[go: up one dir, main page]

JP5244043B2 - Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device - Google Patents

Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device Download PDF

Info

Publication number
JP5244043B2
JP5244043B2 JP2009174628A JP2009174628A JP5244043B2 JP 5244043 B2 JP5244043 B2 JP 5244043B2 JP 2009174628 A JP2009174628 A JP 2009174628A JP 2009174628 A JP2009174628 A JP 2009174628A JP 5244043 B2 JP5244043 B2 JP 5244043B2
Authority
JP
Japan
Prior art keywords
driving force
rudder angle
wheel
road surface
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009174628A
Other languages
Japanese (ja)
Other versions
JP2011025847A (en
Inventor
毅 米田
浩一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2009174628A priority Critical patent/JP5244043B2/en
Publication of JP2011025847A publication Critical patent/JP2011025847A/en
Application granted granted Critical
Publication of JP5244043B2 publication Critical patent/JP5244043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、容易に精度良く路面摩擦係数の推定が行えて、車両の前後駆動力配分制御を行うことができる路面摩擦係数推定装置、及び、車両の前後駆動力配分制御装置に関する。   The present invention relates to a road surface friction coefficient estimating device and a vehicle front and rear driving force distribution control device that can easily and accurately estimate a road surface friction coefficient and perform vehicle front and rear driving force distribution control.

従来より、車両においては、4輪駆動車の前後駆動力配分制御等について様々な制御技術が提案され、実用化されている。これらの技術では、必要な制御量の演算、或いは、補正に路面摩擦係数を用いるものも多く、その制御を確実に実行するためには、正確な路面摩擦係数を推定する必要がある。   Conventionally, in vehicles, various control techniques have been proposed and put into practical use for front-rear driving force distribution control of a four-wheel drive vehicle. Many of these techniques use a road surface friction coefficient for calculation or correction of a necessary control amount, and it is necessary to estimate an accurate road surface friction coefficient in order to reliably execute the control.

例えば、特開平4−135923号公報(以下、特許文献1)では、検出した従動内輪の回転速度Viと従動外輪の回転速度Voとに基づいて、車両に発生している横加速度Gy1を、以下の(1)式により算出し、検出した舵角δと車速Vとに基づいて、以下の(2)式により規範横加速度Gy2を算出し、横加速度Gy1と規範横加速度Gy2との差に基づいて低μ路か否か判定する技術が開示されている。
Gy1=(Vo−Vi)/2・T・g …(1)
Gy2=V・δ/L・g …(2)
ここで、Tはトレッド、gは重力加速度、Lはホールベースである。
For example, in Japanese Patent Laid-Open No. 4-135923 (hereinafter referred to as Patent Document 1), the lateral acceleration Gy1 generated in the vehicle based on the detected rotational speed Vi of the driven inner ring and the rotational speed Vo of the driven outer ring is expressed as follows. Based on the steering angle δ and the detected vehicle speed V, the reference lateral acceleration Gy2 is calculated by the following expression (2), and based on the difference between the lateral acceleration Gy1 and the reference lateral acceleration Gy2. A technique for determining whether the road is a low μ road is disclosed.
Gy1 = (Vo 2 −Vi 2 ) / 2 · T · g (1)
Gy2 = V 2 · δ / L · g (2)
Here, T is a tread, g is a gravitational acceleration, and L is a hole base.

特開平4−135923号公報JP-A-4-135923

ところで、上述の特許文献1で開示される(1)式は、旋回半径R0と旋回内輪の回転速度Vi、旋回外輪の回転速度Voとの関係から、図13(a)に示す、アッカーマンジオメトリによっても説明付けられる。図13(a)を三角形の関係に模した図13(b)に示すように、三角形の相似則から、以下の(3)式の関係が導かれる。
Vi/(R0−(T/2))=(Vo−Vi)/T …(3)
この(3)式を、旋回半径R0について解くと、
R0=(Vo+Vi)・(T/2)/(Vo−Vi) …(4)
また、車速Vは、
V=(Vi+Vo)/2 …(5)
であり、横加速度Ayは、
Ay=V/R0 …(6)
であるから、(6)式に、(4)、(5)式を代入すると、
Ay=((Vi+Vo)/4)/((Vo+Vi)・(T/2)/(Vo−Vi))
…(7)
となり、この(7)式を変形して、AyをGy1と読み替えることにより、上述の(1)式の関係が導出される。このことからも明らかなように、上述の(1)式を用いることは、上述の(3)式が前提となっている。旋回内輪の回転速度Vi、旋回外輪の回転速度Voが旋回半径R0と上述の(3)式の関係になるためには、旋回半径R0と旋回内輪の回転速度Vi、旋回外輪の回転速度Voが比例関係にある必要があり、旋回内輪の回転速度Viと旋回外輪の回転速度Voとが同じスリップ率λであることが前提となる。図12(a)に示すように、旋回内輪と旋回外輪は、接地荷重が異なると、同じスリップ率λcであってもそれぞれの駆動力は、それぞれ異なったものとなってしまう。図12(a)に示すように、旋回内輪と旋回外輪の接地荷重が異なる旋回中等において内外輪が同じスリップ率λであるためには、駆動力が作用しない場合のλ=0の場合である必要があり、旋回内輪と旋回外輪とは駆動力の作用しない従動輪である必要がある。従って、4輪駆動車のように前後輪に駆動力が作用してしまう場合には精度良く路面摩擦係数を推定することが困難であり、駆動力が作用する場合においても精度良く路面摩擦係数を推定することのできる路面摩擦係数推定装置が求められている。図12(b)に示すように、同じ駆動力(図中Fxc)が作用する場合であっても、路面摩擦係数が異なるとスリップ率λや接地荷重が異なってくる。こうした全ての要素を考慮して、タイヤモデル等を作成して路面摩擦係数を精度良く推定することは困難である。
By the way, the equation (1) disclosed in Patent Document 1 described above is based on the Ackermann geometry shown in FIG. 13A from the relationship between the turning radius R0, the rotation speed Vi of the turning inner ring, and the rotation speed Vo of the turning outer ring. Can also be explained. As shown in FIG. 13B simulating FIG. 13A in the relation of triangles, the relation of the following expression (3) is derived from the similarity law of triangles.
Vi / (R0− (T / 2)) = (Vo−Vi) / T (3)
Solving this equation (3) for the turning radius R0,
R0 = (Vo + Vi) · (T / 2) / (Vo−Vi) (4)
The vehicle speed V is
V = (Vi + Vo) / 2 (5)
The lateral acceleration Ay is
Ay = V 2 / R0 ... ( 6)
Therefore, substituting (4) and (5) into (6),
Ay = ((Vi + Vo) 2/4) / ((Vo + Vi) · (T / 2) / (Vo-Vi))
... (7)
Thus, by modifying this equation (7) and replacing Ay with Gy1, the relationship of the above equation (1) is derived. As is clear from this, the use of the above-described equation (1) is based on the above-described equation (3). In order for the rotation speed Vi of the turning inner wheel and the rotation speed Vo of the turning outer wheel to be in the relationship of the turning radius R0 and the above-described equation (3), the turning radius R0, the rotation speed Vi of the turning inner ring, and the rotation speed Vo of the turning outer wheel are The rotation speed Vi of the inner turning wheel and the rotation speed Vo of the outer turning wheel must be the same slip ratio λ. As shown in FIG. 12 (a), when the grounding load is different between the turning inner wheel and the turning outer wheel, the respective driving forces are different even with the same slip ratio λc. As shown in FIG. 12A, the inner and outer wheels have the same slip ratio λ during turning such as when the ground load of the turning inner wheel and the turning outer wheel are different, so that λ = 0 when the driving force does not act. Therefore, the turning inner wheel and the turning outer wheel need to be driven wheels that do not act on the driving force. Therefore, it is difficult to accurately estimate the road surface friction coefficient when the driving force acts on the front and rear wheels as in a four-wheel drive vehicle, and the road surface friction coefficient can be accurately calculated even when the driving force acts. There is a need for a road friction coefficient estimation device that can be estimated. As shown in FIG. 12 (b), even when the same driving force (Fxc in the figure) is applied, the slip ratio λ and the ground contact load are different if the road surface friction coefficient is different. In consideration of all these factors, it is difficult to accurately estimate the road friction coefficient by creating a tire model or the like.

本発明は上記事情に鑑みてなされたもので、たとえ、駆動力が作用する場合においても容易に精度良く路面摩擦係数を推定することができ、この路面摩擦係数を用いて精度良く前後駆動力配分制御することができ、また駆動力が作用する場合においても容易に精度良く前後駆動力配分を設定して制御することができる路面摩擦係数推定装置、及び、車両の前後駆動力配分制御装置を提供することを目的としている。   The present invention has been made in view of the above circumstances. Even when a driving force acts, the road surface friction coefficient can be estimated easily and accurately, and the front and rear driving force distribution can be accurately distributed using this road surface friction coefficient. Provided is a road surface friction coefficient estimation device and a vehicle front / rear driving force distribution control device that can be controlled and can easily and accurately set and control the front / rear driving force distribution even when a driving force is applied. The purpose is to do.

本発明は、各輪の車輪速を検出する車輪速検出手段と、舵角を検出する舵角検出手段と、車体速を検出する車体速検出手段と、上記車輪速検出手段で検出した各輪の車輪速に基づいて旋回内輪と旋回外輪との車輪速差を算出する車輪速差算出手段と、車両が発生している総駆動力を算出する総駆動力算出手段と、上記総駆動力と上記車体速と上記車輪速差とに基づいて、予め設定しておいた上記総駆動力と上記車体速と上記車輪速差と舵角との関係のマップを参照して舵角を推定舵角として設定する推定舵角設定手段と、上記舵角検出手段で検出した舵角と上記推定舵角設定手段で設定した推定舵角との偏差を舵角偏差として算出する舵角偏差算出手段と、上記車体速と上記舵角と上記舵角偏差に基づいて、予め設定しておいた上記車体速と上記舵角と上記舵角偏差と路面摩擦係数との関係のマップを参照して路面摩擦係数を設定する路面摩擦係数設定手段とを備えたことを特徴としている。   The present invention relates to a wheel speed detecting means for detecting a wheel speed of each wheel, a steering angle detecting means for detecting a steering angle, a vehicle body speed detecting means for detecting a vehicle body speed, and each wheel detected by the wheel speed detecting means. Wheel speed difference calculating means for calculating the wheel speed difference between the turning inner wheel and the turning outer wheel based on the wheel speed of the vehicle, total driving force calculating means for calculating the total driving force generated by the vehicle, and the total driving force Based on the vehicle body speed and the wheel speed difference, the steering angle is estimated by referring to a map of the relationship between the total driving force, the vehicle body speed, the wheel speed difference, and the steering angle that is set in advance. Estimated rudder angle setting means for setting as a rudder angle deviation calculating means for calculating a deviation between the rudder angle detected by the rudder angle detecting means and the estimated rudder angle set by the estimated rudder angle setting means as a rudder angle deviation; Based on the vehicle body speed, the rudder angle, and the rudder angle deviation, Is characterized in that by referring to the map of the relationship between serial steering angle and the steering angle deviation and the road surface friction coefficient and a road friction coefficient setting means for setting a road surface friction coefficient.

本発明によれば、たとえ、駆動力が作用する場合においても容易に精度良く路面摩擦係数を推定することができ、この路面摩擦係数を用いて精度良く前後駆動力配分制御することができ、また駆動力が作用する場合においても容易に精度良く前後駆動力配分を設定して制御することが可能となる。   According to the present invention, even when a driving force acts, the road surface friction coefficient can be estimated easily and accurately, and the front and rear driving force distribution control can be accurately performed using the road surface friction coefficient. Even when a driving force acts, it is possible to set and control the front / rear driving force distribution easily and accurately.

本発明の実施の第1形態に係る車両全体の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the whole vehicle which concerns on 1st Embodiment of this invention. 本発明の実施の第1形態に係る制御ユニットの機能ブロック図である。It is a functional block diagram of a control unit concerning a 1st embodiment of the present invention. 本発明の実施の第1形態に係る補正ゲイン算出部の機能ブロック図である。It is a functional block diagram of the correction gain calculation part which concerns on 1st Embodiment of this invention. 本発明の実施の第1形態に係る前後駆動力配分制御プログラムのフローチャートである。It is a flowchart of the front-rear driving force distribution control program according to the first embodiment of the present invention. 本発明の実施の第1形態に係る補正ゲイン算出処理ルーチンのフローチャートである。It is a flowchart of the correction gain calculation process routine which concerns on 1st Embodiment of this invention. 本発明の実施の第1形態に係るアクセル開度に応じた目標差動制限トルクのマップの説明図である。It is explanatory drawing of the map of the target differential limiting torque according to the accelerator opening which concerns on 1st Embodiment of this invention. 本発明の実施の第1形態に係る総駆動力と車速と車輪速差と舵角との関係のマップの一例を示す説明図である。It is explanatory drawing which shows an example of the map of the relationship between the total drive force which concerns on 1st Embodiment of this invention, a vehicle speed, a wheel speed difference, and a steering angle. 本発明の実施の第1形態に係る車速と舵角と舵角偏差と路面摩擦係数との関係のマップの一例を示す説明図である。It is explanatory drawing which shows an example of the map of the relationship between the vehicle speed which concerns on 1st Embodiment of this invention, a steering angle, a steering angle deviation, and a road surface friction coefficient. 本発明の実施の第1形態に係る路面摩擦係数と補正ゲインとの関係のマップの一例を示す説明図である。It is explanatory drawing which shows an example of the map of the relationship between the road surface friction coefficient which concerns on 1st Embodiment of this invention, and correction | amendment gain. 本発明の実施の第2形態に係る補正ゲイン算出部の機能ブロック図である。It is a functional block diagram of the correction gain calculation part which concerns on the 2nd Embodiment of this invention. 本発明の実施の第2形態に係る車速と舵角と舵角偏差と補正ゲインとの関係のマップの一例を示す説明図である。It is explanatory drawing which shows an example of the map of the relationship between the vehicle speed which concerns on 2nd Embodiment of this invention, a steering angle, a steering angle deviation, and a correction gain. スリップ率と旋回内外輪の駆動力の特性と路面摩擦係数が異なる場合のスリップ率と旋回内外輪の駆動力の特性を示す説明図である。It is explanatory drawing which shows the characteristic of the slip ratio and the driving force of a turning inner and outer wheel when the slip ratio and the characteristic of the driving force of the turning inner and outer wheels and the road surface friction coefficient are different. アッカーマンジオメトリによる横加速度の関係の説明図である。It is explanatory drawing of the relationship of the lateral acceleration by Ackerman geometry.

以下、図面に基づいて本発明の実施の形態を説明する。図1乃至図9は本発明の実施の第1形態を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 9 show a first embodiment of the present invention.

図1において、符号1は車両前部に配置されたエンジンを示し、このエンジン1による駆動力は、エンジン1後方の自動変速装置(トルクコンバータ等も含んで図示)2からトランスミッション出力軸2aを経てトランスファ3に伝達される。   In FIG. 1, reference numeral 1 denotes an engine disposed in the front part of the vehicle, and the driving force of the engine 1 is transmitted from an automatic transmission device (including a torque converter and the like) 2 behind the engine 1 through a transmission output shaft 2a. It is transmitted to the transfer 3.

更に、このトランスファ3に伝達された駆動力は、リヤドライブ軸4、プロペラシャフト5、ドライブピニオン軸部6を介して後輪終減速装置7に入力される一方、リダクションドライブギヤ8、リダクションドリブンギヤ9、ドライブピニオン軸部となっているフロントドライブ軸10を介して前輪終減速装置11に入力される。ここで、自動変速装置2、トランスファ3および前輪終減速装置11等は、一体にケース12内に設けられている。   Further, the driving force transmitted to the transfer 3 is input to the rear wheel final reduction device 7 via the rear drive shaft 4, the propeller shaft 5, and the drive pinion shaft portion 6, while the reduction drive gear 8, the reduction driven gear 9. Then, it is input to the front wheel final reduction gear 11 via the front drive shaft 10 which is the drive pinion shaft portion. Here, the automatic transmission 2, the transfer 3, the front wheel final reduction gear 11 and the like are integrally provided in the case 12.

また、後輪終減速装置7に入力された駆動力は、後輪左ドライブ軸13rlを経て左後輪14rlに、後輪右ドライブ軸13rrを経て右後輪14rrに伝達される。前輪終減速装置11に入力された駆動力は、前輪左ドライブ軸13flを経て左前輪14flに、前輪右ドライブ軸13frを経て右前輪14frに伝達される。   The driving force input to the rear wheel final reduction gear 7 is transmitted to the left rear wheel 14rl via the rear wheel left drive shaft 13rl and to the right rear wheel 14rr via the rear wheel right drive shaft 13rr. The driving force input to the front wheel final reduction gear 11 is transmitted to the left front wheel 14fl via the front wheel left drive shaft 13fl and to the right front wheel 14fr via the front wheel right drive shaft 13fr.

トランスファ3は、リダクションドライブギヤ8側に設けたドライブプレート15aとリヤドライブ軸4側に設けたドリブンプレート15bとを交互に重ねて構成したトルク伝達容量可変型クラッチとしての湿式多板クラッチ(トランスファクラッチ)15と、このトランスファクラッチ15の締結力(差動制限トルク)を可変自在に付与するトランスファピストン16とにより構成されている。従って、本車両は、トランスファピストン16による押圧力を制御し、トランスファクラッチ15の差動制限トルクを制御することで、トルク配分比が前輪と後輪で、例えば100:0から50:50の間で可変できるフロントエンジン・フロントドライブ車ベース(FFベース)の4輪駆動車となっている。   The transfer 3 is a wet multi-plate clutch (transfer clutch) as a variable torque transmission capacity clutch in which a drive plate 15a provided on the reduction drive gear 8 side and a driven plate 15b provided on the rear drive shaft 4 side are alternately stacked. ) 15 and a transfer piston 16 that variably applies a fastening force (differential limit torque) of the transfer clutch 15. Therefore, this vehicle controls the pressing force by the transfer piston 16 and controls the differential limiting torque of the transfer clutch 15, so that the torque distribution ratio is between the front wheel and the rear wheel, for example, between 100: 0 and 50:50. It is a four-wheel drive vehicle with a front engine / front drive vehicle base (FF base) that can be changed by the vehicle.

トランスファピストン16の押圧力は、複数のソレノイドバルブ等を擁した油圧回路で構成するトランスファクラッチ駆動部40で与えられる。このトランスファクラッチ駆動部40を駆動させる制御信号(トランスファクラッチトルクTtrf)は、制御ユニット30から出力される。   The pressing force of the transfer piston 16 is given by a transfer clutch driving unit 40 configured by a hydraulic circuit having a plurality of solenoid valves and the like. A control signal (transfer clutch torque Ttrf) for driving the transfer clutch drive unit 40 is output from the control unit 30.

制御ユニット30は、制御手段として設けられており、図2に示すように、補正ゲイン算出部31と駆動力配分算出部32から主要に構成されている。そして、制御ユニット30には、4輪の車輪速ωfl,ωfr,ωrl,ωrrを検出する車輪速検出手段としての4輪の車輪速センサ21fl,21fr,21rl,21rr、舵角δを検出する舵角検出手段としての舵角センサ22、アクセル開度θACCを検出するアクセル開度センサ23、エンジン1に係る様々な制御を実行するエンジン制御部24、自動変速装置2に係る様々な制御を実行するトランスミッション制御部25が接続されており、4輪車輪速ωfl,ωfr,ωrl,ωrrが補正ゲイン算出部31と駆動力配分算出部32に、舵角δ、エンジン出力トルクTeg、エンジン回転数Ne、トルクコンバータのタービン回転数Nt、主変速ギヤ比iが補正ゲイン算出部31に、アクセル開度θACCが駆動力配分算出部32に入力される。   The control unit 30 is provided as a control means, and mainly includes a correction gain calculation unit 31 and a driving force distribution calculation unit 32 as shown in FIG. The control unit 30 also includes a four-wheel wheel speed sensor 21fl, 21fr, 21rl, 21rr as a wheel speed detecting means for detecting the four-wheel wheel speeds ωfl, ωfr, ωrl, ωrr, and a rudder for detecting the steering angle δ. A steering angle sensor 22 as an angle detection means, an accelerator opening sensor 23 for detecting an accelerator opening θACC, an engine control unit 24 for executing various controls related to the engine 1, and various controls related to the automatic transmission 2 A transmission control unit 25 is connected, and the four-wheel wheel speeds ωfl, ωfr, ωrl, and ωrr are supplied to the correction gain calculation unit 31 and the driving force distribution calculation unit 32 to the steering angle δ, the engine output torque Teg, the engine speed Ne, The turbine rotation speed Nt and the main transmission gear ratio i of the torque converter are input to the correction gain calculation unit 31 and the accelerator opening θACC is input to the driving force distribution calculation unit 32.

そして、補正ゲイン算出部31は、後述するように、これらの入力信号ωfl,ωfr,ωrl,ωrr、δ、Teg、Ne、Nt、iを基に、車速V、旋回内輪と旋回外輪との車輪速差ΔV、車両が発生している総駆動力Fxを算出し、総駆動力Fxと車速Vと車輪速差ΔVとに基づいて、予め設定しておいた総駆動力Fxと車速Vと車輪速差ΔVと舵角(推定舵角)との関係のマップを参照して舵角を推定舵角δeとして設定し、舵角センサ22で検出した舵角δと推定舵角δeとの偏差を舵角偏差Δδとして算出し、車速Vと舵角δと舵角偏差Δδに基づいて、予め設定しておいた車速Vと舵角δと舵角偏差Δδと路面摩擦係数μとの関係のマップを参照して路面摩擦係数μを設定し、路面摩擦係数μに基づいて前後駆動力配分の補正値である補正ゲインGを設定する。   Then, as will be described later, the correction gain calculation unit 31 is based on these input signals ωfl, ωfr, ωrl, ωrr, δ, Teg, Ne, Nt, i, and the vehicle speed V, wheels of the turning inner wheel and the turning outer wheel. The speed difference ΔV and the total driving force Fx generated by the vehicle are calculated. Based on the total driving force Fx, the vehicle speed V, and the wheel speed difference ΔV, the preset total driving force Fx, the vehicle speed V, and the wheel The steering angle is set as the estimated steering angle δe with reference to the map of the relationship between the speed difference ΔV and the steering angle (estimated steering angle), and the deviation between the steering angle δ detected by the steering angle sensor 22 and the estimated steering angle δe is calculated. A map of the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the road surface friction coefficient μ set in advance based on the vehicle speed V, the steering angle δ, and the steering angle deviation Δδ. To set the road surface friction coefficient μ, and based on the road surface friction coefficient μ, set the correction gain G that is the correction value for the front-rear driving force distribution. .

また、駆動力配分算出部32は、前後駆動力配分算出手段として設けられており、上述の入力信号ωfl,ωfr,ωrl,ωrr、θACCを基に、例えば、図6に示すような、予め設定しておいた、車速、アクセル開度に応じた目標差動制限トルクのマップを基に目標差動制限トルクを設定する。そして、この目標差動制限トルクに、上述の補正ゲイン算出部31で算出した補正ゲインGを乗算することで補正して制御信号(トランスファクラッチトルクTtrf)を算出し、トランスファクラッチ駆動部40に出力して制御する。   Further, the driving force distribution calculating unit 32 is provided as a front / rear driving force distribution calculating means, and is set in advance as shown in FIG. 6, for example, based on the input signals ωfl, ωfr, ωrl, ωrr, and θACC described above. The target differential limiting torque is set based on the map of the target differential limiting torque corresponding to the vehicle speed and the accelerator opening. The target differential limiting torque is corrected by multiplying it by the correction gain G calculated by the correction gain calculation unit 31 described above to calculate a control signal (transfer clutch torque Ttrf) and output it to the transfer clutch drive unit 40. And control.

補正ゲイン算出部31は、図3に示すように、車速算出部31a、車輪速差算出部31b、トランスミッション出力トルク算出部31c、総駆動力算出部31d、推定舵角設定部31e、舵角偏差算出部31f、路面摩擦係数推定部31g、補正ゲイン設定部31hから主要に構成されている。   As shown in FIG. 3, the correction gain calculator 31 includes a vehicle speed calculator 31a, a wheel speed difference calculator 31b, a transmission output torque calculator 31c, a total driving force calculator 31d, an estimated steering angle setting unit 31e, and a steering angle deviation. The calculation unit 31f mainly includes a road surface friction coefficient estimation unit 31g and a correction gain setting unit 31h.

車速算出部31aは、4輪の車輪速センサ21fl,21fr,21rl,21rrから4輪車輪速ωfl,ωfr,ωrl,ωrrが入力される。そして、例えば、左右後輪の車輪速の平均を算出することで車速V(=(ωrl+ωrr)/2)を算出し、推定舵角設定部31e、路面摩擦係数推定部31gに出力する。このように、車速算出部31aは、車体速検出手段として設けられている。   The vehicle speed calculation unit 31a receives the four-wheel wheel speeds ωfl, ωfr, ωrl, and ωrr from the four-wheel wheel speed sensors 21fl, 21fr, 21rl, and 21rr. For example, the vehicle speed V (= (ωrl + ωrr) / 2) is calculated by calculating the average of the wheel speeds of the left and right rear wheels, and is output to the estimated rudder angle setting unit 31e and the road surface friction coefficient estimating unit 31g. Thus, the vehicle speed calculation unit 31a is provided as vehicle body speed detection means.

車輪速差算出部31bは、4輪の車輪速センサ21fl,21fr,21rl,21rrから4輪車輪速ωfl,ωfr,ωrl,ωrrが入力される。そして、例えば、左右後輪の車輪速差の絶対値を車輪速差ΔV(=|ωrl−ωrr|)として算出し、推定舵角設定部31eに出力する。このように、車輪速差算出部31bは、車輪速差算出手段として設けられている。   The wheel speed difference calculation unit 31b receives the four-wheel wheel speeds ωfl, ωfr, ωrl, and ωrr from the four-wheel wheel speed sensors 21fl, 21fr, 21rl, and 21rr. Then, for example, the absolute value of the wheel speed difference between the left and right rear wheels is calculated as the wheel speed difference ΔV (= | ωrl−ωrr |) and output to the estimated steering angle setting unit 31e. Thus, the wheel speed difference calculation unit 31b is provided as a wheel speed difference calculation unit.

トランスミッション出力トルク算出部31cは、エンジン制御部24からエンジン出力トルクTeg、エンジン回転数Neが入力され、トランスミッション制御部25からトルクコンバータのタービン回転数Nt、主変速ギヤ比iが入力される。そして、例えば、以下の(8)式により、トランスミッション出力トルクTtmを算出して総駆動力算出部31dに出力する。
Ttm=Teg・t・i …(8)
ここで、tはトルクコンバータのトルク比であり、予め設定されている、トルクコンバータの回転速度比e(=Nt/Ne)とトルクコンバータのトルク比とのマップを参照することにより求められる。
The transmission output torque calculation unit 31c receives the engine output torque Teg and the engine speed Ne from the engine control unit 24, and receives the turbine speed Nt of the torque converter and the main transmission gear ratio i from the transmission control unit 25. Then, for example, the transmission output torque Ttm is calculated by the following equation (8) and output to the total driving force calculation unit 31d.
Ttm = Teg · t · i (8)
Here, t is a torque ratio of the torque converter, and is obtained by referring to a preset map of the rotational speed ratio e (= Nt / Ne) of the torque converter and the torque ratio of the torque converter.

総駆動力算出部31dは、トランスミッション出力トルク算出部31cからトランスミッション出力トルクTtmが入力される。そして、以下の(9)式により、総駆動力Fxを算出して推定舵角設定部31eに出力する。
Fx=Ttm・if・η/Rt …(9)
ここで、ifはファイナルギヤ比、ηは伝達効率、Rtはタイヤ半径である。このように、総駆動力算出部31dは、総駆動力算出手段として設けられている。尚、左輪側の駆動力Fxlと右輪側の駆動力Fxrは等しいものとする(すなわち、Fxl=Fxr=Fx/2)。
The total driving force calculation unit 31d receives the transmission output torque Ttm from the transmission output torque calculation unit 31c. Then, the total driving force Fx is calculated by the following equation (9) and output to the estimated steering angle setting unit 31e.
Fx = Ttm · if · η / Rt (9)
Here, if is the final gear ratio, η is the transmission efficiency, and Rt is the tire radius. Thus, the total driving force calculation unit 31d is provided as a total driving force calculation unit. It is assumed that the driving force Fxl on the left wheel side and the driving force Fxr on the right wheel side are equal (that is, Fxl = Fxr = Fx / 2).

推定舵角設定部31eは、車速算出部31aから車速Vが、車輪速差算出部31bから車輪速差ΔVが、総駆動力算出部31dから総駆動力Fxが入力される。そして、例えば、図7に示すような、予め実験、演算等により設定しておいた総駆動力Fxと車速Vと車輪速差ΔVと舵角(推定舵角)δeとの関係のマップを参照して推定舵角δeを設定し、舵角偏差算出部31fに出力する。この総駆動力Fxと車速Vと車輪速差ΔVと舵角(推定舵角)δeとの関係のマップは、図7に示すように、総駆動力Fxと車輪速差ΔVが一定の下では、車速Vが高速ほど推定舵角δeが低く設定される特性となっており、総駆動力Fxと車速Vが一定の下では、車輪速差ΔVが大きくなるほど推定舵角δeが大きく設定される特性となっている。このように、推定舵角設定部31eは、推定舵角設定手段として設けられている。   The estimated rudder angle setting unit 31e receives the vehicle speed V from the vehicle speed calculation unit 31a, the wheel speed difference ΔV from the wheel speed difference calculation unit 31b, and the total driving force Fx from the total driving force calculation unit 31d. Then, for example, refer to a map of the relationship between the total driving force Fx, the vehicle speed V, the wheel speed difference ΔV, and the steering angle (estimated steering angle) δe that has been set in advance through experiments, calculations, etc., as shown in FIG. Then, the estimated steering angle δe is set and output to the steering angle deviation calculating unit 31f. As shown in FIG. 7, a map of the relationship between the total driving force Fx, the vehicle speed V, the wheel speed difference ΔV, and the steering angle (estimated steering angle) δe shows that the total driving force Fx and the wheel speed difference ΔV are constant. The estimated steering angle δe is set to be lower as the vehicle speed V is higher. When the total driving force Fx and the vehicle speed V are constant, the estimated steering angle δe is set larger as the wheel speed difference ΔV increases. It is a characteristic. Thus, the estimated rudder angle setting part 31e is provided as an estimated rudder angle setting means.

ところで、推定舵角δeは、Wbをホイールベースとすると、幾何学的には以下の(10)式で表される。
tan(δe)=Wb/R0 …(10)
(10)式より、R0=Wb/tan(δe)であるから、先の(4)、(5)式より、以下の(11)式の関係を得ることができる。
δe=tan−1(Wb/T・(Vo−Vi)/V) …(11)
この(11)式は、推定舵角δeが、車速Vに反比例し、車輪速差ΔVに比例することを意味するものである。また、図12(b)に示すように、スリップ率λと旋回内外輪の駆動力Fxの特性の線形域では、駆動力Fxが倍になるとスリップ率λも倍になるので、車輪速差ΔVも倍になり、推定舵角δeも倍になる。図7では、この特性が良く表現されたものとなっている。
By the way, the estimated steering angle δe is geometrically expressed by the following equation (10), where Wb is a wheel base.
tan (δe) = Wb / R0 (10)
Since R0 = Wb / tan (δe) from the equation (10), the relationship of the following equation (11) can be obtained from the equations (4) and (5).
δe = tan −1 (Wb / T · (Vo−Vi) / V) (11)
This equation (11) means that the estimated steering angle δe is inversely proportional to the vehicle speed V and proportional to the wheel speed difference ΔV. In addition, as shown in FIG. 12B, in the linear range of the characteristics of the slip ratio λ and the driving force Fx of the turning inner and outer wheels, the slip ratio λ is doubled when the driving force Fx is doubled. And the estimated steering angle δe is also doubled. In FIG. 7, this characteristic is well expressed.

舵角偏差算出部31fは、舵角センサ22から舵角δが入力され、推定舵角設定部31eから推定舵角δeが入力される。そして、舵角δと推定舵角δeとの偏差を舵角偏差Δδ(=|δ−δe|)として算出し、路面摩擦係数推定部31gに出力する。このように、舵角偏差算出部31fは、舵角偏差算出手段として設けられている。   The steering angle deviation calculation unit 31f receives the steering angle δ from the steering angle sensor 22, and receives the estimated steering angle δe from the estimated steering angle setting unit 31e. Then, a deviation between the steering angle δ and the estimated steering angle δe is calculated as a steering angle deviation Δδ (= | δ−δe |) and output to the road surface friction coefficient estimating unit 31g. Thus, the steering angle deviation calculating unit 31f is provided as a steering angle deviation calculating unit.

路面摩擦係数推定部31gは、舵角センサ22から舵角δが入力され、車速算出部31aから車速Vが入力され、舵角偏差算出部31fから舵角偏差Δδが入力される。そして、例えば、図8に示すような、予め実験、演算等により設定しておいた車速Vと舵角δと舵角偏差Δδと路面摩擦係数μとの関係のマップを参照して路面摩擦係数μを設定し、補正ゲイン設定部31hに出力する。この車速Vと舵角δと舵角偏差Δδと路面摩擦係数μとの関係のマップは、図8に示すように、舵角δと舵角偏差Δδが一定の下では車速Vが高速ほど路面摩擦係数μが低く設定される特性となっており、舵角δと車速Vが一定の下では、舵角偏差Δδが大きくなるほど路面摩擦係数μが小さく設定される特性となっている。すなわち、図12(b)に示すように、低μ路面の場合には、タイヤと路面とのスリップが生じやすくなる為、左右輪の差が高μ路面に対して小さくなる傾向がある。左右輪の差が小さくなると、車輪速から推定している推定舵角δeは小さく(直進に近く)なり、舵角偏差Δδが大きくなる特性が反映されたものとなっている。また、この傾向は、実際の舵角(舵角センサ22から舵角δ)が大きいときほど、顕著であるので、舵角センサ22から舵角δにより補正したマップとするのである。このように、路面摩擦係数推定部31gは、路面摩擦係数設定手段として設けられている。   The road surface friction coefficient estimating unit 31g receives the steering angle δ from the steering angle sensor 22, the vehicle speed V from the vehicle speed calculation unit 31a, and the steering angle deviation Δδ from the steering angle deviation calculation unit 31f. Then, for example, referring to a map of the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the road surface friction coefficient μ set in advance by experiment, calculation, etc., as shown in FIG. μ is set and output to the correction gain setting unit 31h. As shown in FIG. 8, a map of the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the road surface friction coefficient μ shows that the road surface increases as the vehicle speed V increases as the steering angle δ and the steering angle deviation Δδ are constant. The friction coefficient μ is set to a low value. When the steering angle δ and the vehicle speed V are constant, the road surface friction coefficient μ is set to be smaller as the steering angle deviation Δδ increases. That is, as shown in FIG. 12B, in the case of a low μ road surface, slip between the tire and the road surface is likely to occur, so that the difference between the left and right wheels tends to be smaller than that of the high μ road surface. When the difference between the left and right wheels is reduced, the estimated steering angle δe estimated from the wheel speed is reduced (close to straight ahead), and the characteristic that the steering angle deviation Δδ is increased is reflected. Further, since this tendency becomes more prominent as the actual steering angle (the steering angle sensor 22 to the steering angle δ) is larger, the map is corrected by the steering angle δ from the steering angle sensor 22. Thus, the road surface friction coefficient estimation unit 31g is provided as a road surface friction coefficient setting unit.

以上のように、本発明の実施の第1形態では、車速算出部31a、車輪速差算出部31b、トランスミッション出力トルク算出部31c、総駆動力算出部31d、推定舵角設定部31e、舵角偏差算出部31f、路面摩擦係数推定部31gにより路面摩擦係数推定装置が構成されている。   As described above, in the first embodiment of the present invention, the vehicle speed calculation unit 31a, the wheel speed difference calculation unit 31b, the transmission output torque calculation unit 31c, the total driving force calculation unit 31d, the estimated steering angle setting unit 31e, the steering angle The deviation calculation unit 31f and the road surface friction coefficient estimation unit 31g constitute a road surface friction coefficient estimation device.

補正ゲイン設定部31hは、路面摩擦係数推定部31gから路面摩擦係数μが入力される。そして、例えば、図9に示すような、予め実験、演算等により設定しておいた路面摩擦係数μと補正ゲインGとの関係のマップを参照して補正ゲインGを設定し、駆動力配分算出部32に出力する。この路面摩擦係数μと補正ゲインGとの関係のマップは、図9に示すように、高μほど、補正ケインGが低くなる特性に設定されており、高μ路面の転舵走行時には、タイトコーナ防止のためにトランスファ3のトランスファクラッチトルクTtrfを低めに補正して設定しつつ、低μ路面では、トランスファ3のトランスファクラッチトルクTtrfを高く補正して設定できるため、転舵時であってもトラクションを適切に確保して走行することができるようになっている。   The correction gain setting unit 31h receives the road surface friction coefficient μ from the road surface friction coefficient estimation unit 31g. Then, for example, as shown in FIG. 9, the correction gain G is set with reference to a map of the relationship between the road surface friction coefficient μ and the correction gain G set in advance by experiment, calculation, etc., and the driving force distribution is calculated. To the unit 32. As shown in FIG. 9, the map of the relationship between the road surface friction coefficient μ and the correction gain G is set to a characteristic that the correction cane G becomes lower as the height μ increases. In order to prevent this, the transfer clutch torque Ttrf of the transfer 3 is corrected and set low, and the transfer clutch torque Ttrf of the transfer 3 can be corrected and set high on a low μ road surface. It is possible to travel with adequately secured.

次に、制御ユニット30で実行される前後駆動力配分制御プログラムを、図4のフローチャートで説明する。まず、ステップ(以下、「S」と略称)101で、必要パラメータ、すなわち、4輪車輪速ωfl,ωfr,ωrl,ωrr、舵角δ、エンジン出力トルクTeg、エンジン回転数Ne、トルクコンバータのタービン回転数Nt、主変速ギヤ比i、アクセル開度θACCを読み込む。   Next, the front / rear driving force distribution control program executed by the control unit 30 will be described with reference to the flowchart of FIG. First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, four-wheel wheel speeds ωfl, ωfr, ωrl, ωrr, rudder angle δ, engine output torque Teg, engine speed Ne, turbine of the torque converter. The rotational speed Nt, the main transmission gear ratio i, and the accelerator opening θACC are read.

次いで、S102に進み、補正ゲイン算出部31で、後述の補正ゲイン算出処理ルーチンに従って前後駆動力配分の補正値である補正ゲインGを算出する。   Next, in S102, the correction gain calculation unit 31 calculates a correction gain G, which is a correction value for front-rear driving force distribution, according to a correction gain calculation processing routine described later.

次いで、S103に進んで、駆動力配分算出部32で、例えば、図6に示すような、予め設定しておいた、車速、アクセル開度に応じた目標差動制限トルクのマップを基に目標差動制限トルクを設定し、この目標差動制限トルクに補正ゲインGを乗算することで補正して制御信号(トランスファクラッチトルクTtrf)を算出し、トランスファクラッチ駆動部40に出力してプログラムを抜ける。   Next, the process proceeds to S103, where the driving force distribution calculating unit 32 sets a target based on a map of a target differential limiting torque corresponding to the vehicle speed and the accelerator opening that is set in advance as shown in FIG. 6, for example. A differential limiting torque is set, and this target differential limiting torque is corrected by multiplying it by a correction gain G to calculate a control signal (transfer clutch torque Ttrf), which is output to the transfer clutch drive unit 40 to exit the program. .

次に、補正ゲイン算出部31で実行される補正ゲイン算出処理ルーチンを、図5のフローチャートで説明する。
まず、S201で、トランスミッション出力トルク算出部31cは、上述の(8)式により、トランスミッション出力トルクTtmを算出する。
Next, the correction gain calculation processing routine executed by the correction gain calculation unit 31 will be described with reference to the flowchart of FIG.
First, in S201, the transmission output torque calculation unit 31c calculates the transmission output torque Ttm by the above-described equation (8).

次いで、S202に進み、総駆動力算出部31dは、上述の(9)式により、総駆動力Fxを算出する。   Next, in S202, the total driving force calculation unit 31d calculates the total driving force Fx by the above-described equation (9).

次に、S203に進んで、車速算出部31aは、左右後輪の車輪速の平均を算出することで車速Vを算出する。   Next, it progresses to S203 and the vehicle speed calculation part 31a calculates the vehicle speed V by calculating the average of the wheel speed of a right-and-left rear wheel.

次いで、S204に進み、車輪速差算出部31bは、左右後輪の車輪速差の絶対値を車輪速差ΔVとして算出する。   Next, in S204, the wheel speed difference calculation unit 31b calculates the absolute value of the wheel speed difference between the left and right rear wheels as the wheel speed difference ΔV.

次に、S205に進んで、推定舵角設定部31eは、総駆動力Fx、車速V、車輪速差ΔVを基に、総駆動力Fxと車速Vと車輪速差ΔVと舵角(推定舵角)δeとの関係のマップ(図7)を参照して推定舵角δeを設定する。   Next, in S205, the estimated rudder angle setting unit 31e determines the total driving force Fx, the vehicle speed V, the wheel speed difference ΔV, and the rudder angle (estimated rudder) based on the total driving force Fx, the vehicle speed V, and the wheel speed difference ΔV. (Angle) Estimated steering angle δe is set with reference to a map of the relationship with δe (FIG. 7).

次いで、S206に進み、舵角偏差算出部31fは、舵角δと推定舵角δeとの偏差を舵角偏差Δδとして算出する。   Next, in S206, the steering angle deviation calculation unit 31f calculates a deviation between the steering angle δ and the estimated steering angle δe as a steering angle deviation Δδ.

次に、S207に進んで、路面摩擦係数推定部31gは、車速Vと舵角δと舵角偏差Δδを基に、車速Vと舵角δと舵角偏差Δδと路面摩擦係数μとの関係のマップ(図8)を参照して路面摩擦係数μを設定する。   Next, proceeding to S207, the road surface friction coefficient estimating unit 31g, based on the vehicle speed V, the steering angle δ, and the steering angle deviation Δδ, the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the road surface friction coefficient μ. The road surface friction coefficient μ is set with reference to the map (FIG. 8).

そして、S208に進み、補正ゲイン設定部31hは、路面摩擦係数μを基に、路面摩擦係数μと補正ゲインGとの関係のマップ(図9)を参照して補正ゲインGを設定してルーチンを抜ける。   In step S208, the correction gain setting unit 31h sets the correction gain G with reference to a map (FIG. 9) of the relationship between the road surface friction coefficient μ and the correction gain G based on the road surface friction coefficient μ, and executes a routine. Exit.

このように、本発明の実施の第1形態によれば、車速V、車輪速差ΔV、車両が発生している総駆動力Fxを算出し、総駆動力Fxと車速Vと車輪速差ΔVとに基づいて、予め設定しておいた総駆動力Fxと車速Vと車輪速差ΔVと舵角(推定舵角)との関係のマップを参照して推定舵角δeを設定し、検出した舵角δと推定舵角δeとの偏差を舵角偏差Δδとして算出し、車速Vと舵角δと舵角偏差Δδに基づいて、予め設定しておいた車速Vと舵角δと舵角偏差Δδと路面摩擦係数μとの関係のマップを参照して路面摩擦係数μを設定し、路面摩擦係数μに基づいて前後駆動力配分の補正値である補正ゲインGを設定する。このため、たとえ、駆動力が作用する場合においても容易に精度良く路面摩擦係数μを推定することができ、この路面摩擦係数μを用いて精度良く前後駆動力配分制御することができる。   Thus, according to the first embodiment of the present invention, the vehicle speed V, the wheel speed difference ΔV, and the total driving force Fx generated by the vehicle are calculated, and the total driving force Fx, the vehicle speed V, and the wheel speed difference ΔV are calculated. Based on the above, an estimated steering angle δe is set and detected with reference to a map of the relationship between the preset total driving force Fx, vehicle speed V, wheel speed difference ΔV, and steering angle (estimated steering angle) A deviation between the steering angle δ and the estimated steering angle δe is calculated as a steering angle deviation Δδ. Based on the vehicle speed V, the steering angle δ, and the steering angle deviation Δδ, the vehicle speed V, the steering angle δ, and the steering angle that are set in advance are calculated. A road surface friction coefficient μ is set with reference to a map of the relationship between the deviation Δδ and the road surface friction coefficient μ, and a correction gain G that is a correction value for the front-rear driving force distribution is set based on the road surface friction coefficient μ. Therefore, even when a driving force acts, the road surface friction coefficient μ can be estimated easily and accurately, and the front and rear driving force distribution control can be performed with high accuracy using the road surface friction coefficient μ.

次に、図10乃び図11は本発明の実施の第2形態を示す。尚、この実施の第2形態では、補正ゲイン算出部31は、舵角偏差Δδを算出した後に、第1形態のように路面摩擦係数μを推定することなく、直接、車速Vと舵角δと舵角偏差Δδに基づいて、車速Vと舵角δと舵角偏差Δδと補正ゲインGとの関係のマップを参照して補正ゲインGを設定するようにしたものであり、他の構成、作用は、前述の第1形態と同様であるので、同じ構成には同じ符号を記し、説明は省略する。   Next, FIG. 10 and FIG. 11 show a second embodiment of the present invention. In the second embodiment, the correction gain calculation unit 31 calculates the steering angle deviation Δδ and then directly estimates the vehicle speed V and the steering angle δ without estimating the road surface friction coefficient μ as in the first embodiment. Based on the steering angle deviation Δδ, the correction gain G is set with reference to the map of the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the correction gain G. Since the operation is the same as that of the first embodiment described above, the same components are denoted by the same reference numerals and description thereof is omitted.

すなわち、図10に示すように、本実施の第2形態の補正ゲイン算出部31は、車速算出部31a、車輪速差算出部31b、トランスミッション出力トルク算出部31c、総駆動力算出部31d、推定舵角設定部31e、舵角偏差算出部31f、補正ゲイン設定部31iから主要に構成されている。   That is, as shown in FIG. 10, the correction gain calculation unit 31 according to the second embodiment includes a vehicle speed calculation unit 31a, a wheel speed difference calculation unit 31b, a transmission output torque calculation unit 31c, a total driving force calculation unit 31d, and an estimation. It is mainly composed of a rudder angle setting unit 31e, a rudder angle deviation calculating unit 31f, and a correction gain setting unit 31i.

補正ゲイン設定部31iは、舵角センサ22から舵角δが入力され、車速算出部31aから車速Vが入力され、角偏差算出部31fから舵角偏差Δδが入力される。そして、例えば、図11に示すような、予め実験、演算等により設定しておいた車速Vと舵角δと舵角偏差Δδと補正ゲインGとの関係のマップを参照して補正ゲインGを設定し、駆動力配分算出部32に出力する。この車速Vと舵角δと舵角偏差Δδと補正ゲインGとの関係のマップは、図11に示すように、舵角δと舵角偏差Δδが一定の下では車速Vが高速ほど補正ゲインGが大きく設定される特性となっており、舵角δと車速Vが一定の下では、舵角偏差Δδが大きくなるほど補正ゲインGが大きく設定される特性となっており、前述の第1形態で説明した路面摩擦係数μの影響をも取り込んだマップとなっている。このように補正ゲイン設定部31iは、前後駆動力配分補正値設定手段として設けられている。   The correction gain setting unit 31i receives the steering angle δ from the steering angle sensor 22, receives the vehicle speed V from the vehicle speed calculation unit 31a, and receives the steering angle deviation Δδ from the angle deviation calculation unit 31f. Then, for example, referring to a map of the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the correction gain G that has been set in advance by experiment, calculation, etc., as shown in FIG. This is set and output to the driving force distribution calculation unit 32. As shown in FIG. 11, the map of the relationship between the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the correction gain G shows that the correction gain increases as the vehicle speed V increases with the steering angle δ and the steering angle deviation Δδ constant. G is a characteristic that is set to be large, and when the steering angle δ and the vehicle speed V are constant, the correction gain G is set to be large as the steering angle deviation Δδ increases. The map also incorporates the influence of the road surface friction coefficient μ described in. As described above, the correction gain setting unit 31i is provided as a front-rear driving force distribution correction value setting unit.

このように、本発明の実施の第2形態では、車速V、車輪速差ΔV、車両が発生している総駆動力Fxを算出し、総駆動力Fxと車速Vと車輪速差ΔVとに基づいて、予め設定しておいた総駆動力Fxと車速Vと車輪速差ΔVと舵角(推定舵角)との関係のマップを参照して推定舵角δeを設定し、検出した舵角δと推定舵角δeとの偏差を舵角偏差Δδとして算出し、車速Vと舵角δと舵角偏差Δδに基づいて、車速Vと舵角δと舵角偏差Δδと補正ゲインGとの関係のマップを参照して前後駆動力配分の補正値である補正ゲインGを設定する。このため、たとえ、駆動力が作用する場合においても容易に精度良く前後駆動力配分を設定して制御することができる。   As described above, in the second embodiment of the present invention, the vehicle speed V, the wheel speed difference ΔV, the total driving force Fx generated by the vehicle are calculated, and the total driving force Fx, the vehicle speed V, and the wheel speed difference ΔV are calculated. Based on the preset map of the relationship among the total driving force Fx, the vehicle speed V, the wheel speed difference ΔV, and the steering angle (estimated steering angle), the estimated steering angle δe is set, and the detected steering angle A deviation between δ and the estimated steering angle δe is calculated as a steering angle deviation Δδ. Based on the vehicle speed V, the steering angle δ, and the steering angle deviation Δδ, the vehicle speed V, the steering angle δ, the steering angle deviation Δδ, and the correction gain G are calculated. A correction gain G, which is a correction value for the front-rear driving force distribution, is set with reference to the relationship map. For this reason, even when a driving force acts, it is possible to easily set and control the front / rear driving force distribution with high accuracy.

1 エンジン
2 自動変速装置
3 トランスファ
14fl、14fr、14rl、14rr 車輪
15 トランスファクラッチ
21fl,21fr,21rl,21rr 車輪速センサ(車輪速検出手段)
22 舵角センサ(舵角検出手段)
24 エンジン制御部
25 トランスミッション制御部
30 制御ユニット(制御手段)
31 補正ゲイン算出部
31a 車速算出部(車体速検出手段)
31b 車輪速差算出部(車輪速差算出手段)
31c トランスミッション出力トルク算出部
31d 総駆動力算出部(総駆動力算出手段)
31e 推定舵角設定部(推定舵角設定手段)
31f 舵角偏差算出部(舵角偏差算出手段)
31g 路面摩擦係数推定部(路面摩擦係数設定手段)
31h 補正ゲイン設定部
31i 補正ゲイン設定部(前後駆動力配分補正値設定手段)
32 駆動力配分算出部(前後駆動力配分算出手段)
40 トランスファクラッチ駆動部
DESCRIPTION OF SYMBOLS 1 Engine 2 Automatic transmission 3 Transfer 14fl, 14fr, 14rl, 14rr Wheel 15 Transfer clutch 21fl, 21fr, 21rl, 21rr Wheel speed sensor (wheel speed detection means)
22 Rudder angle sensor (steering angle detection means)
24 engine control unit 25 transmission control unit 30 control unit (control means)
31 correction gain calculation unit 31a vehicle speed calculation unit (body speed detection means)
31b Wheel speed difference calculation unit (wheel speed difference calculation means)
31c Transmission output torque calculation unit 31d Total driving force calculation unit (total driving force calculation means)
31e Estimated rudder angle setting unit (estimated rudder angle setting means)
31f Rudder angle deviation calculating part (steering angle deviation calculating means)
31g Road surface friction coefficient estimator (road surface friction coefficient setting means)
31h Correction gain setting unit 31i Correction gain setting unit (front-rear driving force distribution correction value setting means)
32 Driving force distribution calculation unit (front and rear driving force distribution calculation means)
40 Transfer clutch drive

Claims (5)

各輪の車輪速を検出する車輪速検出手段と、
舵角を検出する舵角検出手段と、
車体速を検出する車体速検出手段と、
上記車輪速検出手段で検出した各輪の車輪速に基づいて旋回内輪と旋回外輪との車輪速差を算出する車輪速差算出手段と、
車両が発生している総駆動力を算出する総駆動力算出手段と、
上記総駆動力と上記車体速と上記車輪速差とに基づいて、予め設定しておいた上記総駆動力と上記車体速と上記車輪速差と舵角との関係のマップを参照して舵角を推定舵角として設定する推定舵角設定手段と、
上記舵角検出手段で検出した舵角と上記推定舵角設定手段で設定した推定舵角との偏差を舵角偏差として算出する舵角偏差算出手段と、
上記車体速と上記舵角と上記舵角偏差に基づいて、予め設定しておいた上記車体速と上記舵角と上記舵角偏差と路面摩擦係数との関係のマップを参照して路面摩擦係数を設定する路面摩擦係数設定手段と、
を備えたことを特徴とする路面摩擦係数推定装置。
Wheel speed detection means for detecting the wheel speed of each wheel;
Rudder angle detecting means for detecting the rudder angle;
Vehicle speed detection means for detecting the vehicle speed;
Wheel speed difference calculating means for calculating the wheel speed difference between the turning inner wheel and the turning outer wheel based on the wheel speed of each wheel detected by the wheel speed detecting means;
Total driving force calculating means for calculating the total driving force generated by the vehicle;
Based on the total driving force, the vehicle body speed, and the wheel speed difference, the steering wheel is steered with reference to a preset map of the relationship between the total driving force, the vehicle body speed, the wheel speed difference, and the steering angle. Estimated rudder angle setting means for setting the angle as an estimated rudder angle;
Rudder angle deviation calculating means for calculating a deviation between the rudder angle detected by the rudder angle detecting means and the estimated rudder angle set by the estimated rudder angle setting means as a rudder angle deviation;
Based on the vehicle body speed, the rudder angle, and the rudder angle deviation, a road surface friction coefficient is determined with reference to a preset map of the relationship between the vehicle body speed, the rudder angle, the rudder angle deviation, and the road surface friction coefficient. Road surface friction coefficient setting means for setting
A road surface friction coefficient estimating device comprising:
上記予め設定しておいた上記総駆動力と上記車体速と上記車輪速差と舵角との関係のマップは、上記総駆動力と上記車輪速差が一定の下では、上記車体速が高速ほど上記推定舵角が低く設定される特性となっており、上記総駆動力と上記車体速が一定の下では、上記車輪速差が大きくなるほど上記推定舵角が大きく設定される特性であることを特徴とする請求項1記載の路面摩擦係数推定装置。   The pre-set map of the relationship between the total driving force, the vehicle body speed, the wheel speed difference, and the steering angle indicates that the vehicle body speed is high when the total driving force and the wheel speed difference are constant. The estimated rudder angle is set to be lower, and the estimated rudder angle is set to be larger as the wheel speed difference is larger under a constant total driving force and the vehicle body speed. The road surface friction coefficient estimating apparatus according to claim 1. 上記予め設定しておいた上記車体速と上記舵角と上記舵角偏差と路面摩擦係数との関係のマップは、上記舵角と上記舵角偏差が一定の下では上記車体速が高速ほど上記路面摩擦係数が低く設定される特性となっており、上記舵角と上記車体速が一定の下では、上記舵角偏差が大きくなるほど上記路面摩擦係数が小さく設定される特性であることを特徴とする請求項1記載の路面摩擦係数推定装置。   The map of the relationship between the vehicle body speed, the rudder angle, the rudder angle deviation, and the road surface friction coefficient that is set in advance indicates that the higher the vehicle body speed is, the higher the vehicle body speed is. The road surface friction coefficient is set to a low value, and the road surface friction coefficient is set to be smaller as the steering angle deviation is larger under a constant rudder angle and vehicle body speed. The road surface friction coefficient estimating device according to claim 1. 車両の運転状態に応じて前後駆動力配分を算出する制御手段を備え、該制御手段が設定する前後駆動力配分で車両を制御する車両の前後駆動力配分制御装置において、
上記請求項1乃至請求項3の何れか一つの路面摩擦係数推定装置を有し、
上記制御手段は、上記路面摩擦係数推定装置が推定した路面摩擦係数に基づいて上記前後駆動力配分の補正値を設定し、該補正値にて上記前後駆動力配分を補正して出力することを特徴とする車両の前後駆動力配分制御装置。
In a front-rear driving force distribution control device for a vehicle, comprising control means for calculating front-rear driving force distribution according to the driving state of the vehicle, and controlling the vehicle with front-rear driving force distribution set by the control means,
A road surface friction coefficient estimating device according to any one of claims 1 to 3,
The control means sets a correction value for the front / rear driving force distribution based on the road surface friction coefficient estimated by the road surface friction coefficient estimation device, and corrects and outputs the front / rear driving force distribution with the correction value. A vehicle front / rear driving force distribution control device characterized by the above.
車両の運転状態に応じて車両の前後駆動力配分を算出する前後駆動力配分算出手段と、
各輪の車輪速を検出する車輪速検出手段と、
舵角を検出する舵角検出手段と、
車体速を検出する車体速検出手段と、
上記車輪速検出手段で検出した各輪の車輪速に基づいて旋回内輪と旋回外輪との車輪速差を算出する車輪速差算出手段と、
車両が発生している総駆動力を算出する総駆動力算出手段と、
上記総駆動力と上記車体速と上記車輪速差とに基づいて、予め設定しておいた上記総駆動力と上記車体速と上記車輪速差と舵角との関係のマップを参照して舵角を推定舵角として設定する推定舵角設定手段と、
上記舵角検出手段で検出した舵角と上記推定舵角設定手段で設定した推定舵角との偏差を舵角偏差として算出する舵角偏差算出手段と、
上記車体速と上記舵角と上記舵角偏差に基づいて、予め設定しておいた上記車体速と上記舵角と上記舵角偏差と前後駆動力配分の補正値との関係のマップを参照して前後駆動力配分の補正値を設定する前後駆動力配分補正値設定手段と、
上記前後駆動力配分補正値設定手段が設定した補正値で、上記前後駆動力配分算出手段が設定した車両の前後駆動力配分を補正する前後駆動力配分補正手段と、
を備えたことを特徴とする車両の前後駆動力配分制御装置。
Front-rear driving force distribution calculating means for calculating the front-rear driving force distribution of the vehicle according to the driving state of the vehicle;
Wheel speed detection means for detecting the wheel speed of each wheel;
Rudder angle detecting means for detecting the rudder angle;
Vehicle speed detection means for detecting the vehicle speed;
Wheel speed difference calculating means for calculating the wheel speed difference between the turning inner wheel and the turning outer wheel based on the wheel speed of each wheel detected by the wheel speed detecting means;
Total driving force calculating means for calculating the total driving force generated by the vehicle;
Based on the total driving force, the vehicle body speed, and the wheel speed difference, the steering wheel is steered with reference to a preset map of the relationship between the total driving force, the vehicle body speed, the wheel speed difference, and the steering angle. Estimated rudder angle setting means for setting the angle as an estimated rudder angle;
Rudder angle deviation calculating means for calculating a deviation between the rudder angle detected by the rudder angle detecting means and the estimated rudder angle set by the estimated rudder angle setting means as a rudder angle deviation;
Based on the vehicle body speed, the rudder angle, and the rudder angle deviation, refer to a map of the relationship between the vehicle body speed, the rudder angle, the rudder angle deviation, and the correction value for the front-rear driving force distribution set in advance. Front and rear driving force distribution correction value setting means for setting a correction value for front and rear driving force distribution;
Front / rear driving force distribution correcting means for correcting the front / rear driving force distribution of the vehicle set by the front / rear driving force distribution calculating means with the correction value set by the front / rear driving force distribution correction value setting means;
A vehicle front-rear driving force distribution control device comprising:
JP2009174628A 2009-07-27 2009-07-27 Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device Expired - Fee Related JP5244043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174628A JP5244043B2 (en) 2009-07-27 2009-07-27 Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174628A JP5244043B2 (en) 2009-07-27 2009-07-27 Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device

Publications (2)

Publication Number Publication Date
JP2011025847A JP2011025847A (en) 2011-02-10
JP5244043B2 true JP5244043B2 (en) 2013-07-24

Family

ID=43635122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174628A Expired - Fee Related JP5244043B2 (en) 2009-07-27 2009-07-27 Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device

Country Status (1)

Country Link
JP (1) JP5244043B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149941B2 (en) * 2013-12-04 2017-06-28 日産自動車株式会社 Vehicle turning control device and vehicle turning control method
JP6453089B2 (en) * 2015-01-30 2019-01-16 株式会社ショーワ Electric power steering device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222018B2 (en) * 2002-12-09 2009-02-12 トヨタ自動車株式会社 Electric control steering device
JP2006298009A (en) * 2005-04-15 2006-11-02 Fuji Heavy Ind Ltd Vehicle driving support device
JP2008221952A (en) * 2007-03-09 2008-09-25 Toyota Motor Corp Friction coefficient estimation device and drive control device

Also Published As

Publication number Publication date
JP2011025847A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
KR102440674B1 (en) Control system and method for distributing drive torque between front and rear wheels of four-wheel drive vehicle
CN108248455B (en) Driving antiskid control method and device for four-wheel-drive electric automobile
CN102218988B (en) In vehicle, distribute the system and method for driving force
EP2554449B1 (en) Road surface frictional coefficient estimation device, driving force distribution control device and four-wheel-drive vehicle
EP2892779B1 (en) Vehicle control system and method
JP5038837B2 (en) Vehicle tuck-in prevention control device
JP6162762B2 (en) Vehicle control apparatus and vehicle control method
US8244432B2 (en) Road-surface friction-coefficient estimating device
US8649929B2 (en) Motor vehicle with all-wheel drive
KR101046457B1 (en) Driving force distribution control method and apparatus for four-wheel drive vehicle
EP3044058B1 (en) Vehicle control system and method
KR102777753B1 (en) Wheel slip control method for vehicle
GB2319823A (en) Braking force control system for automotive vehicle
EP1731347B1 (en) Front and rear drive power distribution control device for vehicle
JP5244043B2 (en) Road surface friction coefficient estimation device and vehicle front / rear driving force distribution control device
GB2435102A (en) Friction estimation for vehicle control systems
JP5003580B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP4443582B2 (en) Understeer suppression device
US10604010B2 (en) Behavior control device for four-wheel drive vehicle
JP2004231004A (en) Vehicle wheel state estimation device
EP1731348A2 (en) Vehicle drive power distribution control device
JP5075660B2 (en) Road friction coefficient estimation device
JP5033009B2 (en) Road friction coefficient estimation device
JP2006341828A (en) Front / rear driving force distribution control device for vehicle
JP6521450B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees