量を制御する方法であるため、フリーボード部3温度を制御対象とした場合、砂層部2での温度コントロールは行われず、砂層部温度は前記フリーボード部温度制御の成り行きのままとなっていた。   However, the fuel flow rate control method shown in FIG. 1 is a method for detecting either the sand layer portion 2 temperature or the freeboard portion 3 temperature and controlling the fuel flow rate so as to approach the target temperature as described above. When the temperature of the free board part 3 is set as a control target, the temperature control in the sand layer part 2 is not performed, and the temperature of the sand layer part remains as a result of the temperature control of the free board part.

流動焼却炉1における汚泥の燃焼工程は、主に汚泥水分蒸発工程と熱分解工程と燃焼工程とからなり、汚泥水分蒸発工程と熱分解工程では吸熱反応が生じ、燃焼工程では発熱反応が生じている。前記各工程の進行は、炉内温度、汚泥の含水量等の性状、空気量等が律速条件となり、汚泥の含水量等の性状は変動するため、砂層部での温度コントロールが行われないまま、前記フリーボード部温度のみを制御因子とする焼却炉の運転を行うと、結果として過剰な空気や燃料が投入されてしまう問題や、反対に砂層部温度が低下しすぎて失火を招く問題も生じていた。   The sludge combustion process in the fluidized incinerator 1 mainly comprises a sludge moisture evaporation process, a pyrolysis process, and a combustion process. An endothermic reaction occurs in the sludge moisture evaporation process and the pyrolysis process, and an exothermic reaction occurs in the combustion process. Yes. The progress of each process is controlled by conditions such as furnace temperature, sludge moisture content, air content, etc., and sludge moisture content, etc., so temperature control in the sand layer is not performed. If the incinerator is operated with only the freeboard part temperature as a control factor, there will be a problem that excessive air and fuel will be thrown in as a result, and on the contrary, the sand part part temperature will be too low and cause a misfire. It was happening.

したがって、過剰な空気量や燃料消費量投入を回避し、下水処理施設におけるCO排出量を削減する観点や、焼却炉の失火を防止し、安定した運転を実現するという観点から、砂層部での燃焼効率を制御することへの需要があった。なお、本発明における「砂層部での燃焼効率」とは、砂層部へ供給した汚泥と燃料がφ%反応し発熱することで、その結果、砂層部温度がTになる、とみなして、砂層部入口熱量と砂層部出口熱量との熱収支をとり、砂層部入口熱量=砂層部出口熱量として求めた値であり、具体的には、砂層燃焼効率(φ)は、砂層部入口熱量を(固形分の燃焼熱×φ)+(燃料の燃焼熱×φ)+(供給した空気の保有熱量)で近似し、砂層部出口熱量を(燃焼により生じた排ガスの保有熱量)+(燃焼反応しなかった汚泥の残保有熱量(固形分の燃焼熱×(1-φ)))+(反応により生じた水蒸気の保有熱量)で近似し、砂層部入口熱量=砂層部出口熱量としてφを求めた値である。 Therefore, from the viewpoint of avoiding excessive air and fuel consumption input, reducing CO 2 emissions in sewage treatment facilities, and preventing misfire of incinerators and realizing stable operation, There was a demand for controlling the combustion efficiency. The “combustion efficiency in the sand layer portion” in the present invention means that the sludge and fuel supplied to the sand layer portion react by φ% to generate heat, and as a result, the temperature of the sand layer portion becomes T. It is a value obtained by taking the heat balance between the calorific value at the inlet and the calorific value at the outlet of the sand layer, and the value obtained as the calorific value at the inlet of the sand layer = the calorific value at the outlet of the sand layer. Specifically, the sand layer combustion efficiency (φ) Solid heat of combustion xφ) + (fuel combustion heat x φ) + (retained heat amount of supplied air), and the sand layer outlet heat amount (retained heat amount of exhaust gas generated by combustion) + (combustion reaction) The residual heat of the sludge that was not present (solid combustion heat x (1-φ))) + (the retained heat of the water vapor generated by the reaction) was approximated to obtain φ as the sand layer inlet heat = sand layer outlet heat Value.

なお、特許文献3には、砂層部とフリーボード部3の温度に基づくフィードフォワード制御により、燃料使用料を制御する技術が開示されているが、前記CO排出量削減の観点から空気や燃料の投入量制御のみによらず、砂層部2での燃焼効率の制御により炉内全体での燃焼効率を最適に維持する技術への需要もあった。
特許第3235643号公報 特許第3235646号公報 特許第3946170号公報
Patent Document 3 discloses a technique for controlling the fuel usage fee by feedforward control based on the temperature of the sand layer portion and the freeboard portion 3, but air and fuel are used from the viewpoint of reducing the CO 2 emission amount. There is also a demand for a technology that optimally maintains the combustion efficiency in the entire furnace by controlling the combustion efficiency in the sand layer portion 2, not only in the control of the input amount of.
Japanese Patent No. 3235643 Japanese Patent No. 3235646 Japanese Patent No. 3946170

本発明の目的は、砂層部とフリーボード部から構成される流動床式焼却炉において、各燃料供給ガンへの燃料の供給量制御と併せて、燃料供給ガンの使用本数増減によるΔTの制御を行い、フリーボード部の温度をダイオキシン成分の完全分解に必要な一定温度としながら、砂層部での燃焼効率を最適に維持する技術を提供することである。   An object of the present invention is to control ΔT by increasing or decreasing the number of fuel supply guns used in a fluidized bed incinerator composed of a sand layer part and a freeboard part, in addition to controlling the amount of fuel supplied to each fuel supply gun. It is to provide a technique for optimally maintaining the combustion efficiency in the sand layer part while keeping the temperature of the free board part at a constant temperature necessary for complete decomposition of the dioxin component.

上記課題を解決するためになされた本発明に係る流動床式焼却炉による汚泥焼却方法は、砂層部に多数の燃料供給ガンを備えた流動床式焼却炉で汚泥を焼却する際に、フリーボード部の温度がダイオキシン成分の完全分解に必要な一定温度となるように各燃料供給ガンへの燃料供給量の合計量を制御しながら、砂層部温度(Ts)とフリーボード部温度(Tf)との温度差ΔTp(実測値)が目標値ΔTsよりも小さい場合には、燃料供給ガンの使用本数を減少させ、ΔTp(実測値)が目標値ΔTsよりも大きい場合には、燃料供給ガンの使用本数を増加させることを特徴とするものである。 The sludge incineration method using a fluidized bed incinerator according to the present invention, which has been made to solve the above problems, is a free board when incinerating sludge in a fluidized bed incinerator equipped with a number of fuel supply guns in the sand layer. While controlling the total amount of fuel supplied to each fuel supply gun so that the temperature of the part becomes a constant temperature necessary for complete decomposition of the dioxin component, the sand layer part temperature (Ts) and the free board part temperature (Tf) When the temperature difference ΔTp (actually measured value) is smaller than the target value ΔTs, the number of fuel supply guns used is decreased, and when ΔTp (actually measured value) is greater than the target value ΔTs, the use of the fuel supply gun is reduced. The number is increased .

請求項2記載の発明は、請求項1記載の流動床式焼却炉による汚泥焼却方法において、Tsが580〜850℃、Tfが850〜950℃であることを特徴とするものである。 The invention according to claim 2 is characterized in that in the sludge incineration method using the fluidized bed incinerator according to claim 1 , Ts is 580 to 850 ° C. and Tf is 850 to 950 ° C.

請求項3記載の発明は、請求項2記載の流動床式焼却炉による汚泥焼却方法において、燃料供給ガンの使用本数の増減は燃料供給ガン用遮断弁の開閉により行うことを特徴とするものである。 The invention described in claim 3 is characterized in that, in the sludge incineration method using the fluidized bed incinerator according to claim 2 , the number of fuel supply guns used is increased or decreased by opening / closing a shutoff valve for the fuel supply gun. is there.

請求項4記載の発明は、請求項1〜3の何れか1項に記載の流動床式焼却炉による汚泥焼却方法において、ΔTと燃料供給ガンの使用本数との相関関係式を予め導出し、当該相関関係式にしたがってフィードバック制御を行うことを特徴とする。 The invention described in claim 4 is a sludge incineration method using a fluidized bed incinerator according to any one of claims 1 to 3, wherein a correlation equation between ΔT and the number of fuel supply guns used is derived in advance. Feedback control is performed according to the correlation equation.

本発明によれば、フリーボード部の温度がダイオキシン成分の完全分解に必要な一定温度となるように各燃料供給ガンへの燃料供給量の合計量を制御しながら、砂層部温度(Ts)とフリーボード部温度(Tf)との温度差ΔTp(実測値)が目標値ΔTsとなるように燃料供給ガンの使用本数を増減するので、空気や燃料の投入量制御によらず、砂層部2の燃焼効率を制御することが可能となる。   According to the present invention, while controlling the total amount of fuel supplied to each fuel supply gun so that the temperature of the free board is a constant temperature required for complete decomposition of the dioxin component, the sand layer temperature (Ts) The number of fuel supply guns used is increased or decreased so that the temperature difference ΔTp (actually measured value) with the freeboard portion temperature (Tf) becomes the target value ΔTs. It becomes possible to control the combustion efficiency.

ΔTp(実測値)が目標値ΔTsよりも小さい場合には、燃料供給ガンの使用本数を減少させ、ΔTp(実測値)が目標値ΔTsよりも大きい場合には、燃料供給ガンの使用本数を増加させるΔT制御を行う請求項2記載の発明によれば、例えば砂層部温度(Ts)が過度に上昇し、ΔTp(実測値)が低下した際には、燃料供給ガンの使用料を減らすことで、砂層部での燃焼効率を低下させることができ、従来、砂層部の温度が過度に上昇した際に空気量や燃料消費量が過剰となっていた問題が解消可能となり、燃費向上や、下水処理施設におけるCO排出量削減が可能となる。一方、砂層部温度(Ts)が過度に低下し、ΔTp(実測値)が上昇した際には、燃料供給ガンの使用料を増やすことで、砂層部での燃焼効率を上昇させることができるため、突然の失火が防止され、焼却炉の安定運転が可能となる。 When ΔTp (actually measured value) is smaller than the target value ΔTs, the number of fuel supply guns used is decreased. When ΔTp (actually measured value) is larger than the target value ΔTs, the number of fuel supply guns used is increased. According to the second aspect of the present invention, the ΔT control is performed. For example, when the sand layer temperature (Ts) rises excessively and ΔTp (actually measured value) decreases, the usage fee of the fuel supply gun is reduced. The combustion efficiency at the sand layer can be reduced, and the problem of excessive air volume and fuel consumption when the temperature of the sand layer has excessively increased can be solved. It is possible to reduce CO 2 emissions at the treatment facility. On the other hand, when the sand layer temperature (Ts) decreases excessively and ΔTp (actually measured value) increases, the combustion efficiency in the sand layer can be increased by increasing the usage fee of the fuel supply gun. Sudden misfire is prevented, and the incinerator can be operated stably.

請求項5記載の発明によれば、ΔTと燃料供給ガンの使用本数との相関関係式を予め導出し、当該相関関係式にしたがって行うフィードバック制御とすることにより、焼却炉の安定運転が可能となる。   According to the fifth aspect of the present invention, the correlation equation between ΔT and the number of fuel supply guns used is derived in advance, and the feedback control performed according to the correlation equation enables stable operation of the incinerator. Become.

以下、図2により本発明に係る汚泥焼却方法に適した流動床式焼却炉を説明し、図3及び表1により本発明に係る汚泥焼却方法を説明する。なお、図2は、本発明の流動床式焼却炉の炉内温度制御系統を模式的に示す構成図であって、本発明の制御対象とならない焼却炉構造(空気供給管等)は図示を省略している。   Hereinafter, the fluidized bed incinerator suitable for the sludge incineration method according to the present invention will be described with reference to FIG. 2, and the sludge incineration method according to the present invention will be described with reference to FIG. FIG. 2 is a block diagram schematically showing the in-furnace temperature control system of the fluidized bed incinerator of the present invention, and the incinerator structure (air supply pipe etc.) not subject to control of the present invention is shown in the figure. Omitted.

図2において、1は流動床式焼却炉、2は砂層部、3はフリーボード部、4は排ガス排出口、5は砂層部温度計、6はフリーボード部温度計、13は燃料供給ガン、7は助燃料制御部であり、制御切替え装置16で選択したフリーボード部温度に基づき助燃料制御部7により、助燃料流量を制御する方法は前記図1に示した従来法と同様である。本発明に係る汚泥焼却方法に使用する流動床式焼却炉は、燃料制御部7による助燃料流量制御手段に加えて、ΔT制御部15によるΔT制御手段が備えられている。なお、図2において、複数の燃料供給ガン13は図面記載の便宜上、焼却炉高さ方向に重なるように配置するように図示されているが、実際の焼却炉においては、図4の焼却炉砂層部断面図が示すように焼却炉砂層部の周方向に配置されている。   In FIG. 2, 1 is a fluidized bed incinerator, 2 is a sand layer part, 3 is a free board part, 4 is an exhaust gas discharge port, 5 is a sand layer part thermometer, 6 is a free board part thermometer, 13 is a fuel supply gun, Reference numeral 7 denotes an auxiliary fuel control unit. A method of controlling the auxiliary fuel flow rate by the auxiliary fuel control unit 7 based on the free board temperature selected by the control switching device 16 is the same as the conventional method shown in FIG. The fluidized bed incinerator used in the sludge incineration method according to the present invention is provided with ΔT control means by the ΔT control section 15 in addition to the auxiliary fuel flow rate control means by the fuel control section 7. In FIG. 2, the plurality of fuel supply guns 13 are illustrated so as to be overlapped in the incinerator height direction for convenience of drawing, but in an actual incinerator, the incinerator sand layer of FIG. 4 is illustrated. As the partial sectional view shows, it is arranged in the circumferential direction of the incinerator sand layer.

ΔT制御手段は、砂層部温度計5と、フリーボード部温度計6と、ΔT制御部15と、複数の燃料供給ガン13、及び各燃料供給ガン13ごとに備えられた燃料供給ガン開閉バルブ14とから構成される。ΔT制御部15には、砂層部温度計5で測定された温度(Ts)データ値PV3とフリーボード部温度計6で測定された温度(Tf)データ値PV1とが入力される。また、ΔT制御部15の所定のデータ記憶領域には、入力設定されたΔTの目標値(ΔTs)と、ΔTとガスガン使用本数の相関関係を表わす相関関係式(以下、「第2相関関係式」という。)が格納されており、これらの格納データと、前記の測定データ(PV1、PV3)を用いて助燃料供給バルブ13使用本数が演算決定される。演算決定された必要使用本数は、燃料供給ガン開閉バルブ14の開閉操作信号MV3として出力され、燃料供給ガン開閉バルブ14の開閉操作により助燃料供給ガン13使用本数の調整が行われる。なお、ΔT制御の制御幅を大きくとる為には、流動床式焼却炉1に予め設置される燃料供給ガン13の数を必要能力以上の本数とすることが好ましい。ここで、必要能力とは焼却炉を継続的に補燃運転するために必要となる燃料供給能力を有する事を示す。   The ΔT control means includes a sand layer thermometer 5, a freeboard thermometer 6, a ΔT control unit 15, a plurality of fuel supply guns 13, and a fuel supply gun opening / closing valve 14 provided for each fuel supply gun 13. It consists of. The temperature (Ts) data value PV3 measured by the sand layer thermometer 5 and the temperature (Tf) data value PV1 measured by the free board thermometer 6 are input to the ΔT control unit 15. Further, in a predetermined data storage area of the ΔT control unit 15, a correlation value (hereinafter referred to as “second correlation equation”) indicating a correlation between ΔT and the target number (ΔTs) of the set ΔT and ΔT and the number of gas guns used. And the number of auxiliary fuel supply valves 13 used is calculated and determined using the stored data and the measurement data (PV1, PV3). The calculated required number of use is output as an opening / closing operation signal MV3 of the fuel supply gun opening / closing valve 14, and the number of auxiliary fuel supply guns 13 used is adjusted by opening / closing the fuel supply gun opening / closing valve 14. In order to increase the control range of ΔT control, it is preferable to set the number of fuel supply guns 13 installed in the fluidized bed incinerator 1 in advance to be greater than the necessary capacity. Here, the required capacity indicates that the incinerator has a fuel supply capacity necessary for continuously performing a supplementary combustion operation.

第2相関関係式は、各流動床式焼却炉において、汚泥性状等の燃焼反応律速条件の変動に従って、最適な関係式を求める事が好ましい。以下に、第2相関関係式を求めた実施例を示す。   As for the second correlation formula, it is preferable to obtain an optimal relation formula in accordance with fluctuations in the combustion reaction rate-limiting conditions such as sludge properties in each fluidized bed incinerator. The example which calculated | required the 2nd correlation equation below is shown.

図2に示すように、各々に燃料供給ガン開閉バルブ14を備えた燃料供給ガン13を12本備えた流動床式焼却炉(炉径6.9m)を用い、燃料供給ガン開閉バルブ14の開閉により、使用する燃料供給ガン7の本数を6本、8本、12本と変化させて、焼却炉の運転を行い、以下の表1に示すデータを取得した。なお、運転条件は、汚泥焼却処理量を7200kg/h、フリーボード部温度の目標値を850度とし、燃料制御は自動制御とした。下記の表1でFBとはフリーボード部、SBとは砂層部を意味している。燃料供給ガン7としてはガスガンを使用し、燃料は都市ガスを使用した。   As shown in FIG. 2, a fluidized-bed incinerator (furnace diameter 6.9 m) having 12 fuel supply guns 13 each having a fuel supply gun opening / closing valve 14 is used to open and close the fuel supply gun opening / closing valve 14. Thus, the number of fuel supply guns 7 to be used was changed to 6, 8, and 12 to operate the incinerator, and the data shown in Table 1 below were obtained. The operating conditions were a sludge incineration amount of 7200 kg / h, a free board temperature target value of 850 degrees, and fuel control was automatic control. In Table 1 below, FB means a free board part, and SB means a sand layer part. A gas gun was used as the fuel supply gun 7, and city gas was used as the fuel.

Figure 0005264301
Figure 0005264301

図3は、上記表1から、ガスガン使用本数とΔTの関係、ガスガン使用本数と砂層燃焼効率の関係を抽出してグラフ化したものである。図3より、以下の線形近似式を導くことができる。

Figure 0005264301
Figure 0005264301
FIG. 3 is a graph obtained by extracting the relationship between the number of gas guns used and ΔT and the relationship between the number of gas guns used and the sand layer combustion efficiency from Table 1 above. From FIG. 3, the following linear approximation formula can be derived.
Figure 0005264301
Figure 0005264301

焼却炉の特性により数1、数2の線形近似式は変動するが、各焼却炉で上記と同様の予備実験を行うことにより、砂層燃焼効率と燃料供給ガン13の使用本数、及び、ΔTと燃料供給ガン13の使用本数との線形近似式を求めることができる。このうち、ΔTと燃料供給ガン13の使用本数との線形近似式を第2相関関係式としてΔT制御部15に格納して、ΔTの制御を行う。   Although the linear approximation formulas (1) and (2) vary depending on the characteristics of the incinerator, a preliminary experiment similar to that described above is performed in each incinerator, so that the sand layer combustion efficiency, the number of fuel supply guns 13 used, and ΔT A linear approximation formula with the number of fuel supply guns 13 used can be obtained. Among these, a linear approximation expression between ΔT and the number of fuel supply guns 13 used is stored in the ΔT control unit 15 as a second correlation expression, and ΔT is controlled.

ΔTの制御とは、具体的には、ΔTp(実測値)がΔTの目標値(ΔTs)よりも小さい場合には、燃料供給ガン13の使用本数を減少させ、ΔTp(実測値)が目標値ΔTsよりも大きい場合には、燃料供給ガン13の使用本数を増加させる制御である。燃料供給ガン13の使用本数の増減は、前記のように各燃料供給ガン13ごとに設けられた助燃料供給バルブ14の開閉操作によって行われるが、ここで、燃料供給ガン開閉バルブ14は遮断弁の機能を併用するものとすることができる。遮断弁とは、従来から炉内の圧力異常や、砂層部失火を感知した際に、燃料供給を遮断するために、燃料供給路に設けられていた弁である。   More specifically, the control of ΔT means that when ΔTp (actual value) is smaller than the target value (ΔTs) of ΔT, the number of fuel supply guns 13 used is decreased and ΔTp (actual value) is the target value. When it is larger than ΔTs, the number of fuel supply guns 13 used is increased. The increase / decrease in the number of fuel supply guns 13 used is performed by opening / closing the auxiliary fuel supply valve 14 provided for each fuel supply gun 13 as described above. Here, the fuel supply gun open / close valve 14 is a cutoff valve. These functions can be used in combination. The shut-off valve is a valve provided in the fuel supply path in order to shut off the fuel supply when a pressure abnormality in the furnace or a sand layer misfire is detected.

なお、図3より、燃料供給量の合計量を一定量とした場合、ガスガンの使用本数増加に従って、砂層部の燃焼効率が上昇し、ΔTが低下(=砂層部温度が上昇)していることが読み取れる。当該ΔTの低下は、図4に示すように、燃料供給量の合計量が一定の場合、ガスガンの使用本数が増加するほど、ガスガン1本当たりの燃料供給量が低下し、焼却炉への供給ガス流速が低下することにより砂層内滞留時間が確保され、かつ、ガスガンの使用本数が増加するほど、砂層部における燃焼ゾーンが増加するため、砂層部内での反応率すなわち砂層燃焼効率が上昇したことに起因するものと考えられる。すなわち、本発明における、ガスガンの使用本数増減によるΔTの制御とは、ガスガンの使用本数増減による砂層部の燃焼効率の制御を意味するものであり、本発明はΔTという可視パラメータの制御により、間接的に砂層部の燃焼効率を制御可能としたものである。なお、燃焼効率の観点から、図4に示すように、対称に配置されているガスガンを一対の制御単位として制御を行うことが好ましい。   As shown in FIG. 3, when the total amount of fuel supply is constant, as the number of gas guns used increases, the combustion efficiency of the sand layer increases, and ΔT decreases (= sand layer temperature increases). Can be read. As shown in FIG. 4, when the total amount of fuel supply is constant, the decrease in ΔT decreases as the number of gas guns used increases and the amount of fuel supplied per gas gun decreases. The retention time in the sand layer is secured by reducing the gas flow rate, and the combustion zone in the sand layer increases as the number of gas guns used increases, so the reaction rate in the sand layer, that is, the sand layer combustion efficiency increases. It is thought to be caused by That is, in the present invention, the control of ΔT by increasing / decreasing the number of gas guns used means control of the combustion efficiency of the sand layer portion by increasing / decreasing the number of gas guns used, and the present invention indirectly controls the visible parameter of ΔT. In particular, the combustion efficiency of the sand layer can be controlled. From the viewpoint of combustion efficiency, as shown in FIG. 4, it is preferable to perform control using gas guns arranged symmetrically as a pair of control units.

従来の流動床式焼却炉の燃焼制御装置の制御系統を模式的に示す構成図である。It is a block diagram which shows typically the control system of the combustion control apparatus of the conventional fluidized bed incinerator. 本発明の流動床式焼却炉の燃焼制御装置の制御系統を模式的に示す構成図である。It is a block diagram which shows typically the control system of the combustion control apparatus of the fluidized bed incinerator of this invention. ガスガン使用本数とΔT、ガスガン使用本数と砂層燃焼効率の関係式を示す図である。It is a figure which shows the relational expression of the number of gas gun use, (DELTA) T, a gas gun use number, and sand layer combustion efficiency. 砂層部断面の燃焼ゾーン変動を示すモデル図である。(使用燃料量を同一とし、ガスガンの使用本数を変動させた場合)It is a model figure which shows the combustion zone fluctuation | variation of a sand layer part cross section. (When using the same amount of fuel and changing the number of gas guns used)

符号の説明Explanation of symbols

1 流動床式焼却炉
2 砂層部
3 フリーボード部
4 排出口
5 砂層部温度計
6 フリーボード部温度計
7 助燃料制御部
8 温度指示調節計(TIC)
9 流量指示調節計(FIC)
10 助燃料流量計10
11 燃料流量調節バルブ
12 助燃料演算器
13 燃料供給ガン
14 燃料供給ガン開閉バルブ
15 ΔT制御部
16 制御切替え装置
17 砂層部における燃焼ゾーン
DESCRIPTION OF SYMBOLS 1 Fluidized bed incinerator 2 Sand layer part 3 Free board part 4 Outlet 5 Sand layer part thermometer 6 Free board part thermometer 7 Auxiliary fuel control part 8 Temperature indication controller (TIC)
9 Flow rate indicating controller (FIC)
10 Auxiliary fuel flow meter 10
11 Fuel Flow Control Valve 12 Auxiliary Fuel Calculator 13 Fuel Supply Gun 14 Fuel Supply Gun Open / Close Valve 15 ΔT Control Unit 16 Control Switching Device 17 Combustion Zone in Sand Layer

Claims (4)

砂層部に多数の燃料供給ガンを備えた流動床式焼却炉で汚泥を焼却する際に、
フリーボード部の温度がダイオキシン成分の完全分解に必要な一定温度となるように各燃料供給ガンへの燃料供給量の合計量を制御しながら、
砂層部温度(Ts)とフリーボード部温度(Tf)との温度差ΔTp(実測値)が目標値ΔTsよりも小さい場合には、燃料供給ガンの使用本数を減少させ、ΔTp(実測値)が目標値ΔTsよりも大きい場合には、燃料供給ガンの使用本数を増加させることを特徴とする流動床式焼却炉による汚泥焼却方法。
When incinerating sludge in a fluidized bed incinerator equipped with a number of fuel supply guns in the sand layer,
While controlling the total amount of fuel supplied to each fuel supply gun so that the temperature of the free board part becomes a constant temperature necessary for complete decomposition of the dioxin component,
When the temperature difference ΔTp (measured value) between the sand layer temperature (Ts) and the freeboard temperature (Tf) is smaller than the target value ΔTs, the number of fuel supply guns used is decreased, and ΔTp (actual value) is A sludge incineration method using a fluidized bed incinerator characterized by increasing the number of fuel supply guns used when the target value ΔTs is greater .
Tsが580〜850℃、Tfが850〜950℃であることを特徴とする請求項1記載の流動床式焼却炉による汚泥焼却方法。 Ts is 580-850 degreeC and Tf is 850-950 degreeC, The sludge incineration method by the fluidized-bed incinerator of Claim 1 characterized by the above-mentioned. 燃料供給ガンの使用本数の増減は燃料供給ガン用遮断弁の開閉により行うことを特徴とする請求項2記載の流動床式焼却炉による汚泥焼却方法。 The method for sludge incineration using a fluidized bed incinerator according to claim 2, wherein the number of fuel supply guns used is increased or decreased by opening or closing a shutoff valve for the fuel supply gun. ΔTと燃料供給ガンの使用本数との相関関係式を予め導出し、当該相関関係式にしたがってフィードバック制御を行うことを特徴とする請求項1〜3の何れか1項に記載の流動床式焼却炉による汚泥焼却方法。 The fluidized bed incineration according to any one of claims 1 to 3 , wherein a correlation equation between ΔT and the number of fuel supply guns used is derived in advance, and feedback control is performed according to the correlation equation. Sludge incineration method using a furnace.
JP2008149131A 2008-06-06 2008-06-06 Sludge incineration method using fluidized bed incinerator Active JP5264301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149131A JP5264301B2 (en) 2008-06-06 2008-06-06 Sludge incineration method using fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149131A JP5264301B2 (en) 2008-06-06 2008-06-06 Sludge incineration method using fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JP2009293878A JP2009293878A (en) 2009-12-17
JP5264301B2 true JP5264301B2 (en) 2013-08-14

Family

ID=41542204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149131A Active JP5264301B2 (en) 2008-06-06 2008-06-06 Sludge incineration method using fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JP5264301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116843836B (en) * 2023-07-06 2025-01-17 上海市政工程设计研究总院(集团)有限公司 A sludge management method, a sludge management system and a method of using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457012U (en) * 1990-09-06 1992-05-15
JP3305175B2 (en) * 1995-11-21 2002-07-22 株式会社クボタ Sand bed combustion rate adjustment method for fluidized bed furnace
JP2000034519A (en) * 1998-07-16 2000-02-02 Daido Steel Co Ltd Method for driving regenerative burner
JP2000130747A (en) * 1998-10-21 2000-05-12 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for controlling the number of burners in a boiler
JP3771791B2 (en) * 2000-10-18 2006-04-26 三菱重工業株式会社 Waste incinerator with high water content and high volatility such as sewage sludge
JP2006002945A (en) * 2004-06-15 2006-01-05 Akihiko Miyamoto Sludge incineration equipment

Also Published As

Publication number Publication date
JP2009293878A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4564376B2 (en) LNG power generation plant and its operation method
JP2007211705A (en) Air pressure control device in integrated gasification combined cycle system
KR100789158B1 (en) A Method of Firebox Temperature Control for Achieving Carbon Monoxide Emission Compliance in Industrial Furnances with Minimal Energy Consumption
JP5264301B2 (en) Sludge incineration method using fluidized bed incinerator
JP5316913B2 (en) Combustion furnace temperature control method and apparatus for gasification equipment
JP2005242524A (en) Operation control method and operation controller for treatment plant facility
JP4594376B2 (en) Gas heating value control method and gas heating value control device
JP5826954B1 (en) Waste treatment system and NOx treatment method in the system
KR101735989B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP5767486B2 (en) Heat recovery plant and operation control method thereof
CN115479276A (en) Control device, waste incineration equipment, control method and program
JP3946170B2 (en) Combustion control device and combustion control method for sludge incinerator
JP4256378B2 (en) Control method and control apparatus for gasifier
JP2020190364A (en) Combustion control method, waste incinerator power generation equipment
JP3621805B2 (en) Combustion control method in fluidized bed incinerator
KR20150014490A (en) Circulating-type multi-layer furnace
JP2002221308A (en) Combustion control method and waste treatment equipment
JP4366711B2 (en) Bubbling fluidized bed combustion furnace and its temperature control method
JP3041263B2 (en) Method of controlling nitrogen oxides in flue gas from pressurized fluidized-bed boiler
JP2007170245A (en) Gas turbine facility, low calory gas feeding facility, and method of suppressing rise of calory of gas
JP2006125759A (en) Operation control device for incinerator
JP4485899B2 (en) Combined gasification power generation facility, control method, fuel gas production method
JP3621792B2 (en) Combustion control method for waste melting furnace generated gas combustion furnace
JP2023048608A (en) Fluidized bed type sludge incineration furnace, and automatic combustion control method for fluidized bed type sludge incineration furnace
JP2024108798A (en) Feedback control device, feedback control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Ref document number: 5264301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250