JP5233272B2 - Power supply circuit, display driver, electro-optical device, and electronic device - Google Patents
Power supply circuit, display driver, electro-optical device, and electronic device Download PDFInfo
- Publication number
- JP5233272B2 JP5233272B2 JP2007327194A JP2007327194A JP5233272B2 JP 5233272 B2 JP5233272 B2 JP 5233272B2 JP 2007327194 A JP2007327194 A JP 2007327194A JP 2007327194 A JP2007327194 A JP 2007327194A JP 5233272 B2 JP5233272 B2 JP 5233272B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power supply
- circuit
- supply circuit
- charge pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 25
- 238000007599 discharging Methods 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 37
- 238000010586 diagram Methods 0.000 description 22
- 101100464779 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CNA1 gene Proteins 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 101100420776 Arabidopsis thaliana SYN1 gene Proteins 0.000 description 6
- VUDQSRFCCHQIIU-UHFFFAOYSA-N DIF1 Natural products CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 6
- 101150001108 DIF1 gene Proteins 0.000 description 6
- 101001117010 Homo sapiens Pericentrin Proteins 0.000 description 6
- 102100027582 Nuclear pore complex protein Nup85 Human genes 0.000 description 6
- 102100024315 Pericentrin Human genes 0.000 description 6
- 101100464782 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CMP2 gene Proteins 0.000 description 6
- 238000005401 electroluminescence Methods 0.000 description 6
- 101150031080 nup85 gene Proteins 0.000 description 6
- 239000000872 buffer Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 108091006146 Channels Proteins 0.000 description 2
- 101000994667 Homo sapiens Potassium voltage-gated channel subfamily KQT member 2 Proteins 0.000 description 2
- 241000976924 Inca Species 0.000 description 2
- 102100034354 Potassium voltage-gated channel subfamily KQT member 2 Human genes 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 102100038026 DNA fragmentation factor subunit alpha Human genes 0.000 description 1
- -1 ENB2 Proteins 0.000 description 1
- 101000950906 Homo sapiens DNA fragmentation factor subunit alpha Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Description
æ¬çºæã¯ãé»æºåè·¯ã衚瀺ãã©ã€ããé»æ°å åŠè£ 眮åã³é»åæ©åšçã«é¢ããã   The present invention relates to a power supply circuit, a display driver, an electro-optical device, an electronic apparatus, and the like.
æºåž¯åã®é»åæ©åšã«ã¯ãããäžå±€ã®äœæ¶è²»é»ååãæ±ããããããã®ãããªé»åæ©åšã«æèŒãããè¡šç€ºè£ çœ®ãšããŠã液æ¶è¡šç€ºè£ 眮ãçšããããããšãå€ãã液æ¶è¡šç€ºè£ 眮ãé§åããããã«ã¯ãé«ãé»å§ãè² ã®é»å§çã®è€æ°ã®é»æºãå¿ èŠãšããããã®å Žåã液æ¶è¡šç€ºè£ 眮ãé§åãã液æ¶é§åè£ çœ®ã¯ãè€æ°ã®é»æºãçæããé»æºåè·¯ãå èµããããšãã³ã¹ãã®èŠ³ç¹ãããæãŸããã   Portable electronic devices are required to further reduce power consumption. A liquid crystal display device is often used as a display device mounted on such an electronic device. In order to drive the liquid crystal display device, a plurality of power sources such as a high voltage and a negative voltage are required. In this case, it is desirable from the viewpoint of cost that the liquid crystal driving device that drives the liquid crystal display device incorporates a power supply circuit that generates a plurality of power supplies.
ãã®ãããªé»æºåè·¯ã¯ãæå§åè·¯ãå«ãããã®æå§åè·¯ãšããŠãäŸãã°ç¹èš±æç®ïŒã«èšèŒããããããªãã£ãŒãžãã³ãåäœã«ããæå§ããé»å§ãçæãããã£ãŒãžãã³ãåè·¯ãæ¡çšãããããšãå€ãããã£ãŒãžãã³ãåè·¯ã¯ãé»è·ãèç©ããã³ã³ãã³ãµã®äžç«¯ããã¹ã€ããçŽ åïŒäŸãã°éå±é
žåèåå°äœïŒMetal Oxide SemiconductorïŒïŒïŒ¯ïŒ³ïŒãã©ã³ãžã¹ã¿ïŒã«ããåçš®é»å§ã«æ¥ç¶ããŠããããšã§ã該ã³ã³ãã³ãµã«èç©ãããé»è·ã«å¯Ÿå¿ããé»å§ãæå§ããŠããããã®ãããªãã£ãŒãžãã³ãåè·¯ãçšããããšã§ãäœæ¶è²»åãå³ãããšãã§ããã
æå§åè·¯ã®é»åå¹çãšãã芳ç¹ãããæå§åè·¯ã®åºåè² è·ãã§ããã ãå°ããããããšãæãŸããããã®ãããäŸãã°ç¹èš±æç®ïŒã®ããã«ãæå§åè·¯ã®åºåãããã®ãŸãŸæå§åè·¯ã®åºåé»å§ã®äŸçµŠå¯Ÿè±¡ã®åè·¯ã«æ¥ç¶ãããã
  From the viewpoint of the power efficiency of the booster circuit, it is desirable to make the output load of the booster circuit as small as possible. Therefore, for example, as in
ãŸããæå§åè·¯ã®åºåé»äœã調æŽããéã«ã¯ãã¬ã®ã¥ã¬ãŒã¿ãçšããããããã®ãšããäœæ¶è²»é»ååãç®çãšããŠã該ã¬ã®ã¥ã¬ãŒã¿ãã§ããã ãäœãåäœé»å§ã§åäœãããããšãæãŸããããã®ãããæå§åè·¯ã§æå§ããé»å§ãã¬ã®ã¥ã¬ãŒã¿ã§èª¿æŽããã®ã§ã¯ãªããã¬ã®ã¥ã¬ãŒã¿ã§é»å§ã調æŽããŠããã調æŽåŸã®é»å§ãæå§åè·¯ã«å ¥åãããããã®å Žåãã¬ã®ã¥ã¬ãŒã¿ã«ãã調æŽåŸã®é»å§ãæå§ããæå§åè·¯ã®é»å§ãã¿ãŒã²ããé»å§ãè¶ ããå Žåãè¶ éåã®é»å§ãéå§ããããã«ã·ã¹ãã æ¥å°é»æºã«é»è·ãæŸé»ããããšãè¡ããããäŸãã°ãïŒïŒïŒïŒ¶ã®é»å§ãïŒåæå§ããå Žåãéç©åè·¯è£ çœ®ã®çµ¶å¯Ÿæ倧å®æ ŒãšãªãïŒïŒ¶ä»¥äžãšãªãããã«ãïŒïŒïŒïŒ¶ïŒïŒïŒïŒïŒÃïŒâïŒïŒã ãé»äœãäžããããã«é»è·ãæŸé»ããããåŸã£ãŠããã®è¶ éåã®é»å§ã調æŽããããã®é»è·ã®å æŸé»éãæžããããšãã§ããã°ãé»æºåè·¯ã®äœæ¶è²»é»ååãå®çŸã§ããã   A regulator is used to adjust the output potential of the booster circuit. At this time, it is desirable to operate the regulator with the lowest possible operating voltage for the purpose of reducing power consumption. Therefore, the voltage boosted by the booster circuit is not adjusted by the regulator, but the adjusted voltage is input to the booster circuit after the voltage is adjusted by the regulator. In this case, when the voltage of the booster circuit that boosts the voltage adjusted by the regulator exceeds the target voltage, the electric charge is discharged to the system ground power source in order to step down the excess voltage. For example, when the voltage of 3.3 V is boosted twice, the electric charge is reduced so that the potential is lowered by 0.6 V (= 3.3 à 2â6) so that the absolute maximum rating of the integrated circuit device is 6 V or less. Is discharged. Therefore, if the charge / discharge amount for adjusting the excess voltage can be reduced, the power consumption of the power supply circuit can be reduced.
ãŸããé»æºåè·¯ã®åºåè² è·ã«å¿ããŠãé»æºåè·¯ã®é»åå¹çãå€åãããããã¯ãåºåè² è·ã«ãã£ãŠãç¡é§ãªé»åã䜿ã£ãŠæå§åäœãè¡ã£ãŠããŸãããšãæå³ãããåŸã£ãŠãé»æºåè·¯ã®åºåè² è·ã«å¿ããŠæå§èœåãå€æŽã§ããäžã€åºåè² è·ã«å¯ŸããŠå®å®ããé»å§ãäŸçµŠã§ããããã«æå§èœåãå€æŽã§ããããšãæãŸããã   Further, the power efficiency of the power supply circuit varies depending on the output load of the power supply circuit. This means that the boost operation is performed using wasted power depending on the output load. Therefore, it is desirable that the boosting capability can be changed according to the output load of the power supply circuit and the boosting capability can be changed so that a stable voltage can be supplied to the output load.
æ¬çºæã®å¹Ÿã€ãã®æ æ§ã«ããã°ãåºåè² è·ãé«ããªã£ãŠãæå§èœåãäœäžãããããšãªãäœæ¶è²»é»åã§æå§é»å§ãäŸçµŠã§ããé»æºåè·¯ã衚瀺ãã©ã€ããé»æ°å åŠè£ 眮åã³é»åæ©åšãæäŸã§ããã   According to some aspects of the present invention, it is possible to provide a power supply circuit, a display driver, an electro-optical device, and an electronic apparatus that can supply a boosted voltage with low power consumption without reducing the boosting capability even when the output load increases.
äžèšèª²é¡ã解決ããããã«æ¬çºæã¯ã
æå§ããé»å§ãåºåããããã®é»æºåè·¯ã§ãã£ãŠã
第ïŒã®é»å§ãåºæºã«ç¬¬ïŒã®é»å§ãæå§ããæå§é»å§ãçæããæå§åè·¯ãšã
åèšæå§é»å§ã®é»äœãå¶éãããªããã¿åè·¯ãšãå«ã¿ã
åèšãªããã¿åè·¯ãã
åèšæå§é»å§ãæäžã®ã¿ãŒã²ããé»å§ã«ãªãããã«åèšç¬¬ïŒã®é»å§ãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ãåã¯è©²é»æºç·ããé»è·ãå
é»ãã
åèšæå§åè·¯ãã
åèšé»æºåè·¯ã®åºåè² è·ã«å¿ããŠãæå§èœåãå€æŽããé»æºåè·¯ã«é¢ä¿ããã
In order to solve the above problems, the present invention
A power supply circuit for outputting a boosted voltage,
A booster circuit that generates a boosted voltage obtained by boosting the second voltage with reference to the first voltage;
A limiter circuit for limiting the potential of the boosted voltage,
The limiter circuit is
Discharging the charge to the power supply line to which the second voltage is supplied so that the boosted voltage becomes a given target voltage, or charging the charge from the power supply line,
The booster circuit is
The present invention relates to a power supply circuit that changes the boosting capability according to the output load of the power supply circuit.
æ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ããªããã¿åè·¯ã«ãããŠãæå§é»å§ãæäžã®ã¿ãŒã²ããé»å§ã«ãªãããã«ãæå§å ã®é»æºã§ããã第ïŒã®é»å§ãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ãåã¯è©²é»æºç·ããé»è·ãå é»ããããã«ããã®ã§ãé»è·ãåå©çšã§ãé»æºåè·¯ã®äœæ¶è²»é»ååãå®çŸã§ããããã«ãªãã   In the power supply circuit according to the present invention, in the limiter circuit, the charge is discharged to the power supply line to which the second voltage, which is the power source of the boost source, is supplied, or the power source so that the boost voltage becomes a given target voltage. Since the charge is charged from the line, the charge can be reused and the power consumption of the power supply circuit can be reduced.
æŽã«ãæå§åè·¯ããé»æºåè·¯ã®åºåè² è·ã«å¿ããŠæå§èœåãå€æŽããããã«ããã®ã§ãåºåè² è·ãé«ãå Žåã§ãæå§èœåãäœäžãããããšãªããäžã€åºåè² è·ã«å¯ŸããŠæå§å¹çãäœäžããããšãé²æ¢ã§ããããã«ãªãã   Furthermore, since the booster circuit changes the boosting capability according to the output load of the power supply circuit, even if the output load is high, the boosting capability is not lowered with respect to the output load without decreasing the boosting capability. Can be prevented.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
åèšåºåè² è·ã«å¯ŸããŠåèšæå§èœåãé«ããšå€æããããšãã«ã¯ãæå§èœåãããäœããªãããã«è©²æå§èœåãå€æŽãã
åèšåºåè² è·ã«å¯ŸããŠåèšæå§èœåãäœããšå€æããããšãã«ã¯ãæå§èœåãããé«ããªãããã«è©²æå§èœåãå€æŽããããšãã§ããã
In the power supply circuit according to the present invention,
When it is determined that the boost capability is high with respect to the output load, the boost capability is changed so that the boost capability becomes lower,
When it is determined that the boosting capability is low with respect to the output load, the boosting capability can be changed so that the boosting capability becomes higher.
æ¬çºæã«ããã°ãåºåè² è·ã«å¿ããŠæå§èœåãé©æ£ãªã¬ãã«ã«ç¶æã§ããã®ã§ãæå§èœåã«ããåŸãããé»å§ãå®å®åããã€ã€ãäžã€åºåè² è·ã«å¯ŸããŠæå§å¹çãäœäžããããšãé²æ¢ã§ããããã«ãªãã   According to the present invention, since the boosting capability can be maintained at an appropriate level according to the output load, it is possible to stabilize the voltage obtained by the boosting capability and prevent the boosting efficiency from decreasing with respect to the output load. become.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
åèšæå§åè·¯ãã
åèšåºåè² è·ãšãåèšãªããã¿åè·¯ãåèšæå§é»å§ã®é»äœãå¶éãããåŠãã瀺ããªããã¿åäœæ
å ±ãšã«åºã¥ããŠãåèšæå§èœåãå€æŽããããšãã§ããã
In the power supply circuit according to the present invention,
The booster circuit is
The boosting capability can be changed based on the output load and limiter operation information indicating whether or not the limiter circuit has limited the potential of the boosted voltage.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
åèšæå§åè·¯ãã
åèšãªããã¿æ
å ±ã«åºã¥ããŠæŽæ°ãããéŸå€ãšãåèšåºåè² è·ãšã®æ¯èŒçµæã«å¿ããŠãåèšæå§èœåãå€æŽããããšãã§ããã
In the power supply circuit according to the present invention,
The booster circuit is
The boosting capability can be changed according to a comparison result between the threshold value updated based on the limiter information and the output load.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
åèšéŸå€ãã
æäžã®éŸå€é»å§ãšåèšæå§é»å§ãšã®æ¯èŒçµæã«åºã¥ããŠæŽæ°ãããŠãããã
In the power supply circuit according to the present invention,
The threshold is
It may be updated based on a comparison result between a given threshold voltage and the boosted voltage.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
åèšæäžã®éŸå€é»å§ãšåèšæå§é»å§ãšãæ¯èŒããã³ã³ãã¬ãŒã¿ãšã
åèšã³ã³ãã¬ãŒã¿ã®åºåçµæã®ãã«ã¹å¹
åã¯ãã«ã¹æ°ãã«ãŠã³ãããã«ãŠã³ã¿ãšãå«ã¿ã
åèšéŸå€ãã
åèšã«ãŠã³ã¿ã®ã«ãŠã³ãæ°ã«åºã¥ããŠæŽæ°ãããŠãããã
In the power supply circuit according to the present invention,
A comparator for comparing the given threshold voltage with the boost voltage;
A counter that counts the pulse width or number of pulses of the output result of the comparator,
The threshold is
It may be updated based on the count number of the counter.
äžèšã®ããããã®çºæã«ããã°ããªããã¿åè·¯ã®åäœæ å ±ã«åºã¥ããŠæå§èœåãå€æŽã§ããããã«ããã®ã§ãçš®ã ã®åºåè² è·ã«å¯ŸããŠãæé©ãªæå§èœåã§äœæ¶è²»é»ååäœãå¯èœãªé»æºåè·¯ãæäŸã§ããã   According to any one of the above-described inventions, since the boosting capability can be changed based on the operation information of the limiter circuit, the power supply circuit capable of low power consumption operation with the optimum boosting capability for various output loads Can provide.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
é»æ°å
åŠè£
眮ã®è€æ°ã®ãœãŒã¹ç·ã®åãœãŒã¹ç·ã®é調ããŒã¿ã«å¯Ÿå¿ããé§åé»å§ããåèšæå§é»å§ã«åºã¥ããŠçæãããå Žåã«ã
åèšåºåè² è·ãã
åèšè€æ°ã®ãœãŒã¹ç·ã®ïŒèµ°æ»ã©ã€ã³åã®é調ããŒã¿ã®ç·åã«åºã¥ããŠè©äŸ¡ãããŠãããã
In the power supply circuit according to the present invention,
When a driving voltage corresponding to gradation data of each source line of the plurality of source lines of the electro-optical device is generated based on the boosted voltage,
The output load is
The evaluation may be based on the sum of gradation data for one scanning line of the plurality of source lines.
æ¬çºæã«ããã°ãåºåè² è·ãç°¡çŽ ãªæ§æã§è©äŸ¡ã§ããããã«ãªãã   According to the present invention, the output load can be evaluated with a simple configuration.
ãŸãæ¬çºæã«ä¿ãé»æºåè·¯ã§ã¯ã
åèšæå§åè·¯ãã
第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµãçšãããã£ãŒãžãã³ãåäœã«ãããåèšæå§é»å§ãçæããããã®ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ãšã
åèšç¬¬ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµãã容éå€ã®å€§ãã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµãçšãããã£ãŒãžãã³ãåäœã«ãããåèšæå§é»å§ãçæããããã®ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ãšãå«ã¿ã
åèšæå§åè·¯ã®æå§èœåã®å€æŽåŸã«ãåèšç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ã«ããçæãããæå§é»å§ãåèšç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ã«ããçæãããæå§é»å§ãåã¯åèšç¬¬ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ã«ããçæãããæå§é»å§ãåºåããããšãã§ããã
In the power supply circuit according to the present invention,
The booster circuit is
A first charge pump circuit for generating the boosted voltage by a charge pump operation using a first flying capacitor;
A second charge pump circuit for generating the boosted voltage by a charge pump operation using a second flying capacitor having a larger capacitance value than the first flying capacitor;
After the boosting capability of the booster circuit is changed, the boosted voltage generated by the first charge pump circuit, the boosted voltage generated by the second charge pump circuit, or the first and second charge pump circuits. The generated boosted voltage can be output.
æ¬çºæã«ããã°ãç°¡çŽ ãªæ§æã§ãæå§åè·¯ã®æå§èœåãå€æŽã§ããããã«ãªãã   According to the present invention, the boosting capability of the booster circuit can be changed with a simple configuration.
ãŸãæ¬çºæã¯ã
é»æ°å
åŠè£
眮ãé§åããããã®è¡šç€ºãã©ã€ãã§ãã£ãŠã
äžèšã®ããããèšèŒã®é»æºåè·¯ãšã
åèšé»æ°å
åŠè£
眮ãé§åããããã®é§åéšãšãå«ã¿ã
åèšæå§é»å§ã«åºã¥ããŠãåèšé§åéšã®é§åé»å§ãçæãã衚瀺ãã©ã€ãã«é¢ä¿ããã
The present invention also provides
A display driver for driving an electro-optical device,
Any one of the power supply circuits described above;
A drive unit for driving the electro-optical device,
The present invention relates to a display driver that generates a driving voltage of the driving unit based on the boosted voltage.
ãŸãæ¬çºæã«ä¿ã衚瀺ãã©ã€ãã§ã¯ã
åèšé§åéšãã
åèšæå§é»å§ãçšããŠçæããããé調ããŒã¿ã«å¯Ÿå¿ããé§åé»å§ã«ããåèšé»æ°å
åŠè£
眮ã®è€æ°ã®ãœãŒã¹ç·ãé§åããããšãã§ããã
In the display driver according to the present invention,
The drive unit is
A plurality of source lines of the electro-optical device can be driven by a driving voltage corresponding to the gradation data generated using the boosted voltage.
äžèšã®ããããã®çºæã«ããã°ãåºåè² è·ãé«ããªã£ãŠãæå§èœåãäœäžãããããšãªãäœæ¶è²»é»åã§æå§é»å§ãäŸçµŠã§ããé»æºåè·¯ãé©çšããã衚瀺ãã©ã€ããæäŸã§ããã   According to any one of the above-described inventions, it is possible to provide a display driver to which a power supply circuit that can supply a boosted voltage with low power consumption without reducing the boosting capability even when the output load becomes high.
ãŸãæ¬çºæã¯ã
è€æ°ã®ã²ãŒãç·ãšã
è€æ°ã®ãœãŒã¹ç·ãšã
åèšè€æ°ã®ã²ãŒãç·ãèµ°æ»ããã²ãŒããã©ã€ããšã
åèšè€æ°ã®ãœãŒã¹ç·ãé§åãããœãŒã¹ãã©ã€ããšã
äžèšã®ããããèšèŒã®é»æºåè·¯ãšãå«ã¿ã
åèšã²ãŒããã©ã€ãã®èµ°æ»é»å§åã³åèšãœãŒã¹ãã©ã€ãã®é§åé»å§ã®ãã¡å°ãªããšãïŒã€ããåèšæå§é»å§ã«åºã¥ããŠçæãããé»æ°å
åŠè£
眮ã«é¢ä¿ããã
The present invention also provides
Multiple gate lines,
Multiple source lines,
A gate driver that scans the plurality of gate lines;
A source driver for driving the plurality of source lines;
Including any of the power supply circuits described above,
At least one of the scanning voltage of the gate driver and the driving voltage of the source driver is related to the electro-optical device generated based on the boosted voltage.
ãŸãæ¬çºæã¯ã
è€æ°ã®ã²ãŒãç·ãšã
è€æ°ã®ãœãŒã¹ç·ãšã
åèšè€æ°ã®ã²ãŒãç·ãèµ°æ»ããã²ãŒããã©ã€ããšã
åèšè€æ°ã®ãœãŒã¹ç·ãé§åããäžèšèšèŒã®è¡šç€ºãã©ã€ããšãå«ãé»æ°å
åŠè£
眮ã«é¢ä¿ããã
The present invention also provides
Multiple gate lines,
Multiple source lines,
A gate driver that scans the plurality of gate lines;
The present invention relates to an electro-optical device including the display driver described above that drives the plurality of source lines.
äžèšã®ããããã®çºæã«ããã°ãåºåè² è·ãé«ããªã£ãŠãæå§èœåãäœäžãããããšãªãäœæ¶è²»é»åã§æå§é»å§ãäŸçµŠã§ããé»æºåè·¯ãé©çšãããé»æ°å åŠè£ 眮ãæäŸã§ããã   According to any one of the above-described inventions, it is possible to provide an electro-optical device to which a power supply circuit that can supply a boosted voltage with low power consumption without reducing the boosting capability even when the output load becomes high.
ãŸãæ¬çºæã¯ã
äžèšã®ããããèšèŒã®é»æºåè·¯ãå«ãé»åæ©åšã«é¢ä¿ããã
The present invention also provides
The present invention relates to an electronic device including any one of the power supply circuits described above.
ãŸãæ¬çºæã¯ã
äžèšèšèŒã®è¡šç€ºãã©ã€ããå«ãé»åæ©åšã«é¢ä¿ããã
The present invention also provides
The present invention relates to an electronic device including the display driver described above.
ãŸãæ¬çºæã¯ã
äžèšèšèŒã®é»æ°å
åŠè£
眮ãå«ãé»åæ©åšã«é¢ä¿ããã
The present invention also provides
The present invention relates to an electronic apparatus including the electro-optical device described above.
äžèšã®ããããã®çºæã«ããã°ãåºåè² è·ãé«ããªã£ãŠãæå§èœåãäœäžãããããšãªãäœæ¶è²»é»åã§æå§é»å§ãäŸçµŠã§ããé»æºåè·¯ãé©çšãããé»åæ©åšãæäŸã§ããã   According to any one of the above-described inventions, it is possible to provide an electronic apparatus to which a power supply circuit that can supply a boosted voltage with low power consumption without reducing the boosting capability even when the output load increases.
以äžãæ¬çºæã®å®æœã®åœ¢æ ã«ã€ããŠå³é¢ãçšããŠè©³çŽ°ã«èª¬æããããªãã以äžã«èª¬æããå®æœã®åœ¢æ ã¯ãç¹èš±è«æ±ã®ç¯å²ã«èšèŒãããæ¬çºæã®å 容ãäžåœã«éå®ãããã®ã§ã¯ãªãããŸã以äžã§èª¬æãããæ§æã®ãã¹ãŠãæ¬çºæã®å¿ é æ§æèŠä»¶ã§ãããšã¯éããªãã   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below do not unduly limit the contents of the present invention described in the claims. Also, not all of the configurations described below are essential constituent requirements of the present invention.
ïŒïŒ 液æ¶è¡šç€ºè£
眮
å³ïŒã«ãæ¬å®æœåœ¢æ
ã®æ¶²æ¶è¡šç€ºè£
眮ã®ãããã¯å³ã®äŸã瀺ãã
1. Liquid Crystal Display Device FIG. 1 shows an example of a block diagram of a liquid crystal display device of this embodiment.
液æ¶è¡šç€ºè£
眮ïŒïŒïŒæ¶²æ¶è£
眮ãåºçŸ©ã«ã¯é»æ°å
åŠè£
眮ïŒã¯ã衚瀺ããã«ïŒïŒïŒç矩ã«ã¯æ¶²æ¶ããã«ãïŒLiquid Crystal DisplayïŒããã«ãåºçŸ©ã«ã¯é»æ°å
åŠããã«ïŒããœãŒã¹ãã©ã€ãïŒïŒïŒåºçŸ©ã«ã¯ããŒã¿ç·é§ååè·¯ïŒãã²ãŒããã©ã€ãïŒïŒïŒåºçŸ©ã«ã¯èµ°æ»ç·é§ååè·¯ïŒã衚瀺ã³ã³ãããŒã©ïŒïŒãé»æºåè·¯ïŒïŒãå«ãããªãã液æ¶è¡šç€ºè£
眮ïŒïŒã«ãããã®ãã¹ãŠã®åè·¯ãããã¯ãå«ããå¿
èŠã¯ãªãããã®äžéšã®åè·¯ãããã¯ãçç¥ããæ§æã«ããŠããããé»æ°å
åŠè£
眮ã¯ãææ©ïŒ¥ïŒ¬ïŒElectro LuminescenceïŒãç¡æ©ïŒ¥ïŒ¬çŽ åçã®çºå
çŽ åãçšããè£
眮ãå«ãããšãã§ããã
  The liquid crystal display device 10 (liquid crystal device; electro-optical device in a broad sense) includes a display panel 12 (a liquid crystal panel in a narrow sense, an LCD (Liquid Crystal Display) panel, an electro-optical panel in a broad sense), and a source driver 20 (in a broad sense). Data line driving circuit), gate driver 30 (scanning line driving circuit in a broad sense),
ããã§è¡šç€ºããã«ïŒïŒïŒé»æ°å åŠè£ 眮ïŒã¯ãè€æ°ã®ã²ãŒãç·ïŒåºçŸ©ã«ã¯èµ°æ»ç·ïŒãšãè€æ°ã®ãœãŒã¹ç·ïŒåºçŸ©ã«ã¯ããŒã¿ç·ïŒãšãã²ãŒãç·åã³ãœãŒã¹ç·ã«ããç¹å®ãããç»çŽ é»æ¥µãå«ãããã®å ŽåããœãŒã¹ç·ã«èèãã©ã³ãžã¹ã¿ïŒŽïŒŠïŒŽïŒThin Film TransistorãåºçŸ©ã«ã¯ã¹ã€ããã³ã°çŽ åïŒãæ¥ç¶ãããã®ïŒŽïŒŠïŒŽã«ç»çŽ é»æ¥µãæ¥ç¶ããããšã§ãã¢ã¯ãã£ããããªã¯ã¹åã®æ¶²æ¶è¡šç€ºè£ 眮ãæ§æã§ããã   Here, the display panel 12 (electro-optical device) includes a plurality of gate lines (scanning lines in a broad sense), a plurality of source lines (data lines in a broad sense), and pixel electrodes specified by the gate lines and the source lines. Including. In this case, an active matrix liquid crystal display device can be configured by connecting a thin film transistor TFT (Thin Film Transistor, switching element in a broad sense) to a source line and connecting a pixel electrode to the TFT.
ããå
·äœçã«ã¯ã衚瀺ããã«ïŒïŒã¯ãã¢ã¯ãã£ããããªã¯ã¹åºæ¿ïŒäŸãã°ã¬ã©ã¹åºæ¿ïŒäžã«ã¢ã¢ã«ãã¡ã¹ã·ãªã³ã³èèã圢æãããã¢ã¢ã«ãã¡ã¹ã·ãªã³ã³æ¶²æ¶ããã«ã§ãããã¢ã¯ãã£ããããªã¯ã¹åºæ¿ã«ã¯ãå³ïŒã®ïŒ¹æ¹åã«è€æ°é
åããããããæ¹åã«äŒžã³ãã²ãŒãç·ïŒ§ïŒãïŒïŒïŒã¯ïŒä»¥äžã®èªç¶æ°ïŒãšãæ¹åã«è€æ°é
åããããããæ¹åã«äŒžã³ããœãŒã¹ç·ïŒ³ïŒãïŒïŒ®ã¯ïŒä»¥äžã®èªç¶æ°ïŒãšãé
眮ãããŠããããŸããã²ãŒãç·ïŒ§ïŒ«ïŒïŒâŠïŒ«âŠïŒãã¯èªç¶æ°ïŒãšãœãŒã¹ç·ïŒ³ïŒ¬ïŒïŒâŠïŒ¬âŠïŒ®ãã¯èªç¶æ°ïŒãšã®äº€å·®ç¹ã«å¯Ÿå¿ããäœçœ®ã«ãèèãã©ã³ãžã¹ã¿ïŒŽïŒŠïŒŽïŒ«ïŒ¬ïŒåºçŸ©ã«ã¯ã¹ã€ããã³ã°çŽ åïŒãèšããããŠããã
More specifically, the
ã®ã²ãŒãé»æ¥µã¯ã²ãŒãç·ïŒ§ïŒ«ã«æ¥ç¶ãããã®ãœãŒã¹é»æ¥µã¯ãœãŒã¹ç·ïŒ³ïŒ¬ã«æ¥ç¶ãããã®ãã¬ã€ã³é»æ¥µã¯ç»çŽ é»æ¥µïŒ°ïŒ¥ïŒ«ïŒ¬ã«æ¥ç¶ãããŠããããã®ç»çŽ é»æ¥µïŒ°ïŒ¥ïŒ«ïŒ¬ãšãç»çŽ é»æ¥µïŒ°ïŒ¥ïŒ«ïŒ¬ãšæ¶²æ¶ïŒåºçŸ©ã«ã¯é»æ°å åŠç©è³ªïŒãæãã§å¯Ÿåãã察åé»æ¥µïŒ£ïŒ¥ïŒå ±éé»æ¥µãã³ã¢ã³é»æ¥µïŒãšã®éã«ã¯ãçŽ å容éã§ãã液æ¶å®¹éïŒæ¶²æ¶çŽ åïŒãåã³è£å©å®¹éã圢æãããŠããããããŠããç»çŽ é»æ¥µïŒ°ïŒ¥ïŒ«ïŒ¬çã圢æãããã¢ã¯ãã£ããããªã¯ã¹åºæ¿ãšå¯Ÿåé»æ¥µïŒ£ïŒ¥ã圢æããã察ååºæ¿ãšã®éã«æ¶²æ¶ãå°å ¥ãããããã«åœ¢æãããç»çŽ é»æ¥µïŒ°ïŒ¥ïŒ«ïŒ¬ãšå¯Ÿåé»æ¥µïŒ£ïŒ¥ãšã®éã®å°å é»å§ã«å¿ããŠç»çŽ ã®ééçãå€åããããã«ãªã£ãŠãããçŽ å容éã¯ã液æ¶çŽ åã«åœ¢æããã液æ¶å®¹éããç¡æ©ïŒ¥ïŒ¬çŽ åçã®ïŒ¥ïŒ¬çŽ åã«åœ¢æããã容éãå«ãããšãã§ããã The gate electrode of the thin film transistor TFT KL is connected with the gate line G K, a source electrode of the thin film transistor TFT KL is connected with the source line S L, the drain electrode of the thin film transistor TFT KL is connected with a pixel electrode PE KL. Between the pixel electrode PE KL and the counter electrode CE (common electrode, common electrode) facing the pixel electrode PE KL with a liquid crystal (electro-optical material in a broad sense) interposed therebetween, a liquid crystal capacitance CL KL which is an element capacitance (Liquid crystal element) and auxiliary capacitor CS KL are formed. Then, liquid crystal is formed between the active matrix substrate on which the TFT KL , the pixel electrode PE KL, and the like are formed and the counter substrate on which the counter electrode CE is formed, and the pixel electrode PE KL , the counter electrode CE, The transmittance of the pixel is changed in accordance with the applied voltage between. The element capacitance can include a liquid crystal capacitance formed in a liquid crystal element and a capacitance formed in an EL element such as an inorganic EL element.
ãªãã察åé»æ¥µïŒ£ïŒ¥ã«äžãããã察åé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®é»å§ã¬ãã«ïŒé«é»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒšãäœé»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒ¬ïŒã¯ãé»æºåè·¯ïŒïŒã«å«ãŸãã察åé»æ¥µé»å§çæåè·¯ããçæããããäŸãã°ã察åé»æ¥µïŒ£ïŒ¥ã¯ã察ååºæ¿äžã«äžé¢ã«åœ¢æãããã
  Note that the voltage level (high potential side voltage VCOMH, low potential side voltage VCOML) of the counter electrode voltage VCOM applied to the counter electrode CE is generated by a counter electrode voltage generation circuit included in the
ãœãŒã¹ãã©ã€ãïŒïŒã¯ãé調ããŒã¿ã«åºã¥ããŠè¡šç€ºããã«ïŒïŒã®ãœãŒã¹ç·ïŒ³ïŒããé§åãããäžæ¹ãã²ãŒããã©ã€ãïŒïŒã¯ã衚瀺ããã«ïŒïŒã®ã²ãŒãç·ïŒ§ïŒãïŒãèµ°æ»ïŒé 次é§åïŒããã
The
衚瀺ã³ã³ãããŒã©ïŒïŒã¯ãå³ç€ºããªãäžå€®æŒç®åŠçè£
眮ïŒCentral Processing UnitïŒïŒ£ïŒ°ïŒµïŒçã®ãã¹ãã«ããèšå®ãããå
容ã«åŸã£ãŠããœãŒã¹ãã©ã€ãïŒïŒãã²ãŒããã©ã€ãïŒïŒåã³é»æºåè·¯ïŒïŒãå¶åŸ¡ãããããå
·äœçã«ã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒã¯ããœãŒã¹ãã©ã€ãïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒã«å¯ŸããŠã¯ãäŸãã°åäœã¢ãŒãã®èšå®ãå
éšã§çæããåçŽåæä¿¡å·ãæ°Žå¹³åæä¿¡å·ã®äŸçµŠãè¡ããé»æºåè·¯ïŒïŒã«å¯ŸããŠã¯ã察åé»æ¥µïŒ£ïŒ¥ã«å°å ãã察åé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®é»å§ã¬ãã«ã®æ¥µæ§å転ã¿ã€ãã³ã°ã®å¶åŸ¡ãè¡ãã
  The
é»æºåè·¯ïŒïŒã¯ãå€éšããäŸçµŠãããã·ã¹ãã é»æºé»å§ãæå§ãããªã©ããŠã衚瀺ããã«ïŒïŒã®é§åã«å¿
èŠãªåçš®ã®é»å§ã¬ãã«ïŒé調é»å§ïŒãã察åé»æ¥µïŒ£ïŒ¥ã®å¯Ÿåé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®é»å§ã¬ãã«ãçæãããæ¬å®æœåœ¢æ
ã«ãããé»æºåè·¯ïŒïŒã¯ãé»æºåè·¯ïŒïŒã®åºåè² è·ãè©äŸ¡ããããã®è©äŸ¡å€ããœãŒã¹ãã©ã€ãïŒïŒããåãã該è©äŸ¡å€ã«åºã¥ããŠæå§èœåãå€æŽã§ããããã«ãªã£ãŠãããããã§ãæå§èœåã¯ãåºåè² è·é»æµã®å€åã«å¯ŸããŠåºåé»å§ãå€åãããèœåãšããããšãã§ããã
  The
ãã®ããã«ããœãŒã¹ãã©ã€ãïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒãã衚瀺ããã«ïŒïŒãé§åããããã®é§åéšãšããå Žåã«ãé»æºåè·¯ïŒïŒã«ããæå§ãããé»å§ã«åºã¥ããŠãé§åéšã®é§åé»å§ãçæããããšãã§ããã
  As described above, when the
ãã®ãããªæ§æã®æ¶²æ¶è¡šç€ºè£
眮ïŒïŒã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒã®å¶åŸ¡ã®äžãå€éšããäŸçµŠãããé調ããŒã¿ã«åºã¥ããŠããœãŒã¹ãã©ã€ãïŒïŒãã²ãŒããã©ã€ãïŒïŒåã³é»æºåè·¯ïŒïŒãå調ããŠè¡šç€ºããã«ïŒïŒãé§åããã
  In the liquid
ãªããå³ïŒã§ã¯ã液æ¶è¡šç€ºè£
眮ïŒïŒã衚瀺ã³ã³ãããŒã©ïŒïŒãå«ãæ§æã«ãªã£ãŠãããã衚瀺ã³ã³ãããŒã©ïŒïŒã液æ¶è¡šç€ºè£
眮ïŒïŒã®å€éšã«èšããŠããããæãã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒãšå
±ã«ãã¹ãã液æ¶è¡šç€ºè£
眮ïŒïŒã«å«ããããã«ããŠãããããŸãããœãŒã¹ãã©ã€ãïŒïŒãã²ãŒããã©ã€ãïŒïŒã衚瀺ã³ã³ãããŒã©ïŒïŒãé»æºåè·¯ïŒïŒã®äžéšåã¯å
šéšã衚瀺ããã«ïŒïŒäžã«åœ¢æããŠãããã
  In FIG. 1, the liquid
ãŸãå³ïŒã«ãããŠããœãŒã¹ãã©ã€ãïŒïŒãã²ãŒããã©ã€ãïŒïŒåã³é»æºåè·¯ïŒïŒãéç©åããŠãåå°äœè£
眮ïŒéç©åè·¯ãïŒãšããŠè¡šç€ºãã©ã€ãïŒïŒãæ§æããŠãããã
  In FIG. 1, the
å³ïŒã«ãæ¬å®æœåœ¢æ ã«ããã液æ¶è¡šç€ºè£ 眮ã®ä»ã®æ§æäŸã®ãããã¯å³ã瀺ãã   FIG. 2 is a block diagram showing another configuration example of the liquid crystal display device according to this embodiment.
å³ïŒã§ã¯ã衚瀺ããã«ïŒïŒäžïŒããã«åºæ¿äžïŒã«ããœãŒã¹ãã©ã€ãïŒïŒãã²ãŒããã©ã€ãïŒïŒåã³é»æºåè·¯ïŒïŒãå«ã衚瀺ãã©ã€ãïŒïŒã圢æãããŠããããã®ããã«è¡šç€ºããã«ïŒïŒã¯ãè€æ°ã®ã²ãŒãç·ãšãè€æ°ã®ãœãŒã¹ç·ãšãè€æ°ã®ã²ãŒãç·ã®åã²ãŒãç·åã³è€æ°ã®ãœãŒã¹ç·ã®åãœãŒã¹ç·ãšã«æ¥ç¶ãããè€æ°ã®ç»çŽ ïŒç»çŽ é»æ¥µïŒãšãè€æ°ã®ãœãŒã¹ç·ãé§åãããœãŒã¹ãã©ã€ããšãè€æ°ã®ã²ãŒãç·ãèµ°æ»ããã²ãŒããã©ã€ããšãå«ãããã«æ§æããããšãã§ããã衚瀺ããã«ïŒïŒã®ç»çŽ 圢æé åïŒïŒã«ãè€æ°ã®ç»çŽ ã圢æãããŠãããåç»çŽ ã¯ããœãŒã¹ã«ãœãŒã¹ç·ãæ¥ç¶ããã²ãŒãã«ã²ãŒãç·ãæ¥ç¶ããããšã該ã®ãã¬ã€ã³ã«æ¥ç¶ãããç»çŽ é»æ¥µãšãå«ãããšãã§ããã
  In FIG. 2, a
ãªãå³ïŒã§ã¯ã衚瀺ããã«ïŒïŒäžã«ãããŠã²ãŒããã©ã€ãïŒïŒåã³é»æºåè·¯ïŒïŒã®ãã¡å°ãªããšãïŒã€ãçç¥ãããæ§æã§ãã£ãŠãããã
  In FIG. 2, at least one of the
ãŸãå³ïŒåã¯å³ïŒã«ãããŠã衚瀺ãã©ã€ãïŒïŒãã衚瀺ã³ã³ãããŒã©ïŒïŒãå
èµããŠããããæãã¯å³ïŒåã¯å³ïŒã«ãããŠã衚瀺ãã©ã€ãïŒïŒãããœãŒã¹ãã©ã€ãïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒã®ããããäžæ¹ãšãé»æºåè·¯ïŒïŒãšãéç©åããåå°äœè£
眮ã§ãã£ãŠãããã
  In FIG. 1 or FIG. 2, the
ïŒïŒïŒ ã²ãŒããã©ã€ã
å³ïŒã«ãå³ïŒåã¯å³ïŒã®ã²ãŒããã©ã€ãïŒïŒã®æ§æäŸã瀺ãã
1.1 Gate Driver FIG. 3 shows a configuration example of the
ã²ãŒããã©ã€ãïŒïŒã¯ãã·ããã¬ãžã¹ã¿ïŒïŒãã¬ãã«ã·ãã¿ïŒïŒãåºåãããã¡ïŒïŒãå«ãã
  The
ã·ããã¬ãžã¹ã¿ïŒïŒã¯ãåã²ãŒãç·ã«å¯Ÿå¿ããŠèšããããé 次æ¥ç¶ãããè€æ°ã®ããªãããããããå«ãããã®ã·ããã¬ãžã¹ã¿ïŒïŒã¯ãã¯ããã¯ä¿¡å·ïŒ£ïŒ¬ïŒ«ã«åæããŠã€ããŒãã«å
¥åºåä¿¡å·ïŒ¥ïŒ©ïŒ¯ãããªããããããã«ä¿æãããšãé 次ã¯ããã¯ä¿¡å·ïŒ£ïŒ¬ïŒ«ã«åæããŠé£æ¥ããããªããããããã«ã€ããŒãã«å
¥åºåä¿¡å·ïŒ¥ïŒ©ïŒ¯ãã·ãããããããã§å
¥åãããã€ããŒãã«å
¥åºåä¿¡å·ïŒ¥ïŒ©ïŒ¯ã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒããäŸçµŠãããåçŽåæä¿¡å·ã§ããã
  The
ã¬ãã«ã·ãã¿ïŒïŒã¯ãã·ããã¬ãžã¹ã¿ïŒïŒããã®é»å§ã¬ãã«ãã衚瀺ããã«ïŒïŒã®æ¶²æ¶çŽ åãšïŒŽïŒŠïŒŽã®ãã©ã³ãžã¹ã¿èœåãšã«å¿ããé»å§ã¬ãã«ã«ã·ããããããã®é»å§ã¬ãã«ãšããŠã¯ãé«ãé»å§ã¬ãã«ãå¿
èŠãšããããããä»ã®ããžãã¯åè·¯éšãšã¯ç°ãªãé«èå§ããã»ã¹ãçšããããã
  The
åºåãããã¡ïŒïŒã¯ãã¬ãã«ã·ãã¿ïŒïŒã«ãã£ãŠã·ãããããèµ°æ»é»å§ããããã¡ãªã³ã°ããŠã²ãŒãç·ã«åºåããã²ãŒãç·ãé§åããã
  The
ïŒïŒïŒ ãœãŒã¹ãã©ã€ã
å³ïŒã«ãå³ïŒåã¯å³ïŒã®ãœãŒã¹ãã©ã€ãïŒïŒã®æ§æäŸã®ãããã¯å³ã瀺ãã
1.2 Source Driver FIG. 4 is a block diagram showing a configuration example of the
ãœãŒã¹ãã©ã€ãïŒïŒã¯ãã·ããã¬ãžã¹ã¿ïŒïŒãã©ã€ã³ã©ããïŒïŒãïŒïŒãé調ããŒã¿ç·åæŒç®éšïŒïŒãïŒïŒïŒDigital-to-Analog ConverterïŒïŒåºçŸ©ã«ã¯ããŒã¿é»å§çæåè·¯ïŒããœãŒã¹ç·é§ååè·¯ïŒïŒãå«ãã
  The
ã·ããã¬ãžã¹ã¿ïŒïŒã¯ãåãœãŒã¹ç·ã«å¯Ÿå¿ããŠèšããããé 次æ¥ç¶ãããè€æ°ã®ããªãããããããå«ãããã®ã·ããã¬ãžã¹ã¿ïŒïŒã¯ãã¯ããã¯ä¿¡å·ïŒ£ïŒ¬ïŒ«ã«åæããŠã€ããŒãã«å
¥åºåä¿¡å·ïŒ¥ïŒ©ïŒ¯ãä¿æãããšãé 次ã¯ããã¯ä¿¡å·ïŒ£ïŒ¬ïŒ«ã«åæããŠé£æ¥ããããªããããããã«ã€ããŒãã«å
¥åºåä¿¡å·ïŒ¥ïŒ©ïŒ¯ãã·ããããã
  The
ã©ã€ã³ã©ããïŒïŒã«ã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒããäŸãã°ïŒïŒãããïŒïŒãããïŒé調ããŒã¿ïŒÃïŒïŒïŒ²ïŒ§ïŒ¢åè²ïŒïŒåäœã§é調ããŒã¿ïŒïŒ€ïŒ©ïŒ¯ïŒãå
¥åããããã©ã€ã³ã©ããïŒïŒã¯ããã®é調ããŒã¿ïŒïŒ€ïŒ©ïŒ¯ïŒããã·ããã¬ãžã¹ã¿ïŒïŒã®åããªããããããã§é 次ã·ãããããã€ããŒãã«å
¥åºåä¿¡å·ïŒ¥ïŒ©ïŒ¯ã«åæããŠã©ããããã
  Gradation data (DIO) is input to the
ã©ã€ã³ã©ããïŒïŒã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒããäŸçµŠãããæ°Žå¹³åæä¿¡å·ïŒ¬ïŒ°ã«åæããŠãã©ã€ã³ã©ããïŒïŒã§ã©ãããããïŒæ°Žå¹³èµ°æ»åäœã®é調ããŒã¿ãã©ããããã
  The
é調ããŒã¿ç·åæŒç®éšïŒïŒã¯ãé»æºåè·¯ïŒïŒã®åºåè² è·ãè©äŸ¡ããããã®è©äŸ¡å€ããé調ããŒã¿ã«åºã¥ããŠæŒç®ããããã®è©äŸ¡å€ã¯ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãšããŠé»æºåè·¯ïŒïŒã«äŸçµŠããããããå
·äœçã«ã¯ãé調ããŒã¿ç·åæŒç®éšïŒïŒã¯ãïŒèµ°æ»ã©ã€ã³åã®é調ããŒã¿ãå ç®ããããšã§ãè©äŸ¡å€ãæ±ããããšãã§ãããäŸãã°é調ããŒã¿ç·åæŒç®éšïŒïŒã¯ãã©ã€ã³ã©ããïŒïŒã«åã蟌ãŸããé調ããŒã¿ãïŒãœãŒã¹åºåæ¯ã«å ç®ããŠç·åããŒã¿ãæ±ããè©äŸ¡å€ãšããããã®ãããªè©äŸ¡å€ãšããŠã®ç·åããŒã¿ã«åºã¥ããŠã衚瀺ããã«ïŒïŒã®é§åã«çšããããé調é»å§ã®å€§å°ã倧ãŸãã«è©äŸ¡ã§ããé»æºåè·¯ïŒïŒã®åºåè² è·ã®è©äŸ¡ã«çšããããšãã§ããã
  The gradation data
åºæºé»å§çºçåè·¯ïŒïŒã¯ãïŒïŒïŒïŒïŒïŒïŒçš®é¡ã®åºæºé»å§ãçæãããåºæºé»å§çºçåè·¯ïŒïŒã«ãã£ãŠçæãããïŒïŒçš®é¡ã®åºæºé»å§ã¯ãïŒïŒã«äŸçµŠãããã
The reference
ïŒããŒã¿é»å§çæåè·¯ïŒïŒïŒã¯ãåãœãŒã¹ç·ã«äŸçµŠãã¹ãã¢ããã°ã®ããŒã¿é»å§ãçæãããå
·äœçã«ã¯ïŒ€ïŒ¡ïŒ£ïŒïŒã¯ãã©ã€ã³ã©ããïŒïŒããã®ããžã¿ã«ã®é調ããŒã¿ã«åºã¥ããŠãåºæºé»å§çºçåè·¯ïŒïŒããã®åºæºé»å§ã®ãããããéžæããããžã¿ã«ã®é調ããŒã¿ã«å¯Ÿå¿ããã¢ããã°ã®ããŒã¿é»å§ãåºåããã
  A DAC (data voltage generation circuit) 28 generates an analog data voltage to be supplied to each source line. Specifically, the
ãœãŒã¹ç·é§ååè·¯ïŒïŒã¯ãïŒïŒããã®ããŒã¿é»å§ããããã¡ãªã³ã°ããŠãœãŒã¹ç·ã«åºåãããœãŒã¹ç·ãé§åãããå
·äœçã«ã¯ããœãŒã¹ç·é§ååè·¯ïŒïŒã¯ãåãœãŒã¹ç·æ¯ã«èšãããããã«ããŒãžãã©ãã¯æ¥ç¶ã®æŒç®å¢å¹
åšïŒ¯ïŒ°ïŒ£ïŒåºçŸ©ã«ã¯ã€ã³ããŒãã³ã¹å€æåè·¯ïŒãå«ã¿ããããã®åæŒç®å¢å¹
åšïŒ¯ïŒ°ïŒ£ããïŒïŒããã®ããŒã¿é»å§ãã€ã³ããŒãã³ã¹å€æããŠãåãœãŒã¹ç·ã«åºåããã
  The source
ãªããå³ïŒã§ã¯ãããžã¿ã«ã®é調ããŒã¿ãããžã¿ã«ã»ã¢ããã°å€æããŠããœãŒã¹ç·é§ååè·¯ïŒïŒãä»ããŠãœãŒã¹ç·ã«åºåããæ§æãæ¡çšããŠããããã¢ããã°ã®æ åä¿¡å·ããµã³ãã«ã»ããŒã«ãããŠããœãŒã¹ç·é§ååè·¯ïŒïŒãä»ããŠãœãŒã¹ç·ã«åºåããæ§æãæ¡çšããããšãã§ããã
  In FIG. 4, the digital gradation data is converted from digital to analog and output to the source line via the source
å³ïŒã«ãå³ïŒã®åºæºé»å§çºçåè·¯ïŒïŒãïŒïŒåã³ãœãŒã¹ç·é§ååè·¯ïŒïŒã®æ§æäŸã瀺ããå³ïŒã«ãããŠãé調ããŒã¿ãïŒãããã®ããŒã¿ïŒ€ïŒãïŒã§ãããåãããã®ããŒã¿ã®å転ããŒã¿ãïŒãïŒãšç€ºããŠããããŸãå³ïŒã«ãããŠãå³ïŒãšåäžéšåã«ã¯åäžç¬Šå·ãä»ããé©å®èª¬æãçç¥ããã
  FIG. 5 shows a configuration example of the reference
åºæºé»å§çºçåè·¯ïŒïŒã¯ã䞡端ã®é»å§ïŒ¶ïŒ€ïŒ€ïŒšããæµæåå²ããŠïŒïŒçš®é¡ã®åºæºé»å§ãçæãããããã§ãé»å§ïŒ¶ïŒ€ïŒ€ïŒšã¯ãé»æºåè·¯ïŒïŒã«ããåŸãããæå§é»å§ïŒ¶ïŒ¯ïŒµïŒŽãšããããšãã§ãããååºæºé»å§ã¯ãïŒãããã®é調ããŒã¿ã«ããè¡šãããåé調å€ã«å¯Ÿå¿ããŠãããååºæºé»å§ã¯ããœãŒã¹ç·ïŒ³ïŒãã®åãœãŒã¹ç·ã«å
±éã«äŸçµŠãããã
The reference
ïŒïŒã¯ããœãŒã¹ç·æ¯ã«èšãããããã³ãŒããå«ã¿ãåãã³ãŒãã¯ãé調ããŒã¿ã«å¯Ÿå¿ããåºæºé»å§ãæŒç®å¢å¹
åšïŒ¯ïŒ°ïŒ£ã«åºåããã
  The
ïŒïŒïŒ é»æºåè·¯
å³ïŒã«ãå³ïŒåã¯å³ïŒã®é»æºåè·¯ïŒïŒã®æ§æäŸã瀺ãã
1.3 Power Supply Circuit FIG. 6 shows a configuration example of the
é»æºåè·¯ïŒïŒã¯ãæå§åè·¯ïŒïŒããªããã¿åè·¯ïŒïŒãèµ°æ»é»å§çæåè·¯ïŒïŒã察åé»æ¥µé»å§çæåè·¯ïŒïŒãå«ãããã®é»æºåè·¯ïŒïŒã«ã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ïŒç¬¬ïŒã®é»å§ïŒåã³ã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ïŒç¬¬ïŒã®é»å§ïŒãäŸçµŠãããã
  The
æå§åè·¯ïŒïŒã«ã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³åã³ã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããããããŠæå§åè·¯ïŒïŒã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãåºæºã«ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãæ£æ¹åã«äŸãã°ïŒåã«æå§ããé»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽïŒæå§é»å§ïŒãçæãããå³ã¡æå§åè·¯ïŒïŒã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãšã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãšã®éã®é»å§å·®ãïŒåã«æå§ããããã®ãããªæå§åè·¯ïŒïŒã¯ããã£ãŒãžãã³ãåè·¯ã«ããæ§æã§ãããé»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽã¯ããœãŒã¹ãã©ã€ãïŒïŒãèµ°æ»é»å§çæåè·¯ïŒïŒã察åé»æ¥µé»å§çæåè·¯ïŒïŒã«äŸçµŠãããããœãŒã¹ãã©ã€ãïŒïŒã¯ãé»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽã«åºã¥ããŠãé調ããŒã¿ã«å¯Ÿå¿ããé調é»å§ãçæããããŸããã²ãŒããã©ã€ãïŒïŒã¯ãèµ°æ»é»å§çæåè·¯ïŒïŒãå«ãããšãã§ãããã®å Žåã«ã¯ãé»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽã«åºã¥ããŠãèµ°æ»é»å§ãçæãããšããããšãã§ããã
  The
ãªããã¿åè·¯ïŒïŒã¯ãæå§åè·¯ïŒïŒã«ãã£ãŠçæãããé»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽïŒæå§é»å§ïŒãæäžã®ã¿ãŒã²ããé»å§ã«ãªãããã«ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ïŒç¬¬ïŒã®é»å§ïŒãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ãåã¯è©²é»æºç·ããé»è·ãå
é»ãããæ¬å®æœåœ¢æ
ã§ã¯ãæå§åè·¯ïŒïŒãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãåºæºã«æ£æ¹åã«é»å§ãæå§ãããããã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«æ£ã®é»è·ãæŸé»ïŒè©²é»æºç·ããè² ã®é»è·ãå
é»ïŒãããããã«ãããã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ïŒç¬¬ïŒã®é»å§ïŒãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ããããããé»è·ãåå©çšã§ããããäœæ¶è²»é»ååãå³ãããšãã§ãããæŽã«ãæ¬å®æœåœ¢æ
ã§ã¯ãæå§åè·¯ïŒïŒããé»æºåè·¯ïŒïŒã®åºåè² è·ã«å¿ããŠãæå§èœåãå€æŽããããšãã§ããããã«ãªã£ãŠããããã®é»æºåè·¯ïŒïŒã®åºåè² è·ã¯ããœãŒã¹ãã©ã€ãïŒïŒããã®è©äŸ¡å€ãšããŠã®ç·åããŒã¿ïŒ§ïŒ³ïŒµïŒã«åºã¥ããŠè©äŸ¡ãããã
  The
èµ°æ»é»å§çæåè·¯ïŒïŒã«ã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³åã³é»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽãäŸçµŠãããããããŠèµ°æ»é»å§çæåè·¯ïŒïŒã¯ãèµ°æ»é»å§ãçæãããèµ°æ»é»å§ã¯ãã²ãŒããã©ã€ãïŒïŒã«ãã£ãŠé§åãããã²ãŒãç·ã«å°å ãããé»å§ã§ããããã®èµ°æ»é»å§ã®é«é»äœåŽé»å§ã¯ïŒ¶ïŒ€ïŒ€ïŒšïŒ§ã§ãããäœé»äœåŽé»å§ã¯ïŒ¶ïŒ¥ïŒ¥ã§ããã
  The scan
察åé»æ¥µé»å§çæåè·¯ïŒïŒã¯ã察åé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒãçæããã察åé»æ¥µé»å§çæåè·¯ïŒïŒã¯ã極æ§å転信å·ïŒ°ïŒ¯ïŒ¬ã«åºã¥ããŠãé«é»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒšåã¯äœé»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒ¬ãã察åé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒãšããŠåºåããã極æ§å転信å·ïŒ°ïŒ¯ïŒ¬ã¯ã極æ§å転ã¿ã€ãã³ã°ã«åãããŠè¡šç€ºã³ã³ãããŒã©ïŒïŒã«ãã£ãŠçæãããã
  The counter electrode
å³ïŒã«ãå³ïŒåã¯å³ïŒã®è¡šç€ºããã«ïŒïŒã®é§å波圢ã®äžäŸã瀺ãã
  FIG. 7 shows an example of the drive waveform of the
ãœãŒã¹ç·ã«ã¯ãé調ããŒã¿ã®é調å€ã«å¿ããé調é»å§ïŒ€ïŒ¬ïŒ¶ãå°å ããããå³ïŒã§ã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ïŒïŒïŒïŒ¶ïŒãåºæºã«ãïŒïŒ¶ã®æ¯å¹ ã®é調é»å§ïŒ€ïŒ¬ïŒ¶ãå°å ãããŠããã   A gradation voltage DLV corresponding to the gradation value of the gradation data is applied to the source line. In FIG. 7, a gradation voltage DLV having an amplitude of 5 V is applied with respect to the system ground power supply voltage VSS (= 0 V).
ã²ãŒãç·ã«ã¯ãééžææã«ãããŠééžæé»å§ãšããŠäœé»äœåŽé»å§ïŒ¶ïŒ¥ïŒ¥ïŒïŒâïŒïŒïŒ¶ïŒãéžææã«ãããŠéžæé»å§ãšããŠé«é»äœåŽé»å§ïŒ¶ïŒ€ïŒ€ïŒšïŒ§ïŒïŒïŒïŒïŒ¶ïŒã®èµ°æ»é»å§ïŒ§ïŒ¬ïŒ¶ãå°å ãããã   A low potential side voltage VEE (= â10 V) is applied to the gate line as a non-selection voltage when not selected, and a scanning voltage GLV of a high potential side voltage VDDHG (= 15 V) is applied as a selection voltage when selected.
察åé»æ¥µïŒ£ïŒ¥ã«ã¯ãé«é»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒšïŒïŒïŒïŒ¶ïŒãäœé»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒ¬ïŒïŒâïŒïŒ¶ïŒã®å¯Ÿåé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒãå°å ãããããããŠæäžã®é»å§ãåºæºãšãã察åé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®é»å§ã¬ãã«ã®æ¥µæ§ãã極æ§å転ã¿ã€ãã³ã°ã«åãããŠå転ããŠãããå³ïŒã§ã¯ãããããèµ°æ»ã©ã€ã³å転é§åæã®å¯Ÿåé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®æ³¢åœ¢ã瀺ããŠããããã®æ¥µæ§å転ã¿ã€ãã³ã°ã«åãããŠããœãŒã¹ç·ã®é調é»å§ïŒ€ïŒ¬ïŒ¶ããŸããæäžã®é»å§ãåºæºã«ããã®æ¥µæ§ãå転ããŠããã   The counter electrode CE is applied with the counter electrode voltage VCOM of the high potential side voltage VCOMH (= 3 V) and the low potential side voltage VCOML (= â2 V). The polarity of the voltage level of the counter electrode voltage VCOM with respect to a given voltage is inverted in accordance with the polarity inversion timing. FIG. 7 shows the waveform of the counter electrode voltage VCOM during so-called scanning line inversion driving. In accordance with the polarity inversion timing, the polarity of the grayscale voltage DLV of the source line is also inverted with reference to a given voltage.
ãšããã§æ¶²æ¶çŽ åã¯ãçŽæµé»å§ãé·æéå°å ãããšå£åãããšããæ§è³ªãããããã®ããã液æ¶çŽ åã«å°å ããé»å§ã®æ¥µæ§ãæå®æéæ¯ã«å転ãããé§åæ¹åŒãå¿ èŠã«ãªãããã®ãããªé§åæ¹åŒãšããŠã¯ããã¬ãŒã å転é§åãèµ°æ»ïŒã²ãŒãïŒã©ã€ã³å転é§åãããŒã¿ïŒãœãŒã¹ïŒã©ã€ã³å転é§åããããå転é§åçãããã   By the way, the liquid crystal element has a property that it deteriorates when a DC voltage is applied for a long time. For this reason, a driving method is required in which the polarity of the voltage applied to the liquid crystal element is inverted every predetermined period. Such driving methods include frame inversion driving, scanning (gate) line inversion driving, data (source) line inversion driving, dot inversion driving, and the like.
ãã®ãã¡ããã¬ãŒã å転é§åã¯ãæ¶è²»é»åã¯äœãããç»è³ªãããã»ã©è¯ããªããšããäžå©ç¹ãããããŸããããŒã¿ã©ã€ã³å転é§åããããå転é§åã¯ãç»è³ªã¯è¯ããã衚瀺ããã«ã®é§åã«é«ãé»å§ãå¿ èŠã«ãªããšããäžå©ç¹ãããã   Among these, the frame inversion drive has a disadvantage that the image quality is not so good although the power consumption is low. Data line inversion driving and dot inversion driving have good image quality, but have the disadvantage that a high voltage is required to drive the display panel.
æ¬å®æœåœ¢æ ã§ã¯ãèµ°æ»ã©ã€ã³å転é§åãæ¡çšããŠããããã®èµ°æ»ã©ã€ã³å転é§åã§ã¯ã液æ¶çŽ åã«å°å ãããé»å§ãèµ°æ»æéæ¯ïŒèµ°æ»ç·æ¯ïŒã«æ¥µæ§å転ããããäŸãã°ã第ïŒã®èµ°æ»æéïŒèµ°æ»ç·ïŒã§ã¯æ£æ¥µæ§ã®é»å§ã液æ¶çŽ åã«å°å ããã第ïŒã®èµ°æ»æéã§ã¯è² 極æ§ã®é»å§ãå°å ããã第ïŒã®èµ°æ»æéã§ã¯æ£æ¥µæ§ã®é»å§ãå°å ããããäžæ¹ã次ã®ãã¬ãŒã ã«ãããŠã¯ãä»åºŠã¯ã第ïŒã®èµ°æ»æéã§ã¯è² 極æ§ã®é»å§ã液æ¶çŽ åã«å°å ããã第ïŒã®èµ°æ»æéã§ã¯æ£æ¥µæ§ã®é»å§ãå°å ããã第ïŒã®èµ°æ»æéã§ã¯è² 極æ§ã®é»å§ãå°å ãããããã«ãªãã   In this embodiment, scanning line inversion driving is employed. In this scanning line inversion drive, the polarity of the voltage applied to the liquid crystal element is inverted every scanning period (every scanning line). For example, a positive voltage is applied to the liquid crystal element in the first scanning period (scanning line), a negative voltage is applied in the second scanning period, and a positive voltage is applied in the third scanning period. The On the other hand, in the next frame, a negative voltage is applied to the liquid crystal element in the first scanning period, a positive voltage is applied in the second scanning period, and a negative voltage is applied in the third scanning period. Voltage is applied.
ãããŠããã®èµ°æ»ã©ã€ã³å転é§åã§ã¯ã察åé»æ¥µïŒ£ïŒ¥ã®å¯Ÿåé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®é»å§ã¬ãã«ãèµ°æ»æéæ¯ã«æ¥µæ§å転ãããã   In this scan line inversion drive, the voltage level of the counter electrode voltage VCOM of the counter electrode CE is inverted every scan period.
ããå ·äœçã«ã¯å³ïŒã«ç€ºãããã«ãæ£æ¥µã®æéïŒïŒç¬¬ïŒã®æéïŒã§ã¯å¯Ÿåé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã®é»å§ã¬ãã«ã¯äœé»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒ¬ã«ãªããè² æ¥µã®æéïŒïŒç¬¬ïŒã®æéïŒã§ã¯é«é»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒšã«ãªãããããŠããã®ã¿ã€ãã³ã°ã«åãããŠãœãŒã¹ç·ã«å°å ãããé調é»å§ãããã®æ¥µæ§ãå転ããããªããäœé»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒ¬ã¯ãæäžã®é»å§ã¬ãã«ãåºæºãšããŠé«é»äœåŽé»å§ïŒ¶ïŒ£ïŒ¯ïŒïŒšã®æ¥µæ§ãå転ããé»å§ã¬ãã«ã§ããã   More specifically, as shown in FIG. 8, the voltage level of the common electrode voltage VCOM becomes the low potential side voltage VCOML in the positive period T1 (first period), and in the negative period T2 (second period). The high potential side voltage VCOMH is obtained. The polarity of the gradation voltage applied to the source line in accordance with this timing is also reversed. The low potential side voltage VCOML is a voltage level obtained by inverting the polarity of the high potential side voltage VCOMH with reference to a given voltage level.
ããã§ãæ£æ¥µã®æéïŒã¯ããœãŒã¹ç·ã®é調é»å§ãäŸçµŠãããç»çŽ é»æ¥µã®é»å§ã¬ãã«ã察åé»æ¥µïŒ£ïŒ¥ã®é»å§ã¬ãã«ãããé«ããªãæéã§ããããã®æéïŒã§ã¯æ¶²æ¶çŽ åã«æ£æ¥µæ§ã®é»å§ãå°å ãããããšã«ãªããäžæ¹ãè² æ¥µã®æéïŒã¯ããœãŒã¹ç·ã®é調é»å§ãäŸçµŠãããç»çŽ é»æ¥µã®é»å§ã¬ãã«ã察åé»æ¥µïŒ£ïŒ¥ã®é»å§ã¬ãã«ãããäœããªãæéã§ããããã®æéïŒã§ã¯æ¶²æ¶çŽ åã«è² 極æ§ã®é»å§ãå°å ãããããšã«ãªãã   Here, the positive period T1 is a period in which the voltage level of the pixel electrode to which the grayscale voltage of the source line is supplied is higher than the voltage level of the counter electrode CE. In this period T1, a positive voltage is applied to the liquid crystal element. On the other hand, the negative period T2 is a period in which the voltage level of the pixel electrode to which the grayscale voltage of the source line is supplied is lower than the voltage level of the counter electrode CE. In this period T2, a negative voltage is applied to the liquid crystal element.
ãã®ããã«å¯Ÿåé»æ¥µé»å§ïŒ¶ïŒ£ïŒ¯ïŒã極æ§å転ããããšã§ã衚瀺ããã«ã®é§åã«å¿ èŠãªé»å§ãäœãããããšãã§ãããããã«ãããé§ååè·¯ã®èå§ãäœãã§ããé§ååè·¯ã®è£œé ããã»ã¹ã®ç°¡çŽ åãäœã³ã¹ãåãå³ãããšãã§ããã   Thus, by reversing the polarity of the counter electrode voltage VCOM, the voltage necessary for driving the display panel can be lowered. As a result, the withstand voltage of the drive circuit can be lowered, and the manufacturing process of the drive circuit can be simplified and the cost can be reduced.
ïŒïŒ é»æºåè·¯ã®æ§æäŸ
以äžã§ã¯ãæ¬å®æœåœ¢æ
ã«ãããé»æºåè·¯ïŒïŒã®èŠéšã«ã€ã説æããã
2. Configuration Example of Power Supply Circuit Hereinafter, a main part of the
å³ïŒã«ãå³ïŒã®é»æºåè·¯ïŒïŒã®æå§åè·¯ïŒïŒããªããã¿åè·¯ïŒïŒã®æ§æäŸã瀺ãã
  FIG. 9 shows a configuration example of the
æå§åè·¯ïŒïŒã¯ãäºãã«æå§èœåãç°ãªãè€æ°ã®ãã£ãŒãžãã³ãåè·¯ãåãããããã®ãã£ãŒãžãã³ãåè·¯ã®åäœãã€ããŒãã«å¶åŸ¡ããããšã§æå§èœåãå€æŽã§ããããã«ãªã£ãŠããã
  The
äŸãã°ãæå§åè·¯ïŒïŒã¯ãå³ïŒã«ç€ºãããã«ã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒãåæ¿å¶åŸ¡éšïŒïŒïŒãæãããæå§åè·¯ïŒïŒïŒé»æºåè·¯ïŒïŒïŒã®å€éšæ¥ç¶ç«¯åïŒãïŒã«ã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®ãã£ãŒãžãã³ãåäœã«çšãããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒãæ¥ç¶ãããããŸããæå§åè·¯ïŒïŒïŒé»æºåè·¯ïŒïŒïŒã®å€éšæ¥ç¶ç«¯åïŒãïŒã«ã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®ãã£ãŒãžãã³ãåäœã«çšãããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒãæ¥ç¶ãããã
For example, the
第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®å®¹éå€ã¯ã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®å®¹éå€ãã倧ããããŸãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãæ§æãããã©ã³ãžã¹ã¿ã®ãµã€ãºïŒãã£ãã«é·Ããã£ãã«å¹
ïŒã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãæ§æãããã©ã³ãžã¹ã¿ã®ãµã€ãºããå°ããã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãæ§æãããã©ã³ãžã¹ã¿ã®é»æµé§åèœåã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãæ§æãããã©ã³ãžã¹ã¿ã®é»æµé§åèœåããå°ãããããããããšã§ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®æå§èœåãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®æå§èœåããå°ããã§ããã
The capacitance value of the second flying capacitor FC2 is larger than the capacitance value of the first flying capacitor FC1. The size of the transistors constituting the first charge pump circuit 100 1 (channel length à channel width) is smaller than the size of the transistors constituting the second
ã€ããŒãã«ç¶æ ã«èšå®ãããåãã£ãŒãžãã³ãåè·¯ã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãšã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãšã®éã®é»å§ããã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãåºæºã«äŸãã°ïŒåã«æå§ããé»æºé»å§ïŒ¶ïŒ¯ïŒµïŒŽãçæããã   Each charge pump circuit set in the enabled state generates a power supply voltage VOUT obtained by boosting a voltage between the system ground power supply voltage VSS and the system power supply voltage VDD by, for example, twice the system ground power supply voltage VSS.
åæ¿å¶åŸ¡éšïŒïŒïŒã¯ã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒã®ã€ããŒãã«å¶åŸ¡ãè¡ããããå
·äœçã«ã¯ãåæ¿å¶åŸ¡éšïŒïŒïŒã¯ã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒã®ããããïŒã€ãã€ããŒãã«ç¶æ
ã«èšå®ãããã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒã®äž¡æ¹ãã€ããŒãã«ç¶æ
ã«èšå®ãããã§ãããããããããšã§ãåæ¿å¶åŸ¡éšïŒïŒïŒã¯ãæå§åè·¯ïŒïŒã®æå§èœåãïŒçš®é¡ã®ããããããéžæããŠå¶åŸ¡ã§ããã
The switching
å³ïŒïŒã«ãå³ïŒã®ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®æ§æäŸã®åè·¯å³ã瀺ãã
FIG. 10 is a circuit diagram showing a configuration example of the first
å³ïŒïŒã§ã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®æ§æäŸã«ã€ããŠèª¬æãããã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã®æ§æäŸã«ã€ããŠãåæ§ã§ããã
In Figure 10, it will be described first configuration example of the
第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã¯ããã£ãŒãžãã³ãåäœã«ãã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã«èç©ãããé»è·ãçšããŠæå§é»å§ãçæããããã®ã¹ã€ããçŽ åã§ãããã©ã³ãžã¹ã¿ãå«ããããå
·äœçã«ã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã¯ãæå§é»å§ãåºåãããåºåé»æºç·ãšã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ãšã®éã«çŽåã«æ¿å
¥ãããåïŒåºçŸ©ã«ã¯ç¬¬ïŒå°é»åïŒïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒä»¥äžãåã«ãã©ã³ãžã¹ã¿ïŒïŒ°ïŒŽïŒãïŒãå«ãããŸãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã¯ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ãšã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãäŸçµŠãããé»æºç·ãšã®éã«çŽåã«æ¿å
¥ãããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒãåïŒåºçŸ©ã«ã¯ç¬¬ïŒå°é»åïŒïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒä»¥äžãåã«ãã©ã³ãžã¹ã¿ïŒïŒ®ïŒŽïŒãå«ãã
The first
ãã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒã®ã²ãŒãã«ã¯ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãäŸçµŠãããããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒã®ã²ãŒãã«ã¯ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãäŸçµŠãããããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒã®ã²ãŒãã«ã¯ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãäŸçµŠãããããã©ã³ãžã¹ã¿ïŒ®ïŒŽïŒã®ã²ãŒãã«ã¯ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ®ãäŸçµŠãããã   The charge clock CK1P is supplied to the gate of the transistor PT1. The charge clock CK2P is supplied to the gate of the transistor PT2. The charge clock CK3P is supplied to the gate of the transistor PT3. The charge clock CK1N is supplied to the gate of the transistor NT1.
ãã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒã®ãœãŒã¹ã«ãæå§é»å§ãåºåãããé»æºç·ãæ¥ç¶ãããããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒãïŒã®æ¥ç¶ããŒãã«ã端åïŒãä»ããŠç¬¬ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®äžç«¯ãæ¥ç¶ãããããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒãïŒã®æ¥ç¶ããŒãã«ã端æ«ïŒŽïŒ£ïŒãä»ããŠç¬¬ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®ä»ç«¯ãæ¥ç¶ãããã   A power supply line for outputting a boosted voltage is connected to the source of the transistor PT1. One end of the first flying capacitor FC1 is connected to the connection node of the transistors PT1 and PT2 via the terminal TC1. The other end of the first flying capacitor FC1 is connected to the connection node of the transistors PT3 and NT1 via the terminal TC2.
å³ïŒïŒã«ãå³ïŒïŒã®ãã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãïŒïŒ°ãïŒïŒ°ãïŒïŒ®ã®ã¿ã€ãã³ã°ãæš¡åŒçã«ç€ºãã   FIG. 11 schematically shows the timing of the charge clocks CK1P, CK2P, CK3P, and CK1N in FIG.
ãã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãã¬ãã«ã®ãšãããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãã¬ãã«ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãïŒïŒ®ãã¬ãã«ãšãªãïŒæéïŒïŒããŸãããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãã¬ãã«ã®ãšãããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãã¬ãã«ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãïŒïŒ®ãã¬ãã«ãšãªãïŒæéïŒïŒã   When the charge clock CK1P is at the L level, the charge clock CK2P is at the H level, and the charge clocks CK3P and CK1N are at the L level (period PH1). When the charge clock CK1P is at the H level, the charge clock CK2P is at the H level, and the charge clocks CK3P and CK1N are at the H level (period PH2).
æéïŒã§ã¯ããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒããªã³ããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒããªããšãªãã端åïŒãä»ããŠæ¥ç¶ããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®äžç«¯ã®é»å§ããåºåé»æºç·ã«åºåãããããã®ãšãããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒããªã³ããã©ã³ãžã¹ã¿ïŒ®ïŒŽïŒããªããšãªããå€éšæ¥ç¶ç«¯åïŒãä»ããŠæ¥ç¶ããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã«ä»ç«¯ã«ã¯ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããã   In the period PH1, the transistor PT1 is turned on, the transistor PT2 is turned off, and the voltage at one end of the first flying capacitor FC1 connected via the terminal TC1 is output to the output power supply line. At this time, the transistor PT3 is turned on, the transistor NT1 is turned off, and the system power supply voltage VDD is supplied to the other end of the first flying capacitor FC1 connected via the external connection terminal TC2.
æéïŒã§ã¯ããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒããªãããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒããªã³ãšãªãã端åïŒãä»ããŠæ¥ç¶ããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®äžç«¯ã«ã¯ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããããã®ãšãããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒããªãããã©ã³ãžã¹ã¿ïŒ®ïŒŽïŒããªã³ãšãªããããå€éšæ¥ç¶ç«¯åïŒãä»ããŠæ¥ç¶ããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®ä»ç«¯ã«ã¯ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãäŸçµŠããããåŸã£ãŠãæéïŒã§ã¯ã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã«ã¯ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãšã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãšã®éã®é»å§ã«å¯Ÿå¿ããé»è·ãèç©ãããã   In the period PH2, the transistor PT1 is turned off and the transistor PT2 is turned on, and the system power supply voltage VDD is supplied to one end of the first flying capacitor FC1 connected through the terminal TC1. At this time, since the transistor PT3 is turned off and the transistor NT1 is turned on, the system ground power supply voltage VSS is supplied to the other end of the first flying capacitor FC1 connected via the external connection terminal TC2. Therefore, in the period PH2, the first flying capacitor FC1 accumulates charges corresponding to the voltage between the system power supply voltage VDD and the system ground power supply voltage VSS.
ãããŠãåã³ãæéïŒã§ã¯ãäžè¿°ã®ããã«åºåé»æºç·ã«ã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®äžç«¯ã®é»å§ãåºåãããããã®ãšããå€éšæ¥ç¶ç«¯åïŒã«æ¥ç¶ããã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµïŒŠïŒ£ïŒã®ä»ç«¯ã®é»å§ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãšãªããããåºåé»æºç·ã®é»å§ã¯ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãšã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãšã®éã®é»å§ã®ïŒåã®é»å§ãšãªãã   In the period PH1, again, the voltage at one end of the first flying capacitor FC1 is output to the output power line as described above. At this time, since the voltage at the other end of the first flying capacitor FC1 connected to the external connection terminal TC2 becomes the system power supply voltage VDD, the voltage of the output power supply line is between the system power supply voltage VDD and the system ground power supply voltage VSS. The voltage is twice the voltage between them.
ãªãããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒãïŒãåæã«ãªã³ãšãªããªãããã«ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãïŒïŒ°ãå€åãããããšãæãŸããããŸãããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒãïŒãåæã«ãªã³ãšãªããªãããã«ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãïŒïŒ°ãå€åãããããšãæãŸãããæŽã«ããã©ã³ãžã¹ã¿ïŒ°ïŒŽïŒãïŒãåæã«ãªã³ãšãªããªãããã«ããã£ãŒãžã¯ããã¯ïŒ£ïŒ«ïŒïŒ°ãïŒïŒ®ãå€åãããããšãæãŸããã   It is desirable to change the charge clocks CK1P and CK2P so that the transistors PT1 and PT2 are not turned on at the same time. Further, it is desirable to change the charge clocks CK2P and CK3P so that the transistors PT2 and PT3 are not turned on at the same time. Furthermore, it is desirable to change the charge clocks CK3P and CK1N so that the transistors PT3 and NT1 are not turned on at the same time.
å³ïŒã«æ»ã£ãŠèª¬æãç¶ããã   Returning to FIG. 9, the description will be continued.
å³ïŒã®ãªããã¿åè·¯ïŒïŒã¯ãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒãšãé»å§å¶éåè·¯ïŒïŒïŒãšãå«ãã
  The
ã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã«ã¯ãé»å§ïŒ¶ïŒ¯ïŒµïŒŽãšã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãšã®éã®é»å§ãæµæåå²ããããšã«ããåŸãããå ¥åé»å§ïŒ¶ïœïœãšãæäžã®åºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠãšãå ¥åãããããããŠãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã¯ãå ¥åé»å§ïŒ¶ïœïœãšåºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠãšã®æ¯èŒçµæãæ¯èŒçµæãã«ã¹ãšããŠåºåããã   The comparator CMP1 receives an input voltage Vin obtained by resistance-dividing the voltage between the voltage VOUT and the system ground power supply voltage VSS and a given reference voltage VREF. Then, the comparator CMP1 outputs the comparison result between the input voltage Vin and the reference voltage VREF as a comparison result pulse.
é»å§å¶éåè·¯ïŒïŒïŒã¯ãåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã«ããæ§æããããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®ã²ãŒãã«ã¯ãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒããã®æ¯èŒçµæãã«ã¹ãå
¥åããããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®ãœãŒã¹ã«ã¯ãé»å§ïŒ¶ïŒ¯ïŒµïŒŽãäŸçµŠãããé»æºç·ãæ¥ç¶ããããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®ãã¬ã€ã³ã«ã¯ãã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«æ¥ç¶ãããã
  The
å³ïŒïŒã«ãå³ïŒã®ã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒãšé»å§å¶éåè·¯ïŒïŒïŒã®æ§æäŸã®åè·¯å³ã瀺ãã
  FIG. 12 shows a circuit diagram of a configuration example of the comparator CMP1 and the
ã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã¯ãå·®åå¢å¹ åšïŒ€ïŒ©ïŒŠïŒãšãåºåå路ïŒãšãå«ããå·®åå¢å¹ åšïŒ€ïŒ©ïŒŠïŒã¯ããœãŒã¹ãæ¥ç¶ãããå·®åãã©ã³ãžã¹ã¿å¯Ÿãšãå·®åãã©ã³ãžã¹ã¿å¯Ÿã®ãœãŒã¹ã«é»æµãäŸçµŠããé»æµæºãã©ã³ãžã¹ã¿ãšãå·®åãã©ã³ãžã¹ã¿å¯Ÿãæ§æããåãã©ã³ãžã¹ã¿ã«é»æµãäŸçµŠããã«ã¬ã³ããã©ãŒåè·¯ãšãå«ããå·®åãã©ã³ãžã¹ã¿å¯Ÿãæ§æãããã©ã³ãžã¹ã¿ã®ãã¡ãéåè»¢å ¥å端åãšãªããã©ã³ãžã¹ã¿ã®ã²ãŒãã«ã¯åºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠãäŸçµŠãããåè»¢å ¥å端åãšãªããã©ã³ãžã¹ã¿ã®ã²ãŒãã«ã¯å ¥åé»å§ïŒ¶ïœïœãäŸçµŠããããåºåå路ïŒã¯ãçŽåã«æ¥ç¶ãããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒ€ïŒ²ïŒ¶ïŒãšãåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ®ïŒ€ïŒ²ïŒ¶ïŒãšãå«ããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ®ïŒ€ïŒ²ïŒ¶ïŒã®ã²ãŒãã«ã¯ãå·®åå¢å¹ åšïŒ€ïŒ©ïŒŠïŒã®é»æµæºãã©ã³ãžã¹ã¿ã®ã²ãŒãé»å§ãšåãé»å§ãäŸçµŠãããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒ€ïŒ²ïŒ¶ïŒã®ãã¬ã€ã³ãé§åãããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒ€ïŒ²ïŒ¶ïŒã®ã²ãŒãã«ã¯ãå·®åå¢å¹ åšïŒ€ïŒ©ïŒŠïŒã®åºåé»å§ãäŸçµŠãããã   The comparator CMP1 includes a differential amplifier DIF1 and an output circuit DRV1. The differential amplifier DIF1 includes a differential transistor pair to which a source is connected, a current source transistor that supplies a current to the source of the differential transistor pair, and a current mirror circuit that supplies a current to each transistor constituting the differential transistor pair. Including. Among the transistors constituting the differential transistor pair, the reference voltage VREF is supplied to the gate of the transistor serving as the non-inverting input terminal, and the input voltage Vin is supplied to the gate of the transistor serving as the inverting input terminal. Output circuit DRV1 includes a P-type MOS transistor PDRV1 and an N-type MOS transistor NDRV1 connected in series. The gate of the N-type MOS transistor NDRV1 is supplied with the same voltage as the gate voltage of the current source transistor of the differential amplifier DIF1, and drives the drain of the P-type MOS transistor PDRV1. The output voltage of the differential amplifier DIF1 is supplied to the gate of the P-type MOS transistor PDRV1.
ãããŠãé»å§å¶éåè·¯ïŒïŒïŒãæ§æããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®ã²ãŒãã«ã¯ãåºåå路ïŒã®ïŒ°åïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒ€ïŒ²ïŒ¶ïŒã®ãã¬ã€ã³ã®é»å§ãäŸçµŠãããã
  The voltage of the drain of the P-type MOS transistor PDRV1 of the output circuit DRV1 is supplied to the gate of the P-type MOS transistor TRO constituting the
åŸã£ãŠãå ¥åé»å§ïŒ¶ïœïœãåºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠããé«é»äœã®å Žåãå·®åå¢å¹ åšïŒ€ïŒ©ïŒŠïŒã®åºåé»å§ã®é»äœãäžãããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒ€ïŒ²ïŒ¶ïŒã®ã€ã³ããŒãã³ã¹ãäžããããã®çµæãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã®åºåã§ããæ¯èŒçµæãã«ã¹ã®é»äœãäžããæ¹åã«å€åããããã®ãšããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®ã€ã³ããŒãã³ã¹ãäžããæ¹åã«å€åããã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«å¯ŸããŠæŸé»ãããé»è·éãå€ããªãã   Therefore, when the input voltage Vin is higher than the reference voltage VREF, the potential of the output voltage of the differential amplifier DIF1 increases and the impedance of the P-type MOS transistor PDRV1 increases. As a result, the potential of the comparison result pulse, which is the output of the comparator CMP1, changes in the direction of decreasing. At this time, the impedance of the P-type MOS transistor TRO changes in a decreasing direction, and the amount of charge discharged to the power supply line to which the system power supply voltage VDD is supplied increases.
äžæ¹ãå ¥åé»å§ïŒ¶ïœïœãåºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠããäœé»äœã®å Žåãå·®åå¢å¹ åšïŒ€ïŒ©ïŒŠïŒã®åºåé»å§ã®é»äœãäžãããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒ°ïŒ€ïŒ²ïŒ¶ïŒã®ã€ã³ããŒãã³ã¹ãäžããããã®çµæãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã®åºåã§ããæ¯èŒçµæãã«ã¹ã®é»äœãäžããæ¹åã«å€åããããã®ãšããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®ã€ã³ããŒãã³ã¹ãäžããæ¹åã«å€åããã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«å¯ŸããŠæŸé»ãããé»è·éãå°ãªããªãã   On the other hand, when the input voltage Vin is lower than the reference voltage VREF, the potential of the output voltage of the differential amplifier DIF1 decreases and the impedance of the P-type MOS transistor PDRV1 decreases. As a result, the potential of the comparison result pulse, which is the output of the comparator CMP1, changes in the increasing direction. At this time, the impedance of the P-type MOS transistor TRO changes in the increasing direction, and the amount of charge discharged to the power supply line to which the system power supply voltage VDD is supplied decreases.
å³ïŒïŒã«ãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã®æ¯èŒçµæãã«ã¹ã®èª¬æå³ã瀺ãã   FIG. 13 is an explanatory diagram of the comparison result pulse of the comparator CMP1.
æ¯èŒçµæãã«ã¹ã¯ãå³ïŒïŒã«ç€ºãããã«ãã«ã¹ä¿¡å·ãšãªããå ¥åé»å§ïŒ¶ïœïœãåºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠããé«é»äœã®å Žåã«ã¯ãæ¯èŒçµæãã«ã¹ãã¬ãã«ãšãªããäžè¿°ã®ããã«ã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ããæéãšãªãããŸããå ¥åé»å§ïŒ¶ïœïœãåºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠããäœé»äœã®å Žåã«ã¯ãæ¯èŒçµæãã«ã¹ãã¬ãã«ãšãªãã該é»æºç·ã«é»è·ãæŸé»ããªãæéãšãªãã   The comparison result pulse becomes a pulse signal as shown in FIG. When the input voltage Vin is higher than the reference voltage VREF, the comparison result pulse is at the L level, which is a period for discharging charges to the power supply line to which the system power supply voltage VDD is supplied as described above. Further, when the input voltage Vin is lower than the reference voltage VREF, the comparison result pulse is at the H level, and it is a period during which no charge is discharged to the power supply line.
ãã®ããã«ããªããã¿åè·¯ïŒïŒã§ã¯ãå
¥åé»å§ïŒ¶ïœïœãåºæºé»å§ïŒ¶ïŒ²ïŒ¥ïŒŠããé«é»äœåŽã«ãªããšãåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ããªã³ãšãªã£ãŠãé»å§ïŒ¶ïŒ¯ïŒµïŒŽãäŸçµŠãããé»æºç·ã®é»è·ããã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«æŸé»ããå¶åŸ¡ãè¡ãã
  Thus, in the
ãšããã§ãæ¬å®æœåœ¢æ
ã§ã¯ãæå§åè·¯ïŒïŒããé»æºåè·¯ïŒïŒã®åºåè² è·ã«å¿ããŠæå§èœåãå€æŽã§ããããã«ãªã£ãŠããããã®ãããæ¬å®æœåœ¢æ
ã§ã¯ãé»æºåè·¯ïŒïŒããåºåè² è·ãè©äŸ¡ããããã®è©äŸ¡å€ã§ããç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãæäžã®éŸå€ãšæ¯èŒããããšã§ãæå§èœåãå€æŽãããåŠããå€æã§ããããã«ãªã£ãŠãããå³ã¡ãé»æºåè·¯ïŒïŒã¯ãé»æºåè·¯ïŒïŒã®åºåè² è·ã«å¯ŸããŠæå§èœåãé«ããšå€æããããšãã«ã¯ãæå§èœåãããäœããªãããã«è©²æå§èœåãå€æŽããåºåè² è·ã«å¯ŸããŠæå§èœåãäœããšå€æããããšãã«ã¯ãæå§èœåãããé«ããªãããã«è©²æå§èœåãå€æŽããã
  By the way, in this embodiment, the
æŽã«ããã®éŸå€ã¯ããªããã¿åè·¯ïŒïŒãæå§é»å§ã§ããé»å§ïŒ¶ïŒ¯ïŒµïŒŽã®é»äœãå¶éãããåŠãã瀺ããªããã¿åäœæ
å ±ã«åºã¥ããŠæŽæ°ããããåŸã£ãŠãé»æºåè·¯ïŒïŒã¯ãé»æºåè·¯ïŒïŒã®åºåè² è·ãšãªããã¿åäœæ
å ±ãšã«åºã¥ããŠãæå§åè·¯ïŒïŒã®æå§èœåãå€æŽããããšãã§ããã
  Further, this threshold value is updated based on limiter operation information indicating whether or not the
ãã®ãããªé»æºåè·¯ïŒïŒã¯ãå³ïŒã«ç€ºãããã«ãæŽã«ãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒãã¬ãã«ã·ãã¿ïŒïŒïŒãã«ãŠã³ã¿ïŒïŒïŒãå€å®ããžãã¯éšïŒïŒïŒãéŸå€æŽæ°éšïŒïŒïŒãå«ãããšãã§ããã
  As shown in FIG. 9, the
ã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã«ã¯ããªããã¿åè·¯ïŒïŒããã®æ¯èŒçµæãã«ã¹ãšãæäžã®éŸå€é»å§ïŒ¶ïŒŽïŒšãšãå
¥åããããã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã®é«é»äœåŽã®é»æºãé»å§ïŒ¶ïŒ¯ïŒµïŒŽãäœé»äœåŽã®é»æºãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãšãããšãéŸå€é»å§ïŒ¶ïŒŽïŒšã¯ã次ã®åŒã§è¡šãããšãã§ããã
  The comparison result pulse from the
ïŒïŒ¶ïŒ¯ïŒµïŒŽâïœïœïœâα ã»ã»ã»ïŒïŒïŒ
ããã§ãïœïœïœã¯ãé»å§å¶éåè·¯ïŒïŒïŒãæ§æããåïŒïŒ¯ïŒ³ãã©ã³ãžã¹ã¿ïŒŽïŒ²ïŒ¯ã®éŸå€é»å§ã§ãããαã¯ïŒïŒïŒïŒ¶ãïŒïŒïŒïŒ¶çšåºŠã®æ£ã®å®æ°å€ã§ããããã®ãããªã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã®åºåä¿¡å·ã¯ãå³ïŒïŒã®æ¯èŒçµæãã«ã¹ã®ïŒšã¬ãã«ãã¬ãã«ã«å¯Ÿå¿ããä¿¡å·ãšãªããé»è·ãé»æºç·ã«æŸé»ããæéã®é·ããç£èŠããããã®ä¿¡å·ãšãªãã
VTH = VOUTâVthpâα (1)
Here, Vthp is a threshold voltage of the P-type MOS transistor TRO constituting the
ã¬ãã«ã·ãã¿ïŒïŒïŒã¯ããã®ãããªã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒã®åºåä¿¡å·ã®é»å§ã¬ãã«ãæäžã®é»å§ã¬ãã«ã®ä¿¡å·ã«ã·ãããããã«ãŠã³ã¿ïŒïŒïŒã¯ãã¬ãã«ã·ãã¿ïŒïŒïŒã®åºåä¿¡å·ã§ãããã«ã¹ä¿¡å·ã®ãã«ã¹å¹
åã¯ãã«ã¹æ°ãã«ãŠã³ããããã«ãŠã³ã¿ïŒïŒïŒã®æå®æéã«ãããã«ãŠã³ãå€ãããªããã¿åäœæ
å ±ã瀺ãä¿¡å·ãšèããããšãã§ãããå³ã¡ãæå§èœåã倧ãããšãã¯ããªããã¿åè·¯ïŒïŒãåäœããŠããæéãé·ããªãããã®ããããã«ã¹ä¿¡å·ã®ãã«ã¹å¹
åã¯ãã«ã¹æ°ãã«ãŠã³ãããããšã§ããªããã¿åè·¯ïŒïŒã®ãªããã¿åäœæ
å ±ãæ°å€åã§ããããã«ã¹ä¿¡å·ã®ãã«ã¹æ°ãã«ãŠã³ãããå ŽåãäŸãã°äžå®æéïŒïŒåã¯è€æ°ã®æ°Žå¹³èµ°æ»æéãïŒåã¯è€æ°ã®åçŽèµ°æ»æéïŒã«ãªããã¿åè·¯ïŒïŒãåäœããæéã«å¯Ÿå¿ãããã«ã¹æ°ãããããã¯ããã¯ïŒãã¯ã»ã«ã¯ããã¯ïŒçã®æäžã®ã¯ããã¯ä¿¡å·ãçšããŠã«ãŠã³ãããã°ããã
  The
å€å®ããžãã¯éšïŒïŒïŒã¯ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãšæäžã®éŸå€ãšãæ¯èŒããããšã§ãæå§åè·¯ïŒïŒã®åæ¿å¶åŸ¡éšïŒïŒïŒã®å¶åŸ¡ãè¡ããæ¬å®æœåœ¢æ
ã§ã¯ãå€å®ããžãã¯éšïŒïŒïŒããã®å€å®çµæã«åºã¥ããŠãåæ¿å¶åŸ¡éšïŒïŒïŒãã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒã®ãã¡å°ãªããšãïŒã€ãã€ããŒãã«ç¶æ
ãšãªãããã«å¶åŸ¡ããããã®çµæãåæ¿å¶åŸ¡éšïŒïŒïŒããæå§åè·¯ïŒïŒã®æå§èœåã®å€æŽåŸã«ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã«ããçæãããæå§é»å§ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒã«ããçæãããæå§é»å§ãåã¯ç¬¬ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒã«ããçæãããæå§é»å§ãåºåããã
The
æŽã«å€å®ããžãã¯éšïŒïŒïŒã¯ãã«ãŠã³ã¿ïŒïŒïŒã®ã«ãŠã³ãå€ã«åºã¥ããŠãéŸå€ãæŽæ°ãã¹ããåŠããå€å®ãããäŸãã°ãå€å®ããžãã¯éšïŒïŒïŒã¯ãæäžã®æŽæ°å€å®çšéŸå€ãšã«ãŠã³ãå€ãšãæ¯èŒãããå€å®ããžãã¯éšïŒïŒïŒã«ãã£ãŠéŸå€ãæŽæ°ãã¹ããšå€å®ããããšããéŸå€æŽæ°éšïŒïŒïŒã¯çŸåšã®éŸå€ãã€ã³ã¯ãªã¡ã³ãåã¯ãã¯ãªã¡ã³ãããŠéŸå€ãæŽæ°ããå€å®ããžãã¯éšïŒïŒïŒã«è©²éŸå€ãäŸçµŠããããããŠãå€å®ããžãã¯éšïŒïŒïŒã¯ã該éŸå€ãšç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãšãæ¯èŒããããšã§ãåæ¿å¶åŸ¡éšïŒïŒïŒã®å¶åŸ¡ãè¡ãããã®ããã«ãã«ãŠã³ãå€ã«åºã¥ããŠãªããã¿åè·¯ïŒïŒã®åäœæéãé·ããçãããå€å®ããããšã§ãéŸå€ããæäžã®éŸå€é»å§ãšé»å§ïŒ¶ïŒ¯ïŒµïŒŽïŒæå§é»å§ïŒãšã®æ¯èŒçµæã«åºã¥ããŠæŽæ°ãããã
  Further, the
å³ïŒïŒã«ãå³ïŒïŒã®å€å®ããžãã¯éšïŒïŒïŒã®åäœã®äžäŸã®èª¬æå³ã瀺ãã
  FIG. 14 is an explanatory diagram showing an example of the operation of the
æ¬å®æœåœ¢æ
ã§ã¯ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒã®æ倧å€ã«å¯ŸããŠãæŒç®å¯Ÿè±¡ã®èµ°æ»ã©ã€ã³ã®ç·åããŒã¿ïŒ§ïŒ³ïŒµïŒã«å¿ããŠãæå§åè·¯ïŒïŒã®æå§èœåãå€æŽããããã®ãããå€å®ããžãã¯éšïŒïŒïŒã¯ãïŒã€ã®éŸå€ïŒŽïŒšïŒ¡ããæãããéŸå€ïŒŽïŒšïŒ¡ã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ããç¶æ
ã§ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ãããåŠããå€å®ããããã®éŸå€ã§ãããéŸå€ïŒŽïŒšïŒ¢ã¯ã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒã®ãããããã€ããŒãã«ç¶æ
ã«èšå®ãããåŠããå€å®ããããã®éŸå€ã§ããã
In the present embodiment, the boosting capability of the
åŸã£ãŠãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¡ãã倧ãããšãã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ããå¶åŸ¡ãè¡ãããããŸããç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¡ä»¥äžã§ãäžã€éŸå€ïŒŽïŒšïŒ¢ãã倧ãããšãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒããã£ã»ãŒãã«ç¶æ
ã«èšå®ãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ããå¶åŸ¡ãè¡ããæŽã«ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¢ä»¥äžã®ãšãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ãã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒããã£ã»ãŒãã«ç¶æ
ã«èšå®ããå¶åŸ¡ãè¡ãã
Therefore, when the sum data GSUM is larger than the threshold value THA, control is performed to set the first and second
å³ïŒïŒã«ãå³ïŒïŒã®å€å®ããžãã¯éšïŒïŒïŒã®æ§æäŸã®èŠéšã®åè·¯å³ã瀺ãã
  FIG. 15 is a circuit diagram of a main part of a configuration example of the
å€å®ããžãã¯éšïŒïŒïŒã¯ãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒïŒãïŒïŒ°ïŒïŒãïŒïŒ°ïŒïŒãïŒïŒ°ïŒïŒãæå°å€æ倧å€å€å®éšïŒïŒïŒãïŒïŒïŒãå«ãããªããå€å®ããžãã¯éšïŒïŒïŒã¯ãè€æ°ã®ããªããããããïŒãïŒãæããåããªããããããã¯å³ç€ºããªãåæåä¿¡å·ã«ããåæåããããã®ãšããã
  The
å³ïŒïŒã®å€å®ããžãã¯éšïŒïŒïŒã«ã¯ãæ°Žå¹³åæä¿¡å·ïŒ¬ïŒ°ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¡ãããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽãïŒãïŒãå ¥åãããå¶åŸ¡ä¿¡å·ïŒ¥ïŒ®ïŒ¢ïŒãïŒãããããåºåããã   15 receives the horizontal synchronization signal LP, the sum data GSUM, threshold values THA, THB, and pulse data PLSET, PCNT1, and PCNT2, and outputs control signals ENB1, ENB2, INCA, DECA, INCB, and DECB. To do.
ããã§ããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽã¯ãéŸå€ããŒã¿ã§ãããäŸãã°ãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒïŒã¯ãæ¯èŒçµæãã«ã¹ã«åºã¥ããŠé»å§ïŒ¶ïŒ¯ïŒµïŒŽãæäžã®éŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒ¶ïŒä»¥äžãšãªã£ãããšã瀺ãæ¯èŒçµæä¿¡å·ãé»å§ïŒ¶ïŒ¯ïŒµïŒŽãæäžã®éŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒïŒ¶ïŒä»¥äžãšãªã£ãããšã瀺ãæ¯èŒçµæä¿¡å·ãåºåã§ããããããŠãé»å§ïŒ¶ïŒ¯ïŒµïŒŽãæäžã®éŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒä»¥äžãšãªã£ãããšã瀺ãæ¯èŒçµæä¿¡å·ã®ïŒæäžã®ã¬ãã«ãç¶æããïŒå¹
ããã«ã¹å¹
ãåã¯è©²æ¯èŒçµæä¿¡å·ãæäžã®ã¬ãã«ãç¶æããæéãæäžã®ã¯ããã¯ïŒäŸãã°ãããã¯ããã¯åã¯ãã¯ã»ã«ã¯ããã¯ïŒãçšããŠæ€å®ããçµæãããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒãšããŠå
¥åããããé»å§ïŒ¶ïŒ¯ïŒµïŒŽãæäžã®éŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒïŒ¶ïŒä»¥äžãšãªã£ãããšã瀺ãæ¯èŒçµæä¿¡å·ã®ïŒæäžã®ã¬ãã«ãç¶æããïŒå¹
ããã«ã¹å¹
ãåã¯è©²æ¯èŒçµæä¿¡å·ãæäžã®ã¬ãã«ãç¶æããæéãæäžã®ã¯ããã¯ïŒäŸãã°ãããã¯ããã¯åã¯ãã¯ã»ã«ã¯ããã¯ïŒãçšããŠæ€å®ããçµæãããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒãšããŠå
¥åãããããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽãšããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒãïŒã®åãã«ã¹ããŒã¿ãšãæ¯èŒåŠçãããã
Here, the pulse data PLSET is threshold data. For example, the
æå§èœåãé«ããããšãªããã¿åè·¯ïŒïŒãåäœããããšããããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽãã倧ãããšå€å®ããããšããéŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒ¶ïŒã«å¯Ÿå¿ããéŸå€ïŒŽïŒšïŒ¢ãã€ã³ã¯ãªã¡ã³ãããå¶åŸ¡ãè¡ããåæ§ã«ããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽãã倧ãããšå€å®ããããšããéŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒïŒ¶ïŒã«å¯Ÿå¿ããéŸå€ïŒŽïŒšïŒ¡ãã€ã³ã¯ãªã¡ã³ãããå¶åŸ¡ãè¡ãã
  Since the
æå§èœåãäœããããšãªããã¿åè·¯ïŒïŒãåäœããªãããããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽããå°ãããšå€å®ããããšããéŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒ¶ïŒã«å¯Ÿå¿ããéŸå€ïŒŽïŒšïŒ¢ããã¯ãªã¡ã³ãããå¶åŸ¡ãè¡ããåæ§ã«ããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽããå°ãããšå€å®ããããšããéŸå€é»å§ïŒïŒ¶ïŒŽïŒšïŒïŒïŒïŒïŒïŒ¶ïŒã«å¯Ÿå¿ããéŸå€ïŒŽïŒšïŒ¡ããã¯ãªã¡ã³ãããå¶åŸ¡ãè¡ãã
Since the
å¶åŸ¡ä¿¡å·ïŒ©ïŒ®ïŒ£ïŒ¡ã¯ãéŸå€ïŒŽïŒšïŒ¡ãã€ã³ã¯ãªã¡ã³ãããããã®å¶åŸ¡ä¿¡å·ã§ãããå¶åŸ¡ä¿¡å·ïŒ©ïŒ®ïŒ£ïŒ¢ã¯ãéŸå€ïŒŽïŒšïŒ¢ãã€ã³ã¯ãªã¡ã³ãããããã®å¶åŸ¡ä¿¡å·ã§ãããå¶åŸ¡ä¿¡å·ïŒ€ïŒ¥ïŒ£ïŒ¡ã¯ãéŸå€ïŒŽïŒšïŒ¡ããã¯ãªã¡ã³ãããããã®å¶åŸ¡ä¿¡å·ã§ãããå¶åŸ¡ä¿¡å·ïŒ€ïŒ¥ïŒ£ïŒ¢ã¯ãéŸå€ïŒŽïŒšïŒ¢ããã¯ãªã¡ã³ãããããã®å¶åŸ¡ä¿¡å·ã§ããã   The control signal INCA is a control signal for incrementing the threshold value THA. The control signal INCB is a control signal for incrementing the threshold value THB. The control signal DECA is a control signal for decrementing the threshold value THA. The control signal DECB is a control signal for decrementing the threshold value THB.
å¶åŸ¡ä¿¡å·ïŒ¥ïŒ®ïŒ¢ïŒã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ããããã®å¶åŸ¡ä¿¡å·ã§ãããå¶åŸ¡ä¿¡å·ïŒ¥ïŒ®ïŒ¢ïŒã¯ã第ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ããããã®å¶åŸ¡ä¿¡å·ã§ããã
The control signal ENB1 is a control signal for setting the first
å³ïŒïŒã«ãããŠãã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒïŒã¯ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¡ãã倧ãããšããåºåä¿¡å·ãã¬ãã«ãšãªããã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒïŒã¯ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¢ïŒ¡ãã倧ãããšããåºåä¿¡å·ãã¬ãã«ãšãªããã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒïŒã¯ããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽãã倧ãããšããåºåä¿¡å·ãã¬ãã«ãšãªããã³ã³ãã¬ãŒã¿ïŒ£ïŒïŒ°ïŒïŒã¯ããã«ã¹ããŒã¿ïŒ°ïŒ£ïŒ®ïŒŽïŒããã«ã¹ããŒã¿ïŒ°ïŒ¬ïŒ³ïŒ¥ïŒŽãã倧ãããšããåºåä¿¡å·ãã¬ãã«ãšãªãã   In FIG. 15, the comparator CMP10 has an output signal at the H level when the total data GSUM is larger than the threshold value THA. When the sum data GSUM is larger than the threshold value THBA, the output signal of the comparator CMP11 becomes H level. When the pulse data PCNT2 is larger than the pulse data PLSET, the output signal of the comparator CMP12 becomes H level. When the pulse data PCNT1 is larger than the pulse data PLSET, the output signal of the comparator CMP13 becomes H level.
æå°å€æ倧å€å€å®éšïŒïŒïŒã¯ãéŸå€ïŒŽïŒšïŒ¡ã®åãããããïŒãã®ãšãã€ã³ã¯ãªã¡ã³ãå¶åŸ¡ãçŠæ¢ããããã®å¶åŸ¡ä¿¡å·ãåºåãããæå°å€æ倧å€å€å®éšïŒïŒïŒã¯ãéŸå€ïŒŽïŒšïŒ¡ã®åãããããïŒãã®ãšããã¯ãªã¡ã³ãå¶åŸ¡ãçŠæ¢ããããã®å¶åŸ¡ä¿¡å·ãåºåããã   The minimum value / maximum value determination unit MM1 outputs a control signal for prohibiting the increment control when each bit of the threshold value THA is â1â. The minimum value / maximum value determination unit MM1 outputs a control signal for prohibiting decrement control when each bit of the threshold value THA is â0â.
æå°å€æ倧å€å€å®éšïŒïŒïŒã¯ãéŸå€ïŒŽïŒšïŒ¢ã®åãããããïŒãã®ãšãã€ã³ã¯ãªã¡ã³ãå¶åŸ¡ãçŠæ¢ããããã®å¶åŸ¡ä¿¡å·ãåºåãããæå°å€æ倧å€å€å®éšïŒïŒïŒã¯ãéŸå€ïŒŽïŒšïŒ¢ã®åãããããïŒãã®ãšããã¯ãªã¡ã³ãå¶åŸ¡ãçŠæ¢ããããã®å¶åŸ¡ä¿¡å·ãåºåããã   The minimum / maximum value determination unit MM2 outputs a control signal for prohibiting the increment control when each bit of the threshold value THB is â1â. The minimum / maximum value determination unit MM2 outputs a control signal for prohibiting decrement control when each bit of the threshold value THB is â0â.
ãã®ããã«å€å®ããžãã¯éšïŒïŒïŒã¯ãç·åããŒã¿ïŒ§ïŒ³ïŒµïŒãéŸå€ïŒŽïŒšïŒ¡ãã«åºã¥ããŠã第ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ïŒïŒïŒïŒãïŒïŒïŒïŒãã€ããŒãã«ç¶æ
ã«èšå®ããå¶åŸ¡ãè¡ãããšãã§ããããŸããå€å®ããžãã¯éšïŒïŒïŒã¯ãæ¯èŒçµæãã«ã¹ã«åºã¥ããŠãªããã¿åè·¯ïŒïŒãåäœããæéãå€å®ãããã®å€å®çµæã«å¿ããŠéŸå€ïŒŽïŒšïŒ¡ããã€ã³ã¯ãªã¡ã³ãåã¯ãã¯ãªã¡ã³ãããå¶åŸ¡ãè¡ãããšãã§ããã
As described above, the
以äžèª¬æããããã«ãæ¬å®æœåœ¢æ ã«ããã°ãæå§ããé»å§ãã¿ãŒã²ããé»å§ãè¶ éããå Žåã§ãã£ãŠããæå§å ã®é»æºã§ããã·ã¹ãã é»æºé»å§ïŒ¶ïŒ€ïŒ€ãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ããããã«ããã®ã§ãã·ã¹ãã æ¥å°é»æºé»å§ïŒ¶ïŒ³ïŒ³ãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ãããããå€§å¹ ã«äœæ¶è²»é»ååãå®çŸã§ãããæŽã«ãæ¬å®æœåœ¢æ ã«ããã°ãåºåè² è·ã«å¿ããŠæå§åè·¯ã®æå§èœåãå€æŽã§ããããã«ããã®ã§ãåºåè² è·ãé«ãå Žåã§ãæå§èœåãäœäžãããããšãªããäžã€åºåè² è·ã«å¯ŸããŠæå§å¹çãäœäžããããšãé²æ¢ã§ããããã«ãªãã   As described above, according to the present embodiment, even when the boosted voltage exceeds the target voltage, the electric charge is discharged to the power supply line to which the system power supply voltage VDD that is the power source of the boost is supplied. Therefore, the power consumption can be significantly reduced compared with the case where electric charges are discharged to the power supply line to which the system ground power supply voltage VSS is supplied. Furthermore, according to the present embodiment, since the boosting capability of the booster circuit can be changed according to the output load, the boosting efficiency can be improved with respect to the output load without reducing the boosting capability even when the output load is high. It becomes possible to prevent the decrease.
ïŒïŒ é»åæ©åš
å³ïŒïŒã«ãæ¬å®æœåœ¢æ
ã®é»æºåè·¯ãé©çšãããé»åæ©åšã®æ§æäŸã®ãããã¯å³ã瀺ããããã§ã¯ãé»åæ©åšãšããŠãæºåž¯é»è©±æ©ã®æ§æäŸã®ãããã¯å³ã瀺ãã
3. Electronic Device FIG. 16 shows a block diagram of a configuration example of an electronic device to which the power supply circuit of the present embodiment is applied. Here, a block diagram of a configuration example of a mobile phone is shown as an electronic device.
æºåž¯é»è©±æ©ïŒïŒïŒã¯ãã«ã¡ã©ã¢ãžã¥ãŒã«ïŒïŒïŒãå«ããã«ã¡ã©ã¢ãžã¥ãŒã«ïŒïŒïŒã¯ãã«ã¡ã©ãå«ã¿ãã«ã¡ã©ã§æ®åããç»åã®ããŒã¿ãããã©ãŒãããã§è¡šç€ºã³ã³ãããŒã©ïŒïŒïŒã«äŸçµŠããã衚瀺ã³ã³ãããŒã©ïŒïŒïŒã¯ãå³ïŒåã¯å³ïŒã®è¡šç€ºã³ã³ãããŒã©ïŒïŒã®æ©èœãæããã
  The
æºåž¯é»è©±æ©ïŒïŒïŒã¯ã衚瀺ããã«ïŒïŒïŒãå«ãã衚瀺ããã«ïŒïŒïŒã¯ããœãŒã¹ãã©ã€ãïŒïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒïŒã«ãã£ãŠé§åãããã衚瀺ããã«ïŒïŒïŒã¯ãè€æ°ã®ã²ãŒãç·ãè€æ°ã®ãœãŒã¹ç·ãè€æ°ã®ç»çŽ ãå«ãã衚瀺ããã«ïŒïŒïŒã¯ãå³ïŒåã¯å³ïŒã®è¡šç€ºããã«ïŒïŒã®æ©èœãæããã
  The
衚瀺ã³ã³ãããŒã©ïŒïŒïŒã¯ããœãŒã¹ãã©ã€ãïŒïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒïŒã«æ¥ç¶ããããœãŒã¹ãã©ã€ãïŒïŒïŒã«å¯ŸããŠïŒ²ïŒ§ïŒ¢ãã©ãŒãããã®é調ããŒã¿ãäŸçµŠããã
  The
é»æºåè·¯ïŒïŒïŒã¯ããœãŒã¹ãã©ã€ãïŒïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒïŒã«æ¥ç¶ãããåãã©ã€ãã«å¯ŸããŠãé§åçšã®é»æºé»å§ãäŸçµŠãããé»æºåè·¯ïŒïŒïŒã¯ãå³ïŒåã¯å³ïŒã®é»æºåè·¯ïŒïŒã®æ©èœãæããã衚瀺ãã©ã€ãïŒïŒïŒãšããŠãœãŒã¹ãã©ã€ãïŒïŒïŒãã²ãŒããã©ã€ãïŒïŒïŒåã³é»æºåè·¯ïŒïŒïŒãå«ã¿ã該衚瀺ãã©ã€ãïŒïŒïŒã衚瀺ããã«ïŒïŒïŒãé§åã§ããã
  The
ãã¹ãïŒïŒïŒã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒïŒã«æ¥ç¶ãããããã¹ãïŒïŒïŒã¯ã衚瀺ã³ã³ãããŒã©ïŒïŒïŒãå¶åŸ¡ããããŸããã¹ãïŒïŒïŒã¯ãã¢ã³ããïŒïŒïŒãä»ããŠåä¿¡ãããé調ããŒã¿ããå€åŸ©èª¿éšïŒïŒïŒã§åŸ©èª¿ããåŸã衚瀺ã³ã³ãããŒã©ïŒïŒïŒã«äŸçµŠã§ããã衚瀺ã³ã³ãããŒã©ïŒïŒïŒã¯ããã®é調ããŒã¿ã«åºã¥ãããœãŒã¹ãã©ã€ãïŒïŒïŒåã³ã²ãŒããã©ã€ãïŒïŒïŒã«ãã衚瀺ããã«ïŒïŒïŒã«è¡šç€ºãããããœãŒã¹ãã©ã€ãïŒïŒïŒã¯ã第ïŒã第ïŒã®å®æœåœ¢æ
ã®ããããã®ãœãŒã¹ãã©ã€ãã®æ©èœãæãããã²ãŒããã©ã€ãïŒïŒïŒã¯ãå³ïŒåã¯å³ïŒã®ã²ãŒããã©ã€ãïŒïŒã®æ©èœãæããã
  The
ãã¹ãïŒïŒïŒã¯ãã«ã¡ã©ã¢ãžã¥ãŒã«ïŒïŒïŒã§çæãããé調ããŒã¿ãå€åŸ©èª¿éšïŒïŒïŒã§å€èª¿ããåŸãã¢ã³ããïŒïŒïŒãä»ããŠä»ã®éä¿¡è£
眮ãžã®éä¿¡ãæ瀺ã§ããã
  The
ãã¹ãïŒïŒïŒã¯ãæäœå
¥åéšïŒïŒïŒããã®æäœæ
å ±ã«åºã¥ããŠé調ããŒã¿ã®éåä¿¡åŠçãã«ã¡ã©ã¢ãžã¥ãŒã«ïŒïŒïŒã®æ®åã衚瀺ããã«ïŒïŒïŒã®è¡šç€ºåŠçãè¡ãã
  The
ãªããæ¬çºæã¯äžè¿°ããå®æœã®åœ¢æ ã«éå®ããããã®ã§ã¯ãªããæ¬çºæã®èŠæšã®ç¯å²å ã§çš®ã ã®å€åœ¢å®æœãå¯èœã§ãããäŸãã°ãæ¬çºæã¯äžè¿°ã®æ¶²æ¶è¡šç€ºããã«ã®é§åã«é©çšããããã®ã«éããããšã¬ã¯ããã¯ãããã»ã³ã¹ããã©ãºããã£ã¹ãã¬ã€è£ 眮ã®é§åã«é©çšå¯èœã§ãããæŽã«ã衚瀺ããã«ã®é§åã«éãããçš®ã ã®åè·¯ã«é»æºãäŸçµŠãããã®ã«é©çšå¯èœã§ããã   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, the present invention is not limited to being applied to driving the above-described liquid crystal display panel, but can be applied to driving electroluminescence and plasma display devices. Furthermore, the present invention is not limited to driving a display panel, and can be applied to a device that supplies power to various circuits.
æŽã«ãäžè¿°ããå®æœåœ¢æ ã®æ¶²æ¶è¡šç€ºè£ 眮ã¯ãæºåž¯é»è©±æ©ãæºåž¯åæ å ±æ©åšïŒïŒ°ïŒ€ïŒ¡çïŒãããžã¿ã«ã«ã¡ã©ããããžã§ã¯ã¿ãæºåž¯åãªãŒãã£ãªãã¬ãŒã€ããã¹ã¹ãã¬ãŒãžããã€ã¹ããããªã«ã¡ã©ãé»åæåž³åã¯ïŒ§ïŒ°ïŒ³ïŒGlobal Positioning SystemïŒãªã©ã®çš®ã ã®é»åæ©åšã«çµã¿èŸŒãããšãã§ããã   Furthermore, the liquid crystal display device of the above-described embodiment includes a mobile phone, a portable information device (PDA, etc.), a digital camera, a projector, a portable audio player, a mass storage device, a video camera, an electronic notebook, or a GPS (Global Positioning System). It can be incorporated in various electronic devices.
ãŸããæ¬çºæã®ãã¡åŸå±è«æ±é ã«ä¿ãçºæã«ãããŠã¯ãåŸå±å ã®è«æ±é ã®æ§æèŠä»¶ã®äžéšãçç¥ããæ§æãšããããšãã§ããããŸããæ¬çºæã®ïŒã®ç¬ç«è«æ±é ã«ä¿ãçºæã®èŠéšããä»ã®ç¬ç«è«æ±é ã«åŸå±ãããããšãã§ããã   In the invention according to the dependent claims of the present invention, a part of the constituent features of the dependent claims can be omitted. Moreover, the principal part of the invention according to one independent claim of the present invention can be made dependent on another independent claim.
ïŒïŒ 液æ¶è¡šç€ºè£
眮ã ïŒïŒ 衚瀺ããã«ã ïŒïŒ ãœãŒã¹ãã©ã€ãã
ïŒïŒãïŒïŒ ã·ããã¬ãžã¹ã¿ã ïŒïŒãïŒïŒ ã©ã€ã³ã©ããã
ïŒïŒ é調ããŒã¿ç·åæŒç®éšã ïŒïŒ åºæºé»å§çºçåè·¯ã ïŒïŒ ã
ïŒïŒ ãœãŒã¹ç·é§ååè·¯ã ïŒïŒ ã²ãŒããã©ã€ãã ïŒïŒãïŒïŒïŒ ã¬ãã«ã·ãã¿ã
ïŒïŒ åºåãããã¡ã ïŒïŒ 衚瀺ã³ã³ãããŒã©ã ïŒïŒ é»æºåè·¯ã
ïŒïŒ æå§åè·¯ã ïŒïŒ ãªããã¿åè·¯ã ïŒïŒ èµ°æ»é»å§çæåè·¯ã
ïŒïŒ 察åé»æ¥µé»å§çæåè·¯ã ïŒïŒ 衚瀺ãã©ã€ãã
ïŒïŒïŒïŒ 第ïŒã®ãã£ãŒãžãã³ãåè·¯ã ïŒïŒïŒïŒ 第ïŒã®ãã£ãŒãžãã³ãåè·¯ã
ïŒïŒïŒ åæ¿å¶åŸ¡éšã ïŒïŒïŒ é»å§å¶éåè·¯ã ïŒïŒïŒ ã«ãŠã³ã¿ã
ïŒïŒïŒ å€å®ããžãã¯éšã ïŒïŒïŒ éŸå€æŽæ°éšã
ïŒïŒ°ïŒãïŒïŒ°ïŒ ã³ã³ãã¬ãŒã¿ã ïŒŠïŒ£ïŒ ç¬¬ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµã
ïŒŠïŒ£ïŒ ç¬¬ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµã ïŒãïŒã ã²ãŒãç·ã
ïŒ§ïŒ³ïŒµïŒ ç·åããŒã¿ã ïŒãã ãœãŒã¹ç·ã
ïŒãïŒŽïŒ£ïŒ å€éšæ¥ç¶ç«¯åã  éŸå€é»å§ã  åºæºé»å§ã
 ã·ã¹ãã é»æºé»å§ã  ã·ã¹ãã æ¥å°é»æºé»å§
10 liquid crystal display device, 12 display panel, 20 source driver,
22, 32 shift register, 24, 26 line latch,
25 gradation data sum calculation unit, 27 reference voltage generation circuit, 28 DAC,
29 source line drive circuit, 30 gate driver, 34, 180 level shifter,
36 output buffer, 40 display controller, 50 power supply circuit,
52 booster circuit, 53 limiter circuit, 54 scan voltage generation circuit,
56 counter electrode voltage generation circuit, 60 display driver,
100 1 1st charge pump circuit, 100 2 2nd charge pump circuit,
110 switching control unit, 150 voltage limiting circuit, 182 counter,
184 decision logic unit, 186 threshold update unit,
CMP1, CMP2 comparator, FC1 first flying capacitor,
FC2 second flying capacitors, G 1 ~G M, G K gate lines,
GSUM total data, S 1 to S N , S L source line,
TC1 to TC4 external connection terminal, VTH threshold voltage, VREF reference voltage,
VDD System power supply voltage, VSS System ground power supply voltage
Claims (14)
第ïŒã®é»å§ãåºæºã«ç¬¬ïŒã®é»å§ãæå§ããæå§é»å§ãçæããæå§åè·¯ãšã
åèšæå§é»å§ã®é»äœãå¶éãããªããã¿åè·¯ãšãå«ã¿ã
åèšãªããã¿åè·¯ãã
åèšæå§é»å§ãæäžã®ã¿ãŒã²ããé»å§ã«ãªãããã«åèšç¬¬ïŒã®é»å§ãäŸçµŠãããé»æºç·ã«é»è·ãæŸé»ãåã¯è©²é»æºç·ããé»è·ãå é»ãã
åèšæå§åè·¯ãã
åèšé»æºåè·¯ã®åºåè² è·ãšãåèšãªããã¿åè·¯ãåèšæå§é»å§ã®é»äœãå¶éãããåŠãã瀺ããªããã¿åäœæ å ±ãšã«åºã¥ããŠãåèšæå§åè·¯ã®é»æµé§åèœåã§ããæå§èœåãå€æŽããããšãç¹åŸŽãšããé»æºåè·¯ã A power supply circuit for outputting a boosted voltage,
A booster circuit that generates a boosted voltage obtained by boosting the second voltage with reference to the first voltage;
A limiter circuit for limiting the potential of the boosted voltage,
The limiter circuit is
Discharging the charge to the power supply line to which the second voltage is supplied so that the boosted voltage becomes a given target voltage, or charging the charge from the power supply line,
The booster circuit is
The boosting capability, which is the current driving capability of the booster circuit, is changed based on the output load of the power supply circuit and limiter operation information indicating whether the limiter circuit has limited the potential of the boosted voltage. Power supply circuit.
åèšåºåè² è·ã«å¯ŸããŠåèšæå§èœåãé«ããšå€æããããšãã«ã¯ãæå§èœåãããäœããªãããã«è©²æå§èœåãå€æŽãã
åèšåºåè² è·ã«å¯ŸããŠåèšæå§èœåãäœããšå€æããããšãã«ã¯ãæå§èœåãããé«ããªãããã«è©²æå§èœåãå€æŽããããšãç¹åŸŽãšããé»æºåè·¯ã In claim 1,
When it is determined that the boost capability is high with respect to the output load, the boost capability is changed so that the boost capability becomes lower,
When it is determined that the boost capability is low with respect to the output load, the boost capability is changed so that the boost capability becomes higher.
åèšæå§åè·¯ãã
åèšãªããã¿åäœæ å ±ã«åºã¥ããŠæŽæ°ãããéŸå€ãšãåèšåºåè² è·ãšã®æ¯èŒçµæã«å¿ããŠãåèšæå§èœåãå€æŽããããšãç¹åŸŽãšããé»æºåè·¯ã In claim 1 or 2 ,
The booster circuit is
A power supply circuit that changes the boosting capability according to a comparison result between a threshold value updated based on the limiter operation information and the output load.
åèšéŸå€ãã
æäžã®éŸå€é»å§ãšåèšæå§é»å§ãšã®æ¯èŒçµæã«åºã¥ããŠæŽæ°ãããããšãç¹åŸŽãšããé»æºåè·¯ã In claim 3 ,
The threshold is
A power supply circuit that is updated based on a comparison result between a given threshold voltage and the boosted voltage.
åèšæäžã®éŸå€é»å§ãšåèšæå§é»å§ãšãæ¯èŒããã³ã³ãã¬ãŒã¿ãšã
åèšã³ã³ãã¬ãŒã¿ã®åºåçµæã®ãã«ã¹å¹ åã¯ãã«ã¹æ°ãã«ãŠã³ãããã«ãŠã³ã¿ãšãå«ã¿ã
åèšéŸå€ãã
åèšã«ãŠã³ã¿ã®ã«ãŠã³ãæ°ã«åºã¥ããŠæŽæ°ãããããšãç¹åŸŽãšããé»æºåè·¯ã In claim 4 ,
A comparator for comparing the given threshold voltage with the boost voltage;
A counter that counts the pulse width or number of pulses of the output result of the comparator,
The threshold is
The power supply circuit is updated based on a count number of the counter.
é»æ°å åŠè£ 眮ã®è€æ°ã®ãœãŒã¹ç·ã®åãœãŒã¹ç·ã®é調ããŒã¿ã«å¯Ÿå¿ããé§åé»å§ããåèšæå§é»å§ã«åºã¥ããŠçæãããå Žåã«ã
åèšåºåè² è·ãã
åèšè€æ°ã®ãœãŒã¹ç·ã®ïŒèµ°æ»ã©ã€ã³åã®é調ããŒã¿ã®ç·åã«åºã¥ããŠè©äŸ¡ãããããšãç¹åŸŽãšããé»æºåè·¯ã In any one of Claims 1 thru | or 5 ,
When a driving voltage corresponding to gradation data of each source line of the plurality of source lines of the electro-optical device is generated based on the boosted voltage,
The output load is
The power supply circuit is evaluated based on a sum of gradation data for one scanning line of the plurality of source lines.
åèšæå§åè·¯ãã
第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµãçšãããã£ãŒãžãã³ãåäœã«ãããåèšæå§é»å§ãçæããããã®ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ãšã
åèšç¬¬ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµãã容éå€ã®å€§ãã第ïŒã®ãã©ã€ã³ã°ã³ã³ãã³ãµãçšãããã£ãŒãžãã³ãåäœã«ãããåèšæå§é»å§ãçæããããã®ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ãšãå«ã¿ã
åèšæå§åè·¯ã®æå§èœåã®å€æŽåŸã«ãåèšç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ã«ããçæãããæå§é»å§ãåèšç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ã«ããçæãããæå§é»å§ãåã¯åèšç¬¬ïŒåã³ç¬¬ïŒã®ãã£ãŒãžãã³ãåè·¯ã«ããçæãããæå§é»å§ãåºåããããšãç¹åŸŽãšããé»æºåè·¯ã In any one of Claims 1 thru | or 6 .
The booster circuit is
A first charge pump circuit for generating the boosted voltage by a charge pump operation using a first flying capacitor;
A second charge pump circuit for generating the boosted voltage by a charge pump operation using a second flying capacitor having a larger capacitance value than the first flying capacitor;
After the boosting capability of the booster circuit is changed, the boosted voltage generated by the first charge pump circuit, the boosted voltage generated by the second charge pump circuit, or the first and second charge pump circuits. A power supply circuit that outputs the generated boosted voltage.
è«æ±é ïŒä¹è³ïŒã®ããããèšèŒã®é»æºåè·¯ãšã
åèšé»æ°å åŠè£ 眮ãé§åããããã®é§åéšãšãå«ã¿ã
åèšæå§é»å§ã«åºã¥ããŠãåèšé§åéšã®é§åé»å§ãçæããããšãç¹åŸŽãšãã衚瀺ãã©ã€ãã A display driver for driving an electro-optical device,
A power supply circuit according to any one of claims 1 to 7 ,
A drive unit for driving the electro-optical device,
A display driver that generates a drive voltage of the drive unit based on the boosted voltage.
åèšé§åéšãã
åèšæå§é»å§ãçšããŠçæããããé調ããŒã¿ã«å¯Ÿå¿ããé§åé»å§ã«ããåèšé»æ°å åŠè£ 眮ã®è€æ°ã®ãœãŒã¹ç·ãé§åããããšãç¹åŸŽãšãã衚瀺ãã©ã€ãã In claim 8 ,
The drive unit is
A display driver, wherein a plurality of source lines of the electro-optical device are driven by a driving voltage corresponding to gradation data generated using the boosted voltage.
è€æ°ã®ãœãŒã¹ç·ãšã
åèšè€æ°ã®ã²ãŒãç·ãèµ°æ»ããã²ãŒããã©ã€ããšã
åèšè€æ°ã®ãœãŒã¹ç·ãé§åãããœãŒã¹ãã©ã€ããšã
è«æ±é ïŒä¹è³ïŒã®ããããèšèŒã®é»æºåè·¯ãšãå«ã¿ã
åèšã²ãŒããã©ã€ãã®èµ°æ»é»å§åã³åèšãœãŒã¹ãã©ã€ãã®é§åé»å§ã®ãã¡å°ãªããšãïŒã€ããåèšæå§é»å§ã«åºã¥ããŠçæãããããšãç¹åŸŽãšããé»æ°å åŠè£ 眮ã Multiple gate lines,
Multiple source lines,
A gate driver that scans the plurality of gate lines;
A source driver for driving the plurality of source lines;
A power supply circuit according to any one of claims 1 to 7 ,
An electro-optical device, wherein at least one of a scanning voltage of the gate driver and a driving voltage of the source driver is generated based on the boosted voltage.
è€æ°ã®ãœãŒã¹ç·ãšã
åèšè€æ°ã®ã²ãŒãç·ãèµ°æ»ããã²ãŒããã©ã€ããšã
åèšè€æ°ã®ãœãŒã¹ç·ãé§åããè«æ±é ïŒèšèŒã®è¡šç€ºãã©ã€ããšãå«ãããšãç¹åŸŽãšããé»æ°å åŠè£ 眮ã Multiple gate lines,
Multiple source lines,
A gate driver that scans the plurality of gate lines;
10. An electro-optical device comprising: the display driver according to claim 9 that drives the plurality of source lines.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007327194A JP5233272B2 (en) | 2007-01-29 | 2007-12-19 | Power supply circuit, display driver, electro-optical device, and electronic device |
US12/010,503 US7733160B2 (en) | 2007-01-29 | 2008-01-25 | Power supply circuit, display driver, electro-optical device, and electronic instrument |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017909 | 2007-01-29 | ||
JP2007017909 | 2007-01-29 | ||
JP2007327194A JP5233272B2 (en) | 2007-01-29 | 2007-12-19 | Power supply circuit, display driver, electro-optical device, and electronic device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008211963A JP2008211963A (en) | 2008-09-11 |
JP2008211963A5 JP2008211963A5 (en) | 2011-02-10 |
JP5233272B2 true JP5233272B2 (en) | 2013-07-10 |
Family
ID=39787784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007327194A Active JP5233272B2 (en) | 2007-01-29 | 2007-12-19 | Power supply circuit, display driver, electro-optical device, and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5233272B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5217412B2 (en) * | 2007-01-29 | 2013-06-19 | ã»ã€ã³ãŒãšããœã³æ ªåŒäŒç€Ÿ | Power supply circuit, display driver, electro-optical device, and electronic device |
KR101625935B1 (en) * | 2010-01-05 | 2016-05-31 | ìŒì±ì ì죌ìíì¬ | Charge pump circuit and apparatuses having the same |
US10755622B2 (en) * | 2016-08-19 | 2020-08-25 | Samsung Electronics Co., Ltd. | Display driver integrated circuit for supporting low power mode of display panel |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2609330B2 (en) * | 1989-08-17 | 1997-05-14 | å¯å£«éæ ªåŒäŒç€Ÿ | Power supply |
JP2806717B2 (en) * | 1992-10-28 | 1998-09-30 | æ¥æ¬é»æ°ã¢ã€ã·ãŒãã€ã³ã³ã·ã¹ãã æ ªåŒäŒç€Ÿ | Charge pump circuit |
JP2738335B2 (en) * | 1995-04-20 | 1998-04-08 | æ¥æ¬é»æ°æ ªåŒäŒç€Ÿ | Boost circuit |
JPH09312095A (en) * | 1996-05-23 | 1997-12-02 | Toshiba Corp | Semiconductor integrated circuit |
JP2000102244A (en) * | 1998-07-22 | 2000-04-07 | Ricoh Co Ltd | Dc-to-dc converter |
JP4109831B2 (en) * | 2001-01-15 | 2008-07-02 | æ ªåŒäŒç€Ÿæ±è | Semiconductor device |
JP2003070236A (en) * | 2001-08-23 | 2003-03-07 | Iwate Toshiba Electronics Co Ltd | Semiconductor integrated circuit |
JP4222768B2 (en) * | 2002-03-27 | 2009-02-12 | äžæŽé»æ©æ ªåŒäŒç€Ÿ | Booster and imaging device using the same |
JP4150614B2 (en) * | 2003-03-10 | 2008-09-17 | æ ªåŒäŒç€Ÿã±ã³ãŠãã | Regulator circuit and power supply device |
JP3759134B2 (en) * | 2003-08-29 | 2006-03-22 | ããŒã æ ªåŒäŒç€Ÿ | Power supply |
JP4077429B2 (en) * | 2004-06-09 | 2008-04-16 | æ ªåŒäŒç€Ÿæ±è | Booster circuit |
JP2006050778A (en) * | 2004-08-04 | 2006-02-16 | Sanyo Electric Co Ltd | Charge pump circuit |
JP4096943B2 (en) * | 2004-12-21 | 2008-06-04 | ã»ã€ã³ãŒãšããœã³æ ªåŒäŒç€Ÿ | Power supply circuit, display driver, electro-optical device, electronic apparatus, and control method for power supply circuit |
JP5217412B2 (en) * | 2007-01-29 | 2013-06-19 | ã»ã€ã³ãŒãšããœã³æ ªåŒäŒç€Ÿ | Power supply circuit, display driver, electro-optical device, and electronic device |
-
2007
- 2007-12-19 JP JP2007327194A patent/JP5233272B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008211963A (en) | 2008-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7733160B2 (en) | Power supply circuit, display driver, electro-optical device, and electronic instrument | |
US8125432B2 (en) | Common voltage generation circuit employing a charge-pump operation to generate low-potential-side voltage | |
US7079127B2 (en) | Reference voltage generation circuit, display driver circuit, display device, and method of generating reference voltage | |
JP4826383B2 (en) | Power supply circuit, display driver, electro-optical device, and electronic device | |
US8144090B2 (en) | Driver circuit, electro-optical device, and electronic instrument | |
US20060158413A1 (en) | Power supply circuit, display driver, electro-optical device, electronic instrument, and method of controlling power supply circuit | |
JP4093231B2 (en) | Power supply circuit, display driver, electro-optical device, electronic apparatus, and control method for power supply circuit | |
US20070176675A1 (en) | Differential amplifier and digital-to-analog converter | |
JP5217412B2 (en) | Power supply circuit, display driver, electro-optical device, and electronic device | |
US20080084408A1 (en) | Gate driver, electro-optical device, electronic instrument, and drive method | |
CN108630158A (en) | driving circuit and electronic equipment | |
JP4096943B2 (en) | Power supply circuit, display driver, electro-optical device, electronic apparatus, and control method for power supply circuit | |
JP4229157B2 (en) | Drive circuit, electro-optical device, and electronic apparatus | |
JP5233272B2 (en) | Power supply circuit, display driver, electro-optical device, and electronic device | |
CN100570457C (en) | Gate driver, optoelectronic device, electronic device, and driving method | |
CN101154365A (en) | Drive circuits, optoelectronic devices and electronic equipment | |
JP2008083286A (en) | Load measuring device, drive circuit, electro-optical device, and electronic apparatus | |
US9621035B2 (en) | Control circuit for switching regulator, integrated circuit device, switching regulator, and electronic device | |
US20100225676A1 (en) | Integrated circuit device, electro optical device and electronic apparatus | |
JP4543964B2 (en) | Common voltage generation circuit, power supply circuit, display driver, and display device | |
JP4858250B2 (en) | Common voltage generation circuit, power supply circuit, display driver, and common voltage generation method | |
JP4039414B2 (en) | Voltage supply circuit, power supply circuit, display driver, electro-optical device, and electronic apparatus | |
JP4229158B2 (en) | Drive circuit, electro-optical device, and electronic apparatus | |
JP4492679B2 (en) | Power supply circuit, display driver, electro-optical device, and electronic device | |
JP2007114682A (en) | Counter electrode voltage generation circuit, power supply circuit, electro-optical device, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101216 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130311 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5233272 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |