[go: up one dir, main page]

JP5228316B2 - Rotating electric machine rotor and rotating electric machine - Google Patents

Rotating electric machine rotor and rotating electric machine Download PDF

Info

Publication number
JP5228316B2
JP5228316B2 JP2006329801A JP2006329801A JP5228316B2 JP 5228316 B2 JP5228316 B2 JP 5228316B2 JP 2006329801 A JP2006329801 A JP 2006329801A JP 2006329801 A JP2006329801 A JP 2006329801A JP 5228316 B2 JP5228316 B2 JP 5228316B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
outer peripheral
flux barrier
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006329801A
Other languages
Japanese (ja)
Other versions
JP2008148391A (en
Inventor
紀元 蓑島
泰三 草留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2006329801A priority Critical patent/JP5228316B2/en
Publication of JP2008148391A publication Critical patent/JP2008148391A/en
Application granted granted Critical
Publication of JP5228316B2 publication Critical patent/JP5228316B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、回転電機の回転子及び回転電機に係り、詳しくは永久磁石が埋設されている回転電機の回転子及び回転電機に関する。   The present invention relates to a rotor of a rotating electrical machine and a rotating electrical machine, and more particularly to a rotor of a rotating electrical machine having a permanent magnet embedded therein and the rotating electrical machine.

永久磁石を回転子(ロータ)のコア(鉄心)に埋め込んだ埋込磁石型同期電動機(所謂IPMモータ)は、電流位相を制御することにより、リラクタンストルクを利用することができ、電流位相を制御することにより最大トルクの制御が可能になる。従来、IPMモータにおける永久磁石の不可逆減磁の防止構造が開示されている(特許文献1参照。)。特許文献1には、図4(a),(b)に示すように、ロータ鉄心51の外周側に向かって広がるV字状に配置された永久磁石52A,52Bの近傍に位置するように空気穴53A,53Bを形成して不可逆減磁防止機能を持たせることが開示されている。空気穴53A,53Bは、d軸側でかつ永久磁石52A,52Bのロータ鉄心51の外周側に位置する角部にそれぞれ位置するように形成されている。空気穴53A,53Bは、ロータ鉄心外周側の面53A−1,53B−1が、磁石用スロット54A,54Bのロータ鉄心外周側の面54A−1,54B−1を永久磁石52A,52Bの間の中央側に延長した面であって永久磁石52A,52Bのロータ鉄心外周側の面52A−1,52B−1と面一になるように形成されている。この構成により、永久磁石52A,52Bの間のロータ鉄心部51aにおいて短絡する磁束を永久磁石52A,52Bの角b,cから遠ざけることができ、永久磁石52A,52Bの角b,cに作用する局部的な反磁界が低減されるため、永久磁石52A,52Bの局部的な不可逆減磁を防止することができるとしている。
特開2003−143788号公報
An embedded magnet type synchronous motor (so-called IPM motor) in which a permanent magnet is embedded in the core (iron core) of a rotor (rotor) can utilize reluctance torque by controlling the current phase, and control the current phase. By doing so, the maximum torque can be controlled. Conventionally, a structure for preventing irreversible demagnetization of a permanent magnet in an IPM motor has been disclosed (see Patent Document 1). In Patent Document 1, as shown in FIGS. 4 (a) and 4 (b), air is positioned so as to be located in the vicinity of the permanent magnets 52 </ b> A and 52 </ b> B arranged in a V shape that spreads toward the outer peripheral side of the rotor core 51. It is disclosed that holes 53A and 53B are formed to have a function of preventing irreversible demagnetization. The air holes 53A and 53B are formed so as to be located at the corners located on the d-axis side and on the outer peripheral side of the rotor core 51 of the permanent magnets 52A and 52B. Between the air holes 53A and 53B, the rotor core outer peripheral surfaces 53A-1 and 53B-1 are positioned between the magnet cores 54A and 54B and the rotor core outer peripheral surfaces 54A-1 and 54B-1 between the permanent magnets 52A and 52B. Of the permanent magnets 52A and 52B and the surfaces 52A-1 and 52B-1 on the outer periphery side of the rotor core. With this configuration, the magnetic flux that is short-circuited in the rotor core 51a between the permanent magnets 52A and 52B can be kept away from the corners b and c of the permanent magnets 52A and 52B, and acts on the corners b and c of the permanent magnets 52A and 52B. Since the local demagnetizing field is reduced, local irreversible demagnetization of the permanent magnets 52A and 52B can be prevented.
JP 2003-143788 A

回転子に磁石を埋め込む所謂IPMモータの利点である、弱め界磁制御まで考えた場合には、磁石にかかる反磁界の作用が大きくなる回転子の外周に近い部分、即ちq軸に対応する部分の不可逆減磁を考える必要がある。ところが、特許文献1ではd軸に対応する部分の不可逆減磁しか考えていない。   When considering the field-weakening control, which is an advantage of a so-called IPM motor in which a magnet is embedded in the rotor, the portion near the outer periphery of the rotor where the demagnetizing field applied to the magnet increases, that is, the portion corresponding to the q axis is irreversible It is necessary to consider demagnetization. However, Patent Document 1 considers only irreversible demagnetization of the portion corresponding to the d-axis.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、回転子の外周に近い部分における永久磁石の不可逆減磁を抑制することができる回転電機の回転子及び回転電機を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a rotor for a rotating electrical machine and a rotating electrical machine capable of suppressing irreversible demagnetization of a permanent magnet in a portion near the outer periphery of the rotor. Is to provide.

前記の目的を達成するため、請求項1に記載の発明は、回転子のロータコアに複数個の永久磁石が埋め込まれるとともに、前記永久磁石のq軸側の端部に連続する状態でフラックスバリアが設けられ、前記フラックスバリアは、前記永久磁石の最も回転子外周に近い部分よりも回転子外周に近い外周近接部を有し、前記ロータコアには、前記フラックスバリアの前記外周近接部から前記永久磁石の最も回転子外周に近い部分までの全体が回転子外周側から前記永久磁石の外側部の延長線よりも回転子内周側に向かって突出するように凸部が形成されており、当該凸部の先端が前記永久磁石のq軸側の端部に対して離間しているIn order to achieve the above object, according to the first aspect of the present invention, a plurality of permanent magnets are embedded in a rotor core of a rotor, and a flux barrier is continuously formed at an end of the permanent magnet on the q-axis side. The flux barrier is provided with an outer peripheral proximity portion that is closer to the outer periphery of the rotor than a portion of the permanent magnet that is closest to the outer periphery of the rotor, and the rotor core includes the permanent magnet from the outer peripheral proximity portion of the flux barrier. most whole to the part close to the rotor outer peripheral convex portion is formed so as to protrude toward the inner circumferential side rotor than extension from the rotor outer circumferential side of the outer portion of the permanent magnet, the convex The tip of the part is separated from the end of the permanent magnet on the q-axis side .

永久磁石のq軸側の端部に連続して形成されたフラックスバリアの形状が、永久磁石の最も回転子外周に近い部分よりも回転子外周に近い部分が無い形状では、永久磁石のq軸側の端部からフラックスバリアに向かって進む磁束は、回転子の外周から遠ざかるように曲げられる。そのため、永久磁石の磁気双極子の配列方向が乱される方向に磁束が進むようになり、不可逆減磁が生じ易くなる。しかし、この発明では、フラックスバリアは、永久磁石の最も回転子外周に近い部分よりも回転子外周に近い外周近接部を有し、ロータコアには、フラックスバリアの外周近接部と永久磁石の最も回転子外周に近い部分との間において、回転子外周側から永久磁石の外側部の延長線よりも回転子内周側に向かって突出する凸部が形成されている。そのため、永久磁石のq軸側の端部からフラックスバリアに向かって進む磁束は、フラックスバリアから回転子のコアにおける凸部に進入した後、外周近接部と回転子外周との間に向かって進む。その結果、永久磁石の磁気双極子の配列方向が乱される方向に磁束が進むことが抑制され、不可逆減磁が生じ難くなる。 If the shape of the flux barrier formed continuously at the end on the q-axis side of the permanent magnet is such that there is no portion closer to the rotor outer periphery than the portion closest to the rotor outer periphery of the permanent magnet, the q-axis of the permanent magnet The magnetic flux traveling toward the flux barrier from the end on the side is bent so as to move away from the outer periphery of the rotor. For this reason, the magnetic flux proceeds in a direction in which the arrangement direction of the magnetic dipoles of the permanent magnet is disturbed, and irreversible demagnetization is likely to occur. However, in this invention, the flux barrier has an outer peripheral proximity portion closer to the rotor outer periphery than a portion of the permanent magnet closest to the rotor outer periphery, and the rotor core has the outer peripheral proximity portion of the flux barrier and the permanent magnet most rotated. A convex portion is formed between the portion close to the outer periphery of the rotor and projecting from the outer periphery of the rotor toward the inner periphery of the rotor rather than the extended line of the outer portion of the permanent magnet . Therefore, the magnetic flux traveling toward the flux barrier from the end on the q-axis side of the permanent magnet enters the convex portion of the rotor core from the flux barrier, and then proceeds between the outer peripheral proximity portion and the outer periphery of the rotor. . As a result, the magnetic flux is prevented from traveling in the direction in which the arrangement direction of the magnetic dipoles of the permanent magnet is disturbed, and irreversible demagnetization is unlikely to occur.

請求項2に記載の発明は、請求項1に記載の発明において、前記永久磁石は、平板状に形成されるとともに厚さ方向に着磁されたものが一極当たり2個ずつ設けられ、かつ回転子の外周側に向かって拡がるV字状で同じ側(例えば、回転子の外周側)が同極となるように配置されている。この発明では、永久磁石を回転子の半径方向と直交する方向に延びるように配置した構成に比較して、リラクタンストルクを効率良く利用することができる。   The invention according to claim 2 is the invention according to claim 1, wherein the permanent magnet is formed in a flat plate shape and is magnetized in the thickness direction, and two pieces are provided per pole, and They are V-shaped and expand toward the outer peripheral side of the rotor, and are arranged so that the same side (for example, the outer peripheral side of the rotor) has the same polarity. In the present invention, the reluctance torque can be efficiently used as compared with a configuration in which the permanent magnet is arranged so as to extend in a direction orthogonal to the radial direction of the rotor.

請求項3に記載の発明は、請求項1に記載の発明において、前記永久磁石は、平板状に形成されるとともに厚さ方向に着磁されたものが一極当たり1個ずつ設けられ、かつ回転子の半径方向と直交する方向に延びる状態で配置されている。この発明では、同じ極数であればV字状配置に比較して、永久磁石の数が少なくなり、回転子の組立が容易になる。   The invention according to claim 3 is the invention according to claim 1, wherein the permanent magnet is formed in a flat plate shape and magnetized in the thickness direction, one per pole, and It arrange | positions in the state extended in the direction orthogonal to the radial direction of a rotor. In the present invention, if the number of poles is the same, the number of permanent magnets is reduced compared to the V-shaped arrangement, and the assembly of the rotor is facilitated.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記フラックスバリアの外周近接部は外側に凸の曲面となるように形成されているとともに、前記フラックスバリアの回転子の外周面に最も近い部分は前記永久磁石の外側部の延長線上に配置されている。この発明では、外周近接部が曲面でない場合に比較して応力集中が緩和される。 The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the outer peripheral proximity portion of the flux barrier is formed so as to be a curved surface convex outward , The portion of the flux barrier closest to the outer peripheral surface of the rotor is disposed on the extended line of the outer portion of the permanent magnet . In the present invention, the stress concentration is reduced as compared with the case where the outer peripheral proximity portion is not a curved surface.

請求項5に記載の発明の回転電機は、請求項1〜請求項4のいずれか一項に記載の回転子を備えている。この発明の回転電機は、対応する前記請求項1〜請求項5のいずれか一項に記載の発明の作用、効果を奏する。   A rotating electrical machine according to a fifth aspect of the invention includes the rotor according to any one of the first to fourth aspects. The rotating electrical machine according to the present invention exhibits the effects and advantages of the invention according to any one of claims 1 to 5.

本発明によれば、回転子の外周に近い部分における永久磁石の不可逆減磁を抑制することができる回転電機の回転子及び回転電機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rotor of a rotary electric machine and rotary electric machine which can suppress the irreversible demagnetization of the permanent magnet in the part close | similar to the outer periphery of a rotor can be provided.

(第1の実施形態)
以下、本発明を電動機に具体化した一実施形態を図1にしたがって説明する。図1(a)は電動機の回転子(ロータ)及び固定子(ステータ)全体の1/2の部分に対応する模式図である。
(First embodiment)
Hereinafter, an embodiment in which the present invention is embodied in an electric motor will be described with reference to FIG. Fig.1 (a) is a schematic diagram corresponding to the half part of the whole rotor (rotor) and stator (stator) of an electric motor.

図1(a)に示すように、固定子11は、円筒状で内側に複数のティース12が等間隔に設けられている。ティース12にはコイル(巻線)13が巻かれている。コイル13の巻き付け方法は分布巻であっても集中巻であってもよい。   As shown to Fig.1 (a), the stator 11 is cylindrical and the some teeth 12 are provided in the inner space at equal intervals. A coil (winding) 13 is wound around the tooth 12. The winding method of the coil 13 may be distributed winding or concentrated winding.

固定子11の内側には、回転子が配置されている。回転子14は、円板状の電磁鋼板を複数枚(例えば数十枚)積層したロータコア15と、ロータコア15の中心に貫挿されたロータ軸(回転軸)16とを備えている。そして、回転子14は、ロータコア15の外周面がティース12と所定の間隔を置いた状態で、図示しないハウジングの軸受けにロータ軸16を介して回転可能に支持されている。   A rotor is disposed inside the stator 11. The rotor 14 includes a rotor core 15 in which a plurality of disk-shaped electromagnetic steel plates (for example, several tens) are stacked, and a rotor shaft (rotating shaft) 16 inserted through the center of the rotor core 15. The rotor 14 is rotatably supported by a bearing of a housing (not shown) via a rotor shaft 16 with the outer peripheral surface of the rotor core 15 spaced apart from the teeth 12.

図1(a),(b)に示すように、ロータコア15には、複数個の永久磁石17が埋め込まれている。永久磁石17は、ロータコア15を周方向に等分割した各仮想領域に、電気角が360°毎に配置されている。この実施形態では、各永久磁石17は、断面矩形の平板状に形成され、着磁方向が厚さ方向となるように着磁されている。また、永久磁石17は、一極当たり2個ずつ設けられるとともに、回転子14の外周側に向かって拡がるV字状で同じ側(例えば、回転子14の外周側)が同極になるように配置されている。また、隣り合う仮想領域に配置された永久磁石17は、回転子14の外周側が異なる極になるように配置されている。例えば、ある一組のV字配置の永久磁石17が、ティース12側がS極になるように配置されると、隣の仮想領域に配置される永久磁石17は、ティース12側がN極になるように配置される。   As shown in FIGS. 1A and 1B, a plurality of permanent magnets 17 are embedded in the rotor core 15. The permanent magnet 17 is arranged in each virtual region obtained by equally dividing the rotor core 15 in the circumferential direction at an electrical angle of 360 °. In this embodiment, each permanent magnet 17 is formed in a flat plate shape having a rectangular cross section, and is magnetized so that the magnetization direction is the thickness direction. In addition, two permanent magnets 17 are provided for each pole, and the same side (for example, the outer peripheral side of the rotor 14) is widened toward the outer peripheral side of the rotor 14 so as to have the same polarity. Has been placed. Moreover, the permanent magnet 17 arrange | positioned at the adjacent virtual area | region is arrange | positioned so that the outer peripheral side of the rotor 14 may become a different pole. For example, when a set of V-shaped permanent magnets 17 are arranged so that the teeth 12 side is the S pole, the permanent magnets 17 arranged in the adjacent virtual region are arranged so that the teeth 12 side is the N pole. Placed in.

回転子14(ロータコア15)には、永久磁石17のq軸側の端部に連続する状態でフラックスバリア(孔)18が設けられている。フラックスバリア18は、永久磁石17の最も回転子外周に近い部分17aよりも回転子外周に近い外周近接部18aを有し、外周近接部18aと永久磁石17の最も回転子外周に近い部分17aとの間に、永久磁石17の外側部の延長線Lに対して回転子内周側に回転子外周からの距離が遠くなる部分18bを有する形状に形成されている。この実施形態では、外周近接部18aは永久磁石17の外側部の延長線L上に存在するように形成されている。   The rotor 14 (rotor core 15) is provided with a flux barrier (hole) 18 that is continuous with the end of the permanent magnet 17 on the q-axis side. The flux barrier 18 has an outer peripheral proximity portion 18a closer to the rotor outer periphery than a portion 17a closest to the rotor outer periphery of the permanent magnet 17, and an outer peripheral proximity portion 18a and a portion 17a closest to the rotor outer periphery of the permanent magnet 17; In the meantime, it is formed in a shape having a portion 18b whose distance from the outer periphery of the rotor is longer on the inner peripheral side of the rotor than the extension line L of the outer portion of the permanent magnet 17. In this embodiment, the outer peripheral proximity portion 18 a is formed so as to exist on the extension line L of the outer portion of the permanent magnet 17.

フラックスバリア18は、永久磁石17のq軸側の端部の全面と対向するのではなく、永久磁石17の回転子14内側寄りの端部とは対向しない。また、フラックスバリア18は、回転子14の外周面に最も近い部分、この実施形態では外周近接部18aが外側に凸の曲面となるように形成されている。隣り合う永久磁石17及びフラックスバリア18は、回転子14の中心を含む仮想平面に対して対称に設けられている。   The flux barrier 18 does not face the entire surface of the end portion on the q-axis side of the permanent magnet 17 but does not face the end portion of the permanent magnet 17 closer to the inner side of the rotor 14. Further, the flux barrier 18 is formed so that the portion closest to the outer peripheral surface of the rotor 14, in this embodiment, the outer peripheral proximity portion 18 a is a curved surface convex outward. Adjacent permanent magnets 17 and flux barriers 18 are provided symmetrically with respect to a virtual plane including the center of the rotor 14.

なお、図において、固定子11及び回転子14の大きさの比や、永久磁石17及びフラックスバリア18の大きさの比や永久磁石17の配置角度等は図示の都合上、実際と異なっている。   In the figure, the ratio of the sizes of the stator 11 and the rotor 14, the ratio of the sizes of the permanent magnet 17 and the flux barrier 18, the arrangement angle of the permanent magnet 17 and the like are different from the actual for convenience of illustration. .

次に前記のように構成された電動機の作用を図1(c),(d)を用いて説明する。図1(c)は本実施形態、図1(d)は比較例のフラックスバリア18の周囲の永久磁石の磁束を模式的に示している。   Next, the operation of the electric motor configured as described above will be described with reference to FIGS. FIG. 1C schematically shows the magnetic flux of the permanent magnet around the flux barrier 18 of the present embodiment, and FIG. 1D schematically shows the comparative example.

電動機が負荷状態で駆動される場合は、固定子11のコイル13に通電されて回転子14に回転磁界が作用する。そして、図1(c),(d)に示すように、ロータコア15には、永久磁石17の回転子外周側の部分に磁束(破線で図示)が流れる状態となる。この磁束の量が多いため、永久磁石17から発生して回転子外周側に向かって進もうとする磁束は、コイル13の通電による磁束の影響を受ける。そして、図1(d)に示すように、フラックスバリア18の形状が永久磁石17の端部の最も回転子外周に近い部分17aよりも回転子外周から遠ざかるような形状の場合は、永久磁石17の回転子外周側の部分を流れる磁束が部分17aと対応する部分を通過した後、拡がるようになる。その結果、永久磁石17の端部から回転子外周に向かって進もうとする磁束の一部の進路が回転子外周から離れる(遠ざかる)ように大きく曲げられる。そのため、永久磁石17のq軸側の端部における磁気双極子の配列方向が乱される方向に磁束が進むようになり、不可逆減磁が生じ易くなる。   When the motor is driven in a loaded state, the coil 13 of the stator 11 is energized and a rotating magnetic field acts on the rotor 14. As shown in FIGS. 1C and 1D, the rotor core 15 is in a state where magnetic flux (shown by a broken line) flows through the rotor outer peripheral portion of the permanent magnet 17. Since the amount of this magnetic flux is large, the magnetic flux generated from the permanent magnet 17 and going toward the outer periphery of the rotor is affected by the magnetic flux caused by energization of the coil 13. And as shown in FIG.1 (d), when the shape of the flux barrier 18 is a shape which leaves | separates from a rotor outer periphery rather than the part 17a nearest to a rotor outer periphery of the edge part of the permanent magnet 17, the permanent magnet 17 After the magnetic flux flowing through the rotor outer peripheral portion passes through the portion corresponding to the portion 17a, the magnetic flux spreads. As a result, the path of a part of the magnetic flux that is going to advance from the end of the permanent magnet 17 toward the outer periphery of the rotor is greatly bent so as to move away from the outer periphery of the rotor. For this reason, the magnetic flux proceeds in a direction in which the arrangement direction of the magnetic dipoles at the end on the q-axis side of the permanent magnet 17 is disturbed, and irreversible demagnetization is likely to occur.

しかし、この実施形態のフラックスバリア18は、永久磁石17の最も回転子外周に近い部分17aよりも回転子外周に近い外周近接部18aを有するため、図1(c)に示すように、永久磁石17の回転子外周側の部分を流れる磁束は、フラックスバリア18の外周近接部18aと回転子外周の間に向かって流れる状態となる。そのため、永久磁石のq軸側の端部から回転子外周に向かって進もうとする磁束の一部の進路が回転子外周から離れる(遠ざかる)ように大きく曲げられることが回避される。また、フラックスバリア18は、外周近接部18aと永久磁石17の最も回転子外周に近い部分17aとの間に、永久磁石17の外側部の延長線Lに対して回転子内周側に回転子外周からの距離が遠くなる部分18bを有する形状に形成されているため、ロータコア15の一部が回転子外周側からフラックスバリア18内に突出する凸部が存在する。そのため、図1(c)に示すように、永久磁石17のq軸側の端部からフラックスバリア18に向かって進む磁束は、フラックスバリア18からロータコア15の凸部に進入した後、外周近接部18aと回転子外周との間に向かって進むようになる。その結果、永久磁石17のq軸側の端部における磁気双極子の配列方向が乱される方向に磁束が進むことが抑制され、不可逆減磁が生じ難くなる。   However, since the flux barrier 18 of this embodiment has the outer peripheral proximity portion 18a closer to the rotor outer periphery than the portion 17a closest to the rotor outer periphery of the permanent magnet 17, as shown in FIG. The magnetic flux flowing through the outer peripheral portion of the rotor 17 is in a state of flowing between the outer peripheral proximity portion 18a of the flux barrier 18 and the outer periphery of the rotor. Therefore, it is avoided that the path of a part of the magnetic flux to be advanced from the end on the q-axis side of the permanent magnet toward the outer periphery of the rotor is greatly bent so as to be separated (away from) the outer periphery of the rotor. Further, the flux barrier 18 is arranged between the outer peripheral proximity portion 18 a and the portion 17 a closest to the rotor outer periphery of the permanent magnet 17, and the rotor on the rotor inner peripheral side with respect to the extension line L of the outer portion of the permanent magnet 17. Since it is formed in a shape having a portion 18b that is far from the outer periphery, there is a convex portion in which a part of the rotor core 15 projects into the flux barrier 18 from the outer periphery of the rotor. Therefore, as shown in FIG. 1C, the magnetic flux traveling from the end on the q-axis side of the permanent magnet 17 toward the flux barrier 18 enters the convex portion of the rotor core 15 from the flux barrier 18, and then the outer peripheral proximity portion. It progresses toward between 18a and a rotor outer periphery. As a result, the magnetic flux is prevented from traveling in the direction in which the arrangement direction of the magnetic dipoles at the end on the q-axis side of the permanent magnet 17 is disturbed, and irreversible demagnetization is less likely to occur.

この実施形態によれば、以下に示す効果を得ることができる。
(1)回転子14に複数個の永久磁石17が埋め込まれるとともに、永久磁石17のq軸側の端部に連続する状態でフラックスバリア18が設けられている。フラックスバリア18は、永久磁石17の最も回転子外周に近い部分17aよりも回転子外周に近い外周近接部18aを有し、かつ外周近接部18aと永久磁石17の最も回転子外周に近い部分17aとの間に、永久磁石17の外側部の延長線Lに対して回転子内周側に回転子外周からの距離が遠くなる部分18bを有する形状に形成されている。したがって、フラックスバリア18の形状を工夫するだけで、永久磁石17の回転子14の外周に近い部分において磁気双極子の配列方向が乱される方向に磁束が進むことが抑制され、不可逆減磁が生じ難くなり、回転子14の外周に近い部分における永久磁石17の不可逆減磁を抑制することができる。
According to this embodiment, the following effects can be obtained.
(1) A plurality of permanent magnets 17 are embedded in the rotor 14, and a flux barrier 18 is provided in a state of being continuous with the end of the permanent magnet 17 on the q-axis side. The flux barrier 18 has an outer peripheral proximity portion 18a closer to the rotor outer periphery than a portion 17a closest to the rotor outer periphery of the permanent magnet 17, and a portion 17a closest to the rotor outer periphery of the outer peripheral proximity portion 18a and the permanent magnet 17 Are formed in a shape having a portion 18b whose distance from the outer periphery of the rotor is longer on the inner peripheral side of the rotor than the extension line L of the outer portion of the permanent magnet 17. Therefore, only by devising the shape of the flux barrier 18, it is possible to suppress the magnetic flux from traveling in a direction in which the arrangement direction of the magnetic dipoles is disturbed in the portion near the outer periphery of the rotor 14 of the permanent magnet 17, and irreversible demagnetization is prevented. It becomes difficult to occur, and irreversible demagnetization of the permanent magnet 17 in a portion close to the outer periphery of the rotor 14 can be suppressed.

(2)永久磁石17は、平板状に形成されるとともに厚さ方向に着磁されたものが一極当たり2個ずつ設けられ、かつ回転子14の外周側に向かって拡がるV字状で同じ側が同極となるように配置されている。したがって、永久磁石17を回転子14の半径方向と直交する方向に延びるように配置した構成に比較して、リラクタンストルクを効率良く利用することができる。   (2) The permanent magnet 17 is formed in a flat plate shape, and two magnets magnetized in the thickness direction are provided for each pole, and the V shape is the same as the V shape that expands toward the outer peripheral side of the rotor 14. It arrange | positions so that the side may become the same pole. Therefore, the reluctance torque can be efficiently used as compared with a configuration in which the permanent magnet 17 is arranged so as to extend in a direction orthogonal to the radial direction of the rotor 14.

(3)フラックスバリア18は、回転子14の外周面に最も近い外周近接部18aが外側に凸の曲面となるように形成されている。したがって、回転子14が電動機に組み立てられて使用された状態において、回転子14が回転した際に、外周近接部18aが曲面でない場合に比較して遠心力により生じる応力集中が緩和される。   (3) The flux barrier 18 is formed such that the outer peripheral proximity portion 18a closest to the outer peripheral surface of the rotor 14 has a curved surface protruding outward. Therefore, when the rotor 14 is assembled and used in an electric motor, stress concentration caused by centrifugal force is alleviated when the rotor 14 rotates compared to when the outer peripheral proximity portion 18a is not a curved surface.

(4)永久磁石17が断面矩形の平板状に形成されているため製造が容易である。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 永久磁石17のq軸側の端部に連続する状態でフラックスバリア18が設けられていれば、永久磁石17の配置はV字状に限らない。例えば、図2(a),(b)に示すように、永久磁石17が、平板状に形成されるとともに厚さ方向に着磁されたものが一極当たり1個ずつ設けられ、かつ回転子14の半径方向と直交する方向に延びる状態で配置されている構成でもよい。この場合、同じ極数であればV字状配置に比較して、永久磁石17の数が少なくなり、回転子14の組立が容易になる。
(4) Since the permanent magnet 17 is formed in a flat plate shape having a rectangular cross section, the manufacture is easy.
The embodiment is not limited to the above, and may be embodied as follows, for example.
If the flux barrier 18 is provided in a state of being continuous with the end of the permanent magnet 17 on the q-axis side, the arrangement of the permanent magnet 17 is not limited to the V shape. For example, as shown in FIGS. 2A and 2B, the permanent magnet 17 is formed in a flat plate shape and magnetized in the thickness direction, one piece per pole, and the rotor. The structure arrange | positioned in the state extended in the direction orthogonal to 14 radial directions may be sufficient. In this case, if the number of poles is the same, the number of permanent magnets 17 is reduced as compared with the V-shaped arrangement, and the assembly of the rotor 14 is facilitated.

○ 永久磁石17は平板状に限らず、厚さ方向において円弧状に湾曲した板状としてもよい。例えば、図3(a),(b)に示すように、1極当たり1個の永久磁石17を回転子外周側が凹となる状態で設けてもよい。この場合、2個の平板状の永久磁石17をV字状に配置する場合に比較して、磁束の流れにとっては好ましいが、永久磁石17の製作し易さ及び取り扱い易さの点からは、平板状の永久磁石17のV字配置の方が好ましい。   The permanent magnet 17 is not limited to a flat plate shape, and may be a plate shape curved in an arc shape in the thickness direction. For example, as shown in FIGS. 3A and 3B, one permanent magnet 17 per pole may be provided in a state where the outer peripheral side of the rotor is concave. In this case, compared with the case where two flat permanent magnets 17 are arranged in a V shape, it is preferable for the flow of magnetic flux, but from the viewpoint of ease of manufacturing and handling of the permanent magnet 17, The V-shaped arrangement of the flat permanent magnets 17 is preferable.

○ 平板状の永久磁石17を一極当たり1個ずつ設ける場合、永久磁石17は必ずしも半径方向と直交する状態で配置される構成に限らず、多少傾いた状態で配置されてもよい。   In the case where one flat permanent magnet 17 is provided per pole, the permanent magnet 17 is not necessarily limited to the configuration arranged in a state orthogonal to the radial direction, and may be arranged in a slightly inclined state.

○ 外周近接部18aは永久磁石17の外側部の延長線L上に存在するように形成される必要はなく、永久磁石17の最も回転子外周に近い部分17aよりも回転子外周に近い位置であれば、延長線Lより回転子外周に近くても、延長線Lより回転子外周に遠くてもよい。   The outer peripheral proximity portion 18a does not need to be formed on the extension line L of the outer portion of the permanent magnet 17, and is closer to the rotor outer periphery than the portion 17a of the permanent magnet 17 closest to the rotor outer periphery. If so, the extension line L may be closer to the outer periphery of the rotor or the extension line L may be further to the outer periphery of the rotor.

○ 永久磁石17は断面矩形状に限らず、矩形の両端に半円が連続する形状や矩形の両端に三角形が連続する形状としてもよい。
○ フラックスバリア18のうち、N極が回転子外周側となるように配置された永久磁石17のq軸側の端部と対応する位置に形成されたフラックスバリア18のみ、外周近接部18a及び永久磁石17の外側部の延長線Lに対して回転子内周側に回転子外周からの距離が遠くなる部分18bを有する形状に形成してもよい。S極が回転子外周側となるように配置された永久磁石17の場合、永久磁石のq軸側の端部から回転子外周に向かって進む磁束がないので外周近接部18a及び部分18bを有さない図1(d)に示すような形状のフラックスバリア18であってもよい。しかし、ロータコア15を形成する手間はほとんど変わらないため、永久磁石17のq軸側の端部と対応する位置に設けるフラックスバリア18は永久磁石17の着磁方向に限らず、外周近接部18a及び部分18bを有する形状に形成する方が、永久磁石17をロータコア15に組み付ける際の手間が少なくなる。
The permanent magnet 17 is not limited to a rectangular cross section, and may have a shape in which semicircles are continuous at both ends of the rectangle or a shape in which triangles are continuous at both ends of the rectangle.
○ Among the flux barriers 18, only the flux barrier 18 formed at a position corresponding to the end on the q-axis side of the permanent magnet 17 arranged so that the N pole is on the rotor outer peripheral side, the outer peripheral proximity portion 18a and the permanent You may form in the shape which has the part 18b in which the distance from a rotor outer periphery becomes far in the rotor inner peripheral side with respect to the extension line L of the outer side part of the magnet 17. FIG. In the case of the permanent magnet 17 arranged so that the south pole is on the rotor outer peripheral side, since there is no magnetic flux traveling from the end of the permanent magnet on the q-axis side toward the rotor outer periphery, the outer peripheral proximity portion 18a and the portion 18b are provided. The flux barrier 18 having a shape as shown in FIG. However, since the labor for forming the rotor core 15 is hardly changed, the flux barrier 18 provided at a position corresponding to the end on the q-axis side of the permanent magnet 17 is not limited to the magnetization direction of the permanent magnet 17, and the outer peripheral proximity portion 18 a and The formation of the shape having the portion 18b reduces the labor for assembling the permanent magnet 17 to the rotor core 15.

○ フラックスバリア18は孔(空隙)のままに限らず、樹脂を充填してもよい。
○ 電動機の極数は8極に限らず偶数極で有ればよいが、4極以上が好ましい。
○ 電動機に限らず発電機に適用してもよい。
The flux barrier 18 is not limited to holes (voids) but may be filled with resin.
○ The number of poles of the electric motor is not limited to eight but may be an even number, but four or more are preferable.
○ It may be applied not only to motors but also to generators.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項5のいずれか一項に記載の発明において、前記フラックスバリアは、N極が回転子外周側となるように配置された永久磁石のq軸側の端部と対応する位置にのみ設けられている。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 5, the flux barrier includes an end on the q-axis side of a permanent magnet arranged so that the north pole is on the rotor outer peripheral side. It is provided only at the corresponding position.

(a)は一実施形態のロータとステータの関係を示す部分模式図、(b)は(a)の部分拡大図、(c)は作用を説明する模式図、(d)は比較例の作用を説明する模式図。(A) is the partial schematic diagram which shows the relationship between the rotor and stator of one Embodiment, (b) is the elements on larger scale of (a), (c) is a schematic diagram explaining an effect | action, (d) is an effect | action of a comparative example. FIG. (a)は別の実施形態のロータとステータの関係を示す部分模式図、(b)は(a)の部分拡大図。(A) is the partial schematic diagram which shows the relationship between the rotor and stator of another embodiment, (b) is the elements on larger scale of (a). (a)は別の実施形態のロータとステータの関係を示す部分模式図、(b)は(a)の部分拡大図。(A) is the partial schematic diagram which shows the relationship between the rotor and stator of another embodiment, (b) is the elements on larger scale of (a). (a)は従来技術のコアの模式図、(b)は(a)の部分拡大図。(A) is a schematic diagram of the core of a prior art, (b) is the elements on larger scale of (a).

符号の説明Explanation of symbols

L…延長線、14…回転子、17…永久磁石、17a,18b…部分、18…フラックスバリア、18a…外周近接部。   L ... extension line, 14 ... rotor, 17 ... permanent magnet, 17a, 18b ... part, 18 ... flux barrier, 18a ... outer peripheral proximity part.

Claims (5)

回転子のロータコアに複数個の永久磁石が埋め込まれるとともに、前記永久磁石のq軸側の端部に連続する状態でフラックスバリアが設けられ、前記フラックスバリアは、前記永久磁石の最も回転子外周に近い部分よりも回転子外周に近い外周近接部を有し、
前記ロータコアには、前記フラックスバリアの前記外周近接部から前記永久磁石の最も回転子外周に近い部分までの全体が回転子外周側から前記永久磁石の外側部の延長線よりも回転子内周側に向かって突出するように凸部が形成されており、当該凸部の先端が前記永久磁石のq軸側の端部に対して離間していることを特徴とする回転電機の回転子。
A plurality of permanent magnets are embedded in the rotor core of the rotor, and a flux barrier is provided in a state of being continuous with the q-axis end of the permanent magnet, and the flux barrier is disposed on the outermost rotor periphery of the permanent magnet. It has an outer peripheral proximity part that is closer to the outer periphery of the rotor than a close part,
In the rotor core, the entire area from the outer peripheral proximity portion of the flux barrier to the portion closest to the outer periphery of the permanent magnet is closer to the rotor inner peripheral side than the extension line of the outer portion of the permanent magnet from the rotor outer peripheral side. The rotor of the rotating electrical machine is characterized in that a protrusion is formed so as to protrude toward the end, and the tip of the protrusion is separated from the end on the q-axis side of the permanent magnet .
前記永久磁石は、平板状に形成されるとともに厚さ方向に着磁されたものが一極当たり2個ずつ設けられ、かつ回転子の外周側に向かって拡がるV字状で同じ側が同極となるように配置されている請求項1に記載の回転電機の回転子。   The permanent magnet is formed in a flat plate shape and is magnetized in the thickness direction, and two magnets are provided per pole. The permanent magnet is V-shaped and expands toward the outer peripheral side of the rotor. The rotor of the rotating electrical machine according to claim 1, wherein the rotor is arranged to be. 前記永久磁石は、平板状に形成されるとともに厚さ方向に着磁されたものが一極当たり1個ずつ設けられ、かつ回転子の半径方向と直交する方向に延びる状態で配置されている請求項1に記載の回転電機の回転子。   The permanent magnet is formed in a flat plate shape and magnetized in the thickness direction, one per magnet is provided, and is disposed in a state extending in a direction perpendicular to the radial direction of the rotor. Item 2. A rotating electrical machine rotor according to Item 1. 前記フラックスバリアの外周近接部は外側に凸の曲面となるように形成されているとともに、前記フラックスバリアの回転子の外周面に最も近い部分は前記永久磁石の外側部の延長線上に配置されている請求項1〜請求項3のいずれか一項に記載の回転電機の回転子。 The outer peripheral proximity portion of the flux barrier is formed so as to have a convex curved surface outward, and the portion closest to the outer peripheral surface of the rotor of the flux barrier is disposed on an extension line of the outer portion of the permanent magnet. the rotor of a rotary electric machine according to any one of claims 1 to 3 which are. 請求項1〜請求項4のいずれか一項に記載の回転子を備えた回転電機。   The rotary electric machine provided with the rotor as described in any one of Claims 1-4.
JP2006329801A 2006-12-06 2006-12-06 Rotating electric machine rotor and rotating electric machine Expired - Fee Related JP5228316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329801A JP5228316B2 (en) 2006-12-06 2006-12-06 Rotating electric machine rotor and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329801A JP5228316B2 (en) 2006-12-06 2006-12-06 Rotating electric machine rotor and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008148391A JP2008148391A (en) 2008-06-26
JP5228316B2 true JP5228316B2 (en) 2013-07-03

Family

ID=39607963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329801A Expired - Fee Related JP5228316B2 (en) 2006-12-06 2006-12-06 Rotating electric machine rotor and rotating electric machine

Country Status (1)

Country Link
JP (1) JP5228316B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369014B2 (en) 2011-02-10 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Rotor of motor and fan driving motor including rotor
JP5447418B2 (en) 2011-03-28 2014-03-19 株式会社豊田自動織機 Rotating electric machine permanent magnet embedded rotor and rotating electric machine
JP5404684B2 (en) * 2011-03-29 2014-02-05 三菱電機株式会社 Embedded magnet type motor
JP5750995B2 (en) * 2011-04-28 2015-07-22 マツダ株式会社 Synchronous motor
JP5472200B2 (en) * 2011-05-19 2014-04-16 株式会社デンソー Rotating electrical machine rotor
US9337692B2 (en) 2011-11-25 2016-05-10 Nissan Motor Co., Ltd. Permanent magnet rotor with flux barrier for reduced demagnetization
JP2013162617A (en) * 2012-02-03 2013-08-19 Denso Corp Rotor of rotary electric machine
JP6047946B2 (en) * 2012-06-27 2016-12-21 ダイキン工業株式会社 Field element and rotating electric machine
JP5975759B2 (en) * 2012-06-29 2016-08-23 株式会社日立製作所 Rotating electric machine
WO2014141428A1 (en) * 2013-03-14 2014-09-18 三菱電機株式会社 Electric motor with embedded permanent magnet, and compressor
CN106134041A (en) * 2014-03-18 2016-11-16 日产自动车株式会社 The rotor structure of electric rotating machine
JP6503016B2 (en) 2017-06-21 2019-04-17 ファナック株式会社 Rotor and rotating electric machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776171B2 (en) * 1996-06-13 2006-05-17 アイチエレック株式会社 Magnet rotor
JP3605475B2 (en) * 1996-08-06 2004-12-22 松下電器産業株式会社 Permanent magnet synchronous motor
JP2000102202A (en) * 1998-09-22 2000-04-07 Aichi Emerson Electric Co Ltd Rotor for permanent-magnet type electric motor
JP2000278895A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2001145283A (en) * 1999-11-19 2001-05-25 Toyota Motor Corp Rotor of permanent magnet type rotating machine
JP4376586B2 (en) * 2003-10-10 2009-12-02 トヨタ自動車株式会社 Electric motor
JP2006109700A (en) * 2006-01-10 2006-04-20 Aichi Elec Co Interior permanent magnet motor

Also Published As

Publication number Publication date
JP2008148391A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5228316B2 (en) Rotating electric machine rotor and rotating electric machine
CN108352744B (en) Permanent magnet motor
JP6992368B2 (en) Variable magnetic flux type permanent magnet type rotary electric machine
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
JP5208088B2 (en) Permanent magnet embedded motor and blower
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
JP2008206308A (en) Permanent-magnet rotating electric machine
EP3331139B1 (en) Rotary electric machine
JP2006509483A (en) Electric machines, especially brushless synchronous motors
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP4844570B2 (en) Permanent magnet type motor
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2011223836A (en) Permanent magnet type revolving armature
US9337692B2 (en) Permanent magnet rotor with flux barrier for reduced demagnetization
JP6020629B2 (en) Rotating electrical machine rotor
WO2020253196A1 (en) Direct-start synchronous reluctance electric motor rotor structure, electric motor and compressor
JP2013132124A (en) Core for field element
JP6485205B2 (en) Rotating electric machine
JP2013118788A (en) Brushless motor
JP4080273B2 (en) Permanent magnet embedded motor
US10778052B2 (en) Synchronous reluctance type rotary electric machine
JP2008199846A (en) Permanent magnet type electric rotating machine
JP2007228771A (en) Permanent magnet type motor
WO2015133134A1 (en) Rotor
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5228316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees