[go: up one dir, main page]

JP5187148B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5187148B2
JP5187148B2 JP2008290200A JP2008290200A JP5187148B2 JP 5187148 B2 JP5187148 B2 JP 5187148B2 JP 2008290200 A JP2008290200 A JP 2008290200A JP 2008290200 A JP2008290200 A JP 2008290200A JP 5187148 B2 JP5187148 B2 JP 5187148B2
Authority
JP
Japan
Prior art keywords
mounting substrate
semiconductor chip
spacer
region
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008290200A
Other languages
Japanese (ja)
Other versions
JP2010118469A (en
Inventor
浩三 清水
誠樹 作山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008290200A priority Critical patent/JP5187148B2/en
Publication of JP2010118469A publication Critical patent/JP2010118469A/en
Application granted granted Critical
Publication of JP5187148B2 publication Critical patent/JP5187148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8114Guiding structures outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Wire Bonding (AREA)

Description

本発明は、実装基板に半導体チップを実装し、接着剤で固定した半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device in which a semiconductor chip is mounted on a mounting substrate and fixed with an adhesive, and a manufacturing method thereof.

従来、半導体チップを実装基板に実装する場合、半田等の金属からなる金属バンプにより、実装基板上の電極と半導体チップ上の電極とを、機械的及び電気的に接続していた。   Conventionally, when a semiconductor chip is mounted on a mounting substrate, electrodes on the mounting substrate and electrodes on the semiconductor chip are mechanically and electrically connected by metal bumps made of metal such as solder.

半導体チップの集積度が向上し、電極の微細化が進むと、金属バンプを流れる電流密度が増大する。このため、エレクトロマイグレーションにより、金属バンプを構成している金属原子が移動し易くなる。金属原子の移動は、バンプの断線を引き起こす。   As the degree of integration of the semiconductor chip improves and the electrodes become finer, the current density flowing through the metal bumps increases. For this reason, the metal atoms constituting the metal bump are easily moved by electromigration. The movement of metal atoms causes the disconnection of the bump.

さらに、半田溶融接合の際に、半導体チップと実装基板が高温になる。実装後、半導体チップ及び実装基板が室温まで低下すると、両者の熱膨張係数の相違によって応力が発生する。通常、実装基板の熱膨張係数は、半導体チップの熱膨張係数の10倍以上である。このとき、半導体チップ及び実装基板が室温まで低下すると、実装基板がより大きく収縮する。これにより、半導体チップに、面内方向の圧縮応力が印加される。応力が発生すると、機械的に最も弱い部分に破壊が生ずる。例えば、金属バンプ、半導体チップの低誘電率絶縁材料等が破壊されてしまう。なお、実装後の動作時における温度変化によっても、同様の応力が発生する。   Furthermore, the temperature of the semiconductor chip and the mounting substrate becomes high during the solder fusion bonding. When the semiconductor chip and the mounting substrate are lowered to room temperature after mounting, stress is generated due to the difference in thermal expansion coefficient between them. Usually, the thermal expansion coefficient of the mounting substrate is 10 times or more that of the semiconductor chip. At this time, when the semiconductor chip and the mounting substrate are lowered to room temperature, the mounting substrate is further contracted. Thereby, a compressive stress in the in-plane direction is applied to the semiconductor chip. When stress is generated, fracture occurs in the mechanically weakest part. For example, metal bumps, low dielectric constant insulating materials of semiconductor chips, etc. are destroyed. A similar stress is also generated by a temperature change during operation after mounting.

カーボンナノチューブを用いて、実装基板の接点と半導体チップの接点とを電気的に接続する技術が知られている(特許文献1)。カーボンナノチューブを用いると、金属を用いた場合に比べて、エレクトロマイグレーションによる断線が生じにくい。カーボンナノチューブの弾性により、応力の集中を抑制し、機械的破壊を防止することができる。   A technique for electrically connecting a contact of a mounting substrate and a contact of a semiconductor chip using carbon nanotubes is known (Patent Document 1). When carbon nanotubes are used, disconnection due to electromigration is less likely to occur than when metals are used. Due to the elasticity of the carbon nanotube, concentration of stress can be suppressed and mechanical destruction can be prevented.

特開2007−311700号公報JP 2007-311700 A

半導体チップを実装基板に実装した後、両者間の隙間にアンダーフィルと呼ばれる封止剤を、キャピラリフロー(毛細管流動)を利用して流し込み、半導体チップを実装基板に固定する方法が一般的である。カーボンナノチューブ等の弾性を有する接続部材が封止剤に濡れた状態で封止剤が硬化すると、接続部材に期待されている弾性が損なわれる。   Generally, after mounting a semiconductor chip on a mounting substrate, a sealing agent called underfill is poured into a gap between the two using a capillary flow (capillary flow) to fix the semiconductor chip to the mounting substrate. . If the sealing agent is cured while the connecting member having elasticity such as a carbon nanotube is wet with the sealing agent, the elasticity expected for the connecting member is impaired.

上記課題を解決するための半導体装置は、
実装面に複数の電極が形成されている実装基板と、
前記実装基板に間隙を隔てて対向し、該実装基板上の電極に対応する位置に電極が形成されている半導体チップと、
前記実装基板の電極と、前記半導体チップの対応する電極とを電気的に接続し、弾性を有する接続部材と、
前記実装基板と前記半導体チップとの間に配置され、該実装基板と該半導体チップとの間に間隙を確保し、平面視において、前記実装基板及び前記半導体チップの電極が分布する領域を取り囲むスペーサと、
前記スペーサ、前記実装基板、及び前記半導体チップで囲まれた空洞の外側に配置され、前記半導体チップの表面の第1の領域と前記実装基板の表面の第2の領域とに密着して該半導体チップを該実装基板に固定し、前記スペーサに対する親和性が、前記半導体チップの前記第1の領域に対する親和性及び前記実装基板の前記第2の領域に対する親和性のいずれよりも低い接着剤と
を有する。
A semiconductor device for solving the above problems is as follows.
A mounting substrate having a plurality of electrodes formed on the mounting surface;
A semiconductor chip that is opposed to the mounting substrate with a gap, and an electrode is formed at a position corresponding to the electrode on the mounting substrate;
Electrically connecting the electrodes of the mounting substrate and the corresponding electrodes of the semiconductor chip , and a connecting member having elasticity ;
A spacer that is disposed between the mounting substrate and the semiconductor chip, secures a gap between the mounting substrate and the semiconductor chip, and surrounds an area in which the electrodes of the mounting substrate and the semiconductor chip are distributed in plan view. When,
The semiconductor is disposed outside a cavity surrounded by the spacer, the mounting substrate, and the semiconductor chip, and is in close contact with the first region on the surface of the semiconductor chip and the second region on the surface of the mounting substrate. A chip is fixed to the mounting substrate, and an adhesive having an affinity for the spacer is lower than both the affinity for the first region of the semiconductor chip and the affinity for the second region of the mounting substrate. Have.

上記課題を解決するための半導体装置の製造方法は、
実装面に複数の電極が形成されている実装基板の該実装面に、該電極が分布する領域を取り囲む平面形状を持つスペーサを配置する工程と、
前記スペーサを介して、前記実装基板の上に半導体チップを配置し、該半導体チップの表面に形成されている複数の電極を、それぞれ前記実装基板の実装面に形成されている複数の電極に、弾性を有する接続部材により、電気的に接続する工程と、
前記スペーサ、前記実装基板、及び前記半導体チップで囲まれた空洞の外側において、前記半導体チップの表面の第1の領域から前記実装基板の表面の第2の領域まで連続するように、前記スペーサに対する親和性が、前記半導体チップの前記第1の領域に対する親和性及び前記実装基板の前記第2の領域に対する親和性のいずれよりも低い接着剤を塗布する工程と、
塗布された前記接着剤を硬化させる工程と
を有する。

A method of manufacturing a semiconductor device for solving the above problems is as follows.
Disposing a spacer having a planar shape surrounding a region where the electrodes are distributed on the mounting surface of the mounting substrate on which a plurality of electrodes are formed on the mounting surface;
A semiconductor chip is disposed on the mounting substrate via the spacer, and a plurality of electrodes formed on the surface of the semiconductor chip are respectively formed on a plurality of electrodes formed on the mounting surface of the mounting substrate . Electrically connecting the elastic connecting member ;
Outside the cavity surrounded by the spacer, the mounting substrate, and the semiconductor chip, the spacer is continuous with the spacer from the first region on the surface of the semiconductor chip to the second region on the surface of the mounting substrate. Applying an adhesive whose affinity is lower than both the affinity of the semiconductor chip for the first region and the affinity of the mounting substrate for the second region;
Curing the applied adhesive.

接着剤とスペーサとの親和性が低いため、実装基板、半導体チップ、及びスペーサで囲まれた空洞内に侵入し難くなる。   Since the affinity between the adhesive and the spacer is low, it is difficult to enter the cavity surrounded by the mounting substrate, the semiconductor chip, and the spacer.

実施例を説明する前に、半導体チップを接着剤で実装基板に固定する方法の一例について説明する。   Before describing the embodiments, an example of a method for fixing a semiconductor chip to a mounting substrate with an adhesive will be described.

図4Aに示すように、実装基板10と半導体チップ50とが、相互に対向して配置されている。両者の間に、半導体チップ50の外周線に沿う枠状のスペーサ20が配置されている。スペーサ20は、実装基板10に接着剤で固定されている。半導体チップ50は、接着剤30によりスペーサ20に固定されている。接着剤30は、半導体チップ50の外周近傍の表面をスペーサ20の上面に接触させた状態で、半導体チップ50の外周に沿って塗布される。半導体チップ50の電極と実装基板10の電極とは、カーボンナノチューブ55により相互に電気的に接続される。   As shown in FIG. 4A, the mounting substrate 10 and the semiconductor chip 50 are arranged to face each other. Between the two, a frame-shaped spacer 20 is disposed along the outer peripheral line of the semiconductor chip 50. The spacer 20 is fixed to the mounting substrate 10 with an adhesive. The semiconductor chip 50 is fixed to the spacer 20 with an adhesive 30. The adhesive 30 is applied along the outer periphery of the semiconductor chip 50 with the surface near the outer periphery of the semiconductor chip 50 being in contact with the upper surface of the spacer 20. The electrodes of the semiconductor chip 50 and the electrodes of the mounting substrate 10 are electrically connected to each other by the carbon nanotubes 55.

図4Bに示すように、カーボンナノチューブ55の長さのばらつき等により、半導体チップ50の外周の一部分において、半導体チップ50とスペーサ20との間に隙間56が発生する場合がある。隙間56が発生していると、接着剤30を塗布した時点で、毛細管現象により、接着剤30が実装基板10と半導体チップ50との間の空間に侵入してしまう。この空間に侵入した接着剤30aは、カーボンナノチューブ55に接触した状態で硬化し、カーボンナノチューブ55の弾性を損なう。   As illustrated in FIG. 4B, a gap 56 may be generated between the semiconductor chip 50 and the spacer 20 in a part of the outer periphery of the semiconductor chip 50 due to variations in the length of the carbon nanotubes 55. When the gap 56 is generated, the adhesive 30 enters the space between the mounting substrate 10 and the semiconductor chip 50 due to a capillary phenomenon when the adhesive 30 is applied. The adhesive 30 a that has entered the space is cured while being in contact with the carbon nanotube 55, and the elasticity of the carbon nanotube 55 is impaired.

図1A〜図1Eを参照して、実施例1による半導体装置の製造方法について説明する。   With reference to FIGS. 1A to 1E, a method of manufacturing a semiconductor device according to the first embodiment will be described.

図1Aに示すように、実装基板10と半導体チップ50とを、実装基板10の実装面と半導体チップ50の素子形成面とを相互に対向させて配置する。実装基板10の実装面に、複数の電極22が形成されている。実装基板10は、例えば複数の配線層が形成されたプリント配線板である。実装基板10の実装面のうち電極22が形成されていない領域は、例えばソルダーレジスト23で覆われている。実装基板10の実装面に、スペーサ21が配置されている。スペーサ21は、半導体チップ50の外周線に沿う平面形状及び寸法を有する。スペーサ21には、無極性の樹脂、例えばパラフィンが用いられる。パラフィンとして、接着剤を硬化させる後の工程における加熱温度よりも高い融点を持つものを用いる必要がある。例えば、融点198℃のテトラクロロナフタレンや、融点194℃のヘキサクロロナフタレン等を用いることができる。また、パラフィン以外に、ポリテトラフルオロエチレン(PTFE)等を用いることも可能である。   As shown in FIG. 1A, the mounting substrate 10 and the semiconductor chip 50 are arranged with the mounting surface of the mounting substrate 10 and the element formation surface of the semiconductor chip 50 facing each other. A plurality of electrodes 22 are formed on the mounting surface of the mounting substrate 10. The mounting board 10 is a printed wiring board on which a plurality of wiring layers are formed, for example. A region where the electrode 22 is not formed on the mounting surface of the mounting substrate 10 is covered with, for example, a solder resist 23. Spacers 21 are disposed on the mounting surface of the mounting substrate 10. The spacer 21 has a planar shape and dimensions along the outer peripheral line of the semiconductor chip 50. The spacer 21 is made of nonpolar resin such as paraffin. As the paraffin, it is necessary to use a paraffin having a melting point higher than the heating temperature in the subsequent step of curing the adhesive. For example, tetrachloronaphthalene having a melting point of 198 ° C. or hexachloronaphthalene having a melting point of 194 ° C. can be used. In addition to paraffin, polytetrafluoroethylene (PTFE) or the like can be used.

半導体チップ50の素子形成面に、複数の電極51が形成されている。複数の電極51は、それぞれ実装基板10の実装面に形成されている電極22に対応する位置に配置されている。半導体チップ50の素子形成面のうち、電極51が形成されていない領域は、絶縁性の保護膜52で覆われている。保護膜52には、酸化シリコン、窒化シリコン等が用いられる。   A plurality of electrodes 51 are formed on the element formation surface of the semiconductor chip 50. The plurality of electrodes 51 are respectively arranged at positions corresponding to the electrodes 22 formed on the mounting surface of the mounting substrate 10. Of the element formation surface of the semiconductor chip 50, a region where the electrode 51 is not formed is covered with an insulating protective film 52. For the protective film 52, silicon oxide, silicon nitride, or the like is used.

電極51の各々から、複数のカーボンナノチューブ55が延びている。カーボンナノチューブ55の形成方法は、例えば特開2007−311700号公報に説明されている。以下、カーボンナノチューブ55の形成方法について説明する。   A plurality of carbon nanotubes 55 extend from each of the electrodes 51. A method of forming the carbon nanotube 55 is described in, for example, Japanese Patent Application Laid-Open No. 2007-311700. Hereinafter, a method for forming the carbon nanotube 55 will be described.

シリコンからなる成長用基板に、厚さ5nmのアルミニウム(Al)膜と、厚さ2nmの鉄(Fe)膜とを順番に形成する。この成長用基板に、化学気相成長(CVD)により、カーボンナノチューブを成長させる。プロセスガスとしてアセチレンガスを用い、キャリアガスとしてアルゴンガスまたは水素ガスを用いる。成長圧力は100Paとし、成長温度は600℃とする。カーボンナノチューブの長さは成長時間により制御可能である。本実施例1では、カーボンナノチューブの長さを100μmとする。   An aluminum (Al) film having a thickness of 5 nm and an iron (Fe) film having a thickness of 2 nm are sequentially formed on a growth substrate made of silicon. Carbon nanotubes are grown on this growth substrate by chemical vapor deposition (CVD). Acetylene gas is used as the process gas, and argon gas or hydrogen gas is used as the carrier gas. The growth pressure is 100 Pa and the growth temperature is 600 ° C. The length of the carbon nanotube can be controlled by the growth time. In Example 1, the length of the carbon nanotube is 100 μm.

半導体チップ50の電極51の表面に、導電性微粒子を含む接着剤、例えば銀(Ag)ペーストを塗布しておく。成長用基板に成長したカーボンナノチューブの先端を、半導体チップ50の電極51の表面に押し当てる。この状態で、導電性微粒子を含む接着剤を硬化させることにより、カーボンナノチューブを電極51に固定する。その後、成長用基板を半導体チップ50から引き離す。電極51に固定されたカーボンナノチューブが半導体チップ50側に残り、その他のカーボンナノチューブは、成長用基板と共に、半導体チップ50から引き離される。   An adhesive containing conductive fine particles, for example, silver (Ag) paste is applied to the surface of the electrode 51 of the semiconductor chip 50. The tip of the carbon nanotube grown on the growth substrate is pressed against the surface of the electrode 51 of the semiconductor chip 50. In this state, the carbon nanotube is fixed to the electrode 51 by curing the adhesive containing conductive fine particles. Thereafter, the growth substrate is separated from the semiconductor chip 50. The carbon nanotubes fixed to the electrode 51 remain on the semiconductor chip 50 side, and the other carbon nanotubes are separated from the semiconductor chip 50 together with the growth substrate.

図1Bに、実装基板10及びスペーサ21の平面図を示す。図1Bの一点鎖線1A−1Aにおける断面図が図1Aに相当する。スペーサ21は、幅0.5mmの枠状の平面形状を有し、電極22が分布する領域を取り囲むように位置決めされる。半導体チップ50の平面形状が正方形である場合には、スペーサ21は、正方形の外周線に沿う形状を有する。また、スペーサ21は、接着剤により実装基板10に接着され、固定されている。   FIG. 1B shows a plan view of the mounting substrate 10 and the spacer 21. A cross-sectional view taken along one-dot chain line 1A-1A in FIG. 1B corresponds to FIG. 1A. The spacer 21 has a frame-like planar shape with a width of 0.5 mm, and is positioned so as to surround a region where the electrodes 22 are distributed. When the planar shape of the semiconductor chip 50 is a square, the spacer 21 has a shape along a square outer peripheral line. The spacer 21 is bonded and fixed to the mounting substrate 10 with an adhesive.

図1Cに示すように、半導体チップ50の電極51を、実装基板10の対応する電極22に位置合わせし、カーボンナノチューブ55の先端を電極22に接触させる。半導体チップ50に荷重を加えて、その素子形成面の外周部近傍の領域をスペーサ21に接触させる。このとき、カーボンナノチューブ55が弾性変形の範囲内で湾曲するように、スペーサ21の高さが選択されている。半導体チップ50、実装基板10、及びスペーサ21で囲まれた空洞60が画定される。空洞60内に、カーボンナノチューブ55が収容される。   As shown in FIG. 1C, the electrode 51 of the semiconductor chip 50 is aligned with the corresponding electrode 22 of the mounting substrate 10, and the tip of the carbon nanotube 55 is brought into contact with the electrode 22. A load is applied to the semiconductor chip 50 to bring the region near the outer peripheral portion of the element formation surface into contact with the spacer 21. At this time, the height of the spacer 21 is selected so that the carbon nanotube 55 is curved within the range of elastic deformation. A cavity 60 surrounded by the semiconductor chip 50, the mounting substrate 10, and the spacer 21 is defined. The carbon nanotube 55 is accommodated in the cavity 60.

図1Dに示すように、半導体チップ50がスペーサ21に接触した状態で、接着剤35を塗布する。接着剤35は、半導体チップ50の外周線に接する背面(素子形成面とは反対側の表面)の第1の領域50Aと、実装基板10の実装面のうちスペーサ21の外側の第2の領域10Aとに密着し、第1の領域50Aから第2の領域10Aまで連続する。接着剤35には、スペーサ21に対する親和性が、半導体チップ50の第1の領域50Aに対する親和性、及び実装基板10の第2の領域10Aに対する親和性のいずれよりも低いものが用いられる。例えば、接着剤35として、エポキシ系樹脂、フェノキシ系樹脂、シアネートエステル系樹脂を用いることができる。   As shown in FIG. 1D, the adhesive 35 is applied in a state where the semiconductor chip 50 is in contact with the spacer 21. The adhesive 35 includes a first region 50A on the back surface (a surface opposite to the element formation surface) in contact with the outer peripheral line of the semiconductor chip 50 and a second region outside the spacer 21 on the mounting surface of the mounting substrate 10. 10A, and is continuous from the first region 50A to the second region 10A. As the adhesive 35, an adhesive having a lower affinity for the spacer 21 than both the affinity for the first region 50 </ b> A of the semiconductor chip 50 and the affinity for the second region 10 </ b> A of the mounting substrate 10 is used. For example, an epoxy resin, a phenoxy resin, or a cyanate ester resin can be used as the adhesive 35.

接着剤35を、150℃で30分間加熱することにより、硬化させる。これにより、半導体チップ50が実装基板10に固定される。接着剤35は、空洞60の外側に配置され、空洞60内には侵入しない。   The adhesive 35 is cured by heating at 150 ° C. for 30 minutes. Thereby, the semiconductor chip 50 is fixed to the mounting substrate 10. The adhesive 35 is disposed outside the cavity 60 and does not enter the cavity 60.

図1Eに示すように、接着剤35が硬化した後に、荷重を解放する。この半導体装置の信頼性評価のために、−25℃の125℃との間で、500サイクルの温度サイクル試験を行った。その結果、半導体チップ50の電極51と、実装基板10の電極22との間の抵抗上昇率は10%以下であった。また、温度121℃、湿度85%の環境下に1000時間放置したところ、抵抗上昇率は10%以下であった。   As shown in FIG. 1E, after the adhesive 35 is cured, the load is released. In order to evaluate the reliability of the semiconductor device, a temperature cycle test of 500 cycles was performed between -25 ° C and 125 ° C. As a result, the rate of increase in resistance between the electrode 51 of the semiconductor chip 50 and the electrode 22 of the mounting substrate 10 was 10% or less. Moreover, when it was left for 1000 hours in an environment of a temperature of 121 ° C. and a humidity of 85%, the rate of increase in resistance was 10% or less.

図2に、半導体チップ50とスペーサ21との間に、部分的に隙間56が形成されている場合の半導体装置の断面図を示す。カーボンナノチューブ55の長さのばらつき等により、半導体チップ50とスペーサ21との間に隙間が発生する場合がある。スペーサ21に対する接着剤35の親和性が低いため、接着剤35は、隙間56を通って空洞60内に侵入することはない。   FIG. 2 is a cross-sectional view of the semiconductor device when a gap 56 is partially formed between the semiconductor chip 50 and the spacer 21. A gap may occur between the semiconductor chip 50 and the spacer 21 due to variations in the length of the carbon nanotubes 55. Since the adhesive 35 has a low affinity for the spacer 21, the adhesive 35 does not enter the cavity 60 through the gap 56.

接着剤35が空洞60内に侵入しないため、半導体チップ50を実装基板10に固定した後も、カーボンナノチューブ55の弾性を維持することができる。   Since the adhesive 35 does not enter the cavity 60, the elasticity of the carbon nanotube 55 can be maintained even after the semiconductor chip 50 is fixed to the mounting substrate 10.

実施例1においては、スペーサ21が接着剤で実装基板10に接着されている。半導体チップ50を実装基板10に対向させて荷重を加えるときに、スペーサ21の位置が固定されているため、半導体チップ50の位置決めを容易にすることができる。ただし、半導体チップ50は、接着剤35により、実装基板10に接着されるため、必ずしもスペーサ21を実装基板10に接着しておく必要はない。スペーサ21は、半導体チップ50を実装基板10に固着させる機能を持つのではなく、半導体チップ50と実装基板10との間に、空洞60を確保する機能を持つ。   In the first embodiment, the spacer 21 is bonded to the mounting substrate 10 with an adhesive. Since the position of the spacer 21 is fixed when the semiconductor chip 50 is opposed to the mounting substrate 10 and a load is applied, the positioning of the semiconductor chip 50 can be facilitated. However, since the semiconductor chip 50 is bonded to the mounting substrate 10 by the adhesive 35, the spacer 21 does not necessarily have to be bonded to the mounting substrate 10. The spacer 21 does not have a function of fixing the semiconductor chip 50 to the mounting substrate 10, but has a function of securing a cavity 60 between the semiconductor chip 50 and the mounting substrate 10.

上記実施例1では、スペーサ21に無極性の樹脂を用い、接着剤35に、スペーサとの親和性が低いものを用いた。無極性のスペーサ21との親和性が低い接着剤35として、極性を有する樹脂を用いることができる。スペーサ21に無極性の樹脂を用い、接着剤35に極性のある樹脂を用いたのは、半導体チップ50の第1の領域50A及び実装基板10の第2の領域10Aと、接着剤35との親和性を高めるためである。   In Example 1 described above, a nonpolar resin was used for the spacer 21 and an adhesive 35 having a low affinity with the spacer was used. A resin having polarity can be used as the adhesive 35 having low affinity with the nonpolar spacer 21. The nonpolar resin is used for the spacer 21 and the polar resin is used for the adhesive 35 because the first region 50A of the semiconductor chip 50 and the second region 10A of the mounting substrate 10 and the adhesive 35 are used. This is to increase the affinity.

逆に、半導体チップ50の第1の領域50A及び実装基板10の第2の領域10Aに対して、無極性の接着剤の親和性が高い場合には、接着剤35に無極性の樹脂を用い、スペーサ21に極性を有する樹脂を用いればよい。   On the contrary, when the affinity of the nonpolar adhesive is high for the first region 50A of the semiconductor chip 50 and the second region 10A of the mounting substrate 10, a nonpolar resin is used for the adhesive 35. The spacer 21 may be made of a resin having polarity.

上記実施例1では、カーボンナノチューブ55により半導体チップ50の電極51と、実装基板10の電極22とを電気的に接続したが、他の接続部材を用いて接続してもよい。なお、応力による断線を防止するために、接続部材として、弾性を有するものを用いることが好ましい。   In the first embodiment, the electrode 51 of the semiconductor chip 50 and the electrode 22 of the mounting substrate 10 are electrically connected by the carbon nanotubes 55, but may be connected using another connecting member. In order to prevent disconnection due to stress, it is preferable to use an elastic connection member.

図3に、実施例2による実装基板10及びスペーサ21の平面図を示す。実施例1では、図1Bに示したように、スペーサ21が平面視において閉じた枠状であったが、実施例2においては、スペーサ21が、正方形の相互に対向する一対の辺の中央に相当する位置で、2つの部分に分離されている。スペーサ21を構成する2つの部分を実装基板10の実装面に配置するときに、2つの部分の両端同士を接触させてもよいし、両端の端面同士が間隙21Aを介して対向するようにしてもよい。この間隙21Aを、接着剤35が侵入しない程度まで狭くすれば、実施例1の図1Dに示した工程において、接着剤35を塗布したときに、接着剤35が空洞60内に侵入することを防止できる。   FIG. 3 is a plan view of the mounting substrate 10 and the spacer 21 according to the second embodiment. In the first embodiment, as shown in FIG. 1B, the spacer 21 has a closed frame shape in plan view. However, in the second embodiment, the spacer 21 is formed at the center of a pair of opposite sides of a square. At the corresponding position, it is separated into two parts. When the two portions constituting the spacer 21 are arranged on the mounting surface of the mounting substrate 10, both ends of the two portions may be brought into contact with each other, or the end surfaces at both ends are opposed to each other with a gap 21A therebetween. Also good. If the gap 21A is narrowed to such an extent that the adhesive 35 does not enter, the adhesive 35 enters the cavity 60 when the adhesive 35 is applied in the step shown in FIG. Can be prevented.

パラフィン等の板を抜き打ちすることによりスペーサ21を形成する場合、実施例1のように、スペーサ21が閉じた枠状であれば、スペーサ21の内側の正方形または長方形の部分が無駄になる。実施例2のように、スペーサ21を2つの部分に分割すると、無駄な部分が発生しなくなり、パラフィン等の板を有効利用することができる。   When the spacer 21 is formed by punching a plate of paraffin or the like, if the spacer 21 is a closed frame shape as in the first embodiment, the square or rectangular portion inside the spacer 21 is wasted. If the spacer 21 is divided into two parts as in the second embodiment, a useless part is not generated, and a plate made of paraffin or the like can be used effectively.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

(1A)及び(1B)は、それぞれ実施例による半導体装置の製造方法の製造途中段階における装置の断面図及び平面図である。(1A) and (1B) are respectively a cross-sectional view and a plan view of the device in the course of manufacturing the semiconductor device manufacturing method according to the embodiment. (1C)及び(1D)は、実施例1による半導体装置の製造方法の製造途中段階における装置の断面図であり、(1E)は、実施例1による半導体装置の断面図である。(1C) and (1D) are cross-sectional views of the device in the process of manufacturing the semiconductor device according to the first embodiment, and (1E) is a cross-sectional view of the semiconductor device according to the first embodiment. 実施例1の変形例による半導体装置の断面図である。6 is a cross-sectional view of a semiconductor device according to a modification of Example 1. FIG. 実施例2による半導体装置の実装基板及びスペーサの平面図である。6 is a plan view of a mounting substrate and spacers of a semiconductor device according to Example 2. FIG. (4A)及び(4B)は、比較例による半導体装置の断面図である。(4A) and (4B) are cross-sectional views of a semiconductor device according to a comparative example.

符号の説明Explanation of symbols

10 実装基板
10A 第2の領域
20、21 スペーサ
21A 間隙
22 電極
23 ソルダーレジスト
30、35 接着剤
50 半導体チップ
50A 第1の領域
51 電極
52 保護膜
55 カーボンナノチューブ(接続部材)
56 隙間
60 空洞
DESCRIPTION OF SYMBOLS 10 Mounting substrate 10A 2nd area | region 20, 21 Spacer 21A Gap 22 Electrode 23 Solder resist 30, 35 Adhesive 50 Semiconductor chip 50A 1st area | region 51 Electrode 52 Protective film 55 Carbon nanotube (connection member)
56 Clearance 60 Cavity

Claims (5)

実装面に複数の電極が形成されている実装基板と、
前記実装基板に間隙を隔てて対向し、該実装基板上の電極に対応する位置に電極が形成されている半導体チップと、
前記実装基板の電極と、前記半導体チップの対応する電極とを電気的に接続し、弾性を有する接続部材と、
前記実装基板と前記半導体チップとの間に配置され、該実装基板と該半導体チップとの間に間隙を確保し、平面視において、前記実装基板及び前記半導体チップの電極が分布する領域を取り囲むスペーサと、
前記スペーサ、前記実装基板、及び前記半導体チップで囲まれた空洞の外側に配置され、前記半導体チップの表面の第1の領域と前記実装基板の表面の第2の領域とに密着して該半導体チップを該実装基板に固定し、前記スペーサに対する親和性が、前記半導体チップの前記第1の領域に対する親和性及び前記実装基板の前記第2の領域に対する親和性のいずれよりも低い接着剤と
を有する半導体装置。
A mounting substrate having a plurality of electrodes formed on the mounting surface;
A semiconductor chip that is opposed to the mounting substrate with a gap, and an electrode is formed at a position corresponding to the electrode on the mounting substrate;
Electrically connecting the electrodes of the mounting substrate and the corresponding electrodes of the semiconductor chip , and a connecting member having elasticity ;
A spacer that is disposed between the mounting substrate and the semiconductor chip, secures a gap between the mounting substrate and the semiconductor chip, and surrounds an area in which the electrodes of the mounting substrate and the semiconductor chip are distributed in plan view. When,
The semiconductor is disposed outside a cavity surrounded by the spacer, the mounting substrate, and the semiconductor chip, and is in close contact with the first region on the surface of the semiconductor chip and the second region on the surface of the mounting substrate. A chip is fixed to the mounting substrate, and an adhesive having an affinity for the spacer is lower than both the affinity for the first region of the semiconductor chip and the affinity for the second region of the mounting substrate. A semiconductor device having the same.
前記スペーサは、無極性の樹脂で形成されており、前記接着剤は、極性を有する樹脂を含む請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the spacer is formed of a nonpolar resin, and the adhesive includes a resin having polarity. 前記接続部材が、カーボンナノチューブであり、該カーボンナノチューブは湾曲しており、前記実装基板と前記半導体チップとの間の間隙を広げる向きの復元力を持つ請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the connection member is a carbon nanotube, the carbon nanotube is curved, and has a restoring force in a direction to widen a gap between the mounting substrate and the semiconductor chip. 実装面に複数の電極が形成されている実装基板の該実装面に、該電極が分布する領域を取り囲む平面形状を持つスペーサを配置する工程と、
前記スペーサを介して、前記実装基板の上に半導体チップを配置し、該半導体チップの表面に形成されている複数の電極を、それぞれ前記実装基板の実装面に形成されている複数の電極に、弾性を有する接続部材により、電気的に接続する工程と、
前記スペーサ、前記実装基板、及び前記半導体チップで囲まれた空洞の外側において、前記半導体チップの表面の第1の領域から前記実装基板の表面の第2の領域まで連続するように、前記スペーサに対する親和性が、前記半導体チップの前記第1の領域に対する親和性及び前記実装基板の前記第2の領域に対する親和性のいずれよりも低い接着剤を塗布する工程と、
塗布された前記接着剤を硬化させる工程と
を有する半導体装置の製造方法。
Disposing a spacer having a planar shape surrounding a region where the electrodes are distributed on the mounting surface of the mounting substrate on which a plurality of electrodes are formed on the mounting surface;
A semiconductor chip is disposed on the mounting substrate via the spacer, and a plurality of electrodes formed on the surface of the semiconductor chip are respectively formed on a plurality of electrodes formed on the mounting surface of the mounting substrate . Electrically connecting the elastic connecting member ;
Outside the cavity surrounded by the spacer, the mounting substrate, and the semiconductor chip, the spacer is continuous with the spacer from the first region on the surface of the semiconductor chip to the second region on the surface of the mounting substrate. Applying an adhesive whose affinity is lower than both the affinity of the semiconductor chip for the first region and the affinity of the mounting substrate for the second region;
And a step of curing the applied adhesive.
前記半導体チップの電極を、前記実装基板の電極に電気的に接続する工程において、カーボンナノチューブを介して、前記半導体チップの電極を、前記実装基板の電極に電気的に接続する請求項4に記載の半導体装置の製造方法。   5. The electrode of the semiconductor chip is electrically connected to the electrode of the mounting substrate through a carbon nanotube in the step of electrically connecting the electrode of the semiconductor chip to the electrode of the mounting substrate. Semiconductor device manufacturing method.
JP2008290200A 2008-11-12 2008-11-12 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5187148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290200A JP5187148B2 (en) 2008-11-12 2008-11-12 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290200A JP5187148B2 (en) 2008-11-12 2008-11-12 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010118469A JP2010118469A (en) 2010-05-27
JP5187148B2 true JP5187148B2 (en) 2013-04-24

Family

ID=42305963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290200A Expired - Fee Related JP5187148B2 (en) 2008-11-12 2008-11-12 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5187148B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916735A (en) * 2010-07-19 2010-12-15 江阴长电先进封装有限公司 Manufacturing method of flip chip encapsulation structure taking carbon nano tube cluster as salient point of chip
EP2871675A1 (en) * 2013-11-06 2015-05-13 Mitsubishi Electric R & D Centre Europe B.V. Pressure connection for a semiconductor die using flexible nanowires and corresponding manufacturing method
JP6922561B2 (en) * 2017-08-30 2021-08-18 富士通株式会社 Electronic devices and methods for manufacturing electronic devices
CN212752742U (en) * 2018-01-23 2021-03-19 株式会社村田制作所 Substrate bonding structure
DE102022132447A1 (en) * 2022-12-07 2024-06-13 Nanowired Gmbh Connecting components
KR102737071B1 (en) * 2024-01-02 2024-12-03 엘지이노텍 주식회사 Circuit board and semiconductor package substrate having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070514B2 (en) * 1997-04-28 2000-07-31 日本電気株式会社 Semiconductor device having protruding electrode, method of mounting semiconductor device, and mounting structure thereof
JP2003303946A (en) * 2002-04-12 2003-10-24 Sony Corp Solid-state image pickup device and manufacturing method thereof
JP2004179578A (en) * 2002-11-29 2004-06-24 Ngk Spark Plug Co Ltd Wiring board and its manufacturing method
JP4744360B2 (en) * 2006-05-22 2011-08-10 富士通株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2010118469A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP4744360B2 (en) Semiconductor device
CN101740529B (en) Heat radiation material, electronic device and method of manufacturing electronic device
JP5187148B2 (en) Semiconductor device and manufacturing method thereof
US20050255304A1 (en) Aligned nanostructure thermal interface material
JP4992461B2 (en) Electronic circuit device and electronic circuit device module
US9362242B2 (en) Bonding structure including metal nano particle
JP6366723B2 (en) Semiconductor device and manufacturing method thereof
JP5378585B2 (en) Semiconductor device
WO2013105161A1 (en) Pressure contact type semiconductor device and method for fabricating same
JP2005260181A (en) Resin-sealed semiconductor device and manufacturing method thereof
JP6643481B2 (en) Semiconductor module and method of manufacturing semiconductor module
CN110462820B (en) Semiconductor module with base plate with concave bend
JP5292772B2 (en) Electronic component and manufacturing method thereof
JP3669980B2 (en) MODULE STRUCTURE MANUFACTURING METHOD, CIRCUIT BOARD FIXING METHOD, AND CIRCUIT BOARD
US7485006B2 (en) Memory module, socket and mounting method providing improved heat dissipating characteristics
JP4964505B2 (en) Semiconductor device, manufacturing method thereof, and electronic component
JP5884625B2 (en) Semiconductor device
JP2009252956A (en) Mounting frame, semiconductor device, and method of manufacturing the same
JP6618745B2 (en) Electronic components
US20100025030A1 (en) Heat conductive plate structure
JP3669981B2 (en) Method for manufacturing module structure
JP2009253073A (en) Semiconductor device and production method therefor
WO2016171122A1 (en) Semiconductor device and method for manufacturing same
JPS6129161A (en) Thermal conductive cooling module device
JP2006140322A (en) Hermetic terminal for optical semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees