JP5196705B2 - Optical sheet - Google Patents
Optical sheet Download PDFInfo
- Publication number
- JP5196705B2 JP5196705B2 JP2004088229A JP2004088229A JP5196705B2 JP 5196705 B2 JP5196705 B2 JP 5196705B2 JP 2004088229 A JP2004088229 A JP 2004088229A JP 2004088229 A JP2004088229 A JP 2004088229A JP 5196705 B2 JP5196705 B2 JP 5196705B2
- Authority
- JP
- Japan
- Prior art keywords
- optical sheet
- resin
- layer
- organic
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 29
- 239000010410 layer Substances 0.000 claims description 69
- 239000000758 substrate Substances 0.000 claims description 62
- 229920005989 resin Polymers 0.000 claims description 34
- 239000011347 resin Substances 0.000 claims description 34
- 230000004888 barrier function Effects 0.000 claims description 23
- 239000011247 coating layer Substances 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 20
- 229920000647 polyepoxide Polymers 0.000 claims description 18
- 239000003822 epoxy resin Substances 0.000 claims description 17
- 239000004033 plastic Substances 0.000 claims description 12
- 125000002723 alicyclic group Chemical group 0.000 claims description 11
- 239000003365 glass fiber Substances 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 10
- 229910003437 indium oxide Inorganic materials 0.000 claims description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 125000004434 sulfur atom Chemical group 0.000 claims 1
- 230000003746 surface roughness Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 26
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000004973 liquid crystal related substance Substances 0.000 description 16
- 239000004744 fabric Substances 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000003999 initiator Substances 0.000 description 11
- -1 methyl hydrogenated nadic acid anhydride Chemical class 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000011342 resin composition Substances 0.000 description 7
- 150000008065 acid anhydrides Chemical class 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 230000001588 bifunctional effect Effects 0.000 description 5
- 239000002985 plastic film Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011951 cationic catalyst Substances 0.000 description 4
- 238000007733 ion plating Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- XZKLXPPYISZJCV-UHFFFAOYSA-N 1-benzyl-2-phenylimidazole Chemical compound C1=CN=C(C=2C=CC=CC=2)N1CC1=CC=CC=C1 XZKLXPPYISZJCV-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000012663 cationic photopolymerization Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000004292 cyclic ethers Chemical group 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- SQWIEBKHVLRDRG-UHFFFAOYSA-N (2,6-dimethylphenyl)-diphenylphosphorylmethanone Chemical compound CC1=CC=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 SQWIEBKHVLRDRG-UHFFFAOYSA-N 0.000 description 1
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- QWQFVUQPHUKAMY-UHFFFAOYSA-N 1,2-diphenyl-2-propoxyethanone Chemical compound C=1C=CC=CC=1C(OCCC)C(=O)C1=CC=CC=C1 QWQFVUQPHUKAMY-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- SZMJWOAIWKPMCI-UHFFFAOYSA-N 2-[4-[1-[4-(2-prop-2-enoyloxyethoxy)phenyl]-9h-fluoren-2-yl]phenoxy]ethyl prop-2-enoate Chemical compound C1=CC(OCCOC(=O)C=C)=CC=C1C1=CC=C2C3=CC=CC=C3CC2=C1C1=CC=C(OCCOC(=O)C=C)C=C1 SZMJWOAIWKPMCI-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- RDFQSFOGKVZWKF-UHFFFAOYSA-N 3-hydroxy-2,2-dimethylpropanoic acid Chemical class OCC(C)(C)C(O)=O RDFQSFOGKVZWKF-UHFFFAOYSA-N 0.000 description 1
- XDQWJFXZTAWJST-UHFFFAOYSA-N 3-triethoxysilylpropyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C=C XDQWJFXZTAWJST-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HTMMMSIQFWMMIJ-UHFFFAOYSA-N [3-[2,2-dimethyl-3-(6-prop-2-enoyloxyhexanoyloxy)propanoyl]oxy-2,2-dimethylpropyl] 6-prop-2-enoyloxyhexanoate Chemical compound C=CC(=O)OCCCCCC(=O)OCC(C)(C)COC(=O)C(C)(C)COC(=O)CCCCCOC(=O)C=C HTMMMSIQFWMMIJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- HPVJGAZWQLWNKJ-UHFFFAOYSA-N azane;trifluoroborane Chemical compound N.FB(F)F HPVJGAZWQLWNKJ-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Substances FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000007759 kiss coating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は線膨張係数が小さく、表面平滑性、透明性、耐熱性、耐溶剤性に優れ、ガラスに代替可能な光学シートに関する。この光学シートは、例えば、液晶表示用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などに好ましい。 The present invention relates to an optical sheet having a small coefficient of linear expansion, excellent surface smoothness, transparency, heat resistance and solvent resistance, and capable of replacing glass. This optical sheet is preferable for a liquid crystal display substrate, an organic EL display element substrate, a color filter substrate, a touch panel substrate, a solar cell substrate, and the like.
一般に、アクティブマトリックスタイプなどの液晶表示素子や有機EL表示素子用の表示素子基板、カラーフィルター基板、太陽電池用基板等には、ガラス板が広く用いられている。しかしながら、ガラス板は割れ易い、曲げられない、比重が大きく軽量化に不向きであるなどの理由から、近年、その代替えとして種々のプラスチック素材が検討されている。 In general, glass plates are widely used for active matrix type liquid crystal display elements, display element substrates for organic EL display elements, color filter substrates, solar cell substrates, and the like. However, in recent years, various plastic materials have been studied as alternatives because glass plates are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.
例えば、特許文献1には、非晶質の熱可塑性樹脂及び活性エネルギー線硬化の可能なビス(メタ)アクリレートからなる樹脂組成物に対し、活性エネルギー線を用いて硬化を行った部材が液晶基板などとして、ガラス基板に代えて用い得ると記載されている。また、特許文献2には、脂環式構造、芳香族等の特定のビス(メタ)アクリレートを含む組成物を活性エネルギー線等により硬化成形した透明基板を用いた液晶表示素子が記載されている。
また、特許文献3や特許文献4には、エポキシ樹脂、酸無水物系硬化剤及び硬化触媒を含むエポキシ樹脂組成物を硬化して得られる硬化体からなる液晶表示素子用透明樹脂基板が記載されている。
For example, Patent Document 1 discloses that a member obtained by curing an active energy ray with respect to a resin composition made of an amorphous thermoplastic resin and bis (meth) acrylate capable of curing an active energy ray is a liquid crystal substrate. For example, it can be used instead of a glass substrate. Patent Document 2 describes a liquid crystal display element using a transparent substrate obtained by curing a composition containing a specific bis (meth) acrylate such as an alicyclic structure or aromatic with active energy rays or the like. .
Patent Document 3 and Patent Document 4 describe a transparent resin substrate for a liquid crystal display element comprising a cured product obtained by curing an epoxy resin composition containing an epoxy resin, an acid anhydride curing agent, and a curing catalyst. ing.
しかしながら、これら従来のガラス代替用のプラスチック材料は、いずれもガラス板に比べ線膨張係数が大きく、表示素子用基板、特にアクティブマトリックス表示素子基板に用いると、製造工程において反りやアルミ配線の断線などの不具合を生じる可能性があり、これらの用途への使用は困難である。このように、表示素子基板、特にアクティブマトリックス表示素子用基板に要求される、透明性、耐溶剤性、耐熱性等を満足しつつ、線膨張係数の小さなプラスチック素材が求められている。 However, all of these conventional plastic materials for glass replacement have a larger coefficient of linear expansion than glass plates, and when used for display element substrates, particularly active matrix display element substrates, warpage and disconnection of aluminum wiring in the manufacturing process. May be difficult to use for these purposes. Thus, there is a demand for a plastic material having a small coefficient of linear expansion while satisfying the transparency, solvent resistance, heat resistance, etc. required for a display element substrate, particularly an active matrix display element substrate.
線膨張係数を低減するためには、樹脂にガラスパウダーやガラスクロスなどの無機フィラーを配合する材料の複合化も種々行われている。例えば、特許文献5には、エポキシ樹脂及びガラス繊維製布状体を含む樹脂シートが示されている。しかしながら、特にガラスクロスを用いた場合、線膨張係数の低減効果は大きいが、樹脂とガラスとの線膨張係数の差、樹脂の硬化収縮等により、成形後のシート表面にはガラスクロス由来の凹凸が生じ、表面平滑性が求められる光学シートにおいては改善が必要とされていた。 In order to reduce the coefficient of linear expansion, various composites of materials in which an inorganic filler such as glass powder or glass cloth is blended with a resin have been performed. For example, Patent Document 5 discloses a resin sheet including an epoxy resin and a glass fiber cloth. However, especially when glass cloth is used, the effect of reducing the linear expansion coefficient is great, but due to differences in the linear expansion coefficient between resin and glass, curing shrinkage of the resin, etc., unevenness derived from glass cloth is formed on the sheet surface after molding. Therefore, an optical sheet that requires surface smoothness has been required to be improved.
本発明の目的は十分な平滑性を有し、線膨張係数が小さく、透明性、耐熱性、耐溶剤性に優れ、ガラスに代替可能な光学シートを提供することにある。本発明の光学シートは、アクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラ
ーフィルター用基板、タッチパネル用基板、太陽電池基板などの用途に適する。
An object of the present invention is to provide an optical sheet that has sufficient smoothness, a small linear expansion coefficient, excellent transparency, heat resistance, and solvent resistance and can be substituted for glass. The optical sheet of the present invention is suitable for applications such as active matrix type liquid crystal display element substrates, organic EL display element substrates, color filter substrates, touch panel substrates, and solar cell substrates.
本発明者らは、かかる課題を解決すべく鋭意検討した。その結果、透明樹脂(a)とガラス繊維(b)からなるシート(A)に有機コート層(c)を積層し、ガラス繊維由来の凹凸を低減し、少なくとも片面の表面凹凸が150nm以下である光学シートは、低線膨張係数であって、表面平滑性にも優れ、アクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの用途に好適に用いられることを見出し、本発明を完成するに至った。 The present inventors diligently studied to solve this problem. As a result, the organic coat layer (c) is laminated on the sheet (A) composed of the transparent resin (a) and the glass fiber (b) to reduce the unevenness derived from the glass fiber, and at least one surface unevenness is 150 nm or less. The optical sheet has a low linear expansion coefficient and excellent surface smoothness, such as a liquid crystal display element substrate including an active matrix type, an organic EL display element substrate, a color filter substrate, a touch panel substrate, and a solar cell substrate. It has been found that it can be suitably used for applications, and the present invention has been completed.
本発明の透明複合体組成物は、十分な平滑性を有し、低線膨張係数で透明性、耐熱性、耐溶剤性等に優れるため、例えば、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル等に好適に利用でき、特にアクティブマトリックスタイプの液晶表示素子基板や有機EL素子基板用の光学シートとして好ましい。 The transparent composite composition of the present invention has sufficient smoothness and has a low coefficient of linear expansion and excellent transparency, heat resistance, solvent resistance, and the like. For example, a plastic substrate for a liquid crystal display element, a substrate for a color filter It can be suitably used for a plastic substrate for an organic EL display element, a solar cell substrate, a touch panel, and the like, and is particularly preferable as an optical sheet for an active matrix type liquid crystal display element substrate or an organic EL element substrate.
以下に、本発明をさらに具体的に説明する。
本発明の光学シートの少なくとも片面は、表面凹凸が150nm以下、好ましくは100nm以下、最も好ましくは30nm以下である。特に液晶用途に用いる場合は、セル内面の平滑性は100nm以下、更にSTN液晶に用いる場合は30nm以下であることが好ましい。表面凹凸が150nm以上である場合、セルギャップが不均一になり、表示ムラの原因となる恐れがある。
有機コート層(c)の厚みはシート片面につき、1μm〜30μm、好ましくは2μm〜15μmである。厚みが1μm以下の場合、シートの凹凸以下となり、有機コート層(c)による埋め込みが十分に行なわれない。30μm以上の場合、硬化後の反り、クラックが生じるため好ましくない。
Hereinafter, the present invention will be described more specifically.
At least one surface of the optical sheet of the present invention has a surface unevenness of 150 nm or less, preferably 100 nm or less, and most preferably 30 nm or less. In particular, when used for liquid crystal applications, the smoothness of the cell inner surface is preferably 100 nm or less, and when used for STN liquid crystal, it is preferably 30 nm or less. When the surface unevenness is 150 nm or more, the cell gap becomes non-uniform, which may cause display unevenness.
The thickness of the organic coat layer (c) is 1 μm to 30 μm, preferably 2 μm to 15 μm, on one side of the sheet. When the thickness is 1 μm or less, the thickness is less than the unevenness of the sheet, and the organic coating layer (c) is not sufficiently embedded. A thickness of 30 μm or more is not preferable because warpage and cracks after curing occur.
前記のように、透明樹脂(a)とガラスクロス(b)より作成されたシート(A)は、ガラスクロスと樹脂の硬化収縮率や線膨張係数の差により表面に凹凸が発生しやすい。多くの場合、表面凹凸が150nmを超えるため、有機コート層(c)を積層することにより表面凹凸を埋めることが好ましい。
有機コート層(c)の厚みはシート片面につき、1μm〜30μm、好ましくは2μm〜15μmである。厚みが1μm以下の場合、有機コート層(c)による埋め込みが十分に行なわれない。30μm以上の場合、硬化後の反り、クラックが生じるため好ましくない
As described above, the sheet (A) prepared from the transparent resin (a) and the glass cloth (b) is likely to have irregularities on the surface due to the difference in curing shrinkage rate and linear expansion coefficient between the glass cloth and the resin. In many cases, since the surface unevenness exceeds 150 nm, it is preferable to fill the surface unevenness by laminating the organic coat layer (c).
The thickness of the organic coat layer (c) is 1 μm to 30 μm, preferably 2 μm to 15 μm, on one side of the sheet. When the thickness is 1 μm or less, the organic coating layer (c) is not sufficiently embedded. In the case of 30 μm or more, it is not preferable because warping and cracking occur after curing.
有機コート層(c)に用いる樹脂のガラス転移温度は、好ましくは150℃以上、さらに好ましくは200℃以上である。樹脂のガラス転移温度がこれより低いと、特に、アクティブマトリックス型の表示素子基板に用いた場合、TFT素子形成工程で有機コート層(c)が変形し、表面凹凸が増大する場合がある。 The glass transition temperature of the resin used for the organic coat layer (c) is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. When the glass transition temperature of the resin is lower than this, particularly when used in an active matrix type display element substrate, the organic coat layer (c) may be deformed in the TFT element forming step, and the surface unevenness may increase.
このような有機コート層(c)に用いる樹脂の例としては、アクリレート、エポキシなどの反応性モノマーを活性エネルギー線および/または熱で架橋させた樹脂などが挙げられる。これらのうち、耐熱性、透明性、耐溶剤性、耐擦傷性に優れていることから2官能以上のアクリレートを構成成分として含む架橋樹脂、または2官能以上のエポキシ樹脂を構成成分として含む硬化樹脂が好ましい。
2官能以上のアクリレートとしては、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、イソシアヌレート構造を有するアクリレート、環状エーテル
構造を有するアクリレート、脂環式構造を有するアクリレートなどが挙げられるが、イソシアヌルレートを有するアクリレート、環状エーテルを有する構造アクリレート、脂環式構造を有するアクリレートは耐熱性、透明性に優れるためより好ましい。さらにイソシアヌレート構造を有するアクリレートとしては、下式(1)のアクリレート、環状エーテル構造を有するアクリレートとしては下式(2)のアクリレートがより耐熱性に優れるため、更に好ましい。
Examples of the resin used for the organic coat layer (c) include a resin obtained by crosslinking a reactive monomer such as acrylate or epoxy with active energy rays and / or heat. Among these, since it is excellent in heat resistance, transparency, solvent resistance, and scratch resistance, a crosslinked resin containing a bifunctional or higher functional acrylate as a constituent component, or a cured resin containing a bifunctional or higher functional epoxy resin as a constituent component Is preferred.
Examples of the bifunctional or higher acrylate include epoxy acrylate, urethane acrylate, polyester acrylate, acrylate having an isocyanurate structure, acrylate having a cyclic ether structure, acrylate having an alicyclic structure, and the like. A structural acrylate having a cyclic ether and an acrylate having an alicyclic structure are more preferable because of excellent heat resistance and transparency. Furthermore, as an acrylate having an isocyanurate structure, an acrylate having the following formula (1) and an acrylate having a cyclic ether structure are more preferable because the acrylate having the following formula (2) is more excellent in heat resistance.
2官能以上のエポキシ樹脂としては、トリグリシジルイソシアヌレートや脂環式構造を有するエポキシから選ばれた1種以上を構成成分として含む硬化樹脂がより好ましい。中でも下記化学式(3)〜(5)で示される脂環式エポキシ樹脂から選ばれた1種以上が更に好ましい。
一般に、優れた耐熱性を得るためには、芳香族等の共役二重結合を有する環を持つアクリレート樹脂、エポキシ樹脂が用いられるが、可視光のうち短波長側(400nm前後)の光線透過率が落ち、黄色味がかった色目になりやすく、光学フィルムとしては好ましくない。上記アクリレート樹脂、エポキシ樹脂は共役二重結合を持たない環状構造を有するため耐熱性に優れ、かつ可視光全範囲での光線透過率の変化が少なく、着色が殆ど見られないため、好適に使用出来る。 In general, in order to obtain excellent heat resistance, an acrylate resin or an epoxy resin having a ring having a conjugated double bond such as aromatic is used, but the light transmittance on the short wavelength side (around 400 nm) of visible light. , And tends to give a yellowish color, which is not preferable as an optical film. The above acrylate resins and epoxy resins have a cyclic structure with no conjugated double bonds, so they have excellent heat resistance, little change in light transmittance over the entire visible light range, and almost no coloration, so they are used preferably I can do it.
本発明の有機コート層(c)には、必要に応じ、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、熱可塑性又は熱硬化性のオリゴマーやポリマーを併用してよい。この場合、吸水率を低減させるなどの目的で、脂環式構造やカルド骨格を有するオリゴマーやポリマーを使用することが好ましい。 In the organic coat layer (c) of the present invention, if necessary, thermoplastic or thermosetting oligomers or polymers may be used in combination as long as the properties such as transparency, solvent resistance, and heat resistance are not impaired. In this case, it is preferable to use an oligomer or polymer having an alicyclic structure or a cardo skeleton for the purpose of reducing water absorption.
有機コート層(c)に用いるアクリレート樹脂またはエポキシ樹脂を架橋させるには、活性エネルギー線により硬化させる方法、熱をかけて熱重合させる方法等があり、これらを併用してもよい。アクリレート樹脂を用いる場合には、活性エネルギー線により硬化させる方法が好ましい。また、反応の完結、シートに対する密着性を向上させる等の目的で、活性エネルギー線による硬化及び/又は熱をかけて熱重合させる工程の後に、さらに高温での熱処理を併用することが好ましい。特に反応が完結していない場合、表示素子製造工程におけるの加熱工程中に反応が進み、表面凹凸が増大する場合がある。使用する活性エネルギー線としては、紫外線が好ましい。紫外線の光源としては、例えば、メタルハライドタイプ、高圧水銀灯ランプ等が挙げられる。活性エネルギー線による硬化及び/又は熱重合による架橋後に高温で熱処理する場合は、加熱による着色を抑えるため、窒素雰囲気下又は真空状態で行なうのが好ましく、加熱温度150〜300℃、1〜24時間の熱処理工程を加えるのが好ましい。 In order to crosslink the acrylate resin or the epoxy resin used for the organic coat layer (c), there are a method of curing with active energy rays, a method of heat polymerization by applying heat, and the like, and these may be used in combination. When an acrylate resin is used, a method of curing with active energy rays is preferable. Further, for the purpose of completing the reaction and improving the adhesion to the sheet, it is preferable to further use a heat treatment at a higher temperature after the step of curing with active energy rays and / or heat polymerization. In particular, when the reaction is not completed, the reaction proceeds during the heating process in the display element manufacturing process, and the surface unevenness may increase. The active energy ray used is preferably ultraviolet rays. Examples of the ultraviolet light source include a metal halide type and a high-pressure mercury lamp lamp. When heat treatment is performed at a high temperature after crosslinking by active energy rays and / or thermal polymerization, it is preferably performed in a nitrogen atmosphere or in a vacuum state in order to suppress coloring due to heating, and a heating temperature of 150 to 300 ° C. for 1 to 24 hours. It is preferable to add the heat treatment step.
有機コート層(c)に用いるアクリレート樹脂を紫外線等の活性エネルギー線により架橋、硬化させるには、樹脂組成物中にラジカルを発生する光重合開始剤を加えるのが好ましい。かかる光重合開始剤としては、例えばベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1−ヒドロキシ−シクロヘキシル−フェニルケトン、2,6−ジメチルベンゾイルジフェニルホスフィンオキシド、
2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドが挙げられる。これらの光重合開始剤は2種以上を併用しても良い。
In order to crosslink and cure the acrylate resin used for the organic coat layer (c) with active energy rays such as ultraviolet rays, it is preferable to add a photopolymerization initiator that generates radicals in the resin composition. Examples of such photopolymerization initiator include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone, 2,6-dimethylbenzoyl diphenylphosphine oxide,
2,4,6-trimethylbenzoyldiphenylphosphine oxide is mentioned. Two or more of these photopolymerization initiators may be used in combination.
光重合開始剤の複合体組成物中における含有量は、適度に硬化させる量であればよく、2官能以上のアクリレートの合計100重量部に対し、0.01〜5重量部が好ましく、
さらに好ましくは、0.02〜1重量部であり、最も好ましくは、0.1〜0.5重量部で
ある。光重合開始剤の添加量が多すぎると、重合が急激に進行し、着色、硬化時の割れ等の問題が発生する。また、少なすぎると組成物を充分に硬化させることができない恐れがある。
The content of the photopolymerization initiator in the composite composition may be an appropriate amount to be cured, and is preferably 0.01 to 5 parts by weight with respect to a total of 100 parts by weight of the bifunctional or higher acrylate,
More preferred is 0.02 to 1 part by weight, and most preferred is 0.1 to 0.5 part by weight. When the amount of the photopolymerization initiator added is too large, the polymerization proceeds rapidly, and problems such as coloring and cracking during curing occur. Moreover, when there is too little, there exists a possibility that a composition cannot fully be hardened.
有機コート層(c)に用いるエポキシ樹脂は、硬化剤もしくは重合開始剤存在下、加熱もしくは活性エネルギー線を照射し、硬化して用いる。用いる硬化剤は、優れた透明性の硬化物が得られやすいことから、酸無水物系硬化剤やカチオン系触媒が好ましい。酸無水物硬化剤としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチル水添無水ナジック酸、水添無水ナジック酸などがあげられ、なかでも透明性が優れることからメチルヘキサヒドロ無水フタル酸やメチル水添無水ナジック酸が好ましい。 The epoxy resin used for the organic coat layer (c) is used after being cured by heating or irradiation with active energy rays in the presence of a curing agent or a polymerization initiator. The curing agent to be used is preferably an acid anhydride curing agent or a cationic catalyst because an excellent transparent cured product can be easily obtained. Acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride, methyl Examples include hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl hydrogenated nadic acid anhydride, hydrogenated nadic acid anhydride, etc. Among them, methyl hexahydrophthalic anhydride and methyl hydrogenated nadic acid anhydride are excellent in transparency. Is preferred.
酸無水物系硬化剤を使用する場合は、硬化促進剤を併用することが好ましい。この硬化促進剤としては、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン等の三級アミン類、2−エチル−4−メチルイミダゾールや1−ベンジル−2−フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等のリン化合物、四級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられ、これらのなかでも透明性が優れることからリン化合物や1−ベンジル−2−フェニルイミダゾール等のイミダゾール類が好ましい。これら硬化促進剤は、単独で用いても2種以上を併用して用いても良い。 When using an acid anhydride curing agent, it is preferable to use a curing accelerator in combination. Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, tertiary amines such as triethylenediamine, 2-ethyl-4-methylimidazole and 1-benzyl-2-phenyl. Examples include imidazoles such as imidazole, phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof. Among these, phosphorus is excellent because of its excellent transparency. Compounds and imidazoles such as 1-benzyl-2-phenylimidazole are preferred. These curing accelerators may be used alone or in combination of two or more.
エポキシ樹脂と酸無水物系硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、酸無水物系硬化剤における酸無水物基が0.5〜1.5当量に設定することが好ましく、0.7〜1.2当量がより好ましい。
カチオン系触媒としては、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、三フッ化ホウ素アミン錯体、三フッ化ホウ素のアンモニウム塩、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨウドニウム塩、アルミニウム錯体を含有するカチオン系触媒等をあげることができ、これらのなかでもアルミニウム錯体を含有するカチオン系触媒、芳香族スルホニウム塩、芳香族ヨウドニウム塩が好ましい。
用途によっては、光学シートの両面が平滑であることは必ずしも必要ではない。しかし、有機コート層(c)をシート(A)の片面のみ積層した場合、耐薬品性や耐殺傷性の不足といった問題が発生することがあり、その場合は有機コート層(c)をシート(A)の両面に積層する必要がある。
The blending ratio of the epoxy resin and the acid anhydride curing agent is set such that the acid anhydride group in the acid anhydride curing agent is 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferably 0.7 to 1.2 equivalents.
Cationic catalysts include organic acids such as acetic acid, benzoic acid, salicylic acid, paratoluenesulfonic acid, boron trifluoride amine complex, boron trifluoride ammonium salt, aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium. Examples thereof include a cationic catalyst containing a salt and an aluminum complex. Among these, a cationic catalyst containing an aluminum complex, an aromatic sulfonium salt and an aromatic iodonium salt are preferable.
Depending on the application, it is not always necessary that both sides of the optical sheet are smooth. However, when the organic coat layer (c) is laminated only on one side of the sheet (A), a problem such as insufficient chemical resistance and killing resistance may occur. In that case, the organic coat layer (c) is attached to the sheet ( It is necessary to laminate on both sides of A).
有機コート層(c)をシート(A)上に塗付する方式としては、グラビアコート、キスコート、スピンコート、バーコート、ディップコートなどがあるが、特に方式は限定しない。また、生産性、塗付外観の向上のため、溶剤や界面活性剤を使用しても構わない。 Examples of the method for applying the organic coat layer (c) onto the sheet (A) include gravure coating, kiss coating, spin coating, bar coating, and dip coating, but the method is not particularly limited. Moreover, you may use a solvent and surfactant for improvement of productivity and a coating external appearance.
有機コート層(c)とシート(A)との密着性を向上させるため、シランカップリング剤などの公知の表面処理剤で処理しても構わない。処理方法としては、コート塗布面にカップリング剤を処理する方法(直接処理法)、有機コート樹脂中に混合する方法(インテグラルブレンド法)などがあるが、いずれの処理法でも構わない。具体的には、反応性モノマーとして2つ以上の官能基を持つアクリレート樹脂を用いた場合にはアクリルシラン、メルカプトシラン、アミノシランで処理することが好ましい。 In order to improve the adhesion between the organic coat layer (c) and the sheet (A), it may be treated with a known surface treatment agent such as a silane coupling agent. Examples of the treatment method include a method of treating the coupling agent on the coated surface (direct treatment method) and a method of mixing in an organic coat resin (integral blend method), but any treatment method may be used. Specifically, when an acrylate resin having two or more functional groups is used as the reactive monomer, it is preferably treated with acrylic silane, mercaptosilane, or aminosilane.
また、本発明の有機コート層(c)に用いる樹脂には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料、他の無機フィラー等の充填剤等を配合してもよい。 The resin used in the organic coating layer (c) of the present invention may contain a small amount of an antioxidant, an ultraviolet absorber, as long as it does not impair the properties such as transparency, solvent resistance, and heat resistance. You may mix | blend fillers, such as a dye and a pigment and another inorganic filler.
本発明の光学シートを、光学用途、すなわち液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、等として用いる場合は、30〜150℃の平均線膨張係数が40ppm以下であること
が好ましい。特にアクティブマトリックス表示素子基板に用いる場合は、前記平均線膨張係数が30ppm以下であることが好ましく、より好ましくは20ppm以下である。前記値を越えると、製造工程において反りやアルミ配線の断線などの問題が生じる恐れがあるが、線膨張係数が前記の値以下であると従来のガラス基板を用いた場合の設備を大きく変更せずにTFT形成工程を実施できる。
When the optical sheet of the present invention is used as an optical application, that is, a plastic substrate for liquid crystal display elements, a substrate for color filters, a plastic substrate for organic EL display elements, a solar cell substrate, a touch panel, etc., an average line of 30 to 150 ° C. The expansion coefficient is preferably 40 ppm or less. In particular, when used for an active matrix display element substrate, the average linear expansion coefficient is preferably 30 ppm or less, more preferably 20 ppm or less. If the above value is exceeded, problems such as warpage and disconnection of aluminum wiring may occur in the manufacturing process. However, if the linear expansion coefficient is less than the above value, the equipment when using the conventional glass substrate is greatly changed. It is possible to carry out the TFT formation process without any further.
本発明のシートを、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル等として用いる場合、基板の厚さは50〜2000μmであることが好ましく、50〜1000μmであるのがより好ましい。基板の厚さがこの範囲内にあれば、平坦性に優れ、ガラス基板と比較して、基板の軽量化を図ることができる。 When the sheet of the present invention is used as a plastic substrate for liquid crystal display elements, a substrate for color filters, a plastic substrate for organic EL display elements, a solar cell substrate, a touch panel, etc., the thickness of the substrate is preferably 50 to 2000 μm, More preferably, it is 50-1000 micrometers. If the thickness of the substrate is within this range, the flatness is excellent, and the weight of the substrate can be reduced as compared with the glass substrate.
本発明に用いる透明樹脂(a)の例としては、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、シクロオレフィンポリマーなどの熱可塑性樹脂、アクリレート、エポキシなどの反応性モノマーを熱及び/または活性エネルギー線で架橋させた樹脂などが挙げられる。熱可塑性樹脂の場合は成形時のリタデーションや、耐薬品性の不足といった問題があるが、アクリレート、エポキシなどの反応性モノマーを熱及び/または活性エネルギー線で架橋させた樹脂はリタデーションが小さく、耐薬品性にも優れる為好ましい。特に脂環式構造を有する反応性モノマーを含む場合は、耐熱性や光線透過率に優れるため、アクティブマトリックスタイプなどの液晶表示素子や有機EL表示素子用の表示素子基板、カラーフィルター基板、太陽電池用基板等により好適に使用される。 Examples of the transparent resin (a) used in the present invention include thermoplastic resins such as polycarbonate, polyarylate, polysulfone, polyethersulfone, and cycloolefin polymer, and reactive monomers such as acrylate and epoxy as heat and / or active energy rays. And a resin cross-linked with. In the case of thermoplastic resins, there are problems such as retardation during molding and insufficient chemical resistance, but resins obtained by crosslinking reactive monomers such as acrylates and epoxies with heat and / or active energy rays have low retardation and are resistant to resistance. It is preferable because of its excellent chemical properties. In particular, when a reactive monomer having an alicyclic structure is included, since it has excellent heat resistance and light transmittance, it is an active matrix type liquid crystal display element, a display element substrate for an organic EL display element, a color filter substrate, a solar cell. It is preferably used by a substrate for use.
また、本発明の光学シートを表示基板用プラスチック基板として用いる場合、波長550nmにおける平行光線透過率80%以上であることが好ましく、さらに好ましくは85%以上であり、最も好ましくは88%以上である。波長550nmにおける平行光線透過率が80%より低いと表示性能が充分でない。 Further, when the optical sheet of the present invention is used as a plastic substrate for a display substrate, the parallel light transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 85% or more, and most preferably 88% or more. . When the parallel light transmittance at a wavelength of 550 nm is lower than 80%, the display performance is not sufficient.
かかる光学シートにおいて、波長550nmにおける平行光線透過率を80%以上にするには、透明樹脂(a)とガラス繊維(b)の屈折率を一致させる方法が好ましい。透明樹脂(a)とガラス繊維(b)との屈折率差は、優れた透明性を得るため0.01以下である
必要があり、0.005以下であるのがより好ましい。かかる屈折率差が0.01より大きいと得られる複合体組成物の透明性が劣る傾向にある。
In such an optical sheet, a method of matching the refractive indexes of the transparent resin (a) and the glass fiber (b) is preferable in order to make the parallel light transmittance at a wavelength of 550 nm 80% or more. The refractive index difference between the transparent resin (a) and the glass fiber (b) needs to be 0.01 or less in order to obtain excellent transparency, and is more preferably 0.005 or less. If the refractive index difference is greater than 0.01, the resulting composite composition tends to have poor transparency.
本発明の透明複合体組成物に配合するガラス繊維(b)の屈折率は特に限定されるものではないが、組み合わせる樹脂の屈折率の調整が容易なように1.50〜1.57の範囲にあるのが好ましい。特にガラス繊維(b)の屈折率が1.50〜1.54である場合は、ガラスのアッベ数に近い樹脂が選択でき好ましい。樹脂とガラスとのアッベ数が近いと広い波長領域において両者の屈折率が一致し、広い波長領域で高い光線透過率が得られる。 Although the refractive index of the glass fiber (b) mix | blended with the transparent composite composition of this invention is not specifically limited, The range of 1.50-1.57 is easy so that adjustment of the refractive index of resin to combine is easy. It is preferable that it exists in. In particular, when the refractive index of the glass fiber (b) is 1.50 to 1.54, a resin close to the Abbe number of glass can be selected, which is preferable. When the Abbe numbers of the resin and glass are close, the refractive indexes of the two coincide in a wide wavelength region, and a high light transmittance is obtained in a wide wavelength region.
ガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、クォーツ、低誘導率ガラス、高誘導率ガラスなどがあげられ、中でもアルカリ金属などのイオン性不純物が少なく、入手が容易なEガラス、Sガラス、Tガラス、NEガラスが好ましい。 Examples of the glass include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, quartz, low inductivity glass, and high inductivity glass. E glass, S glass, T glass, and NE glass, which have few impurities and are easily available, are preferred.
シート(A)におけるガラス繊維の配合量は、1〜90重量%が好ましく、より好ましくは10〜80重量%、さらに好ましくは30〜70重量%である。ガラス繊維の配合量がこれより少ないと、複合化による低線膨張化の効果が認められず、一方、これより多いと成形外観が低下する傾向にある。 The blending amount of the glass fiber in the sheet (A) is preferably 1 to 90% by weight, more preferably 10 to 80% by weight, and still more preferably 30 to 70% by weight. When the blending amount of the glass fiber is less than this, the effect of reducing the linear expansion due to the composite is not recognized, whereas when it is more than this, the molded appearance tends to be lowered.
シート(A)の成形方法には制限がなく、例えば、透明樹脂として反応性モノマーを用
いる場合には、(1)反応性モノマーとガラスクロスとを直接混合し、必要な型に注型した
のち架橋させる方法、(2)反応性モノマーを溶剤に溶解しガラスクロスを分散させキャス
トした後、架橋させる方法、さらに(3)反応性モノマーをガラス繊維布に含浸させたのち
架橋させ、必要に応じてシート化する方法などが挙げられる。
There are no restrictions on the method of forming the sheet (A). For example, when a reactive monomer is used as the transparent resin, (1) the reactive monomer and glass cloth are directly mixed and cast into the required mold. Crosslinking method, (2) Dissolving reactive monomer in solvent and dispersing and casting glass cloth, then crosslinking, and (3) impregnating reactive monomer into glass fiber cloth and crosslinking, if necessary To make a sheet.
本発明の光学シートを液晶表示用基板、有機EL表示素子基板、カラーフィルター用基板などに用いる場合は、ガスバリア層(e)として無機酸化物を積層したものが、好ましく使用される。中でも、透明性、水蒸気および酸素に対するバリア性に優れていることから珪素酸化物、SiOx (x=1.5〜1.8)がより好ましい。xが1.8より大きい
と、得られる無機層の透明性は高くなるが、バリア性は低下する。反対にSiOx のxが1.5以下であると、バリア性は高くなるものの、珪素酸化物はやや褐色を呈し、透明性が悪くなる。無機層は、慣用の方法、例えば、物理的方法(真空蒸着法、反応性蒸着法、スパッタリング法、反応性スパッタリング法、イオンプレーティング法、反応性イオンプレーティング法など)、化学的方法(CVD法、プラズマCVD法、レーザーCVD法など)により、有機コート層(c)の表面を、前記無機酸化物で被覆することにより形成できる。
ガスバリア層(e)にキズ、クラックの欠陥が生じた場合、ガスバリア性の低下が起こり、性能が十分に発揮されない。よってガスバリア層を保護するために、その外側に耐殺傷性に優れる前記有機コート層(c)を積層するのが好ましい。
When the optical sheet of the present invention is used for a liquid crystal display substrate, an organic EL display element substrate, a color filter substrate, or the like, a laminate in which an inorganic oxide is laminated as the gas barrier layer (e) is preferably used. Among these, silicon oxide and SiOx (x = 1.5 to 1.8) are more preferable because of excellent transparency and barrier properties against water vapor and oxygen. When x is larger than 1.8, the transparency of the resulting inorganic layer increases, but the barrier property decreases. On the other hand, when x of SiOx is 1.5 or less, the barrier property is increased, but the silicon oxide is slightly brown and the transparency is deteriorated. The inorganic layer may be formed by a conventional method such as a physical method (vacuum deposition method, reactive deposition method, sputtering method, reactive sputtering method, ion plating method, reactive ion plating method, etc.), chemical method (CVD The surface of the organic coating layer (c) can be formed by coating with the inorganic oxide by a method, a plasma CVD method, a laser CVD method or the like.
If the gas barrier layer (e) is flawed or cracked, the gas barrier property is lowered and the performance is not sufficiently exhibited. Therefore, in order to protect the gas barrier layer, the organic coat layer (c) having excellent killing resistance is preferably laminated on the outside thereof.
ガスバリア層(e)の成膜方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法、化学蒸着法、ゾルゲル法などが挙げられるが、特に限定されるものではない。 Examples of the method for forming the gas barrier layer (e) include, but are not limited to, sputtering, vacuum deposition, ion plating, chemical vapor deposition, and sol-gel method.
本発明の光学シートを液晶表示用基板、有機EL表示用基板、タッチパネル基板、太陽電池用基板などに用いる場合は、最外層に導電層(d)を積層したものがより好ましく使用される。本発明の光学シートに設けられる導電層(d)は、従来公知のものであってよい。導電層の素材としては、酸化インジウム、インジウム−スズの合金酸化物(ITO)、酸化スズ、フッ素を添加した酸化スズ、酸化亜鉛、酸化アルミニウム、酸化珪素、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化セレン等の少なくとも一種からなる酸化物の単層体または積層体が例示される。これらのうち特に酸化インジウム、ITO、フッ素を添加した酸化スズ、酸化亜鉛が好ましい。導電層の厚さは通常100〜3000Åが好ましい。導電層の厚さがこれより薄いと導電性が十分ではなく、一方、厚すぎると透明性が損なわれる。透明性と導電性のバランスから、酸化インジウムを主成分とした導電層がより好ましく、最も好ましいのはITO(酸化インジウムと酸化スズの混合物)である。また、表示素子用として使用する場合は、導電層(d)を成膜する面の凹凸が150nm以下であることが必要である。150nmを超える場合は、セルギャップが不均一になる等の理由で、表示欠陥が生じる恐れがある。 When the optical sheet of the present invention is used for a liquid crystal display substrate, an organic EL display substrate, a touch panel substrate, a solar cell substrate, or the like, a laminate in which a conductive layer (d) is laminated on the outermost layer is more preferably used. The conductive layer (d) provided on the optical sheet of the present invention may be a conventionally known one. The conductive layer material is indium oxide, indium-tin alloy oxide (ITO), tin oxide, tin oxide with addition of fluorine, zinc oxide, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, tantalum oxide, oxide Examples thereof include a single layer or a stack of oxides made of at least one of niobium and selenium oxide. Of these, indium oxide, ITO, tin oxide added with fluorine, and zinc oxide are particularly preferable. The thickness of the conductive layer is usually preferably 100 to 3000 mm. If the thickness of the conductive layer is thinner than this, the conductivity is not sufficient, while if it is too thick, the transparency is impaired. From the balance of transparency and conductivity, a conductive layer mainly composed of indium oxide is more preferable, and ITO (mixture of indium oxide and tin oxide) is most preferable. Moreover, when using it for display elements, the unevenness | corrugation of the surface which forms a conductive layer (d) needs to be 150 nm or less. If it exceeds 150 nm, a display defect may occur due to a non-uniform cell gap.
導電層(d)の成膜方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法、化学蒸着法などが挙げられるが、特に限定されるものではない。 Examples of the method for forming the conductive layer (d) include, but are not limited to, a sputtering method, a vacuum deposition method, an ion plating method, and a chemical vapor deposition method.
本発明の光学シートの層構成は特に限定しないが、例としては、(1)有機コート層(c
)/ガスバリア層(e)/有機コート層(c)/シート(A)/有機コート層(c)/ガスバリア層(e)/有機コート層(c)/導電層(d)、(2)有機コート層(c)/ガス
バリア層(e)/有機コート層(c)/シート(A)/有機コート層(c)/導電層(d)、(3)有機コート層(c)/ガスバリア層(e)/有機コート層(c)/シート(A)
/有機コート層(c)/ガスバリア層(e)/有機コート層(c)、(4)有機コート層(
c)/ガスバリア層(e)/有機コート層(c)/シート(A)/有機コート層(c)、(5)有機コート層(c)/ガスバリア層(e)/有機コート層(c)/シート(A)、(6)
有機コート層(c)/シート(A)/有機コート層(c)、(7)有機コート層(c)/シ
ート(A)などである。ガスバリア層(e)の保護、密着性向上のためガスバリア層(e)に隣接する層には、有機コート層(c)を設けることが好ましい。必要なガスバリア性が低度である場合はガスバリア層(e)を省略してもよく、また、高度なバリア性が必要な場合はガスバリア層(e)を多層成膜してもよく、また有機コート層(c)とガスバリア層(e)を交互に成膜してもよい。
The layer structure of the optical sheet of the present invention is not particularly limited, but examples include (1) organic coating layer (c
) / Gas barrier layer (e) / Organic coat layer (c) / Sheet (A) / Organic coat layer (c) / Gas barrier layer (e) / Organic coat layer (c) / Conductive layer (d), (2) Organic Coat layer (c) / gas barrier layer (e) / organic coat layer (c) / sheet (A) / organic coat layer (c) / conductive layer (d), (3) organic coat layer (c) / gas barrier layer ( e) / organic coating layer (c) / sheet (A)
/ Organic coating layer (c) / gas barrier layer (e) / organic coating layer (c), (4) organic coating layer (
c) / gas barrier layer (e) / organic coating layer (c) / sheet (A) / organic coating layer (c), (5) organic coating layer (c) / gas barrier layer (e) / organic coating layer (c) / Sheet (A), (6)
Organic coating layer (c) / sheet (A) / organic coating layer (c), (7) organic coating layer (c) / sheet (A), etc. In order to protect the gas barrier layer (e) and improve adhesion, it is preferable to provide an organic coat layer (c) in a layer adjacent to the gas barrier layer (e). If the required gas barrier property is low, the gas barrier layer (e) may be omitted, and if a high level of barrier property is required, the gas barrier layer (e) may be formed in multiple layers. The coat layer (c) and the gas barrier layer (e) may be alternately formed.
以下に本発明を実施例によりさらに詳細に説明するが、これらは本発明の範囲を限定するものではない。 The present invention will be described in more detail below by way of examples, but these examples do not limit the scope of the present invention.
(実施例1)
NEガラス系ガラスクロス(厚さ100μm、屈折率1.510、日東紡製)を焼きだし
して有機物を除去した後、γ−グリシドキシプロピルトリメトキシシラン(エポキシシラ
ン)で処理した。このガラスクロスにトリグリシジルイソシアヌレート(日産化学工業製TEPIC)40重量部、メチルヘキサヒドロ無水フタル酸(新日本理化製リカシッドMH−700) 59重量部、1−ベンジル−2−フェニルイミダゾール(1B2PZ)1重量部を100℃で溶融混合した樹脂を含浸し、脱泡した。樹脂を含浸したこのガラスクロスを離型処理したガラス板に挟み込んで、オーブン中、100℃にて2時間加熱後、さらに120℃にて2時間、150℃にて2時間、175℃にて2時間、順次加熱し、厚さ0.1m
mの透明シートを得た。
Example 1
NE glass-based glass cloth (thickness 100 μm, refractive index 1.510, manufactured by Nittobo) was baked to remove organic substances, and then treated with γ-glycidoxypropyltrimethoxysilane (epoxysilane). To this glass cloth, 40 parts by weight of triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries), 59 parts by weight of methylhexahydrophthalic anhydride (Ricacid MH-700 manufactured by Shin Nippon Chemical Co., Ltd.), 1-benzyl-2-phenylimidazole (1B2PZ) One part by weight was impregnated with a resin melt-mixed at 100 ° C. and defoamed. This glass cloth impregnated with resin is sandwiched between release-treated glass plates, heated in an oven at 100 ° C. for 2 hours, further at 120 ° C. for 2 hours, at 150 ° C. for 2 hours, and at 175 ° C. for 2 hours. Heat for time, thickness 0.1m
m transparent sheet was obtained.
このシートにイソシアヌル酸エチレンオキサイド変性アクリレート(東亞合成(株)製M
−315)100重量部、及び光重合開始剤イルガキュア907(チバスペシャリティケミカル製)1重量部、イルガキュア651(チバスペシャリティケミカル製)0.5重量部と
からなる有機コート用樹脂組成物を80℃に加熱溶解した後、バーコーターで厚み約5μmに塗布し、約300mJ/cm2のUV光を照射して硬化させた。シート反対面にも同
様に塗布、UV光を照射し、さらに真空オーブン中、約200℃にて1時間加熱し、有機コート層を形成した。
Isocyanuric acid ethylene oxide modified acrylate (Made by Toagosei Co., Ltd.)
-315) A resin composition for organic coating comprising 100 parts by weight, 1 part by weight of a photopolymerization initiator Irgacure 907 (manufactured by Ciba Specialty Chemical) and 0.5 part by weight of Irgacure 651 (manufactured by Ciba Specialty Chemical) at 80 ° C. After dissolution by heating, it was applied to a thickness of about 5 μm with a bar coater, and cured by irradiation with UV light of about 300 mJ / cm 2 . Similarly, the opposite surface of the sheet was coated and irradiated with UV light, and further heated in a vacuum oven at about 200 ° C. for 1 hour to form an organic coating layer.
(実施例2)
実施例1と同様にして作成したプラスチックシート(厚さ約0.1mm)にイソシアヌル
酸エチレンオキサイド変性アクリレート(東亞合成(株)製M−315)100重量部、及び光重合開始剤イルガキュア907(チバスペシャリティケミカル製)1重量部、イルガキュア651(チバスペシャリティケミカル製)0.5重量部とからなる有機コート用樹脂組成物を80℃で加熱溶解した後、バーコーターで厚み約5μmに塗布し、約300mJ/c
m2のUV光を照射して硬化させた。さらに真空オーブン中、約200℃にて1時間加熱し、有機コート層を形成した。
続いて、この光学シートの一方の面に、スパッタ装置を用いて厚さ50nmの酸化珪素膜を成膜した。酸化珪素膜は、原料ターゲットに珪素を用い、スパッタ装置内を10−3Pa以下まで減圧した上で放電ガスとしてアルゴンを分圧で0.04Pa導入、反応ガスとして酸素を分圧で0.04Pa導入して反応性スパッタリングを行い成膜した。さらに酸化珪素膜上に、保護層として有機コート層を同様な方法で厚み約5μmに塗布した。続いて、透明導電層として、酸化珪素膜を成膜したのとは反対面に、DCマグネトロン法により初期真空度3×10-4Paの状態から酸素/アルゴンガス4%の混合ガスを導入して1×10-1Paの条件下においてスパッタリングを行いIn/(In+Sn)の原子比が0.98である酸化インジウム錫(ITO)からなる透明導電膜を得た。測定の結果、膜厚は1600Å、比抵抗は4×10-4Ω−cmであった。
(Example 2)
A plastic sheet (thickness: about 0.1 mm) prepared in the same manner as in Example 1, 100 parts by weight of isocyanuric acid ethylene oxide-modified acrylate (M-315 manufactured by Toagosei Co., Ltd.), and photopolymerization initiator Irgacure 907 (Ciba) A resin composition for organic coating consisting of 1 part by weight (speciality chemical) and 0.5 part by weight Irgacure 651 (manufactured by Ciba Specialty Chemical) is heated and dissolved at 80 ° C. and then applied to a thickness of about 5 μm with a bar coater. 300 mJ / c
It was cured by irradiating m 2 UV light. Furthermore, it heated at about 200 degreeC in the vacuum oven for 1 hour, and formed the organic coating layer.
Subsequently, a silicon oxide film having a thickness of 50 nm was formed on one surface of the optical sheet using a sputtering apparatus. The silicon oxide film uses silicon as a raw material target, the pressure inside the sputtering apparatus is reduced to 10 −3 Pa or less, argon is introduced as a discharge gas at a partial pressure of 0.04 Pa, and oxygen is used as a reaction gas at a partial pressure of 0.04 Pa. Then, reactive sputtering was performed to form a film. Further, an organic coat layer was applied as a protective layer to a thickness of about 5 μm on the silicon oxide film by the same method. Subsequently, a mixed gas of oxygen / argon gas 4% was introduced from the state of the initial vacuum degree of 3 × 10 −4 Pa by the DC magnetron method on the surface opposite to the silicon oxide film formed as the transparent conductive layer. Then, sputtering was performed under the condition of 1 × 10 −1 Pa to obtain a transparent conductive film made of indium tin oxide (ITO) having an In / (In + Sn) atomic ratio of 0.98. As a result of the measurement, the film thickness was 1600 mm and the specific resistance was 4 × 10 −4 Ω-cm.
(実施例3)
100μmのNEガラス系ガラスクロス(日東紡製#2116タイプ、屈折率1.510)を焼きだしして有機物を除去した後、アクリロイロキシプロピルトリエトキシシラン(アクリルシラン)で処理した。このガラスクロスに、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート(日本化薬(株)製KAYARAD HX−220、架橋後の屈折率1.493)80重量部、ジシクロペンタジエニルジアクリレート(東亞合成(株)製 M−203、架橋後の屈折率1.527)3重量部、ビス[4−(アクリロイロキシエトキシ)フェニル]フルオレン(東亞合成(株)試作品
TO−2065)17重量部、光重合開始剤として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(チバスペシャリティケミカル製のイルガキュア184)0.5重量部とからなる樹脂(架橋後の屈折率1.510)を含浸し、脱泡した。この樹脂を含浸したクロスを離型処理したガラス板に挟み込んで、両面からトータルで約2000mJ/cm2のUV光を照射して架橋させた。さらに真空オーブン中、100℃で2時間、さらに2
50℃で3時間熱処理し、0.1mmの透明シートを得た。
このシートに実施例2と同様に有機コート層、酸化珪素膜、透明導電層を成膜した。
(Example 3)
A NE glass-based glass cloth of 100 μm (Nittobo # 2116 type, refractive index 1.510) was baked to remove organic substances, and then treated with acryloyloxypropyltriethoxysilane (acrylic silane). To this glass cloth, 80 parts by weight of caprolactone-modified hydroxypivalate ester neopentyl glycol diacrylate (Nippon Kayaku Co., Ltd. KAYARAD HX-220, refractive index 1.493 after crosslinking), dicyclopentadienyl diacrylate ( M-203 manufactured by Toagosei Co., Ltd., 3 parts by weight of refractive index after crosslinking 1.527), 17 weights of bis [4- (acryloyloxyethoxy) phenyl] fluorene (prototype TO-2065) manufactured by Toagosei Co., Ltd. And impregnated with a resin (refractive index after cross-linking 1.510) of 0.5 parts by weight of 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184 manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, and defoamed did. The cloth impregnated with the resin was sandwiched between release-molded glass plates and cross-linked by irradiation with a total of about 2000 mJ / cm 2 of UV light from both sides. Further in a vacuum oven at 100 ° C. for 2 hours, further 2
Heat treatment was performed at 50 ° C. for 3 hours to obtain a 0.1 mm transparent sheet.
An organic coat layer, a silicon oxide film, and a transparent conductive layer were formed on this sheet in the same manner as in Example 2.
(実施例4)
実施例1と同様にして作成したプラスチックシート(厚さ約0.1mm)に化学式(3)
で示される脂環式エポキシ樹脂(商品名セロキサイド2021、ダイセル化学(株)製)100重量部、及びカチオン系光重合開始剤CP170(旭電化工業製)3重量部とからなる有機コート用樹脂組成物をバーコーターで厚み約5μmに塗布し、約300mJ/cm
2のUV光を照射して硬化させた。さらに真空オーブン中、約200℃にて1時間加熱し、有機コート層を形成した。更に実施例2と同様に酸化珪素膜、透明導電層を製膜した。
Example 4
A plastic sheet (thickness of about 0.1 mm) prepared in the same manner as in Example 1 is represented by chemical formula (3)
A resin composition for organic coating comprising 100 parts by weight of an alicyclic epoxy resin (trade name Celoxide 2021, manufactured by Daicel Chemical Industries, Ltd.) and 3 parts by weight of a cationic photopolymerization initiator CP170 (Asahi Denka Kogyo Co., Ltd.) The product is applied to a thickness of about 5 μm with a bar coater and about 300 mJ / cm.
2 UV light was applied to cure. Furthermore, it heated at about 200 degreeC in the vacuum oven for 1 hour, and formed the organic coating layer. Further, a silicon oxide film and a transparent conductive layer were formed in the same manner as in Example 2.
(実施例5)
実施例1と同様にして作成したプラスチックシート(厚さ約0.1mm)の片方の面に化
学式(4)で示される脂環式エポキシ樹脂(ダイセル化学(株)製E−BP)100重量部、及びカチオン系光重合開始剤CP170(旭電化工業製)3重量部とからなる有機コート用樹脂組成物をバーコーターで厚み約5μmに塗布し、約300mJ/cm2のUV光
を照射して硬化させた。さらに真空オーブン中、約200℃にて1時間加熱し、有機コート層を形成した。更に実施例2と同様に酸化珪素膜、透明導電層を製膜した。
(Example 5)
100 parts by weight of an alicyclic epoxy resin (E-BP manufactured by Daicel Chemical Industries, Ltd.) represented by the chemical formula (4) on one surface of a plastic sheet (thickness: about 0.1 mm) prepared in the same manner as in Example 1. And an organic coating resin composition comprising 3 parts by weight of a cationic photopolymerization initiator CP170 (manufactured by Asahi Denka Kogyo Co., Ltd.) with a bar coater to a thickness of about 5 μm, and irradiated with UV light of about 300 mJ / cm 2. Cured. Furthermore, it heated at about 200 degreeC in the vacuum oven for 1 hour, and formed the organic coating layer. Further, a silicon oxide film and a transparent conductive layer were formed in the same manner as in Example 2.
(実施例6)
実施例1と同様にして作成したプラスチックシート(厚さ約0.1mm)に化学式(5)
のXが−(CH3)2−で示される脂環式エポキシ樹脂(ダイセル化学(株)製E−DOA)100重量部、及びカチオン系光重合開始剤CP170(旭電化工業製)3重量部とからなる有機コート用樹脂組成物をバーコーターで厚み約5μmに塗布し、約300mJ/cm
2のUV光を照射して硬化させた。さらに真空オーブン中、約200℃にて1時間加熱し、有機コート層を形成した。更に実施例2と同様に酸化珪素膜、透明導電層を製膜した。
(Example 6)
A plastic sheet (thickness of about 0.1 mm) prepared in the same manner as in Example 1 is represented by the chemical formula (5)
100 parts by weight of an alicyclic epoxy resin (E-DOA manufactured by Daicel Chemical Industries, Ltd.) in which X of — (CH 3 ) 2 — is represented, and 3 parts by weight of a cationic photopolymerization initiator CP170 (manufactured by Asahi Denka Kogyo) The organic coating resin composition consisting of the following is applied to a thickness of about 5 μm with a bar coater, and about 300 mJ / cm.
2 UV light was applied to cure. Furthermore, it heated at about 200 degreeC in the vacuum oven for 1 hour, and formed the organic coating layer. Further, a silicon oxide film and a transparent conductive layer were formed in the same manner as in Example 2.
(比較例1)
実施例1と同様にして厚さ0.1mmのプラスチックシートを作成し、有機コート層(c)の形成は行なわなかった。
(Comparative Example 1)
A plastic sheet having a thickness of 0.1 mm was prepared in the same manner as in Example 1, and no organic coating layer (c) was formed.
(評価方法)
前記の実施例にて作製したシート状のプラスチック基板(光学シート)について、下記の評価方法により各種の特性を測定した。
(Evaluation method)
Various characteristics of the sheet-like plastic substrate (optical sheet) produced in the above example were measured by the following evaluation methods.
a)平均線膨張係数
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素の雰囲気下、1分間に5℃の割合で温度を30℃から250℃まで上昇させた後、一旦0℃まで冷
却し、再び1分間に5℃の割合で温度を上昇させて30℃〜150℃の時の値を測定して求めた。
a) Average linear expansion coefficient After increasing the temperature from 30 ° C. to 250 ° C. at a rate of 5 ° C. per minute in a nitrogen atmosphere using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Electronics Co., Ltd. Once cooled to 0 ° C., the temperature was increased again at a rate of 5 ° C. per minute, and the value at 30 ° C. to 150 ° C. was measured and determined.
測定は、独自に設計した石英引張チャック(材質:石英,線膨張係数0.5ppm)を用
いた。一般に使われているインコネル製のチャックは、それ自体の線膨張が高いことやサンプルの支持形態に不具合があり、100μmを超える厚いシートに適用すると線膨張係数が圧縮モードで測定した結果よりも大きめに出たり、測定ばらつきが大きくなる問題があった。したがって、石英引張チャックを独自に設計し、それを用いて線膨張係数を測定することにした。この引張チャックを用いることにより、圧縮モードで測定した場合とほぼ同様の値で測定できることを確認している。
b)表面凹凸
表面構造解析顕微鏡New View 5032(Zygo Corporation製)により視野:1.44mm×1.08mmで
観察を行い、隣り合った繊維布目の最高点と最低点との高さを測定した。測定結果は、実施例2〜6は酸化インジウム錫を成膜した方の面の数値とし、実施例1、比較例1は、両面の測定を行い、小さい方の数値とした。
For the measurement, an independently designed quartz tension chuck (material: quartz, coefficient of linear expansion of 0.5 ppm) was used. Commonly used Inconel chucks have a high linear expansion per se and defects in the sample support form. When applied to thick sheets exceeding 100 μm, the linear expansion coefficient is larger than the result measured in the compression mode. Or the measurement variation becomes large. Therefore, we decided to design a quartz tensile chuck and use it to measure the linear expansion coefficient. By using this tension chuck, it has been confirmed that it can be measured with a value almost the same as that measured in the compression mode.
b) Observation with a surface irregularity surface structure analysis microscope New View 5032 (manufactured by Zygo Corporation) at a field of view: 1.44 mm × 1.08 mm, and the heights of the highest and lowest points of adjacent fiber cloths were measured. In the measurement results, Examples 2 to 6 are values on the surface on which the indium tin oxide film is formed, and Examples 1 and Comparative Example 1 are measured on both surfaces and set to the smaller value.
c)平行光線透過率
分光光度計U3200(日立製作所製)で550nmの平行光線透過率を測定した。
これら評価方法により、前記実施例、比較例にて得られた試料を評価した結果を次の表1に示す。
c) Parallel light transmittance The parallel light transmittance at 550 nm was measured with a spectrophotometer U3200 (manufactured by Hitachi, Ltd.).
The results of evaluating the samples obtained in the examples and comparative examples by these evaluation methods are shown in Table 1 below.
Claims (6)
前記有機コート層(c)を積層した面の表面凹凸が150nm以下である光学シートであって、
前記透明樹脂(a)がエポキシ樹脂であるとともに
前記有機コート層(c)が下記化学式(4)または(5)で示される脂環式エポキシ樹脂から選ばれた1種以上を構成成分として含む硬化樹脂である光学シート。
(式中、Xは酸素原子、硫黄原子、−SO−、−SO2−、−CH2−、−CH(CH3)−、−C(CH3)2−の2価の基である。) It is an optical sheet in which one or more layers of a 1 to 30 μm thick organic coat layer (c) are laminated on at least one side of a sheet (A) comprising a transparent resin (a) and a glass fiber (b),
The surface roughness of the surface of the organic coating layer (c) was laminated an optical sheet is 150nm or less,
Curing including the transparent resin (a) as an epoxy resin and the organic coat layer (c) as a constituent component of one or more selected from alicyclic epoxy resins represented by the following chemical formula (4) or (5) An optical sheet that is a resin.
(In the formula, X is an oxygen atom, a sulfur atom, —SO—, —SO 2 —, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —). )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004088229A JP5196705B2 (en) | 2003-03-26 | 2004-03-25 | Optical sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003084550 | 2003-03-26 | ||
JP2003084550 | 2003-03-26 | ||
JP2004088229A JP5196705B2 (en) | 2003-03-26 | 2004-03-25 | Optical sheet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010120558A Division JP5397319B2 (en) | 2003-03-26 | 2010-05-26 | Optical sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004307851A JP2004307851A (en) | 2004-11-04 |
JP5196705B2 true JP5196705B2 (en) | 2013-05-15 |
Family
ID=33478264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004088229A Expired - Fee Related JP5196705B2 (en) | 2003-03-26 | 2004-03-25 | Optical sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5196705B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7229703B2 (en) * | 2003-03-31 | 2007-06-12 | Dai Nippon Printing Co. Ltd. | Gas barrier substrate |
JP4233433B2 (en) | 2003-11-06 | 2009-03-04 | シャープ株式会社 | Manufacturing method of display device |
JP4634781B2 (en) * | 2004-11-30 | 2011-02-16 | 三菱レイヨン株式会社 | Prepreg for fiber reinforced resin composite material |
JP4484733B2 (en) * | 2005-03-03 | 2010-06-16 | シャープ株式会社 | Plastic substrate for display device and manufacturing method thereof |
JP5135829B2 (en) * | 2007-03-02 | 2013-02-06 | 住友ベークライト株式会社 | Composite material substrate with transparent electrode |
JP2008221592A (en) * | 2007-03-13 | 2008-09-25 | Sumitomo Bakelite Co Ltd | Transparent resin sheet |
US20100209701A1 (en) * | 2007-06-28 | 2010-08-19 | Lg Chem, Ltd. | Method for manufacturing transparent plastic film and transparent plastic film manufactured by the method |
JP5022265B2 (en) | 2008-02-18 | 2012-09-12 | パナソニック株式会社 | Transparent laminate |
JP5423013B2 (en) * | 2009-01-29 | 2014-02-19 | 住友ベークライト株式会社 | Plastic sheet |
WO2010104191A1 (en) | 2009-03-09 | 2010-09-16 | Panasonic Electric Works Co., Ltd. | Transparent film |
US20120219774A1 (en) | 2009-10-27 | 2012-08-30 | Hirotsugu Kishimoto | Transparent film |
JP2011105888A (en) | 2009-11-19 | 2011-06-02 | Panasonic Electric Works Co Ltd | Transparent film |
JP4804595B1 (en) * | 2010-03-16 | 2011-11-02 | 積水化学工業株式会社 | Production method of transparent composite sheet |
EP2556113A1 (en) * | 2010-04-06 | 2013-02-13 | Ferrania Technologies S.p.A. | Composite film material comprising a resin of fluorene crotonate, fluorene cinnamate, fluorene acrylate, fluorene methacrylate, fluorene allylether or a combination thereof |
JP5732609B2 (en) * | 2011-02-16 | 2015-06-10 | パナソニックIpマネジメント株式会社 | Transparent film |
JP2013014744A (en) * | 2011-06-10 | 2013-01-24 | Sumitomo Bakelite Co Ltd | Glass woven fabric, transparent glass fiber composite resin sheet, display device, and solar cell |
KR20130117176A (en) * | 2012-04-18 | 2013-10-25 | 제일모직주식회사 | Display window and display device using the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629524A (en) * | 1985-07-05 | 1987-01-17 | Mitsubishi Plastics Ind Ltd | Substrate for magnetic disk |
JPS62156912A (en) * | 1985-12-28 | 1987-07-11 | Mitsubishi Electric Corp | Manufacture of optical transmission frp structural material |
JPH0995607A (en) * | 1995-07-27 | 1997-04-08 | Nippon G Ii Plast Kk | Transparent glass-reinforcing resin composition |
JP2000319422A (en) * | 1999-05-14 | 2000-11-21 | Sumitomo Bakelite Co Ltd | Laminated film and liquid crystal display device using the same |
JP5226162B2 (en) * | 2001-05-14 | 2013-07-03 | 株式会社ダイセル | Liquid epoxy resin composition and use thereof |
WO2003002661A1 (en) * | 2001-06-28 | 2003-01-09 | Toray Industries, Inc. | Epoxy resin composition excellent in weather resistance and fiber-reinforced composite materials |
JP2003033991A (en) * | 2001-07-25 | 2003-02-04 | Sumitomo Bakelite Co Ltd | Plastic substrate for display element |
JP2003050384A (en) * | 2001-08-07 | 2003-02-21 | Sumitomo Bakelite Co Ltd | Plastic substrate for reflective liquid crystal display element |
JP3975119B2 (en) * | 2002-05-15 | 2007-09-12 | 株式会社カネカ | Optical waveguide fabrication method |
JP4086713B2 (en) * | 2002-05-27 | 2008-05-14 | 日東電工株式会社 | Liquid crystal cell substrate |
-
2004
- 2004-03-25 JP JP2004088229A patent/JP5196705B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004307851A (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5196705B2 (en) | Optical sheet | |
JP4117792B2 (en) | Sheet of transparent composite composition | |
EP1524301B1 (en) | Transparent composite composition | |
JPWO2003064535A1 (en) | Transparent composite composition | |
JP3728441B2 (en) | Transparent composite composition | |
EP2980165B1 (en) | Coating composition | |
JP4174355B2 (en) | Transparent composite composition | |
WO2008044397A1 (en) | Transparent composite sheet | |
JP4569336B2 (en) | Transparent barrier sheet | |
JP4292952B2 (en) | Transparent laminate and plastic substrate for display element using the same | |
WO2012165330A1 (en) | Glass substrate for flat panel display and manufacturing method for same glass substrate | |
JP2004307845A (en) | Transparent composite composition | |
JP4930140B2 (en) | Transparent laminate | |
JP5397319B2 (en) | Optical sheet | |
JP2004168945A (en) | Transparent composite composition | |
JP4613492B2 (en) | Optical sheet | |
JP4273990B2 (en) | Manufacturing method of transparent composite substrate | |
JP2005015624A (en) | Transparent composite sheet | |
JP2011218586A (en) | Transparent gas-barrier film | |
JP4701613B2 (en) | Optical sheet | |
JP2004277462A (en) | Transparent composite composition | |
JP2004099754A (en) | Optical film | |
JP2005029668A (en) | Transparent composite composition and display device using the same | |
JP4066020B2 (en) | Method for producing polymer film | |
JP2004238532A (en) | Transparent composite composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101015 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110525 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110531 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20110708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |