JP5223112B2 - Method for producing group III nitride compound semiconductor - Google Patents
Method for producing group III nitride compound semiconductor Download PDFInfo
- Publication number
- JP5223112B2 JP5223112B2 JP2008254678A JP2008254678A JP5223112B2 JP 5223112 B2 JP5223112 B2 JP 5223112B2 JP 2008254678 A JP2008254678 A JP 2008254678A JP 2008254678 A JP2008254678 A JP 2008254678A JP 5223112 B2 JP5223112 B2 JP 5223112B2
- Authority
- JP
- Japan
- Prior art keywords
- group iii
- iii nitride
- compound semiconductor
- nitride compound
- supply amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Led Devices (AREA)
Description
本発明はIII族窒化物系化合物半導体基板上のIII族窒化物系化合物半導体の製造方法に関する。特にエピタキシャル成長に先立って、III族窒化物系化合物半導体基板に表面処理を施すものに関する。当該基板は、III族窒化物系化合物半導体素子の形成基板、或いはより厚膜の、更にはインゴットとしてのIII族窒化物系化合物半導体を形成するための基礎基板となるものである。
尚、本願においてIII族窒化物系化合物半導体とは、AlxGayIn1-x-yN(x、y、x+yはいずれも0以上1以下)で示される半導体、及び、n型化/p型化等のために任意の元素を添加したものを含む。更には、III族元素及びV族元素の組成の一部を、B、Tl;P、As、Sb、Biで置換したものをも含むものとする。
The present invention relates to a method for producing a group III nitride compound semiconductor on a group III nitride compound semiconductor substrate. In particular, the present invention relates to a surface treatment of a group III nitride compound semiconductor substrate prior to epitaxial growth. The substrate is a substrate on which a group III nitride compound semiconductor element is formed, or a base substrate for forming a thicker group III nitride compound semiconductor as an ingot.
In the present application, the group III nitride compound semiconductor is a semiconductor represented by Al x Ga y In 1-xy N (where x, y, and x + y are each 0 or more and 1 or less), and n-type / p-type. Including those added with any element for conversion. Furthermore, it includes those in which a part of the composition of the group III element and the group V element is substituted with B, Tl; P, As, Sb, Bi.
近年、例えばIII族窒化物系化合物半導体発光素子の形成基板として、III族窒化物系化合物半導体基板が入手可能となっている。即ち、種々の方法によりGaNのインゴットを得て、所望の厚さに切り分けて販売されている。この際、切断面が基板の主面となるため、機械研磨、或いはいわゆる化学的機械研磨が施される。 In recent years, for example, a group III nitride compound semiconductor substrate has become available as a substrate for forming a group III nitride compound semiconductor light emitting device. In other words, GaN ingots are obtained by various methods, and are sold in a desired thickness. At this time, since the cut surface becomes the main surface of the substrate, mechanical polishing or so-called chemical mechanical polishing is performed.
ところで、GaN基板その他のIII族窒化物系化合物半導体基板は、表面を精度良く平滑にするための簡易な方法が無い。これはIII族窒化物系化合物半導体が一般的なウエットエッチングに対して耐性が非常に強く、アルカリ水溶液等の強力なエッチング液を用いた場合には却ってピットが深くなってしまうとの特性による。
そこで、加熱処理、或いは加熱処理と他の処理とを組み合わせることが試行されている。このような技術として、例えば特許文献1乃至3が挙げられる。
Therefore, an attempt has been made to combine heat treatment or heat treatment with another treatment. Examples of such a technique include Patent Documents 1 to 3.
特許文献1及び2においては、アンモニアと水素との雰囲気下でGaN基板表面を1000度以上の温度で、10分間以上加熱処理することを工程に含んでいる。また、特許文献3の方法は、基板の温度を、GaNの気相成長の前に、その成長温度よりも低い温度にして、且つ、3B族元素の原料ガスの供給を、停止させるか、エピタキシャル成長工程における供給量よりも低下させて、GaN基板の表面をクリーニングする方法である。 In Patent Documents 1 and 2, the process includes heat-treating the GaN substrate surface at a temperature of 1000 ° C. or more for 10 minutes or more in an atmosphere of ammonia and hydrogen. In addition, the method of Patent Document 3 is such that the substrate temperature is lower than the growth temperature before the vapor phase growth of GaN, and the supply of the source gas of the group 3B element is stopped or epitaxial growth is performed. In this method, the surface of the GaN substrate is cleaned by lowering the supply amount in the process.
基板本願発明者らが、特許文献1、2に開示の処理を行った後、GaN基板表面を原子間力顕微鏡(AFM)や金属顕微鏡で観察したところ、Gaの液滴の固化物が見出された。これは、GaN基板表面を加熱中にGaNが分解して窒素分子が離脱した後、残されたGaが凝集したことを示している。このようなGa液滴の固化物を表面に有するGaN基板をエピタキシャル成長基板として用いると、ウエハ全体で結晶性の良いエピタキシャル成長膜が得られない。即ち、特許文献1及び2に記載されたGaN基板の表面処理方法では、その後に形成されるエピタキシャル成長膜が結晶性の良いものとならず、更にその上に半導体素子層を形成しても良好な特性が得られない。また、特許文献3の方法では、クリーニング工程からエピタキシャル成長工程に移行する時に、温度を上昇させるために、GaN基板の分解やGa粒が発生するという問題がある。 Substrate The inventors of the present application conducted the processing disclosed in Patent Documents 1 and 2, and then observed the surface of the GaN substrate with an atomic force microscope (AFM) or a metallographic microscope. As a result, solidified Ga droplets were found. It was done. This indicates that GaN was decomposed during heating of the GaN substrate surface and nitrogen molecules were detached, and then the remaining Ga was aggregated. If such a Ga droplet solidified GaN substrate is used as an epitaxial growth substrate, an epitaxially grown film with good crystallinity cannot be obtained over the entire wafer. That is, in the surface treatment method for a GaN substrate described in Patent Documents 1 and 2, the epitaxial growth film formed thereafter does not have good crystallinity, and it is also good even if a semiconductor element layer is formed thereon. Characteristics are not obtained. Further, the method of Patent Document 3 has a problem that decomposition of the GaN substrate and generation of Ga particles occur in order to increase the temperature when shifting from the cleaning process to the epitaxial growth process.
そこで本発明の目的は、基板上に形成されるエピタキシャル成長膜が結晶性の良いものとなるように、基板面上に、研磨傷が除去され、Ga液滴の固化物を表面に残さない表面処理を実現することである。さらに、他の目的は、それらの効果に加えて、ステップ状態が良好な平滑な平面が得られる基板の表面処理を実現することである。 Accordingly, an object of the present invention is to provide a surface treatment that removes polishing flaws on the substrate surface and does not leave a solidified Ga droplet on the surface so that the epitaxially grown film formed on the substrate has good crystallinity. Is to realize. Furthermore, in addition to these effects, another object is to realize a surface treatment of the substrate that can obtain a smooth flat surface with a good step state.
第1の発明は、研磨された、III族窒化物系化合物半導体から成る半導体基板表面を、III族元素の有機化合物と、アンモニアと、水素とを含む雰囲気下で加熱して半導体基板表面の凹凸を平坦化する表面処理工程と、当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、を有し、表面処理工程における条件は、III族窒化物の形成と分解の平衡状態近傍であることを特徴とするIII族窒化物系化合物半導体の製造方法である。 According to a first aspect of the present invention, a polished semiconductor substrate surface made of a group III nitride compound semiconductor is heated in an atmosphere containing an organic compound of a group III element, ammonia, and hydrogen to cause unevenness on the surface of the semiconductor substrate. And a growth step for epitaxially growing a group III nitride compound semiconductor after the surface treatment step. The conditions in the surface treatment step are the formation and decomposition of the group III nitride. This is a method for producing a group III nitride compound semiconductor characterized by being in the vicinity of an equilibrium state .
ここで研磨されたIII族窒化物系化合物半導体基板とは、砥石、微粉体等を用いる機械研磨と、微粉体を分散させた液状物を用いた化学機械研磨を含むものとする。研磨傷の残ったIII族窒化物系化合物半導体基板は、段差を有し、おおよその高低差は、二乗平均平方根(RMS)で10nm以下のものを言うものとする。 The group III nitride compound semiconductor substrate polished here includes mechanical polishing using a grindstone, fine powder, and the like, and chemical mechanical polishing using a liquid material in which fine powder is dispersed. The group III nitride compound semiconductor substrate in which the polishing scratches remain has a step, and an approximate height difference means a root mean square (RMS) of 10 nm or less .
また、第2の発明は、表面処理工程における温度及び前記III族元素の有機化合物の供給量は、III族窒化物の成長と分解の平衡状態近傍に設定し、III族窒化物系化合物半導体を成長させない条件であるあることを特徴とする。本発明は、表面処理を、成長と分解が均衡した平衡状態において、行うことである。また、平衡状態よりはやや分解傾向になる状態で、表面処理することが望ましい。III族窒化物系化合物半導体を成長させない条件を所定時間維持することで、Ga液滴を発生させることなく、研磨傷を消滅させることができる。これにより、基板表面の凹凸の高低差のRMSを小さくすることができる。 In the second invention, the temperature in the surface treatment step and the supply amount of the organic compound of the group III element are set in the vicinity of an equilibrium state between the growth and decomposition of the group III nitride, and the group III nitride compound semiconductor is manufactured. The condition is that the growth is not performed. The present invention is to perform the surface treatment in an equilibrium state in which growth and decomposition are balanced. In addition, it is desirable that the surface treatment be performed in a state in which it tends to decompose somewhat rather than an equilibrium state. By maintaining the conditions for not growing the group III nitride compound semiconductor for a predetermined time, the polishing scratches can be eliminated without generating Ga droplets. Thereby, the RMS of the level difference of the unevenness | corrugation of the board | substrate surface can be made small.
また、第3の発明は、加熱の際の温度は1000℃以上1250℃以下であることを特徴とする。当該加熱の際の温度は、1100℃以上1200℃以下が更に好ましい。
さらに、加熱の際の温度は、1100℃以上で、その表面処理工程に、続いて、実施されるIII族窒化物系化合物半導体の最適成長温度以上の温度が望ましい。高温で処理する程、マストランスポートが大きくなり、研磨傷を消滅させる効果が高くなる。
The third invention is characterized in that the temperature during heating is 1000 ° C. or higher and 1250 ° C. or lower. The temperature during the heating is more preferably 1100 ° C. or higher and 1200 ° C. or lower.
Furthermore, the temperature at the time of heating is 1100 ° C. or higher, and the temperature is preferably equal to or higher than the optimum growth temperature of the group III nitride compound semiconductor to be carried out following the surface treatment step. The higher the temperature, the larger the mass transport and the higher the effect of eliminating polishing scratches.
また、第4の発明は、III族窒化物系化合物半導体基板はGaN基板であり、表面処理工程の後の窒化ガリウムの成長温度を、表面処理工程における温度よりも0℃以上400℃以下の範囲で低下させることを特徴とする。このような条件の場合に、表面処理工程において、III族窒化物の成長と分解の平衡状態近傍に設定することができる。
第5の発明は、第4の発明において、III族元素の有機化合物はトリメチルガリウムであり、表面処理工程の後の窒化ガリウムを成長させる時のトリメチルガリウムの供給量は、表面処理工程におけるトリメチルガリウムの供給量よりも増加させることを特徴とする。このような条件の場合に、表面処理工程において、III族窒化物の成長と分解の平衡状態近傍に設定することができる。
In the fourth invention, the group III nitride compound semiconductor substrate is a GaN substrate, and the growth temperature of gallium nitride after the surface treatment step is in the range of 0 ° C. or more and 400 ° C. or less than the temperature in the surface treatment step. It is characterized by lowering by. In such a condition, the surface treatment step can be set in the vicinity of the equilibrium state of the growth and decomposition of the group III nitride.
According to a fifth invention, in the fourth invention, the organic compound of the group III element is trimethyl gallium, and the amount of trimethyl gallium supplied when growing the gallium nitride after the surface treatment step is trimethyl gallium in the surface treatment step. It is characterized by making it increase rather than the supply amount. In such a condition, the surface treatment step can be set in the vicinity of the equilibrium state of the growth and decomposition of the group III nitride.
第6の発明は、トリメチルガリウムの供給量が15μmol/min以上2mmol/min以下であることを特徴とする。尚、当該供給量は、150μmol/min以上200μmol/min以下であることが更に好ましい。
第7の発明は、III族窒化物系化合物半導体基板はGaN基板であり、III族元素の有機化合物はトリメチルガリウムであり、トリメチルガリウムの供給量は、実質的に窒化ガリウムが成長しない範囲に設定されいることを特徴とする。
さらには、トリメチルガリウムの供給量は、窒化ガリウムの成長と分解とが均衡した平衡状態の近傍であって、窒化ガリウムの分解が生じる量であることが望ましい。
The sixth invention is characterized in that the supply amount of trimethylgallium is 15 μmol / min or more and 2 mmol / min or less. The supply amount is more preferably 150 μmol / min or more and 200 μmol / min or less.
In the seventh invention, the group III nitride compound semiconductor substrate is a GaN substrate, the organic compound of the group III element is trimethylgallium, and the supply amount of trimethylgallium is set in a range in which gallium nitride does not substantially grow. It is characterized by being.
Furthermore, it is desirable that the supply amount of trimethylgallium is in the vicinity of an equilibrium state where the growth and decomposition of gallium nitride are balanced and the decomposition of gallium nitride occurs.
第8の発明は、アンモニアとトリメチルガリウムの供給量の比は、トリメチルガリウムとして供給されるガリウム原子数に対するアンモニアとして供給される窒素原子数の比(いわゆるV/III比)が、1200以上4000以下であることを特徴とする。尚当該供給量の比(V/III比)は、1800以上3600以下がより好ましく、2000以上3000以下が更に好ましい。このような条件の時に、ステップ状態の良好な基板表面を得ることができる。 In the eighth aspect of the invention, the ratio of the supply amount of ammonia and trimethylgallium is such that the ratio of the number of nitrogen atoms supplied as ammonia to the number of gallium atoms supplied as trimethylgallium (so-called V / III ratio) is 1200 or more and 4000 or less. It is characterized by being. The ratio of supply amount (V / III ratio) is more preferably 1800 or more and 3600 or less, and further preferably 2000 or more and 3000 or less. Under such conditions, a substrate surface having a good step state can be obtained.
また、第9の発明は、表面処理工程の温度は、その後に、III族窒化物系化合物半導体をエピタキシャル成長させる温度以上であることを特徴とする。すなわち、結晶品質の良好なIII族窒化物系化合物半導体をエピタキシャル成長させることができる温度以上で、半導体表面を処理することで、より効果的に、研磨傷を消滅させ、凹凸の段差、Ga液滴の形成が防止され、その後に、エピタキシャル成長されるIII族窒化物系化合物半導体の結晶性を向上させることができる。なお、表面処理工程の温度は、その後のIII族窒化物系化合物半導体をエピタキシャル成長させる温度よりも0℃以上400℃以下の範囲で高くすることが望ましい。このような条件の場合に、表面処理工程において、III族窒化物の成長と分解の平衡状態近傍に設定することができる。 The ninth invention is characterized in that the temperature of the surface treatment step is equal to or higher than the temperature at which the group III nitride compound semiconductor is epitaxially grown thereafter. That is, by treating the surface of the semiconductor at a temperature higher than the temperature at which a group III nitride compound semiconductor with good crystal quality can be epitaxially grown, the polishing flaws are more effectively eliminated, uneven steps, Ga droplets The crystallinity of the group III nitride compound semiconductor that is epitaxially grown thereafter can be improved. Note that the temperature of the surface treatment step is desirably higher in the range of 0 ° C. or higher and 400 ° C. or lower than the temperature at which the subsequent group III nitride compound semiconductor is epitaxially grown. In such a condition, the surface treatment step can be set in the vicinity of the equilibrium state of the growth and decomposition of the group III nitride.
また、第10の発明は、第9の発明において、表面処理工程のIII族元素の有機化合物の供給量は、その後に、III族窒化物系化合物半導体をエピタキシャル成長させる時のIII族元素の有機化合物の供給量よりも小さいことを特徴とする。このような条件の場合に、表面処理工程において、III族窒化物の成長と分解の平衡状態近傍に設定することができる。 According to a tenth aspect of the present invention, in the ninth aspect of the invention, the supply amount of the organic compound of the group III element in the surface treatment step is the group III element organic compound when the group III nitride compound semiconductor is epitaxially grown thereafter. It is characterized by being smaller than the supply amount. In such a condition, the surface treatment step can be set in the vicinity of the equilibrium state of the growth and decomposition of the group III nitride.
また、第11の発明は、表面処理工程の温度は、半導体基板表面の研磨傷の面積密度を最小とし、III族元素の有機化合物の供給量は、半導体基板表面のGa液滴の面積密度を最小とする値に制御されていることを特徴とする。ここで、研磨傷の面積密度は、単位面積当たりの傷の個数と、1個の傷当たりの占める面積との積を意味する。1個の傷の面積は、傷の凹部の底面及び側面の表面積の和を意味する。また、Ga液滴の面積密度は、単位面積当たりのGa液滴の個数と、1個当たりの液滴の占める面積との積を意味する。表面処理工程の温度が増加するに連れて、加工傷の面積密度が減少する傾向を示すが、Ga液滴の面積密度が増加する傾向を示す。また、III族元素の有機化合物の供給量を増加するに連れて、Ga液滴の面積密度が減少する傾向を示す。したがって、表面処理の温度と、III族元素の有機化合物の供給量を最適に制御することで、加工傷の面積密度と、Ga液滴の面積密度を最小値とすることができる。 In the eleventh aspect of the invention, the temperature of the surface treatment process minimizes the area density of polishing scratches on the surface of the semiconductor substrate, and the supply amount of the organic compound of the group III element determines the area density of Ga droplets on the surface of the semiconductor substrate. It is characterized by being controlled to a minimum value. Here, the area density of polishing scratches means the product of the number of scratches per unit area and the area occupied by one scratch. The area of one flaw means the sum of the surface areas of the bottom and side surfaces of the flaw recess. The area density of Ga droplets means the product of the number of Ga droplets per unit area and the area occupied by one droplet. As the temperature of the surface treatment process increases, the area density of the processing scratches tends to decrease, but the area density of the Ga droplets tends to increase. Further, the area density of Ga droplets tends to decrease as the supply amount of the organic compound of group III element increases. Therefore, by optimally controlling the temperature of the surface treatment and the supply amount of the organic compound of the group III element, the area density of processing flaws and the area density of Ga droplets can be minimized.
また、第12の発明は、表面処理工程の温度、III族元素の有機化合物の供給量、及び、アンモニアの供給量は、半導体基板表面の研磨傷の面積密度、及び、半導体基板表面のGa液滴の面積密度を最小とし、ステップ状態を最良とする値に制御されていることを特徴とする。ステップ状態とは、結晶構造の原子オーダでの結晶成長の起点となるステップの整然度を意味する。基板のステップ状態が良い場合に、基板上に成長する結晶の品質を向上させることができる。アンモニアの供給量を増加するに連れて、表面の凹凸の高低差の2乗平均を低下させて、ステップ状態を良好にすることができる。しかし、アンニモアがある値を越えて増加すると、表面に凸部が現れ、表面の凹凸の高低差の2乗平均が増加し、ステップ状態が悪化する。したがって、表面処理の温度と、III族元素の有機化合物の供給量に加えて、アンモニアの供給量を最適に制御することで、より効果的に、研磨傷の面積密度と、Ga液滴の面積密度を最小値とし、且つ、ステップ状態を最良とすることができる。 In the twelfth aspect of the present invention, the temperature of the surface treatment step, the supply amount of the organic compound of the group III element, and the supply amount of ammonia are the area density of the polishing scratches on the semiconductor substrate surface, and the Ga liquid on the semiconductor substrate surface. It is characterized in that the drop area density is minimized and the step state is controlled to the best value. The step state means the degree of order of the step that is the starting point of crystal growth in the atomic order of the crystal structure. When the step state of the substrate is good, the quality of crystals grown on the substrate can be improved. As the amount of ammonia supplied is increased, the step average can be improved by reducing the mean square of the height difference of the surface irregularities. However, when Annimore increases beyond a certain value, a convex portion appears on the surface, the root mean square of the unevenness of the surface unevenness increases, and the step state deteriorates. Therefore, in addition to the surface treatment temperature and the supply amount of the organic compound of the group III element, the ammonia supply amount is optimally controlled, so that the area density of the polishing scratches and the area of the Ga droplet are more effectively controlled. The density can be minimized and the step state can be best.
第13の発明は、表面処理工程の温度、III族元素の有機化合物の供給量、及び、アンモニアの供給量は、半導体表面の凹凸の高低差の2乗平均は、2.2nm以下となる条件に制御されていることを特徴とする。さらに、望ましくは、半導体表面の凹凸の高低差の2乗平均は、1.3nm以下である。表面処理工程の温度、III族元素の有機化合物の供給量、及び、アンモニアの供給量を、最適に制御することで、半導体表面の凹凸の高低差の2乗平均を、2.2nm以下、望ましくは、1.3nm以下に制御することができる。 According to a thirteenth aspect of the present invention, the temperature of the surface treatment step, the supply amount of the organic compound of the group III element, and the supply amount of ammonia are such that the root mean square of the unevenness on the semiconductor surface is 2.2 nm or less. It is characterized by being controlled. Furthermore, desirably, the root mean square of the height difference of the irregularities on the semiconductor surface is 1.3 nm or less. By optimally controlling the temperature of the surface treatment step, the supply amount of the organic compound of the group III element, and the supply amount of ammonia, the root mean square of the unevenness on the semiconductor surface is preferably 2.2 nm or less. Can be controlled to 1.3 nm or less.
III族窒化物系化合物半導体基板表面の、研磨による凹凸のうち、凸部を積極的に分解し、分解により生成するIII族原子が凹部に供給されて窒化物となることが好ましい。しかし、アンモニアのみの存在下で加熱した場合、分解により生成したIII族原子が液滴として凝集し、再窒化による凹部の埋め込みに寄与しないことが分かった。III族原子が液滴として凝集したまま冷却すると、当該部分が金属粒として半導体基板表面に残るので、エピタキシャル成長基板として用いた場合に、金属粒が残ったままエピタキシャル成長が生じ、得られるIII族窒化物系化合物半導体膜の結晶性に悪影響を及ぼす。 It is preferable that among the irregularities due to polishing on the surface of the group III nitride compound semiconductor substrate, the convex portions are actively decomposed, and group III atoms generated by the decomposition are supplied to the concave portions to become nitrides. However, it was found that when heated in the presence of ammonia alone, group III atoms generated by decomposition aggregate as droplets and do not contribute to filling the recesses by renitriding. When cooling with group III atoms agglomerated as droplets, the part remains on the surface of the semiconductor substrate as metal grains, so when used as an epitaxial growth substrate, epitaxial growth occurs with the metal grains remaining, and the resulting group III nitride This adversely affects the crystallinity of the compound semiconductor film.
本発明者らは、以下に示す通り、加熱の際にアンモニアと共にIII族元素の有機化合物を供給することで、III族原子の液滴が解消されることを見出した。この際、キャリアガスとしての水素は、III族窒化物系化合物半導体基板表面の凸部の分解に寄与するものと考えられる。 As shown below, the present inventors have found that the group III atom droplets can be eliminated by supplying an organic compound of a group III element together with ammonia during heating. At this time, hydrogen as a carrier gas is considered to contribute to the decomposition of the protrusions on the surface of the group III nitride compound semiconductor substrate.
本願発明の作用としては次の2つの可能性がある。
第1の可能性は、加熱の際にアンモニアと共にIII族元素の有機化合物を供給することで、気相中のIII族原子又はIII族元素化合物の分圧が上昇し、基板表面のIII族窒化物系化合物半導体の分解が抑制されるとのものである。これによれば、III族窒化物系化合物半導体は窒素とIII族原子とに分解することなく、マストランスポートにより凸部から凹部に移動して凹凸が平坦化される。
The action of the present invention has the following two possibilities.
The first possibility is that by supplying an organic compound of a group III element together with ammonia at the time of heating, the partial pressure of the group III atom or the group III element compound in the gas phase increases, and the group III nitridation on the substrate surface The decomposition of the physical compound semiconductor is suppressed. According to this, the group III nitride compound semiconductor moves from the convex portion to the concave portion by the mass transport without being decomposed into nitrogen and group III atoms, and the concave and convex portions are flattened.
本願発明の作用の第2の可能性は次のようなものである。
高温時下で例えば基板表面の凸部等の、III族窒化物系化合物半導体の急速な分解と窒素分子として窒素原子が脱離することによるIII族原子の液滴が生じた場合、当該液滴表面のIII族原子とアンモニアの反応のみでは、III族原子の液滴が十分に消費されない。即ち、III族原子−窒素原子−III族原子等の結合が生じたとしても、分解して窒素原子が(窒素分子として)脱離する速度が勝ってしまうと考えられる。
The second possibility of the action of the present invention is as follows.
When a group III atom droplet is generated due to rapid decomposition of a group III nitride compound semiconductor, such as a convex portion on the surface of a substrate, and elimination of a nitrogen atom as a nitrogen molecule at a high temperature. Only the reaction between the surface group III atom and ammonia does not sufficiently consume the group III atom droplet. That is, even if a bond of group III atom-nitrogen atom-group III atom or the like occurs, it is considered that the rate of decomposition and elimination of the nitrogen atom (as a nitrogen molecule) wins.
ここでIII族元素の有機化合物を混在させることで、複数個のIII族原子を有する窒化物前駆体がIII族原子の液滴からのIII族原子の消費を助けることになる。即ち、高温下で、III族原子の液滴表面を複数個のIII族原子を有する窒化物前駆体が攻めると、液滴からIII族原子を更に取込んでより「分子量の高い」窒化物前駆体となって、最終的にGaN結晶が生成すると考えられる。この際、複数個のIII族原子を有する窒化物前駆体は多数のIII族原子−窒素原子結合を有し、また、3つの窒素原子に囲まれたIII族原子も多数有するので、それらの結合の一部が分解しても、「分子量の低い」窒化物前駆体となるのみであって、窒素原子が全ては窒素分子として脱離しないものと考えられる。 Here, by mixing the organic compound of the group III element, the nitride precursor having a plurality of group III atoms helps the consumption of the group III atoms from the droplets of the group III atoms. That is, when a nitride precursor having a plurality of group III atoms attacks the surface of a group III atom droplet at a high temperature, the nitride precursor having a higher molecular weight is obtained by further taking in the group III atom from the droplet. It is considered that a GaN crystal is finally formed. At this time, the nitride precursor having a plurality of group III atoms has a large number of group III atoms-nitrogen atoms, and also has a number of group III atoms surrounded by three nitrogen atoms. Even if a part of is decomposed, it becomes only a “low molecular weight” nitride precursor, and it is considered that not all nitrogen atoms are eliminated as nitrogen molecules.
加熱の際の温度は1000℃以上1250℃以下が好ましい。1000℃未満では凸部の分解速度が遅くなり過ぎて本願発明の効果が得られず、1250℃を越えると凸部の分解速度が速くなり過ぎてやはり本願発明の効果が得られない。当該加熱の際の温度は、1100℃以上1200℃以下が更に好ましい。
表面処理温度は、特に、後の工程でエピタキシャル成長させるIII 族窒化物系化合物半導体の成長温度以上とすることが望ましい。すなわち、III 族窒化物系化合物半導体の最適成長温度以上とすることで、引き続き行われるエピタキシャル成長工程まで、基板表面の平坦性を維持することが容易となる。
The heating temperature is preferably 1000 ° C. or higher and 1250 ° C. or lower. If it is less than 1000 ° C., the decomposition rate of the convex portion becomes too slow to obtain the effect of the present invention. If it exceeds 1250 ° C., the decomposition rate of the convex portion becomes too fast and the effect of the present invention cannot be obtained. The temperature during the heating is more preferably 1100 ° C. or higher and 1200 ° C. or lower.
In particular, the surface treatment temperature is preferably equal to or higher than the growth temperature of the group III nitride compound semiconductor to be epitaxially grown in a later step. That is, by setting the temperature to be equal to or higher than the optimum growth temperature of the group III nitride compound semiconductor, it becomes easy to maintain the flatness of the substrate surface until the subsequent epitaxial growth step.
現在汎用品として入手可能なIII族窒化物系化合物半導体基板はGaN基板であり、入手容易なトリメチルガリウムを用いて容易に本願発明を実施可能である。トリメチルガリウムの供給量が15μmol/min未満であると、分解により生じたGa液滴を再窒化することが困難となる。供給量の上限は、GaN基板の凸部等が十分に分解すべき点と、不必要な厚いエピ膜が生じない点とから、2mmol/min以下とすることが好ましい。当該供給量は、150μmol/min以上200μmol/min以下であることが更に好ましい。原子間力顕微鏡(AFM)の観察により、いわゆるV/III比は1200未満ではGaN表面のステップが粗くなり、4000以上では10μm四方以上の大きな領域の凹凸が形成されやすい。原子間力顕微鏡(AFM)の観察によれば、V/III比は、1800以上3600以下がより好ましく、2000以上3000以下が更に好ましい。 The group III nitride compound semiconductor substrate currently available as a general-purpose product is a GaN substrate, and the present invention can be easily implemented using trimethylgallium which is readily available. When the supply amount of trimethylgallium is less than 15 μmol / min, it is difficult to renitride Ga droplets generated by decomposition. The upper limit of the supply amount is preferably set to 2 mmol / min or less from the point that the convex portion of the GaN substrate should be sufficiently decomposed and the point that no unnecessary thick epi film is formed. The supply amount is more preferably 150 μmol / min or more and 200 μmol / min or less. According to an atomic force microscope (AFM) observation, when the so-called V / III ratio is less than 1200, the steps on the GaN surface are rough, and when 4000 or more, irregularities in a large region of 10 μm square or more are likely to be formed. According to the observation with an atomic force microscope (AFM), the V / III ratio is more preferably 1800 or more and 3600 or less, and further preferably 2000 or more and 3000 or less.
また、トリメチルガリウムの供給量が少なすぎるとGa液滴を生じ易くなり、トリメチルガリウムの供給量が多すぎると、III 族窒化物半導体が基板上に、成長することになるので、研磨傷が消滅する前に、研磨傷を残したまま窒化物膜が形成される。このことから、トリメチルガリウムの供給量は、設定された表面処理温度において、III 族窒化物半導体の成長と分解とが均衡する平衡状態の近傍であって、且つ、III 族窒化物半導体が分解する供給量であることが望ましい。 In addition, if the supply amount of trimethylgallium is too small, Ga droplets are likely to be generated, and if the supply amount of trimethylgallium is too large, the group III nitride semiconductor grows on the substrate, so that the polishing scratches disappear. Before performing the process, a nitride film is formed while leaving a polishing flaw. Therefore, the supply amount of trimethylgallium is in the vicinity of an equilibrium state where the growth and decomposition of the group III nitride semiconductor are balanced at the set surface treatment temperature, and the group III nitride semiconductor is decomposed. A supply amount is desirable.
キャリアガスは水素が好ましい。この際、アルゴンその他の希ガスを混入しても良い。窒素のみをキャリアガスとすることは好ましくないが、50%以下で混入しても本願発明の効果は減ぜられないと予想される。 The carrier gas is preferably hydrogen. At this time, argon or other rare gas may be mixed. Although it is not preferable to use only nitrogen as a carrier gas, it is expected that the effect of the present invention will not be reduced even if it is mixed at 50% or less.
以下の実施例では、研磨したGaN基板表面をトリメチルガリウムとアンモニアの存在下で加熱して表面処理するものを示すが、本願発明は、任意組成のIII族窒化物系化合物半導体基板表面を、所望のIII族元素の有機化合物とアンモニアの存在下で加熱して表面処理するものを包含する。 In the following examples, the polished GaN substrate surface is heated in the presence of trimethylgallium and ammonia to perform surface treatment. However, the present invention provides a desired group III nitride compound semiconductor substrate surface having an arbitrary composition. And those subjected to surface treatment by heating in the presence of an organic compound of group III element and ammonia.
本実施例では、GaN基板のいわゆるGa面側を用いた。当該Ga面の表面をAFM画像解析したところ、50μm□において凹凸の高低差の2乗平均(RMS)は3.0nmであった。また、金属顕微鏡により表面の凹凸を観察したところ、多数の方向の揃っていない直線状の凹部が多数見られた。即ち、当該GaN基板表面には多数の研磨傷が残っていた。これを図1に示す。図1の3枚の写真は、左から、50μm四方のAFM画像、2μm四方のAFM画像、金属顕微鏡写真である。2μm四方の領域におけるRMSは、0.58nmであったが、ステップ状態は観測されず、結晶成長の基板としては、適切な状態とは言えない。 In this example, the so-called Ga surface side of the GaN substrate was used. As a result of AFM image analysis of the surface of the Ga surface, the root mean square (RMS) of the height difference of the unevenness at 50 μm □ was 3.0 nm. Moreover, when the unevenness | corrugation of the surface was observed with the metal microscope, many linear recessed parts in which many directions did not align were seen. That is, many polishing scratches remained on the surface of the GaN substrate. This is shown in FIG. The three photographs in FIG. 1 are a 50 μm square AFM image, a 2 μm square AFM image, and a metal micrograph from the left. Although the RMS in the 2 μm square region was 0.58 nm, no step state was observed, and it could not be said that the substrate was suitable for crystal growth.
まず、トリメチルガリウム(以下、TMGと略す)を流さずに、水素及びアンモニアの雰囲気下での加熱処理を行った。水素の供給量を29SLM、アンモニアの供給量を7SLMとして、下記温度で各々7分間保持した後に室温まで冷却した。AFM画像解析による50μm□及び2μm□における凹凸の高低差のRMSと、Ga液滴の有無は、各々次のようであった。 First, heat treatment was performed in an atmosphere of hydrogen and ammonia without flowing trimethylgallium (hereinafter abbreviated as TMG). The supply amount of hydrogen was 29 SLM, the supply amount of ammonia was 7 SLM, each of which was held at the following temperature for 7 minutes, and then cooled to room temperature. The RMS of unevenness in 50 μm □ and 2 μm □ by AFM image analysis and the presence or absence of Ga droplets were as follows.
実験1:温度1160℃では、50μm□でのRMSは45.21nm、2μm□でのRMSは0.21nm、凹凸のほとんどがGa液滴によるもの。
実験2:温度1100℃では、50μm□でのRMSは9.25nm、2μm□でのRMSは0.17nm、凹凸のほとんどがGa液滴によるもの。実験2のGa液滴は実験1のGa液滴よりも小さく、数も少なかった。
実験3:温度1050℃では、50μm□でのRMSは7.43nm、2μm□でのRMSは0.17nm、凹凸のほとんどがGa液滴によるもの。実験3のGa液滴は実験2のGa液滴よりも小さかったが、数は多かった。
実験4:温度1000℃では、50μm□でのRMSは2.45nm、2μm□でのRMSは0.13nm、微小なGa液滴が見出された。
実験2、3の場合には、2μm□でのRMSは0.17nmであり、原子スケールのステップが観測された。特に、実験3では、ステップ状態は良好である。しかし、実験1、4の場合には、原子スケールのステップは観測されないか、ステップ状態は悪いものであった。
Experiment 1: At a temperature of 1160 ° C., the RMS at 50 μm □ is 45.21 nm, the RMS at 2 μm □ is 0.21 nm, and most of the irregularities are due to Ga droplets.
Experiment 2: At a temperature of 1100 ° C., RMS at 50 μm □ is 9.25 nm, RMS at 2 μm □ is 0.17 nm, and most of the irregularities are due to Ga droplets. The Ga droplets in Experiment 2 were smaller and fewer in number than the Ga droplets in Experiment 1.
Experiment 3: At a temperature of 1050 ° C., RMS at 50 μm □ is 7.43 nm, RMS at 2 μm □ is 0.17 nm, and most of the irregularities are due to Ga droplets. Although the Ga droplets in Experiment 3 were smaller than the Ga droplets in Experiment 2, the number was larger.
Experiment 4: At a temperature of 1000 ° C., RMS at 50 μm □ was 2.45 nm, RMS at 2 μm □ was 0.13 nm, and fine Ga droplets were found.
In Experiments 2 and 3, the RMS at 2 μm □ was 0.17 nm, and an atomic scale step was observed. In particular, in Experiment 3, the step state is good. However, in Experiments 1 and 4, no atomic scale step was observed or the step state was poor.
実験4の温度1000℃の場合、金属顕微鏡により表面を観察すると研磨傷が無くなっていなかった。一方、実験1の温度1160℃では金属顕微鏡により表面を観察すると、Ga液滴の固化物は多数生じているが、研磨傷は無くなっていた。これを図2に示す。図2の12枚の写真は、上段4枚が50μm四方のAFM画像、中段4枚が2μm四方のAFM画像、下段4枚が金属顕微鏡写真であり、左から右へ実験1から実験4となっている。 When the temperature in Experiment 4 was 1000 ° C., the surface was observed with a metal microscope, and the polishing scratches were not lost. On the other hand, when the surface was observed with a metallographic microscope at a temperature of 1160 ° C. in Experiment 1, many solidified Ga droplets were generated, but polishing scratches were not present. This is shown in FIG. The twelve photos in FIG. 2 are AFM images of 50 μm square on the top four, AFM images of 2 μm square on the middle four, and metal microscope photographs on the bottom four, from Experiment 1 to Experiment 4 from left to right. ing.
この実験から、表面処理工程の温度を増加するに連れて、加工傷が減少する傾向を示すが、Ga液滴の面積密度が増加する傾向を示すことが理解される。このため、加工傷が消滅する温度範囲において、温度が低い程望ましいことになる。しかし、この温度条件において、TMGを流さない状態では、加工傷を消滅させて、且つ、Ga液滴を発生させないようにすることはできなかった。 From this experiment, it is understood that as the temperature of the surface treatment process is increased, the processing flaws tend to decrease, but the area density of Ga droplets tends to increase. For this reason, it is desirable that the temperature is lower in the temperature range where the processing scratches disappear. However, in this temperature condition, in the state where TMG is not flowed, it was impossible to eliminate the processing flaws and not to generate Ga droplets.
次に、加熱温度を1160℃とし、水素の供給量を29SLM、アンモニアの供給量を7SLMとして、下記のTMG供給量で未処理のGaN基板の処理を7分間行った。
実験1:TMGの供給量が0では、50μm□でのRMSは45.21nm、2μm□でのRMSは0.21nm、凹凸のほとんどがGa液滴によるもの(上述)。
実験5:TMGの供給量が120μmol/minでは、50μm□でのRMSは6.00nm、2μm□でのRMSは0.22nm、Ga液滴が見出された。
実験6:TMGの供給量が173μmol/minでは、50μm□でのRMSは2.24nm、2μm□でのRMSは0.23nm、Ga液滴は見出されなかった。
Next, the untreated GaN substrate was treated for 7 minutes with the following TMG supply amount, with a heating temperature of 1160 ° C., a hydrogen supply amount of 29 SLM, and an ammonia supply amount of 7 SLM.
Experiment 1: When the supply amount of TMG is 0, the RMS at 50 μm □ is 45.21 nm, the RMS at 2 μm □ is 0.21 nm, and most of the irregularities are Ga droplets (described above).
Experiment 5: When the supply amount of TMG was 120 μmol / min, the RMS at 50 μm □ was 6.00 nm, the RMS at 2 μm □ was 0.22 nm, and Ga droplets were found.
Experiment 6: When the supply amount of TMG was 173 μmol / min, the RMS at 50 μm □ was 2.24 nm, the RMS at 2 μm □ was 0.23 nm, and no Ga droplet was found.
以上から、Ga液滴が残らないためには実験5のTMG供給量120μmol/minでは不足であり、実験6のTMG供給量173μmol/min以上となると、Ga液滴が観測されないことが分かった。以上の温度変化及びTMG供給量の変化実験1〜6から明らかなように、表面処理温度を適正に設定して、TMGを適正量で供給することにより研磨傷を有効に除去でき、且つ、Ga液滴の発生を抑制することができることが分かる。これは、成長と分解が均衡した平衡状態に対して、やや分解傾向のある状態で、熱処理することにより、Ga液滴の発生を防止した状態で、GaNが成長することなく、マストランスポートにより、研磨傷の凹部が埋められたためである。 From the above, it was found that the TMG supply rate of 120 μmol / min in Experiment 5 was insufficient for Ga droplets not to remain, and that the Ga droplets were not observed when the TMG supply rate of Experiment 6 was 173 μmol / min or more. As apparent from the above temperature change and TMG supply amount change experiments 1 to 6, by setting the surface treatment temperature appropriately and supplying TMG in an appropriate amount, the polishing flaws can be effectively removed, and Ga It turns out that generation | occurrence | production of a droplet can be suppressed. This is because mass transport does not cause GaN to grow in a state in which the generation of Ga droplets is prevented by heat treatment in an equilibrium state in which growth and decomposition are balanced, and in a state where there is a slight tendency to decomposition. This is because the concave portion of the polishing scratch was filled.
ところが、実験6のTMG供給量173μmol/minの場合、AFM画像解析によると、GaN基板の処理後表面のGaNのステップ状態が、TMG供給量120μmol/minの場合のGa液滴が生じなかった部分でのステップ状態よりも悪化した。これを図3に示す。図3の6の写真は、上段3枚が50μm四方のAFM画像、下段3枚が2μm四方のAFM画像であり、左から右へ実験1、実験5及び実験6となっている。 However, when the TMG supply amount in Experiment 6 is 173 μmol / min, according to the AFM image analysis, the GaN step state on the processed surface of the GaN substrate is a portion where no Ga droplet is generated when the TMG supply amount is 120 μmol / min. Worse than the step state at. This is shown in FIG. In the photograph 6 of FIG. 3, the upper three images are 50 μm square AFM images, and the lower three images are 2 μm square AFM images, which are Experiment 1, Experiment 5, and Experiment 6 from left to right.
以上の実験から、III族元素の有機化合物の供給量を増加するに連れて、Ga液滴の面積密度が減少する傾向を示すが、ステップ状態が悪化する傾向を示すことが理解される。 From the above experiments, it is understood that the area density of Ga droplets tends to decrease as the supply amount of the organic compound of the group III element increases, but the step state tends to deteriorate.
次に、加熱温度を1160℃とし、TMG供給量を173μmol/minとして、下記のアンモニアの供給量で未処理のGaN基板の処理を7分間行った。尚、水素の供給量はアンモニアとの和が36SLMとなるようにした。
実験6:アンモニアの供給量が7SLM、すなわち、0.31mol/minでは、50μm□でのRMSは2.24nm、2μm□でのRMSは0.23nmでステップ状態は悪かった(上述)。
実験7:アンモニアの供給量が10.5SLM、すなわち、0.47mol/minでは、50μm□でのRMSは1.31nm、2μm□でのRMSは0.24nmで、ステップ状態は良好であった。
実験8:アンモニアの供給量が14SLM、すなわち、0.63mol/minでは、50μm□でのRMSは3.47nm、2μm□でのRMSは0.21nmで、表面に10μm□程度の領域の凹凸が形成された。
Next, the untreated GaN substrate was treated for 7 minutes with the following supply amount of ammonia at a heating temperature of 1160 ° C. and a TMG supply amount of 173 μmol / min. The hydrogen supply amount was set to 36 SLM with ammonia.
Experiment 6: Ammonia supply was 7 SLM, ie, 0. At 31 mol / min, the RMS at 50 μm □ was 2.24 nm, the RMS at 2 μm □ was 0.23 nm, and the step state was poor (described above).
Experiment 7: When the supply amount of ammonia was 10.5 SLM, that is, 0.47 mol / min, the RMS at 50 μm □ was 1.31 nm, the RMS at 2 μm □ was 0.24 nm, and the step state was good.
Experiment 8: When the supply amount of ammonia is 14 SLM, that is, 0.63 mol / min, the RMS at 50 μm □ is 3.47 nm, the RMS at 2 μm □ is 0.21 nm, and the surface has irregularities of about 10 μm □. Been formed.
以上から、アンモニアの供給量が7SLM(V/III比1806)ではステップ状態が悪く、アンモニアの供給量が14SLM(V/III比3613)では表面に凹凸が形成されることが分かった。一方、アンモニアの供給量が10.5SLM(V/III比2710)ではステップ状態も良く、表面に凹凸が形成されることもなかった。これを図4に示す。図4の6の写真は、上段3枚が50μm四方のAFM画像、下段3枚が2μm四方のAFM画像であり、左から右へ実験6、実験7及び実験8となっている。 From the above, it was found that the step state was poor when the ammonia supply amount was 7 SLM (V / III ratio 1806), and the surface was uneven when the ammonia supply amount was 14 SLM (V / III ratio 3613). On the other hand, when the supply amount of ammonia was 10.5 SLM (V / III ratio 2710), the step state was good and no irregularities were formed on the surface. This is shown in FIG. In the photograph 6 in FIG. 4, the upper three images are 50 μm square AFM images, and the lower three images are 2 μm square AFM images, which are Experiment 6, Experiment 7, and Experiment 8 from left to right.
この実験から、アンモニアの供給量を増加するに連れて、凹凸のRMSが減少して、ステップ状態が良くなる傾向を示すが、ある値を越えて増加すると、凹凸のRMSが増加して、ステップ状態が悪化する傾向を示すことが理解される。したがって、表面処理の温度と、III族元素の有機化合物の供給量に加えて、アンモニアの供給量を最適に制御することで、より効果的に、研磨傷をなくし、Ga液滴の表面密度を最小値とし、ステップ状態を最良とすることができることが理解される。 From this experiment, as the ammonia supply amount increases, the RMS of the unevenness tends to decrease and the step state tends to improve, but when the value exceeds a certain value, the RMS of the unevenness increases, It is understood that the condition tends to worsen. Therefore, in addition to the temperature of the surface treatment and the supply amount of the organic compound of the group III element, the supply amount of ammonia is optimally controlled, so that the polishing scratches can be eliminated more effectively and the surface density of the Ga droplets can be reduced. It will be appreciated that the step value can be best with a minimum value.
次に、表面処理済みの2つのGaN基板上に、各々次のようにLEDを形成してフォトルミネッセンス及びエレクトロルミネッセンスを測定した。図5に示す構造のLED110を製造した。上記実験7により得られた処理済みGaN基板100上に、GaNからなるn型コンタクト層101を、成長温度1160℃、TMG供給量を346μmol/min、アンモニア供給量を7.0SLM、すなわち、0.31mol/min、V/III 比を903,水素の供給量を25.5SLM、水素とアンモニアの供給量の和を36SLMの成長条件で成長させた。続いて、TMIを供給して、InGaNからなるn型クラッド層102を、850℃で成長させた。次に、InGaN/GaNのMQW構造から成る発光層103、p型AlGaNから成るp型クラッド層104、p型GaNから成るp型コンタクト層105を順に成長させた。次に、p型コンタクト層105からn型コンタクト層101までを一部エンチングして除去した。p型コンタクト層105の上面に透光性又は反射性のp電極106と、露出したn型コンタクト層101の上面にn電極107を蒸着して、LED110を形成した。
比較例として、実験1で得られた、Ga液滴が表面に多数存在していたGaN基板10に、全く同様にLED11を形成した。
Next, LEDs were formed on the two surface-treated GaN substrates as follows, and photoluminescence and electroluminescence were measured. An LED 110 having the structure shown in FIG. 5 was manufactured. On the treated GaN substrate 100 obtained by the experiment 7, an n-type contact layer 101 made of GaN is grown at a growth temperature of 1160 ° C., a TMG supply amount of 346 μmol / min, and an ammonia supply amount of 7.0 SLM, that is, 0.0. 31 mol / min, the V / III ratio 903, and the supply amount of hydrogen 25.5SLM, the sum of the supply amount of hydrogen and ammonia is grown at a growth condition of 36SLM. Subsequently, TMI was supplied, and the n-type cladding layer 102 made of InGaN was grown at 850 ° C. Next, a light emitting layer 103 made of an InGaN / GaN MQW structure, a p-type cladding layer 104 made of p-type AlGaN, and a p-type contact layer 105 made of p-type GaN were grown in this order. Next, part of the p-type contact layer 105 to the n-type contact layer 101 was removed by etching. A light-transmitting or reflective p-electrode 106 was deposited on the upper surface of the p-type contact layer 105, and an n-electrode 107 was deposited on the exposed upper surface of the n-type contact layer 101 to form an LED 110.
As a comparative example, the LED 11 was formed in exactly the same manner on the GaN substrate 10 obtained in Experiment 1 and having many Ga droplets on the surface.
これら2つのLED110及び11のフォトルミネッセンス(PL)強度を比較したところ、本願発明の実施例に係る処理済みGaN基板100上に形成したLED110のPL強度は、比較例に係るGa液滴の残るGaN基板10上に形成したLED11のPL強度の1.5倍であった。
また、これら2つのLEDのエレクトロルミネッセンス(EL)強度を比較したところ、本願発明の実施例に係る処理済みGaN基板100上に形成したLED110のEL強度は、比較例に係るGa液滴の残るGaN基板10上に形成したLED11のEL強度の1.1倍であった。
When the photoluminescence (PL) intensities of these two LEDs 110 and 11 are compared, the PL intensity of the LEDs 110 formed on the treated GaN substrate 100 according to the embodiment of the present invention is the GaN in which Ga droplets according to the comparative example remain. The PL intensity of the LED 11 formed on the substrate 10 was 1.5 times.
Further, when comparing the electroluminescence (EL) intensity of these two LEDs, the EL intensity of the LED 110 formed on the treated GaN substrate 100 according to the example of the present invention is the GaN in which Ga droplets according to the comparative example remain. The EL intensity of the LED 11 formed on the substrate 10 was 1.1 times.
これらの結果は、本願発明の表面処理工程により、処理済みGaN基板100表面が平坦となったことから、実験1で得られた、Ga液滴が表面に多数存在していたGaN基板10上に形成したLED11を構成する各層の結晶性よりも、処理済みGaN基板100上に形成したLED110を構成する各層の結晶性が向上したことによるものである。 These results indicate that the surface of the processed GaN substrate 100 was flattened by the surface treatment process of the present invention, and thus, on the GaN substrate 10 in which a large number of Ga droplets existed on the surface, obtained in Experiment 1. This is because the crystallinity of each layer constituting the LED 110 formed on the treated GaN substrate 100 is improved rather than the crystallinity of each layer constituting the formed LED 11.
この実施例において、GaNからなるn型コンタクト層の成長温度は、基板の処理温度である1160℃に対して、0℃以上400℃以下の範囲で、低くしても良い。原料ガスの供給量の増加は、温度を下げる前であっても、温度を下げてから行っても良い。 In this embodiment, the growth temperature of the n-type contact layer made of GaN may be lowered in the range of 0 ° C. to 400 ° C. with respect to the substrate processing temperature of 1160 ° C. The supply amount of the source gas may be increased before the temperature is lowered or after the temperature is lowered.
また、GaN基板上の結晶成長は、次のように行っても良い。図6に示す構造のLEDで、実験7の条件で、n型GaN基板120の表面を所定時間加熱処理する。次に、原料ガスをTMGからTMIに切り換え、他のガスの供給量は維持した後、基板温度を1160℃から850℃に低下させる。これにより、n型GaN基板120上に、InGaNから成るn型クラッド層122を成長させる。次に、InGaN/GaNのMQW構造から成る発光層123、AlGaNから成るp型クラッド層124、GaNから成るp型コンタクト層125を順に成長させた。次に、p型コンタクト層125上に透光性又は反射性のp電極126を、n型GaN基板120の裏面に反射性又は透光性のn電極127を形成して、LED200を形成した。InGaNから成るn型クラッド層122の成長温度は、n型GaN基板120の表面処理温度の1160℃に比べて、300℃以下の低温であるために、成長開始までに基板表面の平滑性やステップ状態が損なわれることはない。また、本発明の表面処理により、極めて高品質のGaNの表面が得られているため、GaNから成るn型コンタクト層を形成せずに、GaN基板上に、直接、n型のInGaNから成るn型クラッド層を成長させても、発光層以降の結晶品質に悪影響を及ぼすことはない。このようにして得られたLED200のEL強度は、LED110のEL強度に対して同等以上であることが確認されている。 Further, crystal growth on the GaN substrate may be performed as follows. With the LED having the structure shown in FIG. 6, the surface of the n-type GaN substrate 120 is heat-treated for a predetermined time under the conditions of Experiment 7. Next, after the source gas is switched from TMG to TMI and the supply amount of other gases is maintained, the substrate temperature is lowered from 1160 ° C. to 850 ° C. Thereby, an n-type cladding layer 122 made of InGaN is grown on the n-type GaN substrate 120. Next, a light emitting layer 123 composed of an InGaN / GaN MQW structure, a p-type cladding layer 124 composed of AlGaN, and a p-type contact layer 125 composed of GaN were grown in this order. Next, a translucent or reflective p-electrode 126 was formed on the p-type contact layer 125, and a reflective or translucent n-electrode 127 was formed on the back surface of the n-type GaN substrate 120 to form the LED 200. The growth temperature of the n-type cladding layer 122 made of InGaN is lower than 300 ° C. compared to the surface treatment temperature of 1160 ° C. of the n-type GaN substrate 120. The state is not impaired. In addition, since the surface treatment of the present invention provides an extremely high-quality GaN surface, the n-type InGaN made of n-type InGaN is directly formed on the GaN substrate without forming the n-type contact layer made of GaN. Even if the mold cladding layer is grown, the crystal quality after the light emitting layer is not adversely affected. It has been confirmed that the EL intensity of the LED 200 thus obtained is equal to or greater than the EL intensity of the LED 110.
本願発明は、以上述べたように、基板の表面処理を、成長と分解とが均衡した平衡状態となるような基板温度、III 族元素を含む有機金属ガスの供給量の条件下で、行うことを特徴とする。この表面処理の間に、基板表面傷を消滅させるものである。したがって、表面処理条件に対して、その後に行われるIII 族窒化物半導体の成長の条件は、温度、III 族元素を含む有機金属ガスの供給量は、気相成長の駆動力が正となる条件にすれば良い。この条件を満たす一つの方法が、基板温度を低下させること、又は、III 族元素を含む有機金属ガスの供給量を増加させることである。また、研磨傷を消滅させるには、高温度で処理することが望ましく、その後に行われるIII 族窒化物半導体の成長には、温度を維持するか、温度を低下させることで、表面処理した基板の表面状態を高品質に維持することが特徴である。また、V/III 比を適正に設定して表面処理を行うことで、基板表面のステップ状態を良好にすることができる。 In the present invention, as described above, the surface treatment of the substrate is performed under the conditions of the substrate temperature and the supply amount of the organometallic gas containing the group III element so that the growth and decomposition are in an equilibrium state. It is characterized by. During this surface treatment, scratches on the substrate surface are eliminated. Therefore, the conditions for the subsequent growth of the group III nitride semiconductor with respect to the surface treatment conditions are the temperature, the supply amount of the organometallic gas containing the group III element, You can do it. One method that satisfies this condition is to lower the substrate temperature or increase the supply amount of the organometallic gas containing a group III element. Further, in order to eliminate the polishing scratches, it is desirable to perform the treatment at a high temperature. In the subsequent growth of the group III nitride semiconductor, the surface-treated substrate is maintained by maintaining the temperature or decreasing the temperature. It is characterized by maintaining the surface state of the product with high quality. Further, by performing the surface treatment with the V / III ratio set appropriately, the step state of the substrate surface can be made favorable.
本発明の表面処理工程により、極めて平坦な表面を有するIII族窒化物系化合物半導体基板を得て、その上に結晶性の良いIII族窒化物系化合物半導体を結晶成長させることができる。表面処理工程を経たIII族窒化物系化合物半導体基板は、発光素子、FETその他の半導体素子を形成するためのエピタキシャル成長基板として、極めて有用である。 By the surface treatment process of the present invention, a group III nitride compound semiconductor substrate having a very flat surface can be obtained, and a group III nitride compound semiconductor having good crystallinity can be grown on the group III nitride compound semiconductor substrate. The group III nitride compound semiconductor substrate that has undergone the surface treatment step is extremely useful as an epitaxial growth substrate for forming a light emitting element, an FET, and other semiconductor elements.
10:実験1により処理したGaN基板
11:Ga液滴が表面に多数存在していたGaN基板10上に形成したLED
100:実験7により処理したGaN基板
110:処理済みGaN基板100上に形成したLED
10: GaN substrate processed by Experiment 1 11: LED formed on GaN substrate 10 on which many Ga droplets existed on the surface
100: GaN substrate processed in Experiment 7 110: LED formed on the processed GaN substrate 100
Claims (18)
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記表面処理工程における条件は、III族窒化物の形成と分解の平衡状態近傍である
ことを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor ,
Have
The method for producing a group III nitride compound semiconductor characterized in that the conditions in the surface treatment step are in the vicinity of an equilibrium state between the formation and decomposition of a group III nitride.
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記表面処理工程における温度及び前記III族元素の有機化合物の供給量は、III族窒化物の成長と分解の平衡状態近傍に設定し、III族窒化物系化合物半導体を成長させない条件である
ことを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor,
Have
The temperature in the surface treatment step and the supply amount of the organic compound of the group III element are set in the vicinity of an equilibrium state between the growth and decomposition of the group III nitride, and are the conditions under which the group III nitride compound semiconductor is not grown. A method for producing a group III nitride compound semiconductor.
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記III族窒化物系化合物半導体基板はGaN基板であり、前記III族元素の有機化合物はトリメチルガリウムであり、前記トリメチルガリウムの供給量は、実質的に窒化ガリウムが成長しない範囲に設定されいる
ことを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor,
Have
The group III nitride compound semiconductor substrate is a GaN substrate, the organic compound of the group III element is trimethyl gallium, and the supply amount of the trimethyl gallium is set in a range in which gallium nitride does not substantially grow. A method for producing a group III nitride compound semiconductor characterized by the following .
ことを特徴とする請求項1乃至請求項6の何れか1項に記載のIII族窒化物系化合物半導体の製造方法。 The group III nitride compound semiconductor substrate is a GaN substrate, the organic compound of the group III element is trimethyl gallium, and the supply amount of the trimethyl gallium is set in a range in which gallium nitride does not substantially grow. The method for producing a group III nitride compound semiconductor according to any one of claims 1 to 6 , wherein:
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記表面処理工程の温度は、その後に、III族窒化物系化合物半導体をエピタキシャル成長させる温度以上である
ことを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor,
Have
Temperature of the surface treatment step, then, II I nitride compound semiconductor process for manufacturing which is characterized in that the temperature than epitaxially growing a Group III nitride compound semiconductor.
ことを特徴とする請求項1乃至請求項9の何れか1項にIII族窒化物系化合物半導体の製造方法。 The group III nitride compound semiconductor according to any one of claims 1 to 9, wherein a temperature of the surface treatment step is equal to or higher than a temperature at which a group III nitride compound semiconductor is epitaxially grown thereafter. Manufacturing method.
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記表面処理工程の温度は、前記半導体基板表面の研磨傷の面積密度を最小とし、前記III族元素の有機化合物の供給量は、前記半導体基板表面のGa液滴の面積密度を最小とする値に制御されていることを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor,
Have
The temperature of the surface treatment step minimizes the area density of polishing scratches on the surface of the semiconductor substrate, and the supply amount of the organic compound of the group III element is a value that minimizes the area density of Ga droplets on the surface of the semiconductor substrate. A method for producing a group II nitride compound semiconductor, characterized by being controlled by:
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記表面処理工程の温度、前記III族元素の有機化合物の供給量、及び、前記アンモニアの供給量は、前記半導体基板表面の研磨傷の面積密度、及び、前記半導体基板表面のGa液滴の面積密度を最小とし、ステップ状態を最良とする値に制御されていることを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor,
Have
The temperature of the surface treatment step, the supply amount of the organic compound of the group III element, and the supply amount of the ammonia are the area density of polishing flaws on the surface of the semiconductor substrate, and the area of Ga droplets on the surface of the semiconductor substrate. A method for producing a group III nitride compound semiconductor, characterized in that the density is controlled to a value that minimizes the step state and is the best.
当該表面処理工程の後に、III族窒化物系化合物半導体をエピタキシャル成長させる成長工程と、
を有し、
前記表面処理工程の温度、前記III族元素の有機化合物の供給量、及び、前記アンモニアの供給量は、前記半導体表面の凹凸の高低差の2乗平均は、2.2nm以下となる条件に制御されていることを特徴とするIII族窒化物系化合物半導体の製造方法。 The polished surface of the semiconductor substrate made of a group III nitride compound semiconductor is heated in an atmosphere containing a group III element organic compound, ammonia, and hydrogen to flatten the irregularities on the surface of the semiconductor substrate. Processing steps;
After the surface treatment step, a growth step of epitaxially growing a group III nitride compound semiconductor,
Have
The temperature of the surface treatment step, the supply amount of the organic compound of the group III element, and the supply amount of the ammonia are controlled so that the root mean square of the unevenness of the unevenness of the semiconductor surface is 2.2 nm or less. A method for producing a Group III nitride compound semiconductor, characterized in that :
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008254678A JP5223112B2 (en) | 2007-10-22 | 2008-09-30 | Method for producing group III nitride compound semiconductor |
US12/289,157 US7824929B2 (en) | 2007-10-22 | 2008-10-21 | Method for producing group III nitride-based compound semiconductor |
CN2008101711908A CN101419912B (en) | 2007-10-22 | 2008-10-22 | Method for producing group iii nitride-based compound semiconductor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007273615 | 2007-10-22 | ||
JP2007273615 | 2007-10-22 | ||
JP2008254678A JP5223112B2 (en) | 2007-10-22 | 2008-09-30 | Method for producing group III nitride compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009124111A JP2009124111A (en) | 2009-06-04 |
JP5223112B2 true JP5223112B2 (en) | 2013-06-26 |
Family
ID=40630647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008254678A Expired - Fee Related JP5223112B2 (en) | 2007-10-22 | 2008-09-30 | Method for producing group III nitride compound semiconductor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5223112B2 (en) |
CN (1) | CN101419912B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003327497A (en) * | 2002-05-13 | 2003-11-19 | Sumitomo Electric Ind Ltd | GaN single crystal substrate, nitride-based semiconductor epitaxial substrate, nitride-based semiconductor device, and method of manufacturing the same |
CN1228478C (en) * | 2002-11-13 | 2005-11-23 | 中国科学院物理研究所 | Method for preparing gallium nitride single crystal film |
JP4052150B2 (en) * | 2003-03-05 | 2008-02-27 | 住友電気工業株式会社 | Manufacturing method of nitride semiconductor device |
JP2005136311A (en) * | 2003-10-31 | 2005-05-26 | Matsushita Electric Ind Co Ltd | Nitride semiconductor substrate, and manufacturing method therefor |
-
2008
- 2008-09-30 JP JP2008254678A patent/JP5223112B2/en not_active Expired - Fee Related
- 2008-10-22 CN CN2008101711908A patent/CN101419912B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009124111A (en) | 2009-06-04 |
CN101419912B (en) | 2011-04-06 |
CN101419912A (en) | 2009-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI221638B (en) | Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer | |
JP6328557B2 (en) | Aluminum nitride substrate and group III nitride laminate | |
JP2007294518A (en) | Nitride-based semiconductor substrate, manufacturing method thereof, and epitaxial substrate for nitride-based semiconductor light-emitting device | |
JP5665463B2 (en) | Group III nitride semiconductor device manufacturing substrate and group III nitride semiconductor free-standing substrate or group III nitride semiconductor device manufacturing method | |
JP2014520748A (en) | Semiconductor substrate and manufacturing method | |
JP6298057B2 (en) | Pretreatment method for base substrate, and manufacturing method of laminate using base substrate subjected to pretreatment | |
JP2010225881A (en) | Method of manufacturing group iii nitride semiconductor | |
Kim et al. | Effects of barrier growth temperature on the properties of InGaN/GaN multi-quantum wells | |
JP2004111848A (en) | Sapphire substrate, epitaxial substrate using it, and its manufacturing method | |
JP6090899B2 (en) | Epitaxial wafer manufacturing method | |
JP2006062931A (en) | Sapphire substrate and its heat treatment method, and method of crystal growth | |
JP3991823B2 (en) | Group III nitride semiconductor crystal, method for producing the same, group III nitride semiconductor epitaxial wafer | |
US20230399770A1 (en) | Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal | |
JP5223112B2 (en) | Method for producing group III nitride compound semiconductor | |
EP3435407B1 (en) | Method for producing group iii nitride laminate | |
JP2005101623A (en) | Group iii nitride semiconductor crystal, production method of the same, group iii nitride semiconductor epitaxial wafer | |
US7824929B2 (en) | Method for producing group III nitride-based compound semiconductor | |
JP4524630B2 (en) | Manufacturing method of HEMT epitaxial wafer | |
JP4425871B2 (en) | Manufacturing method of base film for manufacturing group III nitride film | |
JP6442957B2 (en) | Manufacturing method of nitride semiconductor template | |
JP2009267341A (en) | Method of manufacturing nitride group iii-v semiconductor crystal and method of manufacturing nitride group iii-v semiconductor laser device | |
JP2015159250A (en) | Method for manufacturing compound semiconductor structure | |
JP2013183149A (en) | Gallium nitride-based semiconductor epitaxial wafer and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130218 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |