[go: up one dir, main page]

JP5207569B2 - Lithium battery separator - Google Patents

Lithium battery separator Download PDF

Info

Publication number
JP5207569B2
JP5207569B2 JP2001007420A JP2001007420A JP5207569B2 JP 5207569 B2 JP5207569 B2 JP 5207569B2 JP 2001007420 A JP2001007420 A JP 2001007420A JP 2001007420 A JP2001007420 A JP 2001007420A JP 5207569 B2 JP5207569 B2 JP 5207569B2
Authority
JP
Japan
Prior art keywords
separator
layer
microporous
lithium battery
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001007420A
Other languages
Japanese (ja)
Other versions
JP2002216734A5 (en
JP2002216734A (en
Inventor
則夫 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2001007420A priority Critical patent/JP5207569B2/en
Publication of JP2002216734A publication Critical patent/JP2002216734A/en
Publication of JP2002216734A5 publication Critical patent/JP2002216734A5/ja
Application granted granted Critical
Publication of JP5207569B2 publication Critical patent/JP5207569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本発明は、リチウム一次電池、リチウムイオン二次電池、リチウムポリマー二次電池などのリチウム電池に最適のセパレータに関する。  The present invention relates to a separator optimal for lithium batteries such as lithium primary batteries, lithium ion secondary batteries, and lithium polymer secondary batteries.

近年高エネルギー密度の二次電池の需要が高まり、これに対応する電池として、電解液に有機溶剤を使用するリチウム一次電池、リチウムイオン二次電池などが開発された。該電池は電解液に有機溶剤を使用するため、特に安全性は重要である。通常セパレータにポリオレフィン微多孔膜を使用して、電池が一定温度以上になると微多孔を溶融閉塞させ、電流の流れをシャットダウンさせるなどの対策を講じている。またパッケージングに鉄缶あるいはアルミ缶など金属容器が使用されるが、完全に漏液を防止することは至難の業である。  In recent years, the demand for high energy density secondary batteries has increased, and as a battery corresponding to this, lithium primary batteries, lithium ion secondary batteries, and the like using an organic solvent as an electrolyte have been developed. Since the battery uses an organic solvent as the electrolyte, safety is particularly important. Usually, a polyolefin microporous membrane is used as a separator, and when the battery reaches a certain temperature or higher, measures are taken such as melting and closing the microporous and shutting down the current flow. Metal containers such as iron cans and aluminum cans are used for packaging, but it is extremely difficult to completely prevent leakage.

一方たとえば米国特許第5429891号では、ポリフッ化ビニリデン系樹脂に、可塑剤とともに架橋性のモノマーとして、アクリレートエステル、ジまたはトリアリルエステル、ジまたはトリグリシジルエステルを共存させて架橋させた材料を作成し、ついでこれに電解液を含浸させた高分子固体電解質が提案された。この固体電解質をリチウムイオン二次電池に使用すれば漏液の心配はなく安全性に優れるとともに、パッケージングに非金属性材料が使用可能となり、形状自由度が高まった。  On the other hand, for example, in US Pat. No. 5,429,891, a material in which a polyvinylidene fluoride resin is crosslinked in the presence of an acrylate ester, di- or triallyl ester, di- or triglycidyl ester as a crosslinking monomer together with a plasticizer is prepared. Then, a solid polymer electrolyte impregnated with an electrolytic solution was proposed. When this solid electrolyte is used in a lithium ion secondary battery, there is no risk of leakage and excellent safety, and non-metallic materials can be used for packaging, and the degree of freedom in shape is increased.

しかしながらこうした固体電解質を使用する電池は、従来のリチウムイオン二次電池の製造工程では製造できず、全く新しい独自の製造工程を設置する必要がある。また電池特性、とくに低温放電特性などは非常に低かった。そのため、従来のリチウムイオン二次電池の製造工程を使用できて、且つ電解液の漏液に不安がなく、かつ優れた特性を有する電池が切望された。  However, a battery using such a solid electrolyte cannot be manufactured in the manufacturing process of the conventional lithium ion secondary battery, and it is necessary to install a completely new unique manufacturing process. The battery characteristics, particularly the low temperature discharge characteristics, etc. were very low. Therefore, a battery that can use the conventional manufacturing process of a lithium ion secondary battery, has no anxiety about leakage of the electrolyte, and has excellent characteristics has been desired.

これに対し例えば、特開平8−250127号公報では、フッ化ビニリデン系樹脂からなる多孔膜に電解液を含浸させ、該電解液含浸多孔膜を隔膜部分に用いる方法が提案された。この場合、従来のリチウムイオン二次電池製造工程で電池製造が作成可能で、且つ電解液がフッ化ビニリデン系樹脂微多孔膜とゲルを形成するため、漏液しない電池が得られる。しかしながら、フッ化ビニリデン微多孔膜の強度は低く、電池捲廻工程で切断しやすいために、従来の工程で電池製造することは困難であった。更に該微多孔膜を使用して作成した電池は、電池内温度が150℃以下の温度で電流の流れをシャットダウンすることが必要であるにも拘わらず、該セパレータには微多孔が閉塞して電流の流れをシャットダウンする機能がなかった。  On the other hand, for example, Japanese Patent Laid-Open No. 8-250127 has proposed a method of impregnating a porous film made of a vinylidene fluoride resin with an electrolytic solution and using the electrolytic solution-impregnated porous film for a diaphragm portion. In this case, the battery can be produced by a conventional lithium ion secondary battery production process, and the electrolyte solution forms a gel with the vinylidene fluoride resin microporous membrane, so that a battery that does not leak is obtained. However, since the strength of the vinylidene fluoride microporous film is low and it is easy to cut in the battery winding process, it is difficult to manufacture the battery in the conventional process. In addition, a battery made using the microporous membrane has a microporous blockage in the separator, although it is necessary to shut down the current flow at an internal temperature of 150 ° C. or lower. There was no function to shut down the current flow.

特開平6−76808号公報にはポリオレフィン多孔質体とフッ素樹脂多孔質体との積層構造からなる電池セパレータが提案されている。その趣旨は、ポリオレフィン多孔質体セパレータをリチウム電池に使用した場合、シャットダウン時に完全溶融や溶融亀裂を生じて、電極間の接触が起こり、短絡状態になりやすいが、含フッ素樹脂多孔体との積層体では、フッ素樹脂多孔質体が高い耐熱性をもち、200℃の長時間使用に耐えることから、セパレータの亀裂溶融を抑え、電極間絶縁を保持できることにある。そして発明の趣旨から、フッ素樹脂として好ましくは4フッ化エチレン樹脂が提案されている。
更に、特開平8−323910号公報には、非水溶媒で膨潤する樹脂からなる多孔膜層と高融点結晶性樹脂からなる多孔膜層の積層膜が開示された。160℃以上の高融点樹脂の微多孔膜に、膨潤性樹脂を電解液で膨潤させて孔を閉塞させ、電流の流れをシャットダウンさせることを試みるものである。
JP-A-6-76808 proposes a battery separator having a laminated structure of a polyolefin porous body and a fluororesin porous body. The intent is that when a polyolefin porous body separator is used in a lithium battery, complete melting or melt cracking occurs during shutdown, contact between electrodes occurs, and a short circuit is likely to occur, but lamination with a fluororesin porous body In the body, the fluororesin porous body has high heat resistance and withstands long-term use at 200 ° C., so that crack melting of the separator can be suppressed and insulation between electrodes can be maintained. From the spirit of the invention, a tetrafluoroethylene resin is preferably proposed as the fluororesin.
Further, JP-A-8-323910 discloses a laminated film of a porous film layer made of a resin that swells with a nonaqueous solvent and a porous film layer made of a high-melting crystalline resin. This is an attempt to shut down the flow of current by swelling a swellable resin with an electrolyte in a microporous film of a high melting point resin at 160 ° C. or higher to close the pores.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、従来のリチウムイオン二次電池の製造工程を使用して製造される電池であって、且つ電解液の漏液の心配がない電池を実現でき、且つ優れたシャットダウン特性を有するために電池内部の温度が上昇した場合にリチウムイオンの流れを遮断し、電池の安全性を維持するセパレータを提供せんとするものである。  The present invention is a battery manufactured by using a conventional manufacturing process of a lithium ion secondary battery, and can realize a battery that does not have to worry about leakage of an electrolyte, and has excellent shutdown characteristics. It is intended to provide a separator that blocks the flow of lithium ions when the temperature inside the battery rises and maintains the safety of the battery.

課題を解決するための手段Means for solving the problem

【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、以下の発明を見出した。
(1)両表層がフッ化ビニリデンを含む共重合体からなる融点145℃以下の微多孔層で、中間層がポリオレフィンからなる融点140℃以下の微多孔層であることを特徴とする三層構造微多孔膜より構成されるリチウム電池用セパレータであって、層間の剥離強度が2g/cm以上であって、表層および中間層の連通微多孔が閉塞されていないリチウム電池用セパレータ。
(2)微多孔膜が表層−中間層−表層の三層積層膜であって、各層が接着剤を使用することなしに積層されている(1)記載のリチウム電池用セパレータ。
(3)フッ化ビニリデンを含む共重合体微多孔膜とポリエチレン微多孔膜をあらかじめ作成し、これら3枚を重ね合わせた後、両ポリマーの融点より10〜20℃低い温度で加圧下で延伸し積層されていることを特徴とする、(1)または(2)記載のリチウム電池用セパレータ。
(4)表層を形成する微多孔層が架橋されており、そのゲル分率が10%以上である(1)〜(3)のいずれかに記載のリチウム電池用セパレータ。
(5)前記両表層、中間層ともに気孔率が30〜70%である(1)〜(4)のいずれかに記載のリチウム電池用セパレータ。
(6)セパレータの総厚みが10〜50μmであり、かつ中間層の厚みが5〜40μmである(1)〜(5)のいずれかに記載のリチウム電池用セパレータ。
(7)(1)〜(6)のいずれかに記載のリチウム電池用セパレータの製造方法であって、フッ化ビニリデンを含む共重合体微多孔膜とポリエチレン微多孔膜をあらかじめ作成し、これら3枚を重ね合わせた後、両ポリマーの融点より10〜20℃低い温度で加圧下で延伸することを特徴とするリチウム電池用セパレータの製造方法。
(8)(1)〜(2),(4)〜(6)のいずれかに記載のリチウム電池用セパレータの製造方法であって、表層、中間層となるそれぞれのポリマーと溶剤を混合後、三層シートを押出し、冷却相分離させた後溶剤を除去、次いで延伸するか、あるいは延伸した後、溶剤を除去して三層微多孔膜を得ることを特徴とするリチウム電池用セパレータの製造方法。
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found the following inventions.
(1) A three-layer structure in which both surface layers are microporous layers having a melting point of 145 ° C. or lower made of a copolymer containing vinylidene fluoride, and the intermediate layers are microporous layers having a melting point of 140 ° C. or lower made of polyolefin. A lithium battery separator comprising a microporous membrane, wherein the interlayer peel strength is 2 g / cm or more, and the continuous micropores in the surface layer and the intermediate layer are not blocked.
(2) The lithium battery separator according to (1), wherein the microporous film is a three-layer laminated film of surface layer-intermediate layer-surface layer, and each layer is laminated without using an adhesive.
(3) A copolymer microporous membrane containing vinylidene fluoride and a polyethylene microporous membrane are prepared in advance, and after superposing these three sheets, they are stretched under pressure at a temperature 10 to 20 ° C. lower than the melting point of both polymers. The lithium battery separator according to (1) or (2), wherein the separator is laminated.
(4) The separator for a lithium battery according to any one of (1) to (3), wherein the microporous layer forming the surface layer is crosslinked and the gel fraction thereof is 10% or more.
(5) The lithium battery separator according to any one of (1) to (4), wherein both the surface layer and the intermediate layer have a porosity of 30 to 70%.
(6) The separator for lithium batteries according to any one of (1) to (5), wherein the total thickness of the separator is 10 to 50 μm and the thickness of the intermediate layer is 5 to 40 μm.
(7) A method for producing a lithium battery separator according to any one of (1) to (6), wherein a copolymer microporous membrane and a polyethylene microporous membrane containing vinylidene fluoride are prepared in advance. A method for producing a separator for a lithium battery, wherein the sheets are superposed and then stretched under pressure at a temperature lower by 10 to 20 ° C. than the melting point of both polymers.
(8) A method for producing a lithium battery separator according to any one of (1) to (2) and (4) to (6), wherein after mixing each polymer and solvent to be a surface layer and an intermediate layer, A method for producing a separator for a lithium battery, characterized in that a three-layer sheet is extruded and then cooled and phase-separated and then the solvent is removed and then stretched or stretched and then the solvent is removed to obtain a three-layer microporous membrane .

以下本発明を詳細に説明する。
本発明に関する三層微多孔膜は、フッ化ビニリデンを含む共重合体からなる微多孔層がポリエチレン微多孔層を中間層に挟んでなることが重要である。リチウムイオン二次電池を製造する工程に於いて、セパレータは正極と負極間に挟まれ、コイル状に捲廻されたのち、電池内に装着され、電解液が注入される。電解液はセパレータの微多孔内に浸透し、リチウムイオンの導通経路を形成するが、表層のフッ化ビニリデンを含む共重合体は、浸透した電解液を一定量吸収する効果があり、そのために電解液はセパレータに保持された状態となり、簡単には流出しなくなる。しかしながらリチウムイオン導通性は十分発揮される。更に電解液で膨潤したフッ化ビニリデンを含む共重合体層は、電池内部で直接正極負極と接触するため、従来のポリオレフィン微多孔膜からなるセパレータを使用した場合に比較して、電極とセパレータ間の界面電気抵抗が小さくなり電池特性上有利である。
The present invention will be described in detail below.
In the three-layer microporous membrane according to the present invention, it is important that a microporous layer made of a copolymer containing vinylidene fluoride has a polyethylene microporous layer sandwiched between intermediate layers. In the process of manufacturing a lithium ion secondary battery, the separator is sandwiched between a positive electrode and a negative electrode, wound in a coil shape, mounted in the battery, and an electrolyte is injected. The electrolyte permeates into the micropores of the separator and forms a conduction path for lithium ions, but the copolymer containing vinylidene fluoride on the surface layer has the effect of absorbing a certain amount of the permeated electrolyte, so that The liquid is held in the separator and does not easily flow out. However, lithium ion conductivity is sufficiently exhibited. Furthermore, since the copolymer layer containing vinylidene fluoride swollen with the electrolyte solution is in direct contact with the positive electrode and the negative electrode inside the battery, compared with the case where a separator made of a conventional polyolefin microporous film is used, the electrode layer is separated from the separator. Is advantageous in terms of battery characteristics.

なお中間のポリオレフィン微多孔層においては、電解液はポリマーに吸収膨潤されないで微多孔内に存在するが、表層ゲル層にシールされた状態にあることにより、電解液は漏れ出さない。一方電池内温度が上昇した場合、中間のポリオレフィン微多孔層の孔が閉塞し、電流がシャットダウンされるため、電池の安全性は保証される。中間層に融点140℃以下のポリオレフィン微多孔層が存在しない場合、シャットダウン機構が働かず、電池の安全を維持することが困難となる。  In the intermediate polyolefin microporous layer, the electrolytic solution is not absorbed and swelled by the polymer and exists in the microporous layer. However, the electrolytic solution does not leak because it is sealed by the surface gel layer. On the other hand, when the temperature in the battery rises, the pores of the intermediate polyolefin microporous layer are blocked and the current is shut down, so that the safety of the battery is guaranteed. When there is no polyolefin microporous layer having a melting point of 140 ° C. or lower in the intermediate layer, the shutdown mechanism does not work and it is difficult to maintain the safety of the battery.

中間微多孔層に使用されるポリオレフィンは、融点140℃以下の、ポリエチレン、ポリ(エチレン−プロピレン)共重合体など、あるいはそれと、ポリプロピレン、ポリブテン1、ポリ(エチレン−プロピレン)共重合体、ポリ(プロピレン−ブテン1)共重合体などとの混合物があげられる。融点が140℃より高い場合、セパレータのシャットダウン温度が高くなり、電池安全上好ましくない。  Polyolefin used for the intermediate microporous layer is polyethylene, poly (ethylene-propylene) copolymer, etc. having a melting point of 140 ° C. or lower, or polypropylene, polybutene 1, poly (ethylene-propylene) copolymer, poly ( Examples thereof include a mixture with propylene-butene 1) copolymer and the like. When the melting point is higher than 140 ° C., the shutdown temperature of the separator is increased, which is not preferable for battery safety.

フッ化ビニリデンを含む共重合体としては、融点145℃以下の、ポリ(ビニリデンフロライドーヘキサフルオロプロピレン)共重合体、ポリ(ビニリデンフロライドーヘキサフルオロプロピレン−テトラフルオロエチレン)共重合体、ポリ(テトラフルオロエチレンービニリデンフロライド)共重合体などがあげられる。
表層のフッ化ビニリデンを含む共重合体からなる層は、架橋されている方がより好ましい。これは電解液を吸収することにより高温で著しく膨潤したり溶解するなど、形状変化を起こすため、これを防止する方が好ましいためである。簡便で工業的に優れた架橋方法としては、電子線、γ線などを照射する方法があるが、とくに電子線照射による方法は優れた方法である。架橋程度はフッ化ビニリデンを含む共重合体のゲル分率が10%以上であることが好ましい。ゲル分率はフッ化ビニリデンを含む共重合体の良溶媒に溶解して、未溶解分率を測定することによって測定できる。良溶媒はポリマーの種類により異なるが、フッ化ビニリデン系ポリマーには通常N−メチルピロリドン、ジメチルホルムアミド、テトラヒドロフランなどがある。
Examples of the copolymer containing vinylidene fluoride include poly (vinylidene fluoride-hexafluoropropylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene) copolymer, poly (tetra Fluoroethylene-vinylidene fluoride) copolymer and the like.
The layer made of a copolymer containing vinylidene fluoride in the surface layer is more preferably crosslinked. This is because it is preferable to prevent this because it changes its shape such as remarkably swelling or dissolving at high temperature by absorbing the electrolytic solution. As a simple and industrially excellent crosslinking method, there is a method of irradiating an electron beam, γ-ray or the like, and a method by electron beam irradiation is particularly excellent. The degree of crosslinking is preferably such that the gel fraction of the copolymer containing vinylidene fluoride is 10% or more. The gel fraction can be measured by dissolving in a good solvent of a copolymer containing vinylidene fluoride and measuring the undissolved fraction. The good solvent varies depending on the type of polymer, but the vinylidene fluoride polymer usually includes N-methylpyrrolidone, dimethylformamide, tetrahydrofuran and the like.

三層微多孔膜を作成するには、例えば、フッ化ビニリデンを含む共重合体微多孔膜と、ポリオレフィン微多孔膜をあらかじめ作成した後、これを重ね合わせ、延伸、圧着等により製造される。それぞれ個別に微多孔膜を作成する方法は特に限定されるものでなく、公知の延伸開孔法や相分離法が適用でき、例えば特開平3−215535号公報記載の方法、特公昭61−38207号公報記載の方法、特開昭54−16382号公報記載の方法等を利用することができる。三層微多孔膜の層間接着力は、電池製造工程でのトラブルを防止するのに重要であり、層間の剥離強度が2g/cm以上であることが好ましい。  In order to prepare a three-layer microporous film, for example, a copolymer microporous film containing vinylidene fluoride and a polyolefin microporous film are prepared in advance, and then superposed, stretched, pressure-bonded, and the like. A method for individually producing the microporous membrane is not particularly limited, and a known stretch opening method or phase separation method can be applied. For example, a method described in JP-A-3-215535, JP-B-61-38207 is applicable. The method described in JP-A-54-16382, the method described in JP-A-54-16382, and the like can be used. The interlayer adhesive strength of the three-layer microporous membrane is important for preventing troubles in the battery manufacturing process, and the interlayer peel strength is preferably 2 g / cm or more.

しかしながら、剥離強度を高めるために接着剤を使用することは、膜の連通孔を塞ぐ恐れがあり好ましくない。また熱あるいは圧力により層間接着を行う場合でも、表層および内層の連通微多孔が閉塞されないことが重要である。連通孔を損なうことなしに剥離強度の高い積層膜を作る方法として、たとえばフッ化ビニリデンを含む共重合体微多孔膜とポリエチレン微多孔膜をあらかじめ作成し、これら3枚重ね合わせた後、両ポリマーの融点より10〜20℃低い温度で加圧下で延伸する方法があり、高温加圧下での延伸としては、ロール延伸などが好ましい。  However, it is not preferable to use an adhesive to increase the peel strength because it may block the communication hole of the membrane. Even when interlayer adhesion is performed by heat or pressure, it is important that the continuous micropores in the surface layer and the inner layer are not blocked. As a method of making a laminated film having high peel strength without impairing the communication holes, for example, a copolymer microporous film containing vinylidene fluoride and a polyethylene microporous film are prepared in advance, and after superposing these three sheets, both polymers There is a method of stretching under pressure at a temperature lower by 10 to 20 ° C. than the melting point, and as stretching under high temperature and pressure, roll stretching or the like is preferable.

また相分離を利用した共押し出しによって、三層微多孔膜を作成することも可能である。この場合、それぞれのポリマーと溶剤(可塑剤)を混合後、三層シートを押し出し、冷却相分離させた後溶剤(可塑剤)を除去、次いで延伸するか、あるいは延伸した後、溶剤を除去して、三層微多孔膜を得る。
共押し出し法あるいは積層法のいずれの場合であっても層間の剥離強度を得るには、それぞれのポリマーの融点の差が小さいことが好ましい。
It is also possible to prepare a three-layer microporous membrane by coextrusion using phase separation. In this case, after mixing each polymer and solvent (plasticizer), the three-layer sheet is extruded, and after cooling phase separation, the solvent (plasticizer) is removed and then stretched, or after stretching, the solvent is removed. Thus, a three-layer microporous film is obtained.
In either case of the coextrusion method or the lamination method, it is preferable that the difference in melting point of each polymer is small in order to obtain the peel strength between layers.

リチウム二次電池に使用されるセパレータの厚みは100μm以下が好ましく、更に好ましくは10〜50μmである。l0μmより薄い場合は電極間絶縁が保証されず、100μmより厚い場合、セパレータの電気抵抗が大きくなり好ましくない。表層と中間層の厚みは特に限定されるものではないが、中間層ポリエチレン層の厚さはシャットダウン機能を十分発現させるためには5μm以上が好ましく、また電気抵抗をできるだけ低く押さえるために40μm以下が好ましい。三層微多孔膜の平面安定性を維持するには両表面層の厚さは等しく面対称であるのが好ましい。  The thickness of the separator used for the lithium secondary battery is preferably 100 μm or less, more preferably 10 to 50 μm. When the thickness is less than 10 μm, the inter-electrode insulation is not guaranteed, and when the thickness is more than 100 μm, the electrical resistance of the separator increases, which is not preferable. The thickness of the surface layer and the intermediate layer is not particularly limited, but the thickness of the intermediate polyethylene layer is preferably 5 μm or more in order to sufficiently exhibit the shutdown function, and 40 μm or less in order to keep the electric resistance as low as possible. preferable. In order to maintain the planar stability of the three-layer microporous membrane, the thicknesses of both surface layers are preferably equal and plane-symmetric.

三層微多孔膜は、電池の捲廻工程で切断したり伸びたりすることなく、安定して捲廻するに十分な引っ張り強度、引っ張り弾性率が必要であるが、中間層にポリオレフィン微多孔層が使用されることにより、効果的に達成される。また三層微多孔膜の気孔率はセパレータの電気特性を決定するのに重要であり、両外層、中間層ともに30〜70%程度が好ましい。  A three-layer microporous membrane requires sufficient tensile strength and elastic modulus to be stably wound without being cut or stretched in the battery winding process. Is effectively achieved. The porosity of the three-layer microporous membrane is important for determining the electrical characteristics of the separator, and both the outer layer and the intermediate layer are preferably about 30 to 70%.

本発明の実施の形態Embodiment of the present invention

以下実施例および比較例によって、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。本発明で用いた各種物性は、以下の試験方法に基づいて測定した。
(1)融点(℃)
サンプルを測定容器に装着し、10℃/min速度で昇温させ、吸熱ピーク温度を測定した.測定にはセイコーインスツルーメント社製のDSC220Cを使用した。
(2)剥離強度(g/cm)
JIS P−8117に準拠し、T型剥離試験にて測定した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Various physical properties used in the present invention were measured based on the following test methods.
(1) Melting point (° C)
The sample was attached to a measurement container, heated at a rate of 10 ° C./min, and the endothermic peak temperature was measured. For the measurement, DSC220C manufactured by Seiko Instruments Inc. was used.
(2) Peel strength (g / cm)
Based on JIS P-8117, it measured by the T-type peeling test.

(3)ゲル分率(%)
多孔質膜サンプル約1gを50℃で真空乾燥した後、重量を測定して溶解前重量(Wx)を求めた。該サンプルを約1cm角の大きさにカットしてガラス製サンプルビンに入れ、N−メチルピロリドン100mlを添加した.ついで80℃に加温しながら24時間攪拌した後、粒子保持能0.7μmのガラス繊維濾紙を用いて濾過した。続いて20mlのN−メチルピロリドンで洗浄したのち、濾過する操作を2回行い、さらに20mlのエタノールで2回洗浄した後、50℃で真空乾燥した。その重量を濾過器ごと測定し、予め測定した濾過器のみの重量から差し引いて溶解残差重量(Wz)を求めた。次式からゲル分率を計算した。
ゲル分率(%)=100×Wz/Wx
(4)シャットダウン温度(℃)
図1にシャットダウン温度の測定装置の概略図を示す。1はセパレータであり、2A及び2Bは厚さ10μmのニッケル箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気製LCRメーターAG−4311)でありニッケル箔2A、2Bと接続されている。5は熱電対であり温度計6と接続されている。7はデーターコレクターであり、電気抵抗装置4及び温度計6と接続されている。8はオーブンであり、セパレータを加熱する。
(3) Gel fraction (%)
About 1 g of the porous membrane sample was vacuum-dried at 50 ° C., and then the weight was measured to determine the weight before dissolution (Wx). The sample was cut to a size of about 1 cm square and placed in a glass sample bottle, and 100 ml of N-methylpyrrolidone was added. Subsequently, the mixture was stirred for 24 hours while being heated to 80 ° C., and then filtered using a glass fiber filter paper having a particle retention capacity of 0.7 μm. Subsequently, after washing with 20 ml of N-methylpyrrolidone, the operation of filtration was performed twice, followed by washing twice with 20 ml of ethanol, followed by vacuum drying at 50 ° C. The weight of each filter was measured, and the dissolution residual weight (Wz) was determined by subtracting from the weight of the filter only measured in advance. The gel fraction was calculated from the following formula.
Gel fraction (%) = 100 × Wz / Wx
(4) Shutdown temperature (° C)
FIG. 1 shows a schematic diagram of a shutdown temperature measuring apparatus. 1 is a separator, 2A and 2B are nickel foils having a thickness of 10 μm, and 3A and 3B are glass plates. 4 is an electrical resistance measuring device (LCR meter AG-4411 manufactured by Ando Electric Co., Ltd.), which is connected to the nickel foils 2A and 2B. A thermocouple 5 is connected to the thermometer 6. A data collector 7 is connected to the electric resistance device 4 and the thermometer 6. 8 is an oven which heats the separator.

さらに詳細に説明すると、図2に示すようにニッケル箔2A上にセパレータ1を重ねて、縦方向にテフロンテープでニッケル箔2Aに固定されている。セパレータ1には電解液として1mol/リットルのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ−ブチルラクトン=1/1/2)が含浸されている。ニッケル箔2B上には図3に示すようにテフロンテープを貼り合わせ、箔2Bの中央部分に15mm×10mmの窓の部分を残してマスキングしてある。  More specifically, as shown in FIG. 2, the separator 1 is stacked on the nickel foil 2A, and is fixed to the nickel foil 2A with Teflon tape in the vertical direction. The separator 1 is impregnated with a 1 mol / liter lithium borofluoride solution (solvent: propylene carbonate / ethylene carbonate / γ-butyllactone = 1/1/2) as an electrolytic solution. As shown in FIG. 3, a Teflon tape is bonded onto the nickel foil 2B, and masking is performed leaving a 15 mm × 10 mm window portion at the center of the foil 2B.

ニッケル箔2Aとニッケル箔2Bをセパレータ1をはさむような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のニッケル箔をはさみこむ。このとき、箔2Bの窓の部分と、セパレータ1が相対する位置に来るようになっている。2枚のガラス板は市販のダブルクリップではさむことにより固定する。熱電対5はテフロンテープでガラス板に固定する。
このような装置で連続的に温度と電気抵抗を測定する。なお、温度は25℃から200℃まで2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。ここでシャットダウン温度とはセパレータの電気抵抗値が10Ωに達するときの温度と定義する。
The nickel foil 2A and the nickel foil 2B are overlapped so as to sandwich the separator 1, and two nickel foils are sandwiched by the glass plates 3A and 3B from both sides thereof. At this time, the window portion of the foil 2B and the separator 1 come to face each other. Two glass plates are fixed by pinching with a commercially available double clip. The thermocouple 5 is fixed to the glass plate with Teflon tape.
Temperature and electric resistance are continuously measured with such an apparatus. The temperature is raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electric resistance value is measured at an alternating current of 1 kHz. Here, the shutdown temperature is defined as the temperature at which the electrical resistance value of the separator reaches 10 3 Ω.

融点139℃のポリ(ビニリデンフロライドーヘキサフルオロプロピレン)共重合体(エルフ・アトケム・ジャパン社製KYNAR2800)32.4容量%、比表面積110m2/gの疎水性シリカ微粉14.2容量%、ジブチルフタレート4.4容量%、ジエチルヘキシルフタレート48.5容量%をヘンシルミキサーで混合し、該混合物を二軸押し出し機にTダイを取り付けたシート製造装置を使用して押し出し、厚さ50μmのシートを得た。該シートを塩化メチレン中に浸漬して、ジブチルフタレートおよびジエチルヘキシルフタレートを抽出除去した後、更に20重量%苛性ソーダ水溶液中に浸漬し、シリカを抽出除去したのち、水洗乾燥して、ポリ(ビニリデンフロライドーヘキサフルオロプロピレン)共重合体微多孔膜を得た。この膜の融点は139℃であった。Poly (vinylidene fluoride-hexafluoropropylene) copolymer having a melting point of 139 ° C. (KYNAR 2800 manufactured by Elf Atchem Japan) 32.4% by volume, hydrophobic silica fine powder having a specific surface area of 110 m 2 / g, 14.2% by volume, dibutyl A sheet of 50 μm thickness was prepared by mixing 4.4 vol% phthalate and 48.5 vol% diethylhexyl phthalate with a Hensyl mixer and extruding the mixture using a sheet manufacturing apparatus with a T-die attached to a twin screw extruder. Got. The sheet is immersed in methylene chloride to extract and remove dibutyl phthalate and diethylhexyl phthalate, and further immersed in a 20% by weight aqueous caustic soda solution to extract and remove silica, followed by washing with water and drying to obtain poly (vinylidene fluoride). An iodohexafluoropropylene) copolymer microporous membrane was obtained. The melting point of this film was 139 ° C.

次に重量平均分子量25万、融点135℃の高密度ポリエチレン34重量%、親水性シリカ微粉19重量%、ジエチルヘキシルフタレート47重量%を同様にしてヘンシルミキサーで混合し、二軸押し出し機で、厚さ50μmのシートを押し出し、塩化メチレンおよび苛性ソーダ水溶液でジエチルヘキシルフタレートとシリカを抽出除去し、ポリエチレン微多孔膜を得た。この膜の融点は135℃であった。  Next, 34% by weight of high-density polyethylene having a weight average molecular weight of 250,000, a melting point of 135 ° C., 19% by weight of hydrophilic silica fine powder, and 47% by weight of diethylhexyl phthalate were similarly mixed with a Hensyl mixer, A sheet having a thickness of 50 μm was extruded, and diethylhexyl phthalate and silica were extracted and removed with an aqueous solution of methylene chloride and caustic soda to obtain a polyethylene microporous film. The melting point of this film was 135 ° C.

こうして得た二種類の微多孔膜を、両表層にポリ(ビニリデンフロライドーヘキサフルオロプロピレン)共重合体膜、中間層にポリエチレン微多孔膜を用いて三枚重ね、ロール延伸機で張力下に長さ方向に4倍延伸し、次いで幅方向に2倍延伸して、25μm厚みの三層積層膜(延伸膜)を得た。該延伸膜を構成する各層の厚さはそれぞれ9μm/8μm/8μmである。該延伸膜を剥離分離して気孔率を測定したところ、気孔率はそれぞれ50%/55%/45%であった。  The two types of microporous membranes thus obtained were stacked in three layers using a poly (vinylidene fluoride-hexafluoropropylene) copolymer membrane on both surface layers and a polyethylene microporous membrane on the intermediate layer, and were stretched under tension with a roll stretching machine. The film was stretched 4 times in the length direction and then stretched 2 times in the width direction to obtain a three-layer laminated film (stretched film) having a thickness of 25 μm. The thickness of each layer constituting the stretched film is 9 μm / 8 μm / 8 μm, respectively. When the stretched film was peeled and separated, and the porosity was measured, the porosity was 50% / 55% / 45%, respectively.

該積層膜を室温で電解液(エチレンカーボネート/プロピレンカーボネート/γブチルラクトンの1:1:2混合溶媒にLiBF4を1.5mol/リットルの濃度で溶かした溶液)中に浸漬し液中で保持した後、引き上げて表面に付着している余分な電解液を拭き取った。こうして得られた三層膜は、電解液を含んだまま液がにじみ出ない電解液含浸膜となった。また電解液中に長時間浸漬した後、電解液へのポリマーの溶出を観測したが、溶出は検出されなかった。この電解液含浸膜をステンレスシートで挟み、電極間に印加して、抵抗成分を測定し、コールコールプロットの実数インピーダンス切片からイオン伝導度を計算した。該三層積層膜の、室温におけるイオン伝導度は1.2mS/cmであった。また該三層積層膜のシャットダウン温度は136℃で、シャットダウン温度以上で電流は遮断された。The laminated film is immersed in an electrolytic solution (a solution of LiBF 4 dissolved at a concentration of 1.5 mol / liter in a 1: 1: 2 mixed solvent of ethylene carbonate / propylene carbonate / γ-butyllactone) at room temperature and held in the solution. After that, the excess electrolytic solution adhering to the surface was lifted off. The three-layer membrane thus obtained became an electrolyte-impregnated membrane that contained the electrolyte and did not ooze out. In addition, elution of the polymer into the electrolytic solution was observed after being immersed in the electrolytic solution for a long time, but no elution was detected. This electrolyte-impregnated membrane was sandwiched between stainless sheets, applied between electrodes, the resistance component was measured, and the ionic conductivity was calculated from the real impedance intercept of the Cole-Cole plot. The ionic conductivity of the three-layer laminated film at room temperature was 1.2 mS / cm. Further, the shutdown temperature of the three-layer laminated film was 136 ° C., and the current was cut off at the shutdown temperature or higher.

実施例1で作成した三層積層膜に、照射線量15Mradで電子線照射し、架橋膜を作成した。該架橋膜の表層と中間層を剥離分離し、それぞれのゲル分率を測定したところ、表層のポリ(ビニリデンフロライドーヘキサフルオロプロピレン)共重合体微多孔層のゲル分率は60%、中間層のポリエチレン微多孔膜のゲル分率は70%であった。  The three-layer laminated film prepared in Example 1 was irradiated with an electron beam at an irradiation dose of 15 Mrad to form a crosslinked film. When the surface layer and the intermediate layer of the crosslinked film were separated and separated, and the respective gel fractions were measured, the gel fraction of the poly (vinylidene fluoride-hexafluoropropylene) copolymer microporous layer on the surface layer was 60%, and the intermediate layer The gel fraction of the polyethylene microporous membrane was 70%.

実施例1と同様にして、架橋された三層積層膜を室温で電解液中に浸漬し、液中で保持したところ、電解液は架橋膜に含浸した。引き上げて表面にある電解液を拭き取ったところ、電解液を含んだまま、液のにじみ出ない含浸膜を得た。電解液中に長時間浸漬した後、電解液へのポリマーの溶出をチェックしたところ、ほとんど観察されなかった。該架橋膜の、室温におけるイオン伝導度は1.5mS/cmであった。また該架橋膜のシャットダウン温度は136℃で、シャットダウン温度以上で電流は遮断された。  In the same manner as in Example 1, the cross-linked three-layer laminated film was immersed in the electrolytic solution at room temperature and held in the liquid. As a result, the electrolytic solution was impregnated with the crosslinked film. When the electrolyte solution on the surface was lifted up and wiped off, an impregnated film that did not ooze out while containing the electrolyte solution was obtained. After immersing in the electrolytic solution for a long time, the elution of the polymer into the electrolytic solution was checked. The crosslinked membrane had an ionic conductivity at room temperature of 1.5 mS / cm. Further, the shutdown temperature of the crosslinked film was 136 ° C., and the current was cut off when the shutdown temperature was exceeded.

比較例1Comparative Example 1

重量平均分子量25万、融点135℃の高密度ポリエチレンを34重量%、親水性シリカ微粉19重量%、ジエチルヘキシルフタレート47重量%をヘンシルミキサーで混合し、30mmΦ二軸押し出し機で厚さ150μmの膜状成形体を得、塩化メチレンおよび苛性ソーダ水溶液でジエチルヘキシルフタレートを抽出除去し、その後ロール延伸機で長さ方向に4倍延伸し、次いでテンターで幅方向に2倍延伸して、厚さ25μm、気孔率50%のポリエチレン微多孔膜を得た。  34% by weight of high density polyethylene having a weight average molecular weight of 250,000, melting point of 135 ° C., 19% by weight of hydrophilic silica fine powder, and 47% by weight of diethyl hexyl phthalate were mixed with a Hensyl mixer, and the thickness was 150 μm with a 30 mmΦ twin screw extruder A film-like molded body was obtained, and diethylhexyl phthalate was extracted and removed with methylene chloride and aqueous caustic soda solution, then stretched 4 times in the length direction with a roll stretching machine, and then stretched 2 times in the width direction with a tenter to obtain a thickness of 25 μm. A polyethylene microporous membrane having a porosity of 50% was obtained.

実施例1と同様にして、該ポリエチレン微多孔膜を室温で電解液中に浸漬し、液中で保持した。引き上げて表面にある電解液を拭き取ったところ、腹中に残存する電解液は付着程度であって、ほとんどなかった。また室温におけるイオン伝導度は測定できなかった。また電解液中から引き上げて、拭き取らずに放置した場合、電解液は膜に保持されず、したたり落ちた。  In the same manner as in Example 1, the polyethylene microporous membrane was immersed in an electrolytic solution at room temperature and held in the solution. When the electrolyte solution on the surface was lifted up and wiped off, the electrolyte solution remaining in the abdomen was almost adhered and almost absent. Moreover, the ionic conductivity at room temperature could not be measured. Moreover, when it pulled up out of electrolyte solution and was left without wiping off, electrolyte solution was not hold | maintained at the film | membrane, but fell or fell.

発明の効果Effect of the invention

本発明になる三層積層微多孔膜からなるセパレータは、従来のリチウムイオン二次電池の製造工程をそのまま使用して電池製造が可能で、かつ本セパレータは電解液の保持性が良く、更に140℃以下の温度でシャットダウンして電流遮断するため、極めて安全な電池を提供することが可能になる。  The separator composed of the three-layer laminated microporous membrane according to the present invention can be manufactured by using the conventional manufacturing process of a lithium ion secondary battery as it is, and the separator has a good electrolyte holding property. Since the current is shut down by shutting down at a temperature of ℃ or less, it is possible to provide a very safe battery.

本発明で用いたシャットダウン温度の測定装置の概略図。  The schematic of the measuring device of the shutdown temperature used by the present invention. 本発明で用いたシャットダウン温度の測定装置の部分図。  The partial view of the measuring device of the shutdown temperature used by the present invention. 本発明で用いたシャットダウン温度の測定装置の部分図。  The partial view of the measuring device of the shutdown temperature used by the present invention.

Claims (8)

両表層がフッ化ビニリデンを含む共重合体からなる融点145℃以下の微多孔層で、中間層がポリオレフィンからなる融点140℃以下の微多孔層であることを特徴とする三層構造微多孔膜より構成されるリチウム電池用セパレータであって、層間の剥離強度が2g/cm以上であって、表層および中間層の連通微多孔が閉塞されていないリチウム電池用セパレータ。
A three-layered microporous membrane characterized in that both surface layers are microporous layers made of a copolymer containing vinylidene fluoride and having a melting point of 145 ° C or lower, and the intermediate layers are microporous layers made of polyolefin and having a melting point of 140 ° C or lower. A separator for a lithium battery, comprising: a peel strength between layers of 2 g / cm or more, and the continuous micropores in the surface layer and the intermediate layer are not blocked.
微多孔膜が表層−中間層−表層の三層積層膜であって、各層が接着剤を使用することなしに積層されている請求項1記載のリチウム電池用セパレータ。
The separator for a lithium battery according to claim 1, wherein the microporous film is a three-layer laminated film of surface layer-intermediate layer-surface layer, and each layer is laminated without using an adhesive.
フッ化ビニリデンを含む共重合体微多孔膜とポリエチレン微多孔膜をあらかじめ作成し、これら3枚を重ね合わせた後、両ポリマーの融点より10〜20℃低い温度で加圧下で延伸し積層されていることを特徴とする、請求項1または2記載のリチウム電池用セパレータ。
A copolymer microporous membrane and a polyethylene microporous membrane containing vinylidene fluoride are prepared in advance, and after superposing these three sheets, they are stretched and laminated under pressure at a temperature lower by 10 to 20 ° C. than the melting point of both polymers. The lithium battery separator according to claim 1, wherein the separator is a lithium battery separator.
表層を形成する微多孔層が架橋されており、そのゲル分率が10%以上である請求項1〜3のいずれか1項に記載のリチウム電池用セパレータ。
The separator for a lithium battery according to any one of claims 1 to 3, wherein the microporous layer forming the surface layer is cross-linked and has a gel fraction of 10% or more.
前記両表層、中間層ともに気孔率が30〜70%である請求項1〜4のいずれか1項に記載のリチウム電池用セパレータ。
The lithium battery separator according to any one of claims 1 to 4, wherein both the surface layer and the intermediate layer have a porosity of 30 to 70%.
セパレータの総厚みが10〜50μmであり、かつ中間層の厚みが5〜40μmである請求項1〜5のいずれか1項に記載のリチウム電池用セパレータ。
The separator for a lithium battery according to any one of claims 1 to 5, wherein a total thickness of the separator is 10 to 50 µm, and a thickness of the intermediate layer is 5 to 40 µm.
請求項1〜6のいずれかに記載のリチウム電池用セパレータの製造方法であって、フッ化ビニリデンを含む共重合体微多孔膜とポリエチレン微多孔膜をあらかじめ作成し、これら3枚を重ね合わせた後、両ポリマーの融点より10〜20℃低い温度で加圧下で延伸することを特徴とするリチウム電池用セパレータの製造方法。
It is a manufacturing method of the separator for lithium batteries in any one of Claims 1-6, Comprising: The copolymer microporous film and polyethylene microporous film containing a vinylidene fluoride were produced previously, and these 3 sheets were piled up. Then, the manufacturing method of the separator for lithium batteries characterized by extending | stretching under pressure at the temperature 10-20 degreeC lower than melting | fusing point of both polymers.
請求項1〜2,4〜6のいずれかに記載のリチウム電池用セパレータの製造方法であって、表層、中間層となるそれぞれのポリマーと溶剤を混合後、三層シートを押出し、冷却相分離させた後溶剤を除去、次いで延伸するか、あるいは延伸した後、溶剤を除去して三層微多孔膜を得ることを特徴とするリチウム電池用セパレータの製造方法。   It is a manufacturing method of the separator for lithium batteries in any one of Claims 1-2, 4-6, Comprising: After mixing each polymer and solvent used as a surface layer and an intermediate | middle layer, a three-layer sheet | seat is extruded and cooling phase separation is carried out. A method for producing a separator for a lithium battery, comprising: removing the solvent and then stretching, or stretching, or removing the solvent to obtain a three-layer microporous membrane.
JP2001007420A 2001-01-16 2001-01-16 Lithium battery separator Expired - Lifetime JP5207569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007420A JP5207569B2 (en) 2001-01-16 2001-01-16 Lithium battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007420A JP5207569B2 (en) 2001-01-16 2001-01-16 Lithium battery separator

Publications (3)

Publication Number Publication Date
JP2002216734A JP2002216734A (en) 2002-08-02
JP2002216734A5 JP2002216734A5 (en) 2008-02-21
JP5207569B2 true JP5207569B2 (en) 2013-06-12

Family

ID=18875172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007420A Expired - Lifetime JP5207569B2 (en) 2001-01-16 2001-01-16 Lithium battery separator

Country Status (1)

Country Link
JP (1) JP5207569B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573358B1 (en) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 Separators for lithium ion secondary batteries and lithium ion secondary batteries including the same
JP2005019156A (en) * 2003-06-25 2005-01-20 Tomoegawa Paper Co Ltd Electronic component separator and electronic component
EP1685955A4 (en) 2003-11-19 2009-10-21 Tonen Sekiyukagaku Kk Composite microporous film, and production method and use thereof
JP5017769B2 (en) * 2004-06-21 2012-09-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR101460640B1 (en) 2007-07-06 2014-12-02 소니 가부시끼가이샤 Separator, battery using the same, and method for manufacturing separator
US9065119B2 (en) 2011-04-08 2015-06-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US20140094076A1 (en) * 2011-06-16 2014-04-03 James S. Mrozinski Microporous Materials With Fibrillar Mesh Structure and Methods of Making and Using the Same
WO2013005329A1 (en) * 2011-07-07 2013-01-10 トヨタ自動車株式会社 Secondary battery
CN103187549B (en) * 2011-12-28 2015-04-22 山东东岳高分子材料有限公司 Diaphragm for lithium ion battery and preparation method thereof
KR101551359B1 (en) * 2012-08-21 2015-09-08 주식회사 아모그린텍 Complex fibrous separator having shutdown function, manufacturing method thereof and secondary battery using the same
US10103373B2 (en) * 2013-01-23 2018-10-16 South China University Of Technology Diaphragm paper, and preparation method and application thereof
WO2015022862A1 (en) * 2013-08-13 2015-02-19 日立マクセル株式会社 Separator for electrochemical devices, and electrochemical device
TWI500507B (en) * 2014-04-08 2015-09-21 Benq Materials Corp Porous separator and method for manufacturing thereof
KR101551358B1 (en) * 2014-09-26 2015-09-09 주식회사 아모그린텍 Complex fibrous separator having shutdown function, manufacturing method thereof and secondary battery using the same
KR101601168B1 (en) * 2015-03-06 2016-03-09 주식회사 아모그린텍 Complex fibrous separator having shutdown function and secondary battery using the same
EP3627586B1 (en) * 2017-05-17 2022-09-28 Teijin Limited Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
CN107706342A (en) * 2017-09-27 2018-02-16 上海恩捷新材料科技股份有限公司 Battery isolating film, lithium ion battery and preparation method thereof
CN108539095B (en) * 2018-04-03 2021-06-15 上海恩捷新材料科技有限公司 Battery coating film slurry, battery diaphragm, secondary battery and preparation method thereof
KR20210148080A (en) 2019-03-28 2021-12-07 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676808A (en) * 1992-06-29 1994-03-18 Japan Gore Tex Inc Diaphragm for battery and battery
JP3453005B2 (en) * 1995-06-02 2003-10-06 呉羽化学工業株式会社 Laminated porous membrane and separator for non-aqueous solvent type battery comprising the same
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte
JP3747963B2 (en) * 1996-06-24 2006-02-22 旭化成ケミカルズ株式会社 High heat-resistant polyethylene microporous membrane
JPH10247520A (en) * 1997-02-28 1998-09-14 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
US5716421A (en) * 1997-04-14 1998-02-10 Motorola, Inc. Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
JPH10316793A (en) * 1997-05-19 1998-12-02 Asahi Chem Ind Co Ltd Porous film prepared from vinylidene fluoride resin
JPH11135097A (en) * 1997-10-30 1999-05-21 Nitto Denko Corp Manufacture of battery separator
JPH11176239A (en) * 1997-12-12 1999-07-02 Fujikura Ltd Solid ion conductive composition
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JP3183270B2 (en) * 1998-02-19 2001-07-09 松下電器産業株式会社 Manufacturing method of organic electrolyte battery
JP2000215875A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2002216734A (en) 2002-08-02

Similar Documents

Publication Publication Date Title
JP5207569B2 (en) Lithium battery separator
US7087343B2 (en) High melt integrity battery separator for lithium ion batteries
JP6002291B2 (en) Non-aqueous electrolyte secondary battery including laminate, non-aqueous electrolyte secondary battery separator including laminate, and non-aqueous electrolyte secondary battery separator
JP4624304B2 (en) Multi-component composite film, polymer separation membrane including the same, and polymer electrolyte system including the same
JP5495210B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP4931163B2 (en) Polyolefin microporous membrane
EP2572880B1 (en) Laminated porous film, separator for lithium cell and cell
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
CN108025539B (en) Laminated porous film, separator for nonaqueous electrolyte secondary battery, and method for producing laminated porous film
TW200822422A (en) Microporous membrane, battery separator and battery
JP6093636B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JPWO2019074122A1 (en) Polyolefin microporous membrane and lithium ion secondary battery using the same
WO2007116672A1 (en) Polyolefin microporous film
JP2006289657A (en) Multilayer porous membrane
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP5629542B2 (en) Polyolefin microporous membrane
JP5942134B2 (en) Polyolefin microporous membrane
KR102715588B1 (en) Separator, electrochemical device comprising the same and manufacturing method for separator
JP6311585B2 (en) Porous body and method for producing the same
JP4804630B2 (en) Microporous membrane and lithium battery separator
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009138159A (en) Microporous membrane
JP7411005B2 (en) Separators for non-aqueous secondary batteries and non-aqueous secondary batteries

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5207569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term