[go: up one dir, main page]

JP5173160B2 - Multilayer wiring board and manufacturing method thereof - Google Patents

Multilayer wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP5173160B2
JP5173160B2 JP2006194753A JP2006194753A JP5173160B2 JP 5173160 B2 JP5173160 B2 JP 5173160B2 JP 2006194753 A JP2006194753 A JP 2006194753A JP 2006194753 A JP2006194753 A JP 2006194753A JP 5173160 B2 JP5173160 B2 JP 5173160B2
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
wiring board
multilayer wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006194753A
Other languages
Japanese (ja)
Other versions
JP2008021941A5 (en
JP2008021941A (en
Inventor
昌宏 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2006194753A priority Critical patent/JP5173160B2/en
Priority to KR1020070069940A priority patent/KR20080007124A/en
Priority to US11/826,263 priority patent/US20080012120A1/en
Priority to TW096125530A priority patent/TW200806147A/en
Priority to EP07013920A priority patent/EP1879227A1/en
Publication of JP2008021941A publication Critical patent/JP2008021941A/en
Publication of JP2008021941A5 publication Critical patent/JP2008021941A5/ja
Application granted granted Critical
Publication of JP5173160B2 publication Critical patent/JP5173160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09518Deep blind vias, i.e. blind vias connecting the surface circuit to circuit layers deeper than the first buried circuit layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1338Chemical vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、ビルドアップ法を用いて製作される多層配線基板に関する。この多層配線基板は、半導体デバイス等を搭載したパッケージの製作に適用することができ、あるいは半導体デバイス等を回路基板等に搭載するのに用いられるインターポーザとして適用することができる。   The present invention relates to a multilayer wiring board manufactured using a build-up method. This multilayer wiring board can be applied to manufacture of a package on which a semiconductor device or the like is mounted, or can be applied as an interposer used for mounting a semiconductor device or the like on a circuit board or the like.

ビルドアップ多層配線基板は、コア基板上の絶縁層にビア開口部を形成してからセミアディティブ法で配線層を形成し、続いて絶縁層と配線層の形成を繰り返すことにより、必要な数の配線層を備えた多層配線基板として製作される。絶縁層は、エポキシ樹脂に代表されるビルドアップ樹脂で形成され、ビルドアップ樹脂はフィラーを含有するため、ビア開口部はレーザ加工で形成するのが一般的である。   The build-up multilayer wiring board is formed by forming a via opening in the insulating layer on the core substrate, then forming the wiring layer by the semi-additive method, and then repeating the formation of the insulating layer and the wiring layer as many times as necessary. It is manufactured as a multilayer wiring board provided with a wiring layer. The insulating layer is formed of a build-up resin typified by an epoxy resin. Since the build-up resin contains a filler, the via opening is generally formed by laser processing.

図6に、そのような方法で製作した従来のビルドアップ多層配線基板を模式的に示す。この図のビルドアップ多層配線基板は、例えばガラスクロスエポキシ樹脂製の、コア基板101の上に形成した5つの配線層103a、103b、103c、103d、103eを有し、隣り合う配線層の間に層間絶縁膜105ab、105bc、105cd、105deが位置している。隣接配線層どうしを接続するビア107が各層間絶縁膜に形成される一方、2以上の絶縁層を介して上下の配線層(図6の配線基板では一番上の配線層103eと一番下の配線層103a)を接続するビア107’も形成されている。後者のタイプのビア107’は、「スタックビア」として知られており、配線経路を短くする目的で用いられる。スタックビア107’は、各絶縁層105ab、105bc、105cd、105deに個別に形成したビア107’a、107’b、107’c、107’dがランド109を介して接続された構造を持つ。一般に、ビア107も、スタックビア107’を構成する各絶縁層のビア107’a、107’b、107’c、107’dも、樹脂製の各絶縁層にレーザ加工で形成した開口部に配線材料を充填して形成される。最上層の配線層103eの上には、ソルダレジストにより保護層111が形成されていて、その開口部に半導体デバイス(図示せず)などを搭載するのに用いるパッド113が設けられている。図6に示したコア基板101の反対側には、コア基板101のスルーホール115に接続するはんだバンプが設けられることもあり、あるいは図示したのと同様のビルドアップ構造が形成されることもある。   FIG. 6 schematically shows a conventional build-up multilayer wiring board manufactured by such a method. The build-up multilayer wiring board in this figure has five wiring layers 103a, 103b, 103c, 103d, and 103e formed on the core substrate 101 made of, for example, glass cloth epoxy resin, and between adjacent wiring layers. Interlayer insulating films 105ab, 105bc, 105cd, and 105de are located. Vias 107 that connect adjacent wiring layers are formed in each interlayer insulating film, while upper and lower wiring layers (in the wiring substrate of FIG. 6, the uppermost wiring layer 103e and the lowermost layer are formed through two or more insulating layers. A via 107 ′ for connecting the wiring layer 103a) is also formed. The latter type of via 107 ′ is known as a “stack via” and is used for the purpose of shortening the wiring path. The stacked via 107 ′ has a structure in which vias 107 ′ a, 107 ′ b, 107 ′ c, and 107 ′ d individually formed in the respective insulating layers 105 ab, 105 bc, 105 cd, and 105 de are connected via lands 109. Generally, the via 107 and the vias 107′a, 107′b, 107′c, and 107′d of each insulating layer constituting the stacked via 107 ′ are also formed in the openings formed by laser processing in the respective insulating layers made of resin. It is formed by filling the wiring material. A protective layer 111 is formed by solder resist on the uppermost wiring layer 103e, and a pad 113 used for mounting a semiconductor device (not shown) or the like is provided in the opening. On the opposite side of the core substrate 101 shown in FIG. 6, solder bumps connected to the through holes 115 of the core substrate 101 may be provided, or a build-up structure similar to that illustrated may be formed. .

ビルドアップ多層配線基板の絶縁層を樹脂でなくSiO2等の無機材料で形成することも知られている。例えば特許文献1には、アルミニウム板の上に真空蒸着でSiO2絶縁膜を形成した絶縁基板上に、配線層と、真空蒸着した膜厚10μmのSiO2により形成され、エッチングで形成したバイアホールを有する絶縁層を交互に形成した多層配線構造の基板が記載されている。バイアホールは、各絶縁層を形成するたびに形成することが記載されている。 It is also known to form an insulating layer of a build-up multilayer wiring board with an inorganic material such as SiO 2 instead of a resin. For example, Patent Document 1 discloses a via hole formed by etching on an insulating substrate in which an SiO 2 insulating film is formed on an aluminum plate by vacuum deposition, using a wiring layer and a vacuum deposited SiO 2 film having a thickness of 10 μm. There is described a substrate having a multilayer wiring structure in which insulating layers having n are alternately formed. It is described that a via hole is formed every time each insulating layer is formed.

特開平1−257397号公報Japanese Patent Laid-Open No. 1-257397

図6に示したような従来のビルドアップ多層配線基板では、熱膨張率の異なる異種材料を用いることに起因する熱応力がスタックビア107’を構成する各絶縁層のビア107’a、107’b、107’c、107’dの根元部分に集中しやすく、その部分で断線を引き起こす危険性がある。この熱応力は、ビアの直径が大きいほど、またビアが深くなる(絶縁層が厚くなる)ほど、大きくなる。現状のビルドアップ樹脂による絶縁層は、絶縁性と作業性の観点から、最小限30μmの厚さが必要である。また、樹脂の絶縁層にレーザ加工であける開口部の直径の下限は30〜40μm程度である。これらが、スタックビアの断線の回避を妨げ、現状のビルドアップ多層配線基板における配線とビアの高密度化を妨げる要因となっている。   In the conventional build-up multilayer wiring board as shown in FIG. 6, the thermal stress caused by using different materials having different thermal expansion coefficients causes the vias 107′a and 107 ′ of the insulating layers constituting the stack via 107 ′. b, 107′c, 107′d are likely to concentrate on the root portion, and there is a risk of causing disconnection at that portion. The thermal stress increases as the via diameter increases and the via depth increases (the insulating layer becomes thicker). The insulating layer made of the current build-up resin needs to have a minimum thickness of 30 μm from the viewpoint of insulation and workability. The lower limit of the diameter of the opening that can be laser-processed in the resin insulating layer is about 30 to 40 μm. These hinder the avoidance of disconnection of the stack via and become a factor that hinders the high density of wiring and vias in the current build-up multilayer wiring board.

更に、これまでのビルドアップ多層配線基板のスタックビア107’は、複数の絶縁層の個別のビア107’a、107’b、107’c、107’dを連結して形成されているため、これらの個別ビアの形成精度によっては、接続不良を招きかねないという問題を抱えている。   Furthermore, the stack via 107 ′ of the conventional build-up multilayer wiring board is formed by connecting individual vias 107′a, 107′b, 107′c, 107′d of a plurality of insulating layers. Depending on the formation accuracy of these individual vias, there is a problem that connection failure may occur.

本発明は、かような問題の解決を目指すものであり、2以上の絶縁層にまたがりながら信頼性の高いビアを有し、且つ、配線とビアの高密度化を可能にする多層配線基板を提供しようとするものである。   The present invention aims to solve such a problem, and has a multilayer wiring board that has a highly reliable via that spans two or more insulating layers and that enables high density wiring and vias. It is something to be offered.

本発明の多層配線基板は、複数の配線層と層間絶縁膜を有し、且つ、隣接配線層を接続するタイプのビアと、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアとを有する多層配線基板であって、層間絶縁膜の少なくとも一部が無機絶縁膜で形成されており、且つ、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアが、無機絶縁膜でいずれも形成された層間絶縁膜を貫通する単一のビアとして形成されていることを特徴とする。   The multilayer wiring board of the present invention has a plurality of wiring layers and an interlayer insulating film, and a type of connecting upper and lower wiring layers via two or more interlayer insulating films, and a via that connects adjacent wiring layers. A multilayer wiring board having a plurality of vias, wherein at least part of the interlayer insulating film is formed of an inorganic insulating film, and the upper and lower wiring layers are connected via two or more interlayer insulating films However, it is characterized in that it is formed as a single via penetrating an interlayer insulating film formed of any inorganic insulating film.

好ましくは、層間絶縁膜の全てが無機絶縁膜で作製される。
好ましくは、無機絶縁膜は低温CVD法で形成されている。
好ましくは、無機絶縁膜の厚みは0.5〜2.0μm、より好ましくは0.5〜1.5μm、最も好ましくは0.5〜1.0μmである。
Preferably, all of the interlayer insulating film is made of an inorganic insulating film.
Preferably, the inorganic insulating film is formed by a low temperature CVD method.
Preferably, the thickness of the inorganic insulating film is 0.5 to 2.0 μm, more preferably 0.5 to 1.5 μm, and most preferably 0.5 to 1.0 μm.

本発明の多層配線基板は、2以上の無機絶縁膜を介して上下の配線層を接続するタイプのビアの形成を、当該2以上の無機絶縁膜を形成してからそれらをホトリソグラフ法により同時に処理して形成した開口部を用いて行うことを特徴とする方法で製造することができる。   In the multilayer wiring board of the present invention, vias of the type in which the upper and lower wiring layers are connected via two or more inorganic insulating films are formed, and the two or more inorganic insulating films are formed and then simultaneously formed by photolithography. It can be manufactured by a method characterized by using an opening formed by processing.

本発明によれば、耐圧性に優れた無機絶縁膜を用いることにより薄い層間絶縁膜を利用できるため、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアを含めて、異なる層の配線を接続するビアの深さを、極めて小さくすることが可能である。これにより、ビアにかかる熱応力を小さくすることができ、特に2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアの断線に帰因する接続不良のリスクを最小限にして、高信頼性の多層配線基板を提供することができる。同時に、従来のビルドアップ樹脂を用いて製造された多層配線基板では実現できなかった配線とビアの高密度化を実現することもできる。   According to the present invention, since a thin interlayer insulating film can be used by using an inorganic insulating film excellent in pressure resistance, including a via of a type that connects upper and lower wiring layers through two or more interlayer insulating films, The depth of the via connecting the wirings of different layers can be made extremely small. As a result, the thermal stress applied to the via can be reduced, and the risk of poor connection due to disconnection of the via that connects the upper and lower wiring layers through two or more interlayer insulating films is minimized. A highly reliable multilayer wiring board can be provided. At the same time, it is possible to realize higher density of wiring and vias that could not be realized with a multilayer wiring board manufactured using a conventional build-up resin.

本発明はまた、無機絶縁膜の形成を低温CVDにより行うことにより、耐熱性の低い材料を使用した基板への適用が可能であり、汎用性に優れている。   In addition, the present invention can be applied to a substrate using a material having low heat resistance by forming the inorganic insulating film by low-temperature CVD, and is excellent in versatility.

図1に、本発明による多層配線基板の部分模式図を示す。この図の多層配線基板は、コア基板11の上に形成した5つの配線層13a、13b、13c、13d、13eを有し、隣り合う配線層の間に層間絶縁膜15ab、15bc、15cd、15deが位置している。各層間絶縁膜に隣接配線層どうしを接続するタイプのビア17が形成される一方、2以上の絶縁層を介して上下の配線層(図1の配線基板では一番上の配線層13eと一番下の配線層13a)を接続するタイプのビア17’が形成されている。このビア17’は、後に説明するように、接続しようとする上下の配線の間に介在する2以上の層間絶縁膜を貫通する開口部に配線材料を充填して一度に形成される。そのため、ビア17’は、図6を参照して先に説明した従来技術によるビア107’と異なり、層間絶縁膜の数と等しい個別ビア107’a、107’b、107’c、107’d(図6)を連結する必要がなく、そのために必要とされるランド109(図6)も必要としない。最上層の配線層13eの上には、ソルダレジストにより保護層19が形成されていて、その開口部に半導体デバイス(図示せず)などを搭載するのに用いるパッド21が設けられている。図1に示したコア基板11の反対側には、コア基板11のスルーホール23に接続するはんだバンプ(図示せず)があってもよく、あるいは図示したのと同様のビルドアップ多層配線構造を備えてもよい。   FIG. 1 is a partial schematic view of a multilayer wiring board according to the present invention. The multilayer wiring board in this figure has five wiring layers 13a, 13b, 13c, 13d, and 13e formed on the core substrate 11, and interlayer insulating films 15ab, 15bc, 15cd, and 15de are provided between adjacent wiring layers. Is located. Vias 17 of the type that connect adjacent wiring layers are formed in each interlayer insulating film, while the upper and lower wiring layers (one with the uppermost wiring layer 13e in the wiring substrate of FIG. 1) are formed through two or more insulating layers. A via 17 'of the type connecting the lowermost wiring layer 13a) is formed. As will be described later, the via 17 ′ is formed at a time by filling a wiring material into an opening that penetrates two or more interlayer insulating films interposed between upper and lower wirings to be connected. Therefore, the via 17 ′ differs from the prior art via 107 ′ described above with reference to FIG. 6 and has the same number of individual vias 107′a, 107′b, 107′c, 107′d as the number of interlayer insulating films. It is not necessary to connect (FIG. 6), nor is the land 109 (FIG. 6) required for that purpose. A protective layer 19 is formed by solder resist on the uppermost wiring layer 13e, and a pad 21 used for mounting a semiconductor device (not shown) or the like is provided in the opening. On the opposite side of the core substrate 11 shown in FIG. 1, there may be solder bumps (not shown) connected to the through holes 23 of the core substrate 11, or a build-up multilayer wiring structure similar to that shown in FIG. You may prepare.

本発明の多層配線基板のコア基板11としては、例えばガラスクロスエポキシ樹脂製などの樹脂基板、あるいはシリコン基板などを用いることができる。シリコン基板のような導電性を示す基板を用いる場合には、その表面に絶縁処理を施したものを使用する。   As the core substrate 11 of the multilayer wiring board of the present invention, for example, a resin substrate made of glass cloth epoxy resin or a silicon substrate can be used. When a conductive substrate such as a silicon substrate is used, an insulating surface is used.

配線層13a〜13eと、2つのタイプのビア17、17’は、Cuなどの一般的な配線材料から、多層配線の形成に一般的に用いられる方法により形成することができる。配線層の厚みは、スパッタや蒸着で配線層を形成する場合は、例えば0.5〜1μm程度でよく、その上に更にめっき法で厚膜を形成する場合は、例えば5〜10μmとすることができる。   The wiring layers 13a to 13e and the two types of vias 17 and 17 'can be formed from a general wiring material such as Cu by a method generally used for forming a multilayer wiring. When the wiring layer is formed by sputtering or vapor deposition, the thickness of the wiring layer may be, for example, about 0.5 to 1 μm, and when a thick film is further formed thereon by plating, for example, 5 to 10 μm. Can do.

本発明では、層間絶縁膜15ab、15bc、15cd、15deの材料として無機材料を用いる。好ましくは、無機材料の層間絶縁膜は低温CVD法により、200℃以下の温度で形成される。従来の多層配線基板で用いられるビルドアップ樹脂から形成される層間絶縁膜では、絶縁性と作業性の必要から、30μm以上の厚さが必要である。それに対し、例えばSiO2の層間絶縁膜は1μmの厚さで100ボルトの耐圧があり、従って本発明におけるSiO2層間絶縁膜は、例えば0.5〜2μmの厚みで十分機能を発揮する。このように、従来の多層配線基板においてビルドアップ樹脂により形成する層間絶縁膜に比べて、本発明の多層配線基板では層間絶縁膜ははるかに薄くてよい。例えば、配線層より薄い厚さの層間絶縁膜を設けてもよい。その場合、本発明の多層配線基板では、層間絶縁膜は下層の表面形状を強く反映した表面形状を有することになり、断面が図1に示したように階段状となる。 In the present invention, an inorganic material is used as the material of the interlayer insulating films 15ab, 15bc, 15cd, and 15de. Preferably, the interlayer insulating film made of an inorganic material is formed at a temperature of 200 ° C. or lower by a low temperature CVD method. An interlayer insulating film formed from a build-up resin used in a conventional multilayer wiring board needs a thickness of 30 μm or more because of the necessity for insulation and workability. On the other hand, for example, the SiO 2 interlayer insulation film has a thickness of 1 μm and a withstand voltage of 100 volts. Therefore, the SiO 2 interlayer insulation film in the present invention exhibits a sufficient function at a thickness of 0.5 to 2 μm, for example. As described above, the interlayer insulating film in the multilayer wiring board of the present invention may be much thinner than the interlayer insulating film formed by the build-up resin in the conventional multilayer wiring board. For example, an interlayer insulating film having a thickness smaller than that of the wiring layer may be provided. In that case, in the multilayer wiring board of the present invention, the interlayer insulating film has a surface shape that strongly reflects the surface shape of the lower layer, and the cross section is stepped as shown in FIG.

層間絶縁膜としては、SiO2、Si34等の無機絶縁膜を用いることができるが、耐圧性や生産性の点から、SiO2が好適である。 As the interlayer insulating film, an inorganic insulating film such as SiO 2 or Si 3 N 4 can be used, but SiO 2 is preferable in terms of pressure resistance and productivity.

隣接配線層を接続するタイプのビア17も、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビア17’も、各層間絶縁膜15ab、15bc、15cd、15deに形成した開口部に配線材料を充填して形成される。層間絶縁膜がビルドアップ樹脂で形成される従来の多層配線基板の場合、ビア用の開口部は層間絶縁膜にレーザ加工で形成される。それに対し、本発明の多層配線基板では、層間絶縁膜にフィラーなどの異種材料が含まれないので、層間絶縁膜のビア形成用の開口部はエッチングを利用するホトリソグラフ法で形成することができる。レーザ加工による場合、開口部の直径は30μm以上になるのに対し、リソグラフ法による場合直径10μm以下の開口部の形成が可能である。   An opening formed in each of the interlayer insulating films 15ab, 15bc, 15cd, and 15de, as well as a via 17 of a type connecting adjacent wiring layers and a via 17 'of a type connecting upper and lower wiring layers via two or more interlayer insulating films It is formed by filling the portion with a wiring material. In the case of a conventional multilayer wiring board in which an interlayer insulating film is formed of a build-up resin, a via opening is formed in the interlayer insulating film by laser processing. On the other hand, in the multilayer wiring board of the present invention, since the interlayer insulating film does not contain a different material such as a filler, the opening for forming the via in the interlayer insulating film can be formed by a photolithographic method using etching. . In the case of laser processing, the diameter of the opening is 30 μm or more, whereas in the case of the lithographic method, an opening with a diameter of 10 μm or less can be formed.

層間絶縁膜をビルドアップ樹脂で形成する従来の多層配線基板では、1つの層間絶縁膜が厚いため、積層した複数の絶縁膜を同時にレーザ加工してビア用の開口部を形成するのは困難である。そのため、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアは、各層間絶縁膜の開口部に個別に形成したビア107’a〜107’d(図6)を連結して作られ、各個別ビアの連結部にはランド109(図6)が存在する。本発明の多層配線基板では、1つの層間絶縁膜が薄いため、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアも、各層間絶縁膜の開口部をリソグラフ法により一括して形成することにより作ることができる。従って、本発明の多層配線基板では、どちらのタイプのビアも単一のビアとして形成されていて、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアには、2以上の単一ビアの連結により形成したビアに特有の中間部のランド(図6の109で示された部材)が存在しない。1つの層間絶縁膜の厚みが増してビア用開口部を形成しようとする積層した層間絶縁膜の全体の厚みが大きくなると、厚いレジスト膜が必要となり、ドライエッチングでのビア用開口部の一括形成は実際上困難になる。SiO2絶縁膜の開口部の形成にドライエッチングを利用する場合、現在のエッチング剤(CF4ガス)に対するSiO2絶縁膜とレジスト膜の選択比は4程度である。本発明の場合、1つのSiO2層間絶縁膜は1μm程度でよいので、例えば4層の層間絶縁膜に一括してビア用開口部を形成する場合、16μmより厚いレジスト膜を使用すればよい。 In a conventional multilayer wiring board in which an interlayer insulating film is formed of a build-up resin, since one interlayer insulating film is thick, it is difficult to form a via opening by simultaneously laser processing a plurality of stacked insulating films. is there. For this reason, vias of the type in which the upper and lower wiring layers are connected via two or more interlayer insulating films connect vias 107′a to 107′d (FIG. 6) individually formed in the openings of the interlayer insulating films. The land 109 (FIG. 6) exists at the connection portion of each individual via. In the multilayer wiring board according to the present invention, since one interlayer insulating film is thin, vias of the type in which the upper and lower wiring layers are connected via two or more interlayer insulating films are collectively formed by opening the openings of each interlayer insulating film by a lithographic method. And can be made by forming. Therefore, in the multilayer wiring board of the present invention, both types of vias are formed as a single via, and there are two or more types of vias that connect the upper and lower wiring layers via two or more interlayer insulating films. There are no intermediate lands (members indicated by 109 in FIG. 6) unique to the vias formed by connecting the single vias. When the thickness of one interlayer insulating film increases to increase the overall thickness of the laminated interlayer insulating film to be formed as a via opening, a thick resist film is required, and the via openings are collectively formed by dry etching. Is actually difficult. When using dry etching to form the opening of the SiO 2 insulating film, the selection ratio of the SiO 2 insulating film and the resist film for the current etchants (CF 4 gas) is about 4. In the present invention, since one SiO 2 interlayer insulating film may be about 1 μm, for example, when via openings are formed collectively in four layers of interlayer insulating films, a resist film thicker than 16 μm may be used.

次に、実施例により本発明を更に説明するが、本発明がこの実施例に限定されるものでないことを理解すべきである。   EXAMPLES Next, the present invention will be further described with reference to examples, but it should be understood that the present invention is not limited to these examples.

図2(a)に示したように、スルーホール電極33を形成したガラスクロスエポキシ樹脂製のコア基板31の表面に1層目の配線層35を形成する。スルーホール電極33は、コア基板31にあけた貫通孔の内壁に金属層33aを形成し、孔内の空隙に絶縁樹脂材料33bを充填して形成される。配線層35は、コア基板31の表面に形成したシード層(図示せず)の上にレジストパターン(図示せず)を形成し、露出したシード層上に電解CuめっきでCu層を4μm成長させることにより形成される。この際、配線層35の形成と同様な方法により、ランド75をコア基板31の裏面側のスルーホール電極33上に形成する。その後、レジストパターンとシード層を順に除去する。   As shown in FIG. 2A, the first wiring layer 35 is formed on the surface of the core substrate 31 made of glass cloth epoxy resin on which the through-hole electrode 33 is formed. The through-hole electrode 33 is formed by forming a metal layer 33a on the inner wall of a through-hole formed in the core substrate 31, and filling the gap in the hole with an insulating resin material 33b. For the wiring layer 35, a resist pattern (not shown) is formed on a seed layer (not shown) formed on the surface of the core substrate 31, and a Cu layer is grown by 4 μm on the exposed seed layer by electrolytic Cu plating. Is formed. At this time, the land 75 is formed on the through-hole electrode 33 on the back surface side of the core substrate 31 by a method similar to the formation of the wiring layer 35. Thereafter, the resist pattern and the seed layer are sequentially removed.

続いて、低温のプラズマCVDにより、例えば180℃で、図2(b)に示したように厚さ1μmのSiO2層間絶縁膜37を全面に形成する。この層間絶縁膜37に、既に形成した1層目の配線層35と、次に形成する2層目の配線層とを接続するビアのための開口部39(直径10μm)(図2(c))を形成する。開口部39の形成は、層間絶縁膜37の上にレジストパターン(図示せず)を形成し、その開口部に露出した絶縁膜37をCF4でドライエッチングすることにより行う。その後、レジストパターンを除去する。 Subsequently, an SiO 2 interlayer insulating film 37 having a thickness of 1 μm is formed on the entire surface by low-temperature plasma CVD at 180 ° C., for example, as shown in FIG. In the interlayer insulating film 37, an opening 39 (diameter 10 μm) for a via connecting the first wiring layer 35 already formed and the second wiring layer to be formed next (diameter 10 μm) (FIG. 2C). ). The opening 39 is formed by forming a resist pattern (not shown) on the interlayer insulating film 37 and dry-etching the insulating film 37 exposed in the opening with CF 4 . Thereafter, the resist pattern is removed.

続いて、開口部39に配線材料を充填して、図2(d)に示したようにビア41を形成し、同時に層間絶縁膜37の上に2層目の配線層43(厚みは4μm)を形成する。ビア41と配線層43の形成は、層間絶縁膜37を形成したコア基板の表面にシード層(図示せず)を形成後、その上にレジストパターン(図示せず)を形成し、露出したシード層上に電解CuめっきでCu層を成長させることにより行う。その後、レジストパターンとシード層を順に除去する。   Subsequently, the opening 39 is filled with a wiring material to form a via 41 as shown in FIG. 2D. At the same time, a second wiring layer 43 (with a thickness of 4 μm) is formed on the interlayer insulating film 37. Form. The via 41 and the wiring layer 43 are formed by forming a seed layer (not shown) on the surface of the core substrate on which the interlayer insulating film 37 is formed, and then forming a resist pattern (not shown) thereon to expose the exposed seed. It is performed by growing a Cu layer on the layer by electrolytic Cu plating. Thereafter, the resist pattern and the seed layer are sequentially removed.

図2(b)〜2(d)を参照して説明した工程を繰り返して、図3(a)に示したように4つの配線層35、43、49、55、配線層間の絶縁膜37、45、51と一番上の配線層55を覆う絶縁膜57、及び隣接配線層を相互接続するビア41、47、53を有する中間製品を得る。次に、図3(b)に示したように、中間製品の一番上の絶縁膜57に、その下の4層目の配線層55と、次に形成する5層目の配線層とを接続するビア用の開口部58(直径20μm)と、4つの絶縁膜37、45、51、57を介して1層目の配線層35と5層目の配線層とを接続するビア用の開口部59(直径30μm)を、同時に形成する。開口部58と59の形成は、先に説明した開口部39の形成と同様に、CF4でのドライエッチングを利用するホトリソグラフ法で行う。CF4に対するSiO2絶縁膜とレジスト膜の選択比が4程度であることを考慮して、この場合のレジスト膜の厚みは20μm程度とする。 2 (b) to 2 (d) are repeated, the four wiring layers 35, 43, 49, and 55, the insulating film 37 between the wiring layers, as shown in FIG. 3 (a), An intermediate product having insulating films 57 covering 45 and 51 and the uppermost wiring layer 55 and vias 41, 47 and 53 interconnecting adjacent wiring layers is obtained. Next, as shown in FIG. 3B, the fourth wiring layer 55 below and the fifth wiring layer to be formed next are formed on the uppermost insulating film 57 of the intermediate product. Via opening 58 for connecting via (diameter 20 μm), and via opening for connecting first wiring layer 35 and fifth wiring layer via four insulating films 37, 45, 51, 57. The part 59 (diameter 30 μm) is formed at the same time. The openings 58 and 59 are formed by a photolithography method using dry etching with CF 4 , similarly to the formation of the opening 39 described above. Considering that the selection ratio of the SiO 2 insulating film to the CF 4 and the resist film is about 4, the thickness of the resist film in this case is about 20 μm.

次に、開口部58、59に配線材料を充填して、図3(c)に示したようにビア61、63を形成するとともに、層間絶縁膜57の上に5層目の配線層65(厚み4μm)を形成する。ビア61、63と配線層65の形成は、これ以前のビア及び配線層の形成と同様に、シード層(図示せず)とその上のレジストパターン(図示せず)の形成、露出したシード層上への電解Cuめっき層の形成により行う。その後、レジストパターンとシード層を順に除去する。   Next, the openings 58 and 59 are filled with a wiring material to form vias 61 and 63 as shown in FIG. 3C, and a fifth wiring layer 65 (on the interlayer insulating film 57). 4 μm thick). The vias 61 and 63 and the wiring layer 65 are formed in the same manner as the previous vias and wiring layers. A seed layer (not shown), a resist pattern (not shown) thereon, and an exposed seed layer are formed. It is performed by forming an electrolytic Cu plating layer on the top. Thereafter, the resist pattern and the seed layer are sequentially removed.

続いて、図4に示したように、5層目の配線層65を形成したコア基板31の全面にソルダレジストにより保護層67、67’を形成し、保護層67の開口部69に、ニッケルめっきと金めっきを順次施し、半導体デバイス(図示せず)などを搭載するのに用いるパッド71を形成する。こうして多層配線構造を形成したコア基板31の反対側には、ソルダレジストで形成した保護層67’の開口部のランド75を介してスルーホール電極33に接続する金属バンプ73を、例えば半田ボールを利用して、形成することができる。図4に示した本発明の一つの態様の多層配線基板は、金属バンプ73により別の基板(一例として、回路基板、例えばマザーボード等)に接続することができる。   Subsequently, as shown in FIG. 4, protective layers 67 and 67 ′ are formed by solder resist on the entire surface of the core substrate 31 on which the fifth wiring layer 65 is formed, and nickel is formed in the opening 69 of the protective layer 67. Plating and gold plating are sequentially performed to form a pad 71 used for mounting a semiconductor device (not shown) or the like. On the opposite side of the core substrate 31 thus formed with the multilayer wiring structure, metal bumps 73 connected to the through-hole electrodes 33 via the lands 75 in the openings of the protective layer 67 ′ formed of solder resist, for example, solder balls are used. It can be formed using. The multilayer wiring board of one embodiment of the present invention shown in FIG. 4 can be connected to another board (for example, a circuit board such as a mother board) by metal bumps 73.

図4の多層配線構造を形成したコア基板31の反対側には、同様の多層配線構造を形成することも可能であり、そのような態様の例を図5に示す。図5においては、コア基板31の上下の多層配線構造は同様であり、上下の多層配線構造中の同一の部材は同じ参照番号で示されている。   A similar multilayer wiring structure can be formed on the opposite side of the core substrate 31 on which the multilayer wiring structure of FIG. 4 is formed, and an example of such an embodiment is shown in FIG. In FIG. 5, the upper and lower multilayer wiring structures of the core substrate 31 are the same, and the same members in the upper and lower multilayer wiring structures are denoted by the same reference numerals.

本発明の上記の態様では層間絶縁膜の全てをSiO2で形成しているが、その一部を別の材料で形成する態様も可能である。例えば図4の態様において一番上の配線層65をその直ぐ下の配線層55に接続するだけでよい場合には、配線層55と65の間の絶縁膜57はエポキシ樹脂のような通常のビルドアップ樹脂で形成してもよい。 In the above aspect of the present invention, all of the interlayer insulating film is formed of SiO 2 , but an aspect in which a part thereof is formed of another material is also possible. For example, when it is only necessary to connect the uppermost wiring layer 65 to the wiring layer 55 immediately below the uppermost wiring layer 65 in the embodiment of FIG. 4, the insulating film 57 between the wiring layers 55 and 65 is an ordinary resin such as an epoxy resin. You may form with buildup resin.

本発明の多層配線基板を説明する模式図である。It is a schematic diagram explaining the multilayer wiring board of this invention. 本発明の多層配線基板の製造工程の前半を模式的に説明する図である。It is a figure which illustrates typically the first half of the manufacturing process of the multilayer wiring board of this invention. 本発明の多層配線基板の製造工程の後半を模式的に説明する図である。It is a figure which illustrates typically the latter half of the manufacturing process of the multilayer wiring board of this invention. 本発明による多層配線基板の一態様を説明する模式図である。It is a schematic diagram explaining the one aspect | mode of the multilayer wiring board by this invention. 本発明による多層配線基板のもう一つの態様を説明する模式図である。It is a schematic diagram explaining another aspect of the multilayer wiring board by this invention. 従来技術の多層配線基板を説明する図である。It is a figure explaining the multilayer wiring board of a prior art.

符号の説明Explanation of symbols

11 コア基板
13a〜13e 配線層
15ab、15bc、15cd、15de 層間絶縁膜
17、17’ ビア
19 保護層
21 パッド
23 スルーホール
31 コア基板
33 スルーホール電極
35、43、49、55、65 配線層
37、45、51、57 層間絶縁膜
41、47、53、61、63 ビア
67、67’ 保護層
71 パッド
73 金属バンプ
11 Core substrate 13a-13e Wiring layer 15ab, 15bc, 15cd, 15de Interlayer insulation film 17, 17 'Via 19 Protective layer 21 Pad 23 Through hole 31 Core substrate 33 Through hole electrode 35, 43, 49, 55, 65 Wiring layer 37 , 45, 51, 57 Interlayer insulating film 41, 47, 53, 61, 63 Via 67, 67 'Protective layer 71 Pad 73 Metal bump

Claims (5)

複数の配線層と層間絶縁膜を有し、且つ、隣接配線層を接続するタイプのビアと、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアとを有する多層配線基板であって、層間絶縁膜の少なくとも一部が無機絶縁膜で形成されており、且つ、2以上の層間絶縁膜を介して上下の配線層を接続するタイプのビアが、無機絶縁膜でいずれも形成された層間絶縁膜を貫通する単一のビアとして形成されており、無機絶縁膜で形成された層間絶縁膜が配線層より薄く、且つそれにより下層配線層の表面形状を反映した階段状に形成されていることを特徴とする多層配線基板。 A multilayer wiring board having a plurality of wiring layers and an interlayer insulating film, and having a type of via that connects adjacent wiring layers and a type of via that connects upper and lower wiring layers via two or more interlayer insulating films And at least a part of the interlayer insulating film is formed of an inorganic insulating film, and vias of a type connecting upper and lower wiring layers via two or more interlayer insulating films are both inorganic insulating films. the formed interlayer insulating film is formed as a single via which penetrates the interlayer insulating film formed of an inorganic insulating film is thinner than the wiring layer, and stepped to thereby reflecting the surface shape of the lower wiring layer A multilayer wiring board characterized by being formed. 層間絶縁膜の全てが無機絶縁膜で作製されている、請求項1記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein all of the interlayer insulating films are made of an inorganic insulating film. 無機絶縁膜が低温CVD法で形成されている、請求項1又は2記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein the inorganic insulating film is formed by a low temperature CVD method. 無機絶縁膜の厚みが0.5〜2.0μmである、請求項1から3までのいずれか一つに記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein the inorganic insulating film has a thickness of 0.5 to 2.0 μm. 請求項1から4までのいずれか一つに記載の多層配線基板の製造方法であって、2以上の無機絶縁膜を介して上下の配線層を接続するタイプのビアの形成を、当該2以上の無機絶縁膜を形成してからそれらをホトリソグラフ法により同時に処理して形成した開口部を用いて行うことを特徴とする多層配線基板製造方法。   5. The method for manufacturing a multilayer wiring board according to claim 1, wherein two or more vias of a type connecting upper and lower wiring layers through two or more inorganic insulating films are formed. A method for producing a multilayer wiring board, comprising: forming an inorganic insulating film, and then using an opening formed by simultaneously processing the inorganic insulating films by a photolithographic method.
JP2006194753A 2006-07-14 2006-07-14 Multilayer wiring board and manufacturing method thereof Expired - Fee Related JP5173160B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006194753A JP5173160B2 (en) 2006-07-14 2006-07-14 Multilayer wiring board and manufacturing method thereof
KR1020070069940A KR20080007124A (en) 2006-07-14 2007-07-12 Multilayer wiring board and its manufacturing method
US11/826,263 US20080012120A1 (en) 2006-07-14 2007-07-13 Multilayer wiring substrate and manufacturing method thereof
TW096125530A TW200806147A (en) 2006-07-14 2007-07-13 Multilayer wiring substrate and manufacturing method thereof
EP07013920A EP1879227A1 (en) 2006-07-14 2007-07-16 Multilayer wiring substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006194753A JP5173160B2 (en) 2006-07-14 2006-07-14 Multilayer wiring board and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2008021941A JP2008021941A (en) 2008-01-31
JP2008021941A5 JP2008021941A5 (en) 2009-07-16
JP5173160B2 true JP5173160B2 (en) 2013-03-27

Family

ID=38621177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194753A Expired - Fee Related JP5173160B2 (en) 2006-07-14 2006-07-14 Multilayer wiring board and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20080012120A1 (en)
EP (1) EP1879227A1 (en)
JP (1) JP5173160B2 (en)
KR (1) KR20080007124A (en)
TW (1) TW200806147A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7202785B2 (en) * 2018-04-27 2023-01-12 新光電気工業株式会社 Wiring board and method for manufacturing wiring board

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918148A (en) * 1974-04-15 1975-11-11 Ibm Integrated circuit chip carrier and method for forming the same
US4642160A (en) * 1985-08-12 1987-02-10 Interconnect Technology Inc. Multilayer circuit board manufacturing
US4977105A (en) * 1988-03-15 1990-12-11 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing interconnection structure in semiconductor device
JPH01257397A (en) * 1988-04-07 1989-10-13 Mitsubishi Heavy Ind Ltd Metal printed board
JPH0372693A (en) * 1989-08-11 1991-03-27 Hitachi Ltd Interconnecting member and forming method therefor
JPH04242088A (en) * 1991-01-16 1992-08-28 Nec Corp Ic socket
JPH0653350A (en) * 1992-07-30 1994-02-25 Hitachi Ltd Multilayer circuit board and its manufacturing method, and electronic circuit module and electronic circuit device using the method
US5871868A (en) * 1993-02-26 1999-02-16 General Dynamics Information Systems, Inc. Apparatus and method for machining conductive structures on substrates
JPH06291518A (en) * 1993-03-31 1994-10-18 Nippon Chemicon Corp Impedance converter by micro strip line
US5510758A (en) * 1993-04-07 1996-04-23 Matsushita Electric Industrial Co., Ltd. Multilayer microstrip wiring board with a semiconductor device mounted thereon via bumps
JP3260941B2 (en) * 1993-06-18 2002-02-25 株式会社日立製作所 Multilayer wiring board and method of manufacturing multilayer wiring board
US6331680B1 (en) * 1996-08-07 2001-12-18 Visteon Global Technologies, Inc. Multilayer electrical interconnection device and method of making same
JP3531573B2 (en) * 2000-03-17 2004-05-31 株式会社村田製作所 Multilayer ceramic electronic component, method of manufacturing the same, and electronic device
US7164197B2 (en) * 2003-06-19 2007-01-16 3M Innovative Properties Company Dielectric composite material
JP4413573B2 (en) * 2003-10-16 2010-02-10 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
CN100367491C (en) * 2004-05-28 2008-02-06 日本特殊陶业株式会社 Intermediate substrate

Also Published As

Publication number Publication date
EP1879227A1 (en) 2008-01-16
US20080012120A1 (en) 2008-01-17
KR20080007124A (en) 2008-01-17
JP2008021941A (en) 2008-01-31
TW200806147A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP5331958B2 (en) Wiring board and semiconductor package
US8138424B2 (en) Wiring substrate including a reinforcing structural body
US8907489B2 (en) Wiring substrate, method of manufacturing the same, and semiconductor device
JP2011181923A (en) Stress resistant micro-via structure for flexible circuit
JP4890959B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR PACKAGE
US20150223330A1 (en) Wiring substrate, semiconductor device, method of manufacturing wiring substrate, and method of manufacturing semiconductor device
JP5173160B2 (en) Multilayer wiring board and manufacturing method thereof
JP3896038B2 (en) Multilayer semiconductor module
US6981320B2 (en) Circuit board and fabricating process thereof
TWI765647B (en) Package carrier and manufacturing method thereof
JP2009071157A (en) Wiring board and manufacturing method thereof, and semiconductor device
US8125074B2 (en) Laminated substrate for an integrated circuit BGA package and printed circuit boards
CN111315109B (en) Composite substrate structure and manufacturing method thereof
TWI852074B (en) Substrate structure
JP4241202B2 (en) Manufacturing method of plating post type wiring board
JPH0832244A (en) Multilayer wiring board
JP7589574B2 (en) Multilayer wiring board
JP6544462B2 (en) Multilayer wiring structure
JP6536710B2 (en) Multilayer wiring structure
JPS6079744A (en) Semiconductor device
JP2009224731A (en) Multilayer resin wiring board
JP2017084955A (en) Interposer and method of manufacturing interposer
TW202320276A (en) Semiconductor substrate structure and manufacturing method thereof
JPH07226589A (en) Manufacture of thin film multilayer wiring board
JP2022170156A (en) multilayer wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees